summary refs log tree commit diff
path: root/kernel
AgeCommit message (Collapse)Author
2023-08-08mm: Move mm_cachep initialization to mm_init()Peter Zijlstra
commit af80602799681c78f14fbe20b6185a56020dedee upstream. In order to allow using mm_alloc() much earlier, move initializing mm_cachep into mm_init(). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20221025201057.751153381@infradead.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-08x86/mm: Use mm_alloc() in poking_init()Peter Zijlstra
commit 3f4c8211d982099be693be9aa7d6fc4607dff290 upstream. Instead of duplicating init_mm, allocate a fresh mm. The advantage is that mm_alloc() has much simpler dependencies. Additionally it makes more conceptual sense, init_mm has no (and must not have) user state to duplicate. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20221025201057.816175235@infradead.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-03tracing: Fix trace_event_raw_event_synth() if else statementSteven Rostedt (Google)
commit 9971c3f944489ff7aacb9d25e0cde841a5f6018a upstream. The test to check if the field is a stack is to be done if it is not a string. But the code had: } if (event->fields[i]->is_stack) { and not } else if (event->fields[i]->is_stack) { which would cause it to always be tested. Worse yet, this also included an "else" statement that was only to be called if the field was not a string and a stack, but this code allows it to be called if it was a string (and not a stack). Also fixed some whitespace issues. Link: https://lore.kernel.org/all/202301302110.mEtNwkBD-lkp@intel.com/ Link: https://lore.kernel.org/linux-trace-kernel/20230131095237.63e3ca8d@gandalf.local.home Cc: Tom Zanussi <zanussi@kernel.org> Fixes: 00cf3d672a9d ("tracing: Allow synthetic events to pass around stacktraces") Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-03locking/rtmutex: Fix task->pi_waiters integrityPeter Zijlstra
[ Upstream commit f7853c34241807bb97673a5e97719123be39a09e ] Henry reported that rt_mutex_adjust_prio_check() has an ordering problem and puts the lie to the comment in [7]. Sharing the sort key between lock->waiters and owner->pi_waiters *does* create problems, since unlike what the comment claims, holding [L] is insufficient. Notably, consider: A / \ M1 M2 | | B C That is, task A owns both M1 and M2, B and C block on them. In this case a concurrent chain walk (B & C) will modify their resp. sort keys in [7] while holding M1->wait_lock and M2->wait_lock. So holding [L] is meaningless, they're different Ls. This then gives rise to a race condition between [7] and [11], where the requeue of pi_waiters will observe an inconsistent tree order. B C (holds M1->wait_lock, (holds M2->wait_lock, holds B->pi_lock) holds A->pi_lock) [7] waiter_update_prio(); ... [8] raw_spin_unlock(B->pi_lock); ... [10] raw_spin_lock(A->pi_lock); [11] rt_mutex_enqueue_pi(); // observes inconsistent A->pi_waiters // tree order Fixing this means either extending the range of the owner lock from [10-13] to [6-13], with the immediate problem that this means [6-8] hold both blocked and owner locks, or duplicating the sort key. Since the locking in chain walk is horrible enough without having to consider pi_lock nesting rules, duplicate the sort key instead. By giving each tree their own sort key, the above race becomes harmless, if C sees B at the old location, then B will correct things (if they need correcting) when it walks up the chain and reaches A. Fixes: fb00aca47440 ("rtmutex: Turn the plist into an rb-tree") Reported-by: Henry Wu <triangletrap12@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Henry Wu <triangletrap12@gmail.com> Link: https://lkml.kernel.org/r/20230707161052.GF2883469%40hirez.programming.kicks-ass.net Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-03tracing: Fix warning in trace_buffered_event_disable()Zheng Yejian
