summary refs log tree commit diff
path: root/net/dsa/dsa2.c
AgeCommit message (Collapse)Author
2022-03-10Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
net/dsa/dsa2.c commit afb3cc1a397d ("net: dsa: unlock the rtnl_mutex when dsa_master_setup() fails") commit e83d56537859 ("net: dsa: replay master state events in dsa_tree_{setup,teardown}_master") https://lore.kernel.org/all/20220307101436.7ae87da0@canb.auug.org.au/ drivers/net/ethernet/intel/ice/ice.h commit 97b0129146b1 ("ice: Fix error with handling of bonding MTU") commit 43113ff73453 ("ice: add TTY for GNSS module for E810T device") https://lore.kernel.org/all/20220310112843.3233bcf1@canb.auug.org.au/ drivers/staging/gdm724x/gdm_lte.c commit fc7f750dc9d1 ("staging: gdm724x: fix use after free in gdm_lte_rx()") commit 4bcc4249b4cf ("staging: Use netif_rx().") https://lore.kernel.org/all/20220308111043.1018a59d@canb.auug.org.au/ Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-03-09net: dsa: move port lists initialization to dsa_port_touchVladimir Oltean
&cpu_db->fdbs and &cpu_db->mdbs may be uninitialized lists during some call paths of felix_set_tag_protocol(). There was an attempt to avoid calling dsa_port_walk_fdbs() during setup by using a "bool change" in the felix driver, but this doesn't work when the tagging protocol is defined in the device tree, and a change is triggered by DSA at pseudo-runtime: dsa_tree_setup_switches -> dsa_switch_setup -> dsa_switch_setup_tag_protocol -> ds->ops->change_tag_protocol dsa_tree_setup_ports -> dsa_port_setup -> &dp->fdbs and &db->mdbs only get initialized here So it seems like the only way to fix this is to move the initialization of these lists earlier. dsa_port_touch() is called from dsa_switch_touch_ports() which is called from dsa_switch_parse_of(), and this runs completely before dsa_tree_setup(). Similarly, dsa_switch_release_ports() runs after dsa_tree_teardown(). Fixes: f9cef64fa23f ("net: dsa: felix: migrate host FDB and MDB entries when changing tag proto") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-03-09net: dsa: warn if port lists aren't empty in dsa_port_teardownVladimir Oltean
There has been recent work towards matching each switchdev object addition with a corresponding deletion. Therefore, having elements in the fdbs, mdbs, vlans lists at the time of a shared (DSA, CPU) port's teardown is indicative of a bug somewhere else, and not something that is to be expected. We shouldn't try to silently paper over that. Instead, print a warning and a stack trace. This change is a prerequisite for moving the initialization/teardown of these lists. Make it clear that clearing the lists isn't needed. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-03-06net: dsa: unlock the rtnl_mutex when dsa_master_setup() failsVladimir Oltean
After the blamed commit, dsa_tree_setup_master() may exit without calling rtnl_unlock(), fix that. Fixes: c146f9bc195a ("net: dsa: hold rtnl_mutex when calling dsa_master_{setup,teardown}") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-03-03Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
net/batman-adv/hard-interface.c commit 690bb6fb64f5 ("batman-adv: Request iflink once in batadv-on-batadv check") commit 6ee3c393eeb7 ("batman-adv: Demote batadv-on-batadv skip error message") https://lore.kernel.org/all/20220302163049.101957-1-sw@simonwunderlich.de/ net/smc/af_smc.c commit 4d08b7b57ece ("net/smc: Fix cleanup when register ULP fails") commit 462791bbfa35 ("net/smc: add sysctl interface for SMC") https://lore.kernel.org/all/20220302112209.355def40@canb.auug.org.au/ Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-03-03net: dsa: make dsa_tree_change_tag_proto actually unwind the tag proto changeVladimir Oltean
The blamed commit said one thing but did another. It explains that we should restore the "return err" to the original "goto out_unwind_tagger", but instead it replaced it with "goto out_unlock". When DSA_NOTIFIER_TAG_PROTO fails after the first switch of a multi-switch tree, the switches would end up not using the same tagging protocol. Fixes: 0b0e2ff10356 ("net: dsa: restore error path of dsa_tree_change_tag_proto") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Link: https://lore.kernel.org/r/20220303154249.1854436-1-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-03-01net: dsa: restore error path of dsa_tree_change_tag_protoVladimir Oltean
When the DSA_NOTIFIER_TAG_PROTO returns an error, the user space process which initiated the protocol change exits the kernel processing while still holding the rtnl_mutex. So any other process attempting to lock the rtnl_mutex would deadlock after such event. The error handling of DSA_NOTIFIER_TAG_PROTO was inadvertently changed by the blamed commit, introducing this regression. We must still call rtnl_unlock(), and we must still call DSA_NOTIFIER_TAG_PROTO for the old protocol. The latter is due to the limiting design of notifier chains for cross-chip operations, which don't have a built-in error recovery mechanism - we should look into using notifier_call_chain_robust for that. Fixes: dc452a471dba ("net: dsa: introduce tagger-owned storage for private and shared data") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Link: https://lore.kernel.org/r/20220228141715.146485-1-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-24net: dsa: create a dsa_lag structureVladimir Oltean
The main purpose of this change is to create a data structure for a LAG as seen by DSA. This is similar to what we have for bridging - we pass a copy of this structure by value to ->port_lag_join and ->port_lag_leave. For now we keep the lag_dev, id and a reference count in it. Future patches will add a list of FDB entries for the LAG (these also need to be refcounted to work properly). The LAG structure is created using dsa_port_lag_create() and destroyed using dsa_port_lag_destroy(), just like we have for bridging. Because now, the dsa_lag itself is refcounted, we can simplify dsa_lag_map() and dsa_lag_unmap(). These functions need to keep a LAG in the dst->lags array only as long as at least one port uses it. The refcounting logic inside those functions can be removed now - they are called only when we should perform the operation. dsa_lag_dev() is renamed to dsa_lag_by_id() and now returns the dsa_lag structure instead of the lag_dev net_device. dsa_lag_foreach_port() now takes the dsa_lag structure as argument. dst->lags holds an array of dsa_lag structures. dsa_lag_map() now also saves the dsa_lag->id value, so that linear walking of dst->lags in drivers using dsa_lag_id() is no longer necessary. They can just look at lag.id. dsa_port_lag_id_get() is a helper, similar to dsa_port_bridge_num_get(), which can be used by drivers to get the LAG ID assigned by DSA to a given port. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-24net: dsa: make LAG IDs one-basedVladimir Oltean
The DSA LAG API will be changed to become more similar with the bridge data structures, where struct dsa_bridge holds an unsigned int num, which is generated by DSA and is one-based. We have a similar thing going with the DSA LAG, except that isn't stored anywhere, it is calculated dynamically by dsa_lag_id() by iterating through dst->lags. The idea of encoding an invalid (or not requested) LAG ID as zero for the purpose of simplifying checks in drivers means that the LAG IDs passed by DSA to drivers need to be one-based too. So back-and-forth conversion is needed when indexing the dst->lags array, as well as in drivers which assume a zero-based index. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-24net: dsa: rename references to "lag" as "lag_dev"Vladimir Oltean
In preparation of converting struct net_device *dp->lag_dev into a struct dsa_lag *dp->lag, we need to rename, for consistency purposes, all occurrences of the "lag" variable in the DSA core to "lag_dev". Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-16net: dsa: offload bridge port VLANs on foreign interfacesVladimir Oltean
DSA now explicitly handles VLANs installed with the 'self' flag on the bridge as host VLANs, instead of just replicating every bridge port VLAN also on the CPU port and never deleting it, which is what it did before. However, this leaves a corner case uncovered, as explained by Tobias Waldekranz: https://patchwork.kernel.org/project/netdevbpf/patch/20220209213044.2353153-6-vladimir.oltean@nxp.com/#24735260 Forwarding towards a bridge port VLAN installed on a bridge port foreign to DSA (separate NIC, Wi-Fi AP) used to work by virtue of the fact that DSA itself needed to have at least one port in that VLAN (therefore, it also had the CPU port in said VLAN). However, now that the CPU port may not be member of all VLANs that user ports are members of, we need to ensure this isn't the case if software forwarding to a foreign interface is required. The solution is to treat bridge port VLANs on standalone interfaces in the exact same way as host VLANs. From DSA's perspective, there is no difference between local termination and software forwarding; packets in that VLAN must reach the CPU in both cases. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-16net: dsa: add explicit support for host bridge VLANsVladimir Oltean