[ Upstream commit dea499781a1150d285c62b26659f62fb00824fce ] Warning happened in trace_buffered_event_disable() at WARN_ON_ONCE(!trace_buffered_event_ref) Call Trace: ? __warn+0xa5/0x1b0 ? trace_buffered_event_disable+0x189/0x1b0 __ftrace_event_enable_disable+0x19e/0x3e0 free_probe_data+0x3b/0xa0 unregister_ftrace_function_probe_func+0x6b8/0x800 event_enable_func+0x2f0/0x3d0 ftrace_process_regex.isra.0+0x12d/0x1b0 ftrace_filter_write+0xe6/0x140 vfs_write+0x1c9/0x6f0 [...] The cause of the warning is in __ftrace_event_enable_disable(), trace_buffered_event_enable() was called once while trace_buffered_event_disable() was called twice. Reproduction script show as below, for analysis, see the comments: ``` #!/bin/bash cd /sys/kernel/tracing/ # 1. Register a 'disable_event' command, then: # 1) SOFT_DISABLED_BIT was set; # 2) trace_buffered_event_enable() was called first time; echo 'cmdline_proc_show:disable_event:initcall:initcall_finish' > \ set_ftrace_filter # 2. Enable the event registered, then: # 1) SOFT_DISABLED_BIT was cleared; # 2) trace_buffered_event_disable() was called first time; echo 1 > events/initcall/initcall_finish/enable # 3. Try to call into cmdline_proc_show(), then SOFT_DISABLED_BIT was # set again!!! cat /proc/cmdline # 4. Unregister the 'disable_event' command, then: # 1) SOFT_DISABLED_BIT was cleared again; # 2) trace_buffered_event_disable() was called second time!!! echo '!cmdline_proc_show:disable_event:initcall:initcall_finish' > \ set_ftrace_filter ``` To fix it, IIUC, we can change to call trace_buffered_event_enable() at fist time soft-mode enabled, and call trace_buffered_event_disable() at last time soft-mode disabled. Link: https://lore.kernel.org/linux-trace-kernel/20230726095804.920457-1-zhengyejian1@huawei.com Cc: <mhiramat@kernel.org> Fixes: 0fc1b09ff1ff ("tracing: Use temp buffer when filtering events") Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-03ring-buffer: Fix wrong stat of cpu_buffer->readZheng Yejian
[ Upstream commit 2d093282b0d4357373497f65db6a05eb0c28b7c8 ] When pages are removed in rb_remove_pages(), 'cpu_buffer->read' is set to 0 in order to make sure any read iterators reset themselves. However, this will mess 'entries' stating, see following steps: # cd /sys/kernel/tracing/ # 1. Enlarge ring buffer prepare for later reducing: # echo 20 > per_cpu/cpu0/buffer_size_kb # 2. Write a log into ring buffer of cpu0: # taskset -c 0 echo "hello1" > trace_marker # 3. Read the log: # cat per_cpu/cpu0/trace_pipe <...>-332 [000] ..... 62.406844: tracing_mark_write: hello1 # 4. Stop reading and see the stats, now 0 entries, and 1 event readed: # cat per_cpu/cpu0/stats entries: 0 [...] read events: 1 # 5. Reduce the ring buffer # echo 7 > per_cpu/cpu0/buffer_size_kb # 6. Now entries became unexpected 1 because actually no entries!!! # cat per_cpu/cpu0/stats entries: 1 [...] read events: 0 To fix it, introduce 'page_removed' field to count total removed pages since last reset, then use it to let read iterators reset themselves instead of changing the 'read' pointer. Link: https://lore.kernel.org/linux-trace-kernel/20230724054040.3489499-1-zhengyejian1@huawei.com Cc: <mhiramat@kernel.org> Cc: <vnagarnaik@google.com> Fixes: 83f40318dab0 ("ring-buffer: Make removal of ring buffer pages atomic") Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-03mm: suppress mm fault logging if fatal signal already pendingLinus Torvalds
[ Upstream commit 5f0bc0b042fc77ff70e14c790abdec960cde4ec1 ] Commit eda0047296a1 ("mm: make the page fault mmap locking killable") intentionally made it much easier to trigger the "page fault fails because a fatal signal is pending" situation, by having the mmap locking fail early in that case. We have long aborted page faults in other fatal cases when the actual IO for a page is interrupted by SIGKILL - which is particularly useful for the traditional case of NFS hanging due to network issues, but local filesystems could cause it too if you happened to get the SIGKILL while waiting for a page to be faulted in (eg lock_folio_maybe_drop_mmap()). So aborting the page fault wasn't a new condition - but it now triggers earlier, before we even get to 'handle_mm_fault()'. And as a result the error doesn't go through our 'fault_signal_pending()' logic, and doesn't get filtered away there. Normally you'd never even notice, because if a fatal signal is pending, the new SIGSEGV we send ends up being ignored anyway. But it turns out that there is one very noticeable exception: if you enable 'show_unhandled_signals', the aborted page fault will be logged in the kernel messages, and you'll get a scary line looking something like this in your logs: pverados[2183248]: segfault at 55e5a00f9ae0 ip 000055e5a00f9ae0 sp 00007ffc0720bea8 error 14 in perl[55e5a00d4000+195000] likely on CPU 10 (core 4, socket 0) which is rather misleading. It's not really a segfault at all, it's just "the thread was killed before the page fault completed, so we aborted the page fault". Fix this by just making it clear that a pending fatal signal means that any new signal coming in after that is implicitly handled. This will avoid the misleading logging, since now the signal isn't 'unhandled' any more. Reported-and-tested-by: Fiona Ebner <f.ebner@proxmox.com> Tested-by: Thomas Lamprecht <t.lamprecht@proxmox.com> Link: https://lore.kernel.org/lkml/8d063a26-43f5-0bb7-3203-c6a04dc159f8@proxmox.com/ Acked-by: Oleg Nesterov <oleg@redhat.com> Fixes: eda0047296a1 ("mm: make the page fault mmap locking killable") Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-03tracing/probes: Fix to record 0-length data_loc in fetch_store_string*() if ↵Masami Hiramatsu (Google)
fails [ Upstream commit 797311bce5c2ac90b8d65e357603cfd410d36ebb ] Fix to record 0-length data to data_loc in fetch_store_string*() if it fails to get the string data. Currently those expect that the data_loc is updated by store_trace_args() if it returns the error code. However, that does not work correctly if the argument is an array of strings. In that case, store_trace_args() only clears the first entry of the array (which may have no error) and leaves other entries. So it should be cleared by fetch_store_string*() itself. Also, 'dyndata' and 'maxlen' in store_trace_args() should be updated only if it is used (ret > 0 and argument is a dynamic data.) Link: https://lore.kernel.org/all/168908496683.123124.4761206188794205601.stgit@devnote2/ Fixes: 40b53b771806 ("tracing: probeevent: Add array type support") Cc: stable@vger.kernel.org Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-03Revert "tracing: Add "(fault)" name injection to kernel probes"Masami Hiramatsu (Google)
[ Upstream commit 4ed8f337dee32df71435689c19d22e4ee846e15a ] This reverts commit 2e9906f84fc7c99388bb7123ade167250d50f1c0. It was turned out that commit 2e9906f84fc7 ("tracing: Add "(fault)" name injection to kernel probes") did not work correctly and probe events still show just '(fault)' (instead of '"(fault)"'). Also, current '(fault)' is more explicit that it faulted. This also moves FAULT_STRING macro to trace.h so that synthetic event can keep using it, and uses it in trace_probe.c too. Link: https://lore.kernel.org/all/168908495772.123124.1250788051922100079.stgit@devnote2/ Link: https://lore.kernel.org/all/20230706230642.3793a593@rorschach.local.home/ Cc: stable@vger.kernel.org Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Tom Zanussi <zanussi@kernel.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Stable-dep-of: 797311bce5c2 ("tracing/probes: Fix to record 0-length data_loc in fetch_store_string*() if fails") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-03tracing: Allow synthetic events to pass around stacktracesSteven Rostedt (Google)
[ Upstream commit 00cf3d672a9dd409418647e9f98784c339c3ff63 ] Allow a stacktrace from one event to be displayed by the end event of a synthetic event. This is very useful when looking for the longest latency of a sleep or something blocked on I/O. # cd /sys/kernel/tracing/ # echo 's:block_lat pid_t pid; u64 delta; unsigned long[] stack;' > dynamic_events # echo 'hist:keys=next_pid:ts=common_timestamp.usecs,st=stacktrace if prev_state == 1||prev_state == 2' > events/sched/sched_switch/trigger # echo 'hist:keys=prev_pid:delta=common_timestamp.usecs-$ts,s=$st:onmax($delta).trace(block_lat,prev_pid,$delta,$s)' >> events/sched/sched_switch/trigger The above creates a "block_lat" synthetic event that take the stacktrace of when a task schedules out in either the interruptible or uninterruptible states, and on a new per process max $delta (the time it was scheduled out), will print the process id and the stacktrace. # echo 1 > events/synthetic/block_lat/enable # cat trace # TASK-PID CPU# ||||| TIMESTAMP FUNCTION # | | | ||||| | | kworker/u16:0-767 [006] d..4. 