Currently, DSA programs VLANs on shared (DSA and CPU) ports each time it does so on user ports. This is good for basic functionality but has several limitations: - the VLAN group which must reach the CPU may be radically different from the VLAN group that must be autonomously forwarded by the switch. In other words, the admin may want to isolate noisy stations and avoid traffic from them going to the control processor of the switch, where it would just waste useless cycles. The bridge already supports independent control of VLAN groups on bridge ports and on the bridge itself, and when VLAN-aware, it will drop packets in software anyway if their VID isn't added as a 'self' entry towards the bridge device. - Replaying host FDB entries may depend, for some drivers like mv88e6xxx, on replaying the host VLANs as well. The 2 VLAN groups are approximately the same in most regular cases, but there are corner cases when timing matters, and DSA's approximation of replicating VLANs on shared ports simply does not work. - If a user makes the bridge (implicitly the CPU port) join a VLAN by accident, there is no way for the CPU port to isolate itself from that noisy VLAN except by rebooting the system. This is because for each VLAN added on a user port, DSA will add it on shared ports too, but for each VLAN deletion on a user port, it will remain installed on shared ports, since DSA has no good indication of whether the VLAN is still in use or not. Now that the bridge driver emits well-balanced SWITCHDEV_OBJ_ID_PORT_VLAN addition and removal events, DSA has a simple and straightforward task of separating the bridge port VLANs (these have an orig_dev which is a DSA slave interface, or a LAG interface) from the host VLANs (these have an orig_dev which is a bridge interface), and to keep a simple reference count of each VID on each shared port. Forwarding VLANs must be installed on the bridge ports and on all DSA ports interconnecting them. We don't have a good view of the exact topology, so we simply install forwarding VLANs on all DSA ports, which is what has been done until now. Host VLANs must be installed primarily on the dedicated CPU port of each bridge port. More subtly, they must also be installed on upstream-facing and downstream-facing DSA ports that are connecting the bridge ports and the CPU. This ensures that the mv88e6xxx's problem (VID of host FDB entry may be absent from VTU) is still addressed even if that switch is in a cross-chip setup, and it has no local CPU port. Therefore: - user ports contain only bridge port (forwarding) VLANs, and no refcounting is necessary - DSA ports contain both forwarding and host VLANs. Refcounting is necessary among these 2 types. - CPU ports contain only host VLANs. Refcounting is also necessary. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-10Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
No conflicts. Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-09net: dsa: fix panic when DSA master device unbinds on shutdownVladimir Oltean
Rafael reports that on a system with LX2160A and Marvell DSA switches, if a reboot occurs while the DSA master (dpaa2-eth) is up, the following panic can be seen: systemd-shutdown[1]: Rebooting. Unable to handle kernel paging request at virtual address 00a0000800000041 [00a0000800000041] address between user and kernel address ranges Internal error: Oops: 96000004 [#1] PREEMPT SMP CPU: 6 PID: 1 Comm: systemd-shutdow Not tainted 5.16.5-00042-g8f5585009b24 #32 pc : dsa_slave_netdevice_event+0x130/0x3e4 lr : raw_notifier_call_chain+0x50/0x6c Call trace: dsa_slave_netdevice_event+0x130/0x3e4 raw_notifier_call_chain+0x50/0x6c call_netdevice_notifiers_info+0x54/0xa0 __dev_close_many+0x50/0x130 dev_close_many+0x84/0x120 unregister_netdevice_many+0x130/0x710 unregister_netdevice_queue+0x8c/0xd0 unregister_netdev+0x20/0x30 dpaa2_eth_remove+0x68/0x190 fsl_mc_driver_remove+0x20/0x5c __device_release_driver+0x21c/0x220 device_release_driver_internal+0xac/0xb0 device_links_unbind_consumers+0xd4/0x100 __device_release_driver+0x94/0x220 device_release_driver+0x28/0x40 bus_remove_device+0x118/0x124 device_del+0x174/0x420 fsl_mc_device_remove+0x24/0x40 __fsl_mc_device_remove+0xc/0x20 device_for_each_child+0x58/0xa0 dprc_remove+0x90/0xb0 fsl_mc_driver_remove+0x20/0x5c __device_release_driver+0x21c/0x220 device_release_driver+0x28/0x40 bus_remove_device+0x118/0x124 device_del+0x174/0x420 fsl_mc_bus_remove+0x80/0x100 fsl_mc_bus_shutdown+0xc/0x1c platform_shutdown+0x20/0x30 device_shutdown+0x154/0x330 __do_sys_reboot+0x1cc/0x250 __arm64_sys_reboot+0x20/0x30 invoke_syscall.constprop.0+0x4c/0xe0 do_el0_svc+0x4c/0x150 el0_svc+0x24/0xb0 el0t_64_sync_handler+0xa8/0xb0 el0t_64_sync+0x178/0x17c It can be seen from the stack trace that the problem is that the deregistration of the master causes a dev_close(), which gets notified as NETDEV_GOING_DOWN to dsa_slave_netdevice_event(). But dsa_switch_shutdown() has already run, and this has unregistered the DSA slave interfaces, and yet, the NETDEV_GOING_DOWN handler attempts to call dev_close_many() on those slave interfaces, leading to the problem. The previous attempt to avoid the NETDEV_GOING_DOWN on the master after dsa_switch_shutdown() was called seems improper. Unregistering the slave interfaces is unnecessary and unhelpful. Instead, after the slaves have stopped being uppers of the DSA master, we can now reset to NULL the master->dsa_ptr pointer, which will make DSA start ignoring all future notifier events on the master. Fixes: 0650bf52b31f ("net: dsa: be compatible with masters which unregister on shutdown") Reported-by: Rafael Richter <rafael.richter@gin.de> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-02net: dsa: replay master state events in dsa_tree_{setup,teardown}_masterVladimir Oltean
In order for switch driver to be able to make simple and reliable use of the master tracking operations, they must also be notified of the initial state of the DSA master, not just of the changes. This is because they might enable certain features only during the time when they know that the DSA master is up and running. Therefore, this change explicitly checks the state of the DSA master under the same rtnl_mutex as we were holding during the dsa_master_setup() and dsa_master_teardown() call. The idea being that if the DSA master became operational in between the moment in which it became a DSA master (dsa_master_setup set dev->dsa_ptr) and the moment when we checked for the master being up, there is a chance that we would emit a ->master_state_change() call with no actual state change. We need to avoid that by serializing the concurrent netdevice event with us. If the netdevice event started before, we force it to finish before we begin, because we take rtnl_lock before making netdev_uses_dsa() return true. So we also handle that early event and do nothing on it. Similarly, if the dev_open() attempt is concurrent with us, it will attempt to take the rtnl_mutex, but we're holding it. We'll see that the master flag IFF_UP isn't set, then when we release the rtnl_mutex we'll process the NETDEV_UP notifier. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-02-02net: dsa: provide switch operations for tracking the master stateVladimir Oltean
Certain drivers may need to send management traffic to the switch for things like register access, FDB dump, etc, to accelerate what their slow bus (SPI, I2C, MDIO) can already do. Ethernet is faster (especially in bulk transactions) but is also more unreliable, since the user may decide to bring the DSA master down (or not bring it up), therefore severing the link between the host and the attached switch. Drivers needing Ethernet-based register access already should have fallback logic to the slow bus if the Ethernet method fails, but that fallback may be based on a timeout, and the I/O to the switch may slow down to a halt if the master is down, because every Ethernet packet will have to time out. The driver also doesn't have the option to turn off Ethernet-based I/O momentarily, because it wouldn't know when to turn it back on. Which is where this change comes in. By tracking NETDEV_CHANGE, NETDEV_UP and NETDEV_GOING_DOWN events on the DSA master, we should know the exact interval of time during which this interface is reliably available for traffic. Provide this information to switches so they can use it as they wish. An helper is added dsa_port_master_is_operational() to check if a master port is operational. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-01-06net: dsa: setup master before portsVladimir Oltean