560.645045: block_lat: pid=767 delta=66 stack=STACK: => __schedule => schedule => pipe_read => vfs_read => ksys_read => do_syscall_64 => 0x966000aa <idle>-0 [003] d..4. 561.132117: block_lat: pid=0 delta=413787 stack=STACK: => __schedule => schedule => schedule_hrtimeout_range_clock => do_sys_poll => __x64_sys_poll => do_syscall_64 => 0x966000aa <...>-153 [006] d..4. 562.068407: block_lat: pid=153 delta=54 stack=STACK: => __schedule => schedule => io_schedule => rq_qos_wait => wbt_wait => __rq_qos_throttle => blk_mq_submit_bio => submit_bio_noacct_nocheck => ext4_bio_write_page => mpage_submit_page => mpage_process_page_bufs => mpage_prepare_extent_to_map => ext4_do_writepages => ext4_writepages => do_writepages => __writeback_single_inode Link: https://lkml.kernel.org/r/20230117152236.010941267@goodmis.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Tom Zanussi <zanussi@kernel.org> Cc: Ross Zwisler <zwisler@google.com> Cc: Ching-lin Yu <chinglinyu@google.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Stable-dep-of: 797311bce5c2 ("tracing/probes: Fix to record 0-length data_loc in fetch_store_string*() if fails") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-03tracing/probes: Fix to avoid double count of the string length on the arrayMasami Hiramatsu (Google)
[ Upstream commit 66bcf65d6cf0ca6540e2341e88ee7ef02dbdda08 ] If an array is specified with the ustring or symstr, the length of the strings are accumlated on both of 'ret' and 'total', which means the length is double counted. Just set the length to the 'ret' value for avoiding double counting. Link: https://lore.kernel.org/all/168908492917.123124.15076463491122036025.stgit@devnote2/ Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Closes: https://lore.kernel.org/all/8819b154-2ba1-43c3-98a2-cbde20892023@moroto.mountain/ Fixes: 88903c464321 ("tracing/probe: Add ustring type for user-space string") Cc: stable@vger.kernel.org Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-03tracing/probes: Add symstr type for dynamic eventsMasami Hiramatsu (Google)
[ Upstream commit b26a124cbfa80f42bfc4e63e1d5643ca98159d66 ] Add 'symstr' type for storing the kernel symbol as a string data instead of the symbol address. This allows us to filter the events by wildcard symbol name. e.g. # echo 'e:wqfunc workqueue.workqueue_execute_start symname=$function:symstr' >> dynamic_events # cat events/eprobes/wqfunc/format name: wqfunc ID: 2110 format: field:unsigned short common_type; offset:0; size:2; signed:0; field:unsigned char common_flags; offset:2; size:1; signed:0; field:unsigned char common_preempt_count; offset:3; size:1; signed:0; field:int common_pid; offset:4; size:4; signed:1; field:__data_loc char[] symname; offset:8; size:4; signed:1; print fmt: " symname=\"%s\"", __get_str(symname) Note that there is already 'symbol' type which just change the print format (so it still stores the symbol address in the tracing ring buffer.) On the other hand, 'symstr' type stores the actual "symbol+offset/size" data as a string. Link: https://lore.kernel.org/all/166679930847.1528100.4124308529180235965.stgit@devnote3/ Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Stable-dep-of: 66bcf65d6cf0 ("tracing/probes: Fix to avoid double count of the string length on the array") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27bpf: aggressively forget precise markings during state checkpointingAndrii Nakryiko