It is said that as soon as a network interface is registered, all its resources should have already been prepared, so that it is available for sending and receiving traffic. One of the resources needed by a DSA slave interface is the master. dsa_tree_setup -> dsa_tree_setup_ports -> dsa_port_setup -> dsa_slave_create -> register_netdevice -> dsa_tree_setup_master -> dsa_master_setup -> sets up master->dsa_ptr, which enables reception Therefore, there is a short period of time after register_netdevice() during which the master isn't prepared to pass traffic to the DSA layer (master->dsa_ptr is checked by eth_type_trans). Same thing during unregistration, there is a time frame in which packets might be missed. Note that this change opens us to another race: dsa_master_find_slave() will get invoked potentially earlier than the slave creation, and later than the slave deletion. Since dp->slave starts off as a NULL pointer, the earlier calls aren't a problem, but the later calls are. To avoid use-after-free, we should zeroize dp->slave before calling dsa_slave_destroy(). In practice I cannot really test real life improvements brought by this change, since in my systems, netdevice creation races with PHY autoneg which takes a few seconds to complete, and that masks quite a few races. Effects might be noticeable in a setup with fixed links all the way to an external system. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-01-06net: dsa: first set up shared ports, then non-shared portsVladimir Oltean
After commit a57d8c217aad ("net: dsa: flush switchdev workqueue before tearing down CPU/DSA ports"), the port setup and teardown procedure became asymmetric. The fact of the matter is that user ports need the shared ports to be up before they can be used for CPU-initiated termination. And since we register net devices for the user ports, those won't be functional until we also call the setup for the shared (CPU, DSA) ports. But we may do that later, depending on the port numbering scheme of the hardware we are dealing with. It just makes sense that all shared ports are brought up before any user port is. I can't pinpoint any issue due to the current behavior, but let's change it nonetheless, for consistency's sake. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-01-06net: dsa: hold rtnl_mutex when calling dsa_master_{setup,teardown}Vladimir Oltean
DSA needs to simulate master tracking events when a binding is first with a DSA master established and torn down, in order to give drivers the simplifying guarantee that ->master_state_change calls are made only when the master's readiness state to pass traffic changes. master_state_change() provide a operational bool that DSA driver can use to understand if DSA master is operational or not. To avoid races, we need to block the reception of NETDEV_UP/NETDEV_CHANGE/NETDEV_GOING_DOWN events in the netdev notifier chain while we are changing the master's dev->dsa_ptr (this changes what netdev_uses_dsa(dev) reports). The dsa_master_setup() and dsa_master_teardown() functions optionally require the rtnl_mutex to be held, if the tagger needs the master to be promiscuous, these functions call dev_set_promiscuity(). Move the rtnl_lock() from that function and make it top-level. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2022-01-05net: dsa: make dsa_switch :: num_ports an unsigned intVladimir Oltean
Currently, num_ports is declared as size_t, which is defined as __kernel_ulong_t, therefore it occupies 8 bytes of memory. Even switches with port numbers in the range of tens are exotic, so there is no need for this amount of storage. Additionally, because the max_num_bridges member right above it is also 4 bytes, it means the compiler needs to add padding between the last 2 fields. By reducing the size, we don't need that padding and can reduce the struct size. Before: pahole -C dsa_switch net/dsa/slave.o struct dsa_switch { struct device * dev; /* 0 8 */ struct dsa_switch_tree * dst; /* 8 8 */ unsigned int index; /* 16 4 */ u32 setup:1; /* 20: 0 4 */ u32 vlan_filtering_is_global:1; /* 20: 1 4 */ u32 needs_standalone_vlan_filtering:1; /* 20: 2 4 */ u32 configure_vlan_while_not_filtering:1; /* 20: 3 4 */ u32 untag_bridge_pvid:1; /* 20: 4 4 */ u32 assisted_learning_on_cpu_port:1; /* 20: 5 4 */ u32 vlan_filtering:1; /* 20: 6 4 */ u32 pcs_poll:1; /* 20: 7 4 */ u32 mtu_enforcement_ingress:1; /* 20: 8 4 */ /* XXX 23 bits hole, try to pack */ struct notifier_block nb; /* 24 24 */ /* XXX last struct has 4 bytes of padding */ void * priv; /* 48 8 */ void * tagger_data; /* 56 8 */ /* --- cacheline 1 boundary (64 bytes) --- */ struct dsa_chip_data * cd; /* 64 8 */ const struct dsa_switch_ops * ops; /* 72 8 */ u32 phys_mii_mask; /* 80 4 */ /* XXX 4 bytes hole, try to pack */ struct mii_bus * slave_mii_bus; /* 88 8 */ unsigned int ageing_time_min; /* 96 4 */ unsigned int ageing_time_max; /* 100 4 */ struct dsa_8021q_context * tag_8021q_ctx; /* 104 8 */ struct devlink * devlink; /* 112 8 */ unsigned int num_tx_queues; /* 120 4 */ unsigned int num_lag_ids; /* 124 4 */ /* --- cacheline 2 boundary (128 bytes) --- */ unsigned int max_num_bridges; /* 128 4 */ /* XXX 4 bytes hole, try to pack */ size_t num_ports; /* 136 8 */ /* size: 144, cachelines: 3, members: 27 */ /* sum members: 132, holes: 2, sum holes: 8 */ /* sum bitfield members: 9 bits, bit holes: 1, sum bit holes: 23 bits */ /* paddings: 1, sum paddings: 4 */ /* last cacheline: 16 bytes */ }; After: pahole -C dsa_switch net/dsa/slave.o struct dsa_switch { struct device * dev; /* 0 8 */ struct dsa_switch_tree * dst; /* 8 8 */ unsigned int index; /* 16 4 */ u32 setup:1; /* 20: 0 4 */ u32 vlan_filtering_is_global:1; /* 20: 1 4 */ u32 needs_standalone_vlan_filtering:1; /* 20: 2 4 */ u32 configure_vlan_while_not_filtering:1; /* 20: 3 4 */ u32 untag_bridge_pvid:1; /* 20: 4 4 */ u32 assisted_learning_on_cpu_port:1; /* 20: 5 4 */ u32 vlan_filtering:1; /* 20: 6 4 */ u32 pcs_poll:1; /* 20: 7 4 */ u32 mtu_enforcement_ingress:1; /* 20: 8 4 */ /* XXX 23 bits hole, try to pack */ struct notifier_block nb; /* 24 24 */ /* XXX last struct has 4 bytes of padding */ void * priv; /* 48 8 */ void * tagger_data; /* 56 8 */ /* --- cacheline 1 boundary (64 bytes) --- */ struct dsa_chip_data * cd; /* 64 8 */ const struct dsa_switch_ops * ops; /* 72 8 */ u32 phys_mii_mask; /* 80 4 */ /* XXX 4 bytes hole, try to pack */ struct mii_bus * slave_mii_bus; /* 88 8 */ unsigned int ageing_time_min; /* 96 4 */ unsigned int ageing_time_max; /* 100 4 */ struct dsa_8021q_context * tag_8021q_ctx; /* 104 8 */ struct devlink * devlink; /* 112 8 */ unsigned int num_tx_queues; /* 120 4 */ unsigned int num_lag_ids; /* 124 4 */ /* --- cacheline 2 boundary (128 bytes) --- */ unsigned int max_num_bridges; /* 128 4 */ unsigned int num_ports; /* 132 4 */ /* size: 136, cachelines: 3, members: 27 */ /* sum members: 128, holes: 1, sum holes: 4 */ /* sum bitfield members: 9 bits, bit holes: 1, sum bit holes: 23 bits */ /* paddings: 1, sum paddings: 4 */ /* last cacheline: 8 bytes */ }; Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-12-14net: dsa: make tagging protocols connect to individual switches from a treeVladimir Oltean
On the NXP Bluebox 3 board which uses a multi-switch setup with sja1105, the mechanism through which the tagger connects to the switch tree is broken, due to improper DSA code design. At the time when tag_ops->connect() is called in dsa_port_parse_cpu(), DSA hasn't finished "touching" all the ports, so it doesn't know how large the tree is and how many ports it has. It has just seen the first CPU port by this time. As a result, this function will call the tagger's ->connect method too early, and the tagger will connect only to the first switch from the tree. This could be perhaps addressed a bit more simply by just moving the tag_ops->connect(dst) call a bit later (for example in dsa_tree_setup), but there is already a design inconsistency at present: on the switch side, the notification is on a per-switch basis, but on the tagger side, it is on a per-tree basis. Furthermore, the persistent storage itself is per switch (ds->tagger_data). And the tagger connect and disconnect procedures (at least the ones that exist currently) could see a fair bit of simplification if they didn't have to iterate through the switches of a tree. To fix the issue, this change transforms tag_ops->connect(dst) into tag_ops->connect(ds) and moves it somewhere where we already iterate over all switches of a tree. That is in dsa_switch_setup_tag_protocol(), which is a good placement because we already have there the connection call to the switch side of things. As for the dsa_tree_bind_tag_proto() method (called from the code path that changes the tag protocol), things are a bit more complicated because we receive the tree as argument, yet when we unwind on errors, it would be nice to not call tag_ops->disconnect(ds) where we didn't previously call tag_ops->connect(ds). We didn't have this problem before because the tag_ops connection operations passed the entire dst before, and this is more fine grained now. To solve the error rewind case using the new API, we have to create yet one more cross-chip notifier for disconnection, and stay connected with the old tag protocol to all the switches in the tree until we've succeeded to connect with the new one as well. So if something fails half way, the whole tree is still connected to the old tagger. But there may still be leaks if the tagger fails to connect to the 2nd out of 3 switches in a tree: somebody needs to tell the tagger to disconnect from the first switch. Nothing comes for free, and this was previously handled privately by the tagging protocol driver before, but now we need to emit a disconnect cross-chip notifier for that, because DSA has to take care of the unwind path. We assume that the tagging protocol has connected to a switch if it has set ds->tagger_data to something, otherwise we avoid calling its disconnection method in the error rewind path. The rest of the changes are in the tagging protocol drivers, and have to do with the replacement of dst with ds. The iteration is removed and the error unwind path is simplified, as mentioned above. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-12-12net: dsa: introduce tagger-owned storage for private and shared dataVladimir Oltean