[ Upstream commit 7a830b53c17bbadcf99f778f28aaaa4e6c41df5f ] Exploit the property of about-to-be-checkpointed state to be able to forget all precise markings up to that point even more aggressively. We now clear all potentially inherited precise markings right before checkpointing and branching off into child state. If any of children states require precise knowledge of any SCALAR register, those will be propagated backwards later on before this state is finalized, preserving correctness. There is a single selftests BPF program change, but tremendous one: 25x reduction in number of verified instructions and states in trace_virtqueue_add_sgs. Cilium results are more modest, but happen across wider range of programs. SELFTESTS RESULTS ================= $ ./veristat -C -e file,prog,insns,states ~/imprecise-early-results.csv ~/imprecise-aggressive-results.csv | grep -v '+0' File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF) ------------------- ----------------------- --------------- --------------- ------------------ ---------------- ---------------- ------------------- loop6.bpf.linked1.o trace_virtqueue_add_sgs 398057 15114 -382943 (-96.20%) 8717 336 -8381 (-96.15%) ------------------- ----------------------- --------------- --------------- ------------------ ---------------- ---------------- ------------------- CILIUM RESULTS ============== $ ./veristat -C -e file,prog,insns,states ~/imprecise-early-results-cilium.csv ~/imprecise-aggressive-results-cilium.csv | grep -v '+0' File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF) ------------- -------------------------------- --------------- --------------- ------------------ ---------------- ---------------- ------------------- bpf_host.o tail_handle_nat_fwd_ipv4 23426 23221 -205 (-0.88%) 1537 1515 -22 (-1.43%) bpf_host.o tail_handle_nat_fwd_ipv6 13009 12904 -105 (-0.81%) 719 708 -11 (-1.53%) bpf_host.o tail_nodeport_nat_ingress_ipv6 5261 5196 -65 (-1.24%) 247 243 -4 (-1.62%) bpf_host.o tail_nodeport_nat_ipv6_egress 3446 3406 -40 (-1.16%) 203 198 -5 (-2.46%) bpf_lxc.o tail_handle_nat_fwd_ipv4 23426 23221 -205 (-0.88%) 1537 1515 -22 (-1.43%) bpf_lxc.o tail_handle_nat_fwd_ipv6 13009 12904 -105 (-0.81%) 719 708 -11 (-1.53%) bpf_lxc.o tail_ipv4_ct_egress 5074 4897 -177 (-3.49%) 255 248 -7 (-2.75%) bpf_lxc.o tail_ipv4_ct_ingress 5100 4923 -177 (-3.47%) 255 248 -7 (-2.75%) bpf_lxc.o tail_ipv4_ct_ingress_policy_only 5100 4923 -177 (-3.47%) 255 248 -7 (-2.75%) bpf_lxc.o tail_ipv6_ct_egress 4558 4536 -22 (-0.48%) 188 187 -1 (-0.53%) bpf_lxc.o tail_ipv6_ct_ingress 4578 4556 -22 (-0.48%) 188 187 -1 (-0.53%) bpf_lxc.o tail_ipv6_ct_ingress_policy_only 4578 4556 -22 (-0.48%) 188 187 -1 (-0.53%) bpf_lxc.o tail_nodeport_nat_ingress_ipv6 5261 5196 -65 (-1.24%) 247 243 -4 (-1.62%) bpf_overlay.o tail_nodeport_nat_ingress_ipv6 5261 5196 -65 (-1.24%) 247 243 -4 (-1.62%) bpf_overlay.o tail_nodeport_nat_ipv6_egress 3482 3442 -40 (-1.15%) 204 201 -3 (-1.47%) bpf_xdp.o tail_nodeport_nat_egress_ipv4 17200 15619 -1581 (-9.19%) 1111 1010 -101 (-9.09%) ------------- -------------------------------- --------------- --------------- ------------------ ---------------- ---------------- ------------------- Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20221104163649.121784-6-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-27bpf: stop setting precise in current stateAndrii Nakryiko
[ Upstream commit f63181b6ae79fd3b034cde641db774268c2c3acf ] Setting reg->precise to true in current state is not necessary from correctness standpoint, but it does pessimise the whole precision (or rather "imprecision", because that's what we want to keep as much as possible) tracking. Why is somewhat subtle and my best attempt to explain this is recorded in an extensive comment for __mark_chain_precise() function. Some more careful thinking and code reading is probably required still to grok this completely, unfortunately. Whiteboarding and a bunch of extra handwaiving in person would be even more helpful, but is deemed impractical in Git commit. Next patch pushes this imprecision property even further, building on top of the insights described in this patch. End results are pretty nice, we get reduction in number of total instructions and states verified due to a better states reuse, as some of the states