Ansuel is working on register access over Ethernet for the qca8k switch family. This requires the qca8k tagging protocol driver to receive frames which aren't intended for the network stack, but instead for the qca8k switch driver itself. The dp->priv is currently the prevailing method for passing data back and forth between the tagging protocol driver and the switch driver. However, this method is riddled with caveats. The DSA design allows in principle for any switch driver to return any protocol it desires in ->get_tag_protocol(). The dsa_loop driver can be modified to do just that. But in the current design, the memory behind dp->priv has to be allocated by the switch driver, so if the tagging protocol is paired to an unexpected switch driver, we may end up in NULL pointer dereferences inside the kernel, or worse (a switch driver may allocate dp->priv according to the expectations of a different tagger). The latter possibility is even more plausible considering that DSA switches can dynamically change tagging protocols in certain cases (dsa <-> edsa, ocelot <-> ocelot-8021q), and the current design lends itself to mistakes that are all too easy to make. This patch proposes that the tagging protocol driver should manage its own memory, instead of relying on the switch driver to do so. After analyzing the different in-tree needs, it can be observed that the required tagger storage is per switch, therefore a ds->tagger_data pointer is introduced. In principle, per-port storage could also be introduced, although there is no need for it at the moment. Future changes will replace the current usage of dp->priv with ds->tagger_data. We define a "binding" event between the DSA switch tree and the tagging protocol. During this binding event, the tagging protocol's ->connect() method is called first, and this may allocate some memory for each switch of the tree. Then a cross-chip notifier is emitted for the switches within that tree, and they are given the opportunity to fix up the tagger's memory (for example, they might set up some function pointers that represent virtual methods for consuming packets). Because the memory is owned by the tagger, there exists a ->disconnect() method for the tagger (which is the place to free the resources), but there doesn't exist a ->disconnect() method for the switch driver. This is part of the design. The switch driver should make minimal use of the public part of the tagger data, and only after type-checking it using the supplied "proto" argument. In the code there are in fact two binding events, one is the initial event in dsa_switch_setup_tag_protocol(). At this stage, the cross chip notifier chains aren't initialized, so we call each switch's connect() method by hand. Then there is dsa_tree_bind_tag_proto() during dsa_tree_change_tag_proto(), and here we have an old protocol and a new one. We first connect to the new one before disconnecting from the old one, to simplify error handling a bit and to ensure we remain in a valid state at all times. Co-developed-by: Ansuel Smith <ansuelsmth@gmail.com> Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-12-08net: dsa: keep the bridge_dev and bridge_num as part of the same structureVladimir Oltean
The main desire behind this is to provide coherent bridge information to the fast path without locking. For example, right now we set dp->bridge_dev and dp->bridge_num from separate code paths, it is theoretically possible for a packet transmission to read these two port properties consecutively and find a bridge number which does not correspond with the bridge device. Another desire is to start passing more complex bridge information to dsa_switch_ops functions. For example, with FDB isolation, it is expected that drivers will need to be passed the bridge which requested an FDB/MDB entry to be offloaded, and along with that bridge_dev, the associated bridge_num should be passed too, in case the driver might want to implement an isolation scheme based on that number. We already pass the {bridge_dev, bridge_num} pair to the TX forwarding offload switch API, however we'd like to remove that and squash it into the basic bridge join/leave API. So that means we need to pass this pair to the bridge join/leave API. During dsa_port_bridge_leave, first we unset dp->bridge_dev, then we call the driver's .port_bridge_leave with what used to be our dp->bridge_dev, but provided as an argument. When bridge_dev and bridge_num get folded into a single structure, we need to preserve this behavior in dsa_port_bridge_leave: we need a copy of what used to be in dp->bridge. Switch drivers check bridge membership by comparing dp->bridge_dev with the provided bridge_dev, but now, if we provide the struct dsa_bridge as a pointer, they cannot keep comparing dp->bridge to the provided pointer, since this only points to an on-stack copy. To make this obvious and prevent driver writers from forgetting and doing stupid things, in this new API, the struct dsa_bridge is provided as a full structure (not very large, contains an int and a pointer) instead of a pointer. An explicit comparison function needs to be used to determine bridge membership: dsa_port_offloads_bridge(). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Alvin Šipraga <alsi@bang-olufsen.dk> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-12-08net: dsa: assign a bridge number even without TX forwarding offloadVladimir Oltean
The service where DSA assigns a unique bridge number for each forwarding domain is useful even for drivers which do not implement the TX forwarding offload feature. For example, drivers might use the dp->bridge_num for FDB isolation. So rename ds->num_fwd_offloading_bridges to ds->max_num_bridges, and calculate a unique bridge_num for all drivers that set this value. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Alvin Šipraga <alsi@bang-olufsen.dk> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-12-08net: dsa: make dp->bridge_num one-basedVladimir Oltean
I have seen too many bugs already due to the fact that we must encode an invalid dp->bridge_num as a negative value, because the natural tendency is to check that invalid value using (!dp->bridge_num). Latest example can be seen in commit 1bec0f05062c ("net: dsa: fix bridge_num not getting cleared after ports leaving the bridge"). Convert the existing users to assume that dp->bridge_num == 0 is the encoding for invalid, and valid bridge numbers start from 1. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Alvin Šipraga <alsi@bang-olufsen.dk> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-10-25net: dsa: introduce locking for the address lists on CPU and DSA portsVladimir Oltean
Now that the rtnl_mutex is going away for dsa_port_{host_,}fdb_{add,del}, no one is serializing access to the address lists that DSA keeps for the purpose of reference counting on shared ports (CPU and cascade ports). It can happen for one dsa_switch_do_fdb_del to do list_del on a dp->fdbs element while another dsa_switch_do_fdb_{add,del} is traversing dp->fdbs. We need to avoid that. Currently dp->mdbs is not at risk, because dsa_switch_do_mdb_{add,del} still runs under the rtnl_mutex. But it would be nice if it would not depend on that being the case. So let's introduce a mutex per port (the address lists are per port too) and share it between dp->mdbs and dp->fdbs. The place where we put the locking is interesting. It could be tempting to put a DSA-level lock which still serializes calls to .port_fdb_{add,del}, but it would still not avoid concurrency with other driver code paths that are currently under rtnl_mutex (.port_fdb_dump, .port_fast_age). So it would add a very false sense of security (and adding a global switch-wide lock in DSA to resynchronize with the rtnl_lock is also counterproductive and hard). So the locking is intentionally done only where the dp->fdbs and dp->mdbs lists are traversed. That means, from a driver perspective, that .port_fdb_add will be called with the dp->addr_lists_lock mutex held on the CPU port, but not held on user ports. This is done so that driver writers are not encouraged to rely on any guarantee offered by dp->addr_lists_lock. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-25Revert "Merge branch 'dsa-rtnl'"David S. Miller
This reverts commit 965e6b262f48257dbdb51b565ecfd84877a0ab5f, reversing changes made to 4d98bb0d7ec2d0b417df6207b0bafe1868bad9f8.
2021-10-24net: dsa: introduce locking for the address lists on CPU and DSA portsVladimir Oltean
Now that the rtnl_mutex is going away for dsa_port_{host_,}fdb_{add,del}, no one is serializing access to the address lists that DSA keeps for the purpose of reference counting on shared ports (CPU and cascade ports). It can happen for one dsa_switch_do_fdb_del to do list_del on a dp->fdbs element while another dsa_switch_do_fdb_{add,del} is traversing dp->fdbs. We need to avoid that. Currently dp->mdbs is not at risk, because dsa_switch_do_mdb_{add,del} still runs under the rtnl_mutex. But it would be nice if it would not depend on that being the case. So let's introduce a mutex per port (the address lists are per port too) and share it between dp->mdbs and dp->fdbs. The place where we put the locking is interesting. It could be tempting to put a DSA-level lock which still serializes calls to .port_fdb_{add,del}, but it would still not avoid concurrency with other driver code paths that are currently under rtnl_mutex (.port_fdb_dump, .port_fast_age). So it would add a very false sense of security (and adding a global switch-wide lock in DSA to resynchronize with the rtnl_lock is also counterproductive and hard). So the locking is intentionally done only where the dp->fdbs and dp->mdbs lists are traversed. That means, from a driver perspective, that .port_fdb_add will be called with the dp->addr_lists_lock mutex held on the CPU port, but not held on user ports. This is done so that driver writers are not encouraged to rely on any guarantee offered by dp->addr_lists_lock. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-22Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netDavid S. Miller
Lots of simnple overlapping additions. With a build fix from Stephen Rothwell. Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-21net: dsa: do not open-code dsa_switch_for_each_portVladimir Oltean
Find the remaining iterators over dst->ports that only filter for the ports belonging to a certain switch, and replace those with the dsa_switch_for_each_port helper that we have now. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-21net: dsa: remove the "dsa_to_port in a loop" antipattern from the coreVladimir Oltean
Ever since Vivien's conversion of the ds->ports array into a dst->ports list, and the introduction of dsa_to_port, iterations through the ports of a switch became quadratic whenever dsa_to_port was needed. dsa_to_port can either be called directly, or indirectly through the dsa_is_{user,cpu,dsa,unused}_port helpers. Use the newly introduced dsa_switch_for_each_port() iteration macro that works with the iterator variable being a struct dsa_port *dp directly, and not an int i. It is an expensive variable to go from i to dp, but cheap to go from dp to i. This macro iterates through the entire ds->dst->ports list and filters by the ports belonging just to the switch provided as argument. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-19net: dsa: Fix an error handling path in 'dsa_switch_parse_ports_of()'Christophe JAILLET
If we return before the end of the 'for_each_child_of_node()' iterator, the reference taken on 'port' must be released. Add the missing 'of_node_put()' calls. Fixes: 83c0afaec7b7 ("net: dsa: Add new binding implementation") Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Link: https://lore.kernel.org/r/15d5310d1d55ad51c1af80775865306d92432e03.1634587046.git.christophe.jaillet@wanadoo.fr Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-10-14Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
tools/testing/selftests/net/ioam6.sh 7b1700e009cc ("selftests: net: modify IOAM tests for undef bits") bf77b1400a56 ("selftests: net: Test for the IOAM encapsulation with IPv6") Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-10-13net: dsa: unregister cross-chip notifier after ds->ops->teardownVladimir Oltean
To be symmetric with the error unwind path of dsa_switch_setup(), call dsa_switch_unregister_notifier() after ds->ops->teardown. The implication is that ds->ops->teardown cannot emit cross-chip notifiers. For example, currently the dsa_tag_8021q_unregister() call from sja1105_teardown() does not propagate to the entire tree due to this reason. However I cannot find an actual issue caused by this, observed using code inspection. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Link: https://lore.kernel.org/r/20211012123735.2545742-1-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-10-09net: dsa: hold rtnl_lock in dsa_switch_setup_tag_protocolVladimir Oltean
It was a documented fact that ds->ops->change_tag_protocol() offered rtnetlink mutex protection to the switch driver, since there was an ASSERT_RTNL right before the call in dsa_switch_change_tag_proto() (initiated from sysfs). The blamed commit introduced another call path for ds->ops->change_tag_protocol() which does not hold the rtnl_mutex. This is: dsa_tree_setup -> dsa_tree_setup_switches -> dsa_switch_setup -> dsa_switch_setup_tag_protocol -> ds->ops->change_tag_protocol() -> dsa_port_setup -> dsa_slave_create -> register_netdevice(slave_dev) -> dsa_tree_setup_master -> dsa_master_setup -> dev->dsa_ptr = cpu_dp The reason why the rtnl_mutex is held in the sysfs call path is to ensure that, once the master and all the DSA interfaces are down (which is required so that no packets flow), they remain down during the tagging protocol change. The above calling order illustrates the fact that it should not be risky to change the initial tagging protocol to the one specified in the device tree at the given time: - packets cannot enter the dsa_switch_rcv() packet type handler since netdev_uses_dsa() for the master will not yet return true, since dev->dsa_ptr has not yet been populated - packets cannot enter the dsa_slave_xmit() function because no DSA interface has yet been registered So from the DSA core's perspective, holding the rtnl_mutex is indeed not necessary. Yet, drivers may need to do things which need rtnl_mutex protection. For example: felix_set_tag_protocol -> felix_setup_tag_8021q -> dsa_tag_8021q_register -> dsa_tag_8021q_setup -> dsa_tag_8021q_port_setup -> vlan_vid_add -> ASSERT_RTNL These drivers do not really have a choice to take the rtnl_mutex themselves, since in the sysfs case, the rtnl_mutex is already held. Fixes: deff710703d8 ("net: dsa: Allow default tag protocol to be overridden from DT") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-08net: dsa: fix bridge_num not getting cleared after ports leaving the bridgeVladimir Oltean
The dp->bridge_num is zero-based, with -1 being the encoding for an invalid value. But dsa_bridge_num_put used to check for an invalid value by comparing bridge_num with 0, which is of course incorrect. The result is that the bridge_num will never get cleared by dsa_bridge_num_put, and further port joins to other bridges will get a bridge_num larger than the previous one, and once all the available bridges with TX forwarding offload supported by the hardware get exhausted, the TX forwarding offload feature is simply disabled. In the case of sja1105, 7 iterations of the loop below are enough to exhaust the TX forwarding offload bits, and further bridge joins operate without that feature. ip link add br0 type bridge vlan_filtering 1 while :; do ip link set sw0p2 master br0 && sleep 1 ip link set sw0p2 nomaster && sleep 1 done This issue is enough of an indication that having the dp->bridge_num invalid encoding be a negative number is prone to bugs, so this will be changed to a one-based value, with the dp->bridge_num of zero being the indication of no bridge. However, that is material for net-next. Fixes: f5e165e72b29 ("net: dsa: track unique bridge numbers across all DSA switch trees") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-09-27net: dsa: Move devlink registration to be last devlink commandLeon Romanovsky
This change prevents from users to access device before devlink is fully configured. Signed-off-by: Leon Romanovsky <leonro@nvidia.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-23Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
net/mptcp/protocol.c 977d293e23b4 ("mptcp: ensure tx skbs always have the MPTCP ext") efe686ffce01 ("mptcp: ensure tx skbs always have the MPTCP ext") same patch merged in both trees, keep net-next. Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-09-22devlink: Make devlink_register to be voidLeon Romanovsky
devlink_register() can't fail and always returns success, but all drivers are obligated to check returned status anyway. This adds a lot of boilerplate code to handle impossible flow. Make devlink_register() void and simplify the drivers that use that API call. Signed-off-by: Leon Romanovsky <leonro@nvidia.com> Acked-by: Simon Horman <simon.horman@corigine.com> Acked-by: Vladimir Oltean <olteanv@gmail.com> # dsa Reviewed-by: Jiri Pirko <jiri@nvidia.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-21net: dsa: don't allocate the slave_mii_bus using devresVladimir Oltean