are now more generic and permissive due to less unnecessary precise=true requirements. SELFTESTS RESULTS ================= $ ./veristat -C -e file,prog,insns,states ~/subprog-precise-results.csv ~/imprecise-early-results.csv | grep -v '+0' File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF) --------------------------------------- ---------------------- --------------- --------------- ------------------ ---------------- ---------------- ------------------- bpf_iter_ksym.bpf.linked1.o dump_ksym 347 285 -62 (-17.87%) 20 19 -1 (-5.00%) pyperf600_bpf_loop.bpf.linked1.o on_event 3678 3736 +58 (+1.58%) 276 285 +9 (+3.26%) setget_sockopt.bpf.linked1.o skops_sockopt 4038 3947 -91 (-2.25%) 347 343 -4 (-1.15%) test_l4lb.bpf.linked1.o balancer_ingress 4559 2611 -1948 (-42.73%) 118 105 -13 (-11.02%) test_l4lb_noinline.bpf.linked1.o balancer_ingress 6279 6268 -11 (-0.18%) 237 236 -1 (-0.42%) test_misc_tcp_hdr_options.bpf.linked1.o misc_estab 1307 1303 -4 (-0.31%) 100 99 -1 (-1.00%) test_sk_lookup.bpf.linked1.o ctx_narrow_access 456 447 -9 (-1.97%) 39 38 -1 (-2.56%) test_sysctl_loop1.bpf.linked1.o sysctl_tcp_mem 1389 1384 -5 (-0.36%) 26 25 -1 (-3.85%) test_tc_dtime.bpf.linked1.o egress_fwdns_prio101 518 485 -33 (-6.37%) 51 46 -5 (-9.80%) test_tc_dtime.bpf.linked1.o egress_host 519 468 -51 (-9.83%) 50 44 -6 (-12.00%) test_tc_dtime.bpf.linked1.o ingress_fwdns_prio101 842 1000 +158 (+18.76%) 73 88 +15 (+20.55%) xdp_synproxy_kern.bpf.linked1.o syncookie_tc 405757 373173 -32584 (-8.03%) 25735 22882 -2853 (-11.09%) xdp_synproxy_kern.bpf.linked1.o syncookie_xdp 479055 371590 -107465 (-22.43%) 29145 22207 -6938 (-23.81%) --------------------------------------- ---------------------- --------------- --------------- ------------------ ---------------- ---------------- ------------------- Slight regression in test_tc_dtime.bpf.linked1.o/ingress_fwdns_prio101 is left for a follow up, there might be some more precision-related bugs in existing BPF verifier logic. CILIUM RESULTS ============== $ ./veristat -C -e file,prog,insns,states ~/subprog-precise-results-cilium.csv ~/imprecise-early-results-cilium.csv | grep -v '+0' File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF) ------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- ------------------- bpf_host.o cil_from_host 762 556 -206 (-27.03%) 43 37 -6 (-13.95%) bpf_host.o tail_handle_nat_fwd_ipv4 23541 23426 -115 (-0.49%) 1538 1537 -1 (-0.07%) bpf_host.o tail_nodeport_nat_egress_ipv4 33592 33566 -26 (-0.08%) 2163 2161 -2 (-0.09%) bpf_lxc.o tail_handle_nat_fwd_ipv4 23541 23426 -115 (-0.49%) 1538 1537 -1 (-0.07%) bpf_overlay.o tail_nodeport_nat_egress_ipv4 33581 33543 -38 (-0.11%) 2160 2157 -3 (-0.14%) bpf_xdp.o tail_handle_nat_fwd_ipv4 21659 20920 -739 (-3.41%) 1440 1376 -64 (-4.44%) bpf_xdp.o tail_handle_nat_fwd_ipv6 17084 17039 -45 (-0.26%) 907 905 -2 (-0.22%) bpf_xdp.o tail_lb_ipv4 73442 73430 -12 (-0.02%) 4370 4369 -1 (-0.02%) bpf_xdp.o tail_lb_ipv6 152114 151895 -219 (-0.14%) 6493 6479 -14 (-0.22%) bpf_xdp.o tail_nodeport_nat_egress_ipv4 17377 17200 -177 (-1.02%) 1125 1111 -14 (-1.24%) bpf_xdp.o tail_nodeport_nat_ingress_ipv6 6405 6397 -8 (-0.12%) 309 308 -1 (-0.32%) bpf_xdp.o tail_rev_nodeport_lb4 7126 6934 -192 (-2.69%) 414 402 -12 (-2.90%) bpf_xdp.o tail_rev_nodeport_lb6 18059 17905 -154 (-0.85%) 1105 1096 -9 (-0.81%) ------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- ------------------- Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20221104163649.121784-5-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-27bpf: allow precision tracking for programs with subprogsAndrii Nakryiko