The Linux device model permits both the ->shutdown and ->remove driver methods to get called during a shutdown procedure. Example: a DSA switch which sits on an SPI bus, and the SPI bus driver calls this on its ->shutdown method: spi_unregister_controller -> device_for_each_child(&ctlr->dev, NULL, __unregister); -> spi_unregister_device(to_spi_device(dev)); -> device_del(&spi->dev); So this is a simple pattern which can theoretically appear on any bus, although the only other buses on which I've been able to find it are I2C: i2c_del_adapter -> device_for_each_child(&adap->dev, NULL, __unregister_client); -> i2c_unregister_device(client); -> device_unregister(&client->dev); The implication of this pattern is that devices on these buses can be unregistered after having been shut down. The drivers for these devices might choose to return early either from ->remove or ->shutdown if the other callback has already run once, and they might choose that the ->shutdown method should only perform a subset of the teardown done by ->remove (to avoid unnecessary delays when rebooting). So in other words, the device driver may choose on ->remove to not do anything (therefore to not unregister an MDIO bus it has registered on ->probe), because this ->remove is actually triggered by the device_shutdown path, and its ->shutdown method has already run and done the minimally required cleanup. This used to be fine until the blamed commit, but now, the following BUG_ON triggers: void mdiobus_free(struct mii_bus *bus) { /* For compatibility with error handling in drivers. */ if (bus->state == MDIOBUS_ALLOCATED) { kfree(bus); return; } BUG_ON(bus->state != MDIOBUS_UNREGISTERED); bus->state = MDIOBUS_RELEASED; put_device(&bus->dev); } In other words, there is an attempt to free an MDIO bus which was not unregistered. The attempt to free it comes from the devres release callbacks of the SPI device, which are executed after the device is unregistered. I'm not saying that the fact that MDIO buses allocated using devres would automatically get unregistered wasn't strange. I'm just saying that the commit didn't care about auditing existing call paths in the kernel, and now, the following code sequences are potentially buggy: (a) devm_mdiobus_alloc followed by plain mdiobus_register, for a device located on a bus that unregisters its children on shutdown. After the blamed patch, either both the alloc and the register should use devres, or none should. (b) devm_mdiobus_alloc followed by plain mdiobus_register, and then no mdiobus_unregister at all in the remove path. After the blamed patch, nobody unregisters the MDIO bus anymore, so this is even more buggy than the previous case which needs a specific bus configuration to be seen, this one is an unconditional bug. In this case, DSA falls into category (a), it tries to be helpful and registers an MDIO bus on behalf of the switch, which might be on such a bus. I've no idea why it does it under devres. It does this on probe: if (!ds->slave_mii_bus && ds->ops->phy_read) alloc and register mdio bus and this on remove: if (ds->slave_mii_bus && ds->ops->phy_read) unregister mdio bus I _could_ imagine using devres because the condition used on remove is different than the condition used on probe. So strictly speaking, DSA cannot determine whether the ds->slave_mii_bus it sees on remove is the ds->slave_mii_bus that _it_ has allocated on probe. Using devres would have solved that problem. But nonetheless, the existing code already proceeds to unregister the MDIO bus, even though it might be unregistering an MDIO bus it has never registered. So I can only guess that no driver that implements ds->ops->phy_read also allocates and registers ds->slave_mii_bus itself. So in that case, if unregistering is fine, freeing must be fine too. Stop using devres and free the MDIO bus manually. This will make devres stop attempting to free a still registered MDIO bus on ->shutdown. Fixes: ac3a68d56651 ("net: phy: don't abuse devres in devm_mdiobus_register()") Reported-by: Lino Sanfilippo <LinoSanfilippo@gmx.de> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Tested-by: Lino Sanfilippo <LinoSanfilippo@gmx.de> Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-21net: dsa: fix dsa_tree_setup error pathVladimir Oltean
Since the blamed commit, dsa_tree_teardown_switches() was split into two smaller functions, dsa_tree_teardown_switches and dsa_tree_teardown_ports. However, the error path of dsa_tree_setup stopped calling dsa_tree_teardown_ports. Fixes: a57d8c217aad ("net: dsa: flush switchdev workqueue before tearing down CPU/DSA ports") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-19net: dsa: tear down devlink port regions when tearing down the devlink port ↵Vladimir Oltean
on error Commit 86f8b1c01a0a ("net: dsa: Do not make user port errors fatal") decided it was fine to ignore errors on certain ports that fail to probe, and go on with the ports that do probe fine. Commit fb6ec87f7229 ("net: dsa: Fix type was not set for devlink port") noticed that devlink_port_type_eth_set(dlp, dp->slave); does not get called, and devlink notices after a timeout of 3600 seconds and prints a WARN_ON. So it went ahead to unregister the devlink port. And because there exists an UNUSED port flavour, we actually re-register the devlink port as UNUSED. Commit 08156ba430b4 ("net: dsa: Add devlink port regions support to DSA") added devlink port regions, which are set up by the driver and not by DSA. When we trigger the devlink port deregistration and reregistration as unused, devlink now prints another WARN_ON, from here: devlink_port_unregister: WARN_ON(!list_empty(&devlink_port->region_list)); So the port still has regions, which makes sense, because they were set up by the driver, and the driver doesn't know we're unregistering the devlink port. Somebody needs to tear them down, and optionally (actually it would be nice, to be consistent) set them up again for the new devlink port. But DSA's layering stays in our way quite badly here. The options I've considered are: 1. Introduce a function in devlink to just change a port's type and flavour. No dice, devlink keeps a lot of state, it really wants the port to not be registered when you set its parameters, so changing anything can only be done by destroying what we currently have and recreating it. 2. Make DSA cache the parameters passed to dsa_devlink_port_region_create, and the region returned, keep those in a list, then when the devlink port unregister needs to take place, the existing devlink regions are destroyed by DSA, and we replay the creation of new regions using the cached parameters. Problem: mv88e6xxx keeps the region pointers in chip->ports[port].region, and these will remain stale after DSA frees them. There are many things DSA can do, but updating mv88e6xxx's private pointers is not one of them. 3. Just let the driver do it (i.e. introduce a very specific method called ds->ops->port_reinit_as_unused, which unregisters its devlink port devlink regions, then the old devlink port, then registers the new one, then the devlink port regions for it). While it does work, as opposed to the others, it's pretty horrible from an API perspective and we can do better. 4. Introduce a new pair of methods, ->port_setup and ->port_teardown, which in the case of mv88e6xxx must register and unregister the devlink port regions. Call these 2 methods when the port must be reinitialized as unused. Naturally, I went for the 4th approach. Fixes: 08156ba430b4 ("net: dsa: Add devlink port regions support to DSA") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-19net: dsa: be compatible with masters which unregister on shutdownVladimir Oltean
Lino reports that on his system with bcmgenet as DSA master and KSZ9897 as a switch, rebooting or shutting down never works properly. What does the bcmgenet driver have special to trigger this, that other DSA masters do not? It has an implementation of ->shutdown which simply calls its ->remove implementation. Otherwise said, it unregisters its network interface on shutdown. This message can be seen in a loop, and it hangs the reboot process there: unregister_netdevice: waiting for eth0 to become free. Usage count = 3 So why 3? A usage count of 1 is normal for a registered network interface, and any virtual interface which links itself as an upper of that will increment it via dev_hold. In the case of DSA, this is the call path: dsa_slave_create -> netdev_upper_dev_link -> __netdev_upper_dev_link -> __netdev_adjacent_dev_insert -> dev_hold So a DSA switch with 3 interfaces will result in a usage count elevated by two, and netdev_wait_allrefs will wait until they have gone away. Other stacked interfaces, like VLAN, watch NETDEV_UNREGISTER events and delete themselves, but DSA cannot just vanish and go poof, at most it can unbind itself from the switch devices, but that must happen strictly earlier compared to when the DSA master unregisters its net_device, so reacting on the NETDEV_UNREGISTER event is way too late. It seems that it is a pretty established pattern to have a driver's ->shutdown hook redirect to its ->remove hook, so the same code is executed regardless of whether the driver is unbound from the device, or the system is just shutting down. As Florian puts it, it is quite a big hammer for bcmgenet to unregister its net_device during shutdown, but having a common code path with the driver unbind helps ensure it is well tested. So DSA, for better or for worse, has to live with that and engage in an arms race of implementing the ->shutdown hook too, from all individual drivers, and do something sane when paired with masters that unregister their net_device there. The only sane thing to do, of course, is to unlink from the master. However, complications arise really quickly. The pattern of redirecting ->shutdown to ->remove is not unique to bcmgenet or even to net_device drivers. In fact, SPI controllers do it too (see dspi_shutdown -> dspi_remove), and presumably, I2C controllers and MDIO controllers do it too (this is something I have not researched too deeply, but even if this is not the case today, it is certainly plausible to happen in the future, and must be taken into consideration). Since DSA switches might be SPI devices, I2C devices, MDIO devices, the insane implication is that for the exact same DSA switch device, we might have both ->shutdown and ->remove getting called. So we need to do something with that insane environment. The pattern I've come up with is "if this, then not that", so if either ->shutdown or ->remove gets called, we set the device's drvdata to NULL, and in the other hook, we check whether the drvdata is NULL and just do nothing. This is probably not necessary for platform devices, just for devices on buses, but I would really insist for consistency among drivers, because when code is copy-pasted, it is not always copy-pasted from the best sources. So depending on whether the DSA switch's ->remove or ->shutdown will get called first, we cannot really guarantee even for the same driver if rebooting will result in the same code path on all platforms. But nonetheless, we need to do something minimally reasonable on ->shutdown too to fix the bug. Of course, the ->remove will do more (a full teardown of the tree, with all data structures freed, and this is why the bug was not caught for so long). The new ->shutdown method is kept separate from dsa_unregister_switch not because we couldn't have unregistered the switch, but simply in the interest of doing something quick and to the point. The big question is: does the DSA switch's ->shutdown get called earlier than the DSA master's ->shutdown? If not, there is still a risk that we might still trigger the WARN_ON in unregister_netdevice that says we are attempting to unregister a net_device which has uppers. That's no good. Although the reference to the master net_device won't physically go away even if DSA's ->shutdown comes afterwards, remember we have a dev_hold on it. The answer to that question lies in this comment above device_link_add: * A side effect of the link creation is re-ordering of dpm_list and the * devices_kset list by moving the consumer device and all devices depending * on it to the ends of these lists (that does not happen to devices that have * not been registered when this function is called). so the fact that DSA uses device_link_add towards its master is not exactly for nothing. device_shutdown() walks devices_kset from the back, so this is our guarantee that DSA's shutdown happens before the master's shutdown. Fixes: 2f1e8ea726e9 ("net: dsa: link interfaces with the DSA master to get rid of lockdep warnings") Link: https://lore.kernel.org/netdev/20210909095324.12978-1-LinoSanfilippo@gmx.de/ Reported-by: Lino Sanfilippo <LinoSanfilippo@gmx.de> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Tested-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-15net: dsa: flush switchdev workqueue before tearing down CPU/DSA portsVladimir Oltean
Sometimes when unbinding the mv88e6xxx driver on Turris MOX, these error messages appear: mv88e6085 d0032004.mdio-mii:12: port 1 failed to delete be:79:b4:9e:9e:96 vid 1 from fdb: -2 mv88e6085 d0032004.mdio-mii:12: port 1 failed to delete be:79:b4:9e:9e:96 vid 0 from fdb: -2 mv88e6085 d0032004.mdio-mii:12: port 1 failed to delete d8:58:d7:00:ca:6d vid 100 from fdb: -2 mv88e6085 d0032004.mdio-mii:12: port 1 failed to delete d8:58:d7:00:ca:6d vid 1 from fdb: -2 mv88e6085 d0032004.mdio-mii:12: port 1 failed to delete d8:58:d7:00:ca:6d vid 0 from fdb: -2 (and similarly for other ports) What happens is that DSA has a policy "even if there are bugs, let's at least not leak memory" and dsa_port_teardown() clears the dp->fdbs and dp->mdbs lists, which are supposed to be empty. But deleting that cleanup code, the warnings go away. => the FDB and MDB lists (used for refcounting on shared ports, aka CPU and DSA ports) will eventually be empty, but are not empty by the time we tear down those ports. Aka we are deleting them too soon. The addresses that DSA complains about are host-trapped addresses: the local addresses of the ports, and the MAC address of the bridge device. The problem is that offloading those entries happens from a deferred work item scheduled by the SWITCHDEV_FDB_DEL_TO_DEVICE handler, and this races with the teardown of the CPU and DSA ports where the refcounting is kept. In fact, not only it races, but fundamentally speaking, if we iterate through the port list linearly, we might end up tearing down the shared ports even before we delete a DSA user port which has a bridge upper. So as it turns out, we need to first tear down the user ports (and the unused ones, for no better place of doing that), then the shared ports (the CPU and DSA ports). In between, we need to ensure that all work items scheduled by our switchdev handlers (which only run for user ports, hence the reason why we tear them down first) have finished. Fixes: 161ca59d39e9 ("net: dsa: reference count the MDB entries at the cross-chip notifier level") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Link: https://lore.kernel.org/r/20210914134726.2305133-1-vladimir.oltean@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-23net: dsa: track unique bridge numbers across all DSA switch treesVladimir Oltean
Right now, cross-tree bridging setups work somewhat by mistake. In the case of cross-tree bridging with sja1105, all switch instances need to agree upon a common VLAN ID for forwarding a packet that belongs to a certain bridging domain. With TX forwarding offload, the VLAN ID is the bridge VLAN for VLAN-aware bridging, and the tag_8021q TX forwarding offload VID (a VLAN which has non-zero VBID bits) for VLAN-unaware bridging. The VBID for VLAN-unaware bridging is derived from the dp->bridge_num value calculated by DSA independently for each switch tree. If ports from one tree join one bridge, and ports from another tree join another bridge, DSA will assign them the same bridge_num, even though the bridges are different. If cross-tree bridging is supported, this is an issue. Modify DSA to calculate the bridge_num globally across all switch trees. This has the implication for a driver that the dp->bridge_num value that DSA will assign to its ports might not be contiguous, if there are boards with multiple DSA drivers instantiated. Additionally, all bridge_num values eat up towards each switch's ds->num_fwd_offloading_bridges maximum, which is potentially unfortunate, and can be seen as a limitation introduced by this patch. However, that is the lesser evil for now. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-12net: dsa: tag_8021q: don't broadcast during setup/teardownVladimir Oltean
Currently, on my board with multiple sja1105 switches in disjoint trees described in commit f66a6a69f97a ("net: dsa: permit cross-chip bridging between all trees in the system"), rebooting the board triggers the following benign warnings: [ 12.345566] sja1105 spi2.0: port 0 failed to notify tag_8021q VLAN 1088 deletion: -ENOENT [ 12.353804] sja1105 spi2.0: port 0 failed to notify tag_8021q VLAN 2112 deletion: -ENOENT [ 12.362019] sja1105 spi2.0: port 1 failed to notify tag_8021q VLAN 1089 deletion: -ENOENT [ 12.370246] sja1105 spi2.0: port 1 failed to notify tag_8021q VLAN 2113 deletion: -ENOENT [ 12.378466] sja1105 spi2.0: port 2 failed to notify tag_8021q VLAN 1090 deletion: -ENOENT [ 12.386683] sja1105 spi2.0: port 2 failed to notify tag_8021q VLAN 2114 deletion: -ENOENT Basically switch 1 calls dsa_tag_8021q_unregister, and switch 1's TX and RX VLANs cannot be found on switch 2's CPU port. But why would switch 2 even attempt to delete switch 1's TX and RX tag_8021q VLANs from its CPU port? Well, because we use dsa_broadcast, and it is supposed that it had added those VLANs in the first place (because in dsa_port_tag_8021q_vlan_match, all CPU ports match regardless of their tree index or switch index). The two trees probe asynchronously, and when switch 1 probed, it called dsa_broadcast which did not notify the tree of switch 2, because that didn't probe yet. But during unbind, switch 2's tree _is_ probed, so it _is_ notified of the deletion. Before jumping to introduce a synchronization mechanism between the probing across disjoint switch trees, let's take a step back and see whether we _need_ to do that in the first place. The RX and TX VLANs of switch 1 would be needed on switch 2's CPU port only if switch 1 and 2 were part of a cross-chip bridge. And dsa_tag_8021q_bridge_join takes care precisely of that (but if probing was synchronous, the bridge_join would just end up bumping the VLANs' refcount, because they are already installed by the setup path). Since by the time the ports are bridged, all DSA trees are already set up, and we don't need the tag_8021q VLANs of one switch installed on the other switches during probe time, the answer is that we don't need to fix the synchronization issue. So make the setup and teardown code paths call dsa_port_notify, which notifies only the local tree, and the bridge code paths call dsa_broadcast, which let the other trees know as well. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-09devlink: Set device as early as possibleLeon Romanovsky