[ Upstream commit be2ef8161572ec1973124ebc50f56dafc2925e07 ] Stop forcing precise=true for SCALAR registers when BPF program has any subprograms. Current restriction means that any BPF program, as soon as it uses subprograms, will end up not getting any of the precision tracking benefits in reduction of number of verified states. This patch keeps the fallback mark_all_scalars_precise() behavior if precise marking has to cross function frames. E.g., if subprogram requires R1 (first input arg) to be marked precise, ideally we'd need to backtrack to the parent function and keep marking R1 and its dependencies as precise. But right now we give up and force all the SCALARs in any of the current and parent states to be forced to precise=true. We can lift that restriction in the future. But this patch fixes two issues identified when trying to enable precision tracking for subprogs. First, prevent "escaping" from top-most state in a global subprog. While with entry-level BPF program we never end up requesting precision for R1-R5 registers, because R2-R5 are not initialized (and so not readable in correct BPF program), and R1 is PTR_TO_CTX, not SCALAR, and so is implicitly precise. With global subprogs, though, it's different, as global subprog a) can have up to 5 SCALAR input arguments, which might get marked as precise=true and b) it is validated in isolation from its main entry BPF program. b) means that we can end up exhausting parent state chain and still not mark all registers in reg_mask as precise, which would lead to verifier bug warning. To handle that, we need to consider two cases. First, if the very first state is not immediately "checkpointed" (i.e., stored in state lookup hashtable), it will get correct first_insn_idx and last_insn_idx instruction set during state checkpointing. As such, this case is already handled and __mark_chain_precision() already handles that by just doing nothing when we reach to the very first parent state. st->parent will be NULL and we'll just stop. Perhaps some extra check for reg_mask and stack_mask is due here, but this patch doesn't address that issue. More problematic second case is when global function's initial state is immediately checkpointed before we manage to process the very first instruction. This is happening because when there is a call to global subprog from the main program the very first subprog's instruction is marked as pruning point, so before we manage to process first instruction we have to check and checkpoint state. This patch adds a special handling for such "empty" state, which is identified by having st->last_insn_idx set to -1. In such case, we check that we are indeed validating global subprog, and with some sanity checking we mark input args as precise if requested. Note that we also initialize state->first_insn_idx with correct start insn_idx offset. For main program zero is correct value, but for any subprog it's quite confusing to not have first_insn_idx set. This doesn't have any functional impact, but helps with debugging and state printing. We also explicitly initialize state->last_insns_idx instead of relying on is_state_visited() to do this with env->prev_insns_idx, which will be -1 on the very first instruction. This concludes necessary changes to handle specifically global subprog's precision tracking. Second identified problem was missed handling of BPF helper functions that call into subprogs (e.g., bpf_loop and few others). From precision tracking and backtracking logic's standpoint those are effectively calls into subprogs and should be called as BPF_PSEUDO_CALL calls. This patch takes the least intrusive way and just checks against a short list of current BPF helpers that do call subprogs, encapsulated in is_callback_calling_function() function. But to prevent accidentally forgetting to add new BPF helpers to this "list", we also do a sanity check in __check_func_call, which has to be called for each such special BPF helper, to validate that BPF helper is indeed recognized as callback-calling one. This should catch any missed checks in the future. Adding some special flags to be added in function proto definitions seemed like an overkill in this case. With the above changes, it's possible to remove forceful setting of reg->precise to true in __mark_reg_unknown, which turns on precision tracking both inside subprogs and entry progs that have subprogs. No warnings or errors were detected across all the selftests, but also when validating with veristat against internal Meta BPF objects and Cilium