All kernel devlink implementations call to devlink_alloc() during initialization routine for specific device which is used later as a parent device for devlink_register(). Such late device assignment causes to the situation which requires us to call to device_register() before setting other parameters, but that call opens devlink to the world and makes accessible for the netlink users. Any attempt to move devlink_register() to be the last call generates the following error due to access to the devlink->dev pointer. [ 8.758862] devlink_nl_param_fill+0x2e8/0xe50 [ 8.760305] devlink_param_notify+0x6d/0x180 [ 8.760435] __devlink_params_register+0x2f1/0x670 [ 8.760558] devlink_params_register+0x1e/0x20 The simple change of API to set devlink device in the devlink_alloc() instead of devlink_register() fixes all this above and ensures that prior to call to devlink_register() everything already set. Signed-off-by: Leon Romanovsky <leonro@nvidia.com> Reviewed-by: Jiri Pirko <jiri@nvidia.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-05net: dsa: give preference to local CPU portsVladimir Oltean
Be there an "H" switch topology, where there are 2 switches connected as follows: eth0 eth1 | | CPU port CPU port | DSA link | sw0p0 sw0p1 sw0p2 sw0p3 sw0p4 -------- sw1p4 sw1p3 sw1p2 sw1p1 sw1p0 | | | | | | user user user user user user port port port port port port basically one where each switch has its own CPU port for termination, but there is also a DSA link in case packets need to be forwarded in hardware between one switch and another. DSA insists to see this as a daisy chain topology, basically registering all network interfaces as sw0p0@eth0, ... sw1p0@eth0 and disregarding eth1 as a valid DSA master. This is only half the story, since when asked using dsa_port_is_cpu(), DSA will respond that sw1p1 is a CPU port, however one which has no dp->cpu_dp pointing to it. So sw1p1 is enabled, but not used. Furthermore, be there a driver for switches which support only one upstream port. This driver iterates through its ports and checks using dsa_is_upstream_port() whether the current port is an upstream one. For switch 1, two ports pass the "is upstream port" checks: - sw1p4 is an upstream port because it is a routing port towards the dedicated CPU port assigned using dsa_tree_setup_default_cpu() - sw1p1 is also an upstream port because it is a CPU port, albeit one that is disabled. This is because dsa_upstream_port() returns: if (!cpu_dp) return port; which means that if @dp does not have a ->cpu_dp pointer (which is a characteristic of CPU ports themselves as well as unused ports), then @dp is its own upstream port. So the driver for switch 1 rightfully says: I have two upstream ports, but I don't support multiple upstream ports! So let me error out, I don't know which one to choose and what to do with the other one. Generally I am against enforcing any default policy in the kernel in terms of user to CPU port assignment (like round robin or such) but this case is different. To solve the conundrum, one would have to: - Disable sw1p1 in the device tree or mark it as "not a CPU port" in order to comply with DSA's view of this topology as a daisy chain, where the termination traffic from switch 1 must pass through switch 0. This is counter-productive because it wastes 1Gbps of termination throughput in switch 1. - Disable the DSA link between sw0p4 and sw1p4 and do software forwarding between switch 0 and 1, and basically treat the switches as part of disjoint switch trees. This is counter-productive because it wastes 1Gbps of autonomous forwarding throughput between switch 0 and 1. - Treat sw0p4 and sw1p4 as user ports instead of DSA links. This could work, but it makes cross-chip bridging impossible. In this setup we would need to have 2 separate bridges, br0 spanning the ports of switch 0, and br1 spanning the ports of switch 1, and the "DSA links treated as user ports" sw0p4 (part of br0) and sw1p4 (part of br1) are the gateway ports between one bridge and another. This is hard to manage from a user's perspective, who wants to have a unified view of the switching fabric and the ability to transparently add ports to the same bridge. VLANs would also need to be explicitly managed by the user on these gateway ports. So it seems that the only reasonable thing to do is to make DSA prefer CPU ports that are local to the switch. Meaning that by default, the user and DSA ports of switch 0 will get assigned to the CPU port from switch 0 (sw0p1) and the user and DSA ports of switch 1 will get assigned to the CPU port from switch 1. The way this solves the problem is that sw1p4 is no longer an upstream port as far as switch 1 is concerned (it no longer views sw0p1 as its dedicated CPU port). So here we are, the first multi-CPU port that DSA supports is also perhaps the most uneventful one: the individual switches don't support multiple CPUs, however the DSA switch tree as a whole does have multiple CPU ports. No user space assignment of user ports to CPU ports is desirable, necessary, or possible. Ports that do not have a local CPU port (say there was an extra switch hanging off of sw0p0) default to the standard implementation of getting assigned to the first CPU port of the DSA switch tree. Is that good enough? Probably not (if the downstream switch was hanging off of switch 1, we would most certainly prefer its CPU port to be sw1p1), but in order to support that use case too, we would need to traverse the dst->rtable in search of an optimum dedicated CPU port, one that has the smallest number of hops between dp->ds and dp->cpu_dp->ds. At the moment, the DSA routing table structure does not keep the number of hops between dl->dp and dl->link_dp, and while it is probably deducible, there is zero justification to write that code now. Let's hope DSA will never have to support that use case. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-05net: dsa: rename teardown_default_cpu to teardown_cpu_portsVladimir Oltean
There is nothing specific to having a default CPU port to what dsa_tree_teardown_default_cpu() does. Even with multiple CPU ports, it would do the same thing: iterate through the ports of this switch tree and reset the ->cpu_dp pointer to NULL. So rename it accordingly. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-23net: dsa: add support for bridge TX forwarding offloadVladimir Oltean
For a DSA switch, to offload the forwarding process of a bridge device means to send the packets coming from the software bridge as data plane packets. This is contrary to everything that DSA has done so far, because the current taggers only know to send control packets (ones that target a specific destination port), whereas data plane packets are supposed to be forwarded according to the FDB lookup, much like packets ingressing on any regular ingress port. If the FDB lookup process returns multiple destination ports (flooding, multicast), then replication is also handled by the switch hardware - the bridge only sends a single packet and avoids the skb_clone(). DSA keeps for each bridge port a zero-based index (the number of the bridge). Multiple ports performing TX forwarding offload to the same bridge have the same dp->bridge_num value, and ports not offloading the TX data plane of a bridge have dp->bridge_num = -1. The tagger can check if the packet that is being transmitted on has skb->offload_fwd_mark = true or not. If it does, it can be sure that the packet belongs to the data plane of a bridge, further information about which can be obtained based on dp->bridge_dev and dp->bridge_num. It can then compose a DSA tag for injecting a data plane packet into that bridge number. For the switch driver side, we offer two new dsa_switch_ops methods, called .port_bridge_fwd_offload_{add,del}, which are modeled after .port_bridge_{join,leave}. These methods are provided in case the driver needs to configure the hardware to treat packets coming from that bridge software interface as data plane packets. The switchdev <-> bridge interaction happens during the netdev_master_upper_dev_link() call, so to switch drivers, the effect is that the .port_bridge_fwd_offload_add() method is called immediately after .port_bridge_join(). If the bridge number exceeds the number of bridges for which the switch driver can offload the TX data plane (and this includes the case where the driver can offload none), DSA falls back to simply returning tx_fwd_offload = false in the switchdev_bridge_port_offload() call. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>