objects. Further, in some BPF programs there are noticeable reduction in number of states and instructions validated due to more effective precision tracking, especially benefiting syncookie test. $ ./veristat -C -e file,prog,insns,states ~/baseline-results.csv ~/subprog-precise-results.csv | grep -v '+0' File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF) ---------------------------------------- -------------------------- --------------- --------------- ------------------ ---------------- ---------------- ------------------- pyperf600_bpf_loop.bpf.linked1.o on_event 3966 3678 -288 (-7.26%) 306 276 -30 (-9.80%) pyperf_global.bpf.linked1.o on_event 7563 7530 -33 (-0.44%) 520 517 -3 (-0.58%) pyperf_subprogs.bpf.linked1.o on_event 36358 36934 +576 (+1.58%) 2499 2531 +32 (+1.28%) setget_sockopt.bpf.linked1.o skops_sockopt 3965 4038 +73 (+1.84%) 343 347 +4 (+1.17%) test_cls_redirect_subprogs.bpf.linked1.o cls_redirect 64965 64901 -64 (-0.10%) 4619 4612 -7 (-0.15%) test_misc_tcp_hdr_options.bpf.linked1.o misc_estab 1491 1307 -184 (-12.34%) 110 100 -10 (-9.09%) test_pkt_access.bpf.linked1.o test_pkt_access 354 349 -5 (-1.41%) 25 24 -1 (-4.00%) test_sock_fields.bpf.linked1.o egress_read_sock_fields 435 375 -60 (-13.79%) 22 20 -2 (-9.09%) test_sysctl_loop2.bpf.linked1.o sysctl_tcp_mem 1508 1501 -7 (-0.46%) 29 28 -1 (-3.45%) test_tc_dtime.bpf.linked1.o egress_fwdns_prio100 468 435 -33 (-7.05%) 45 41 -4 (-8.89%) test_tc_dtime.bpf.linked1.o ingress_fwdns_prio100 398 408 +10 (+2.51%) 42 39 -3 (-7.14%) test_tc_dtime.bpf.linked1.o ingress_fwdns_prio101 1096 842 -254 (-23.18%) 97 73 -24 (-24.74%) test_tcp_hdr_options.bpf.linked1.o estab 2758 2408 -350 (-12.69%) 208 181 -27 (-12.98%) test_urandom_usdt.bpf.linked1.o urand_read_with_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%) test_urandom_usdt.bpf.linked1.o urand_read_without_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%) test_urandom_usdt.bpf.linked1.o urandlib_read_with_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%) test_urandom_usdt.bpf.linked1.o urandlib_read_without_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%) test_xdp_noinline.bpf.linked1.o balancer_ingress_v6 4302 4294 -8 (-0.19%) 257 256 -1 (-0.39%) xdp_synproxy_kern.bpf.linked1.o syncookie_tc 583722 405757 -177965 (-30.49%) 35846 25735 -10111 (-28.21%) xdp_synproxy_kern.bpf.linked1.o syncookie_xdp 609123 479055 -130068 (-21.35%) 35452 29145 -6307 (-17.79%) ---------------------------------------- -------------------------- --------------- --------------- ------------------ ---------------- ---------------- ------------------- Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20221104163649.121784-4-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-27tracing/histograms: Return an error if we fail to add histogram to hist_vars ↵Mohamed Khalfella
list commit 4b8b3905165ef98386a3c06f196c85d21292d029 upstream. Commit 6018b585e8c6 ("tracing/histograms: Add histograms to hist_vars if they have referenced variables") added a check to fail histogram creation if save_hist_vars() failed to add histogram to hist_vars list. But the commit failed to set ret to failed return code before jumping to unregister histogram, fix it. Link: https://lore.kernel.org/linux-trace-kernel/20230714203341.51396-1-mkhalfella@purestorage.com Cc: stable@vger.kernel.org Fixes: 6018b585e8c6 ("tracing/histograms: Add histograms to hist_vars if they have referenced variables") Signed-off-by: Mohamed Khalfella <mkhalfella@purestorage.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-27bpf: Repeat check_max_stack_depth for async callbacksKumar Kartikeya Dwivedi
[ Upstream commit b5e9ad522c4ccd32d322877515cff8d47ed731b9 ] While the check_max_stack_depth function explores call chains emanating from the main prog, which is typically enough to cover all possible call chains, it doesn't explore those rooted at async callbacks unless the async callback will have been directly called, since unlike non-async callbacks it skips their instruction exploration as they don't contribute to stack depth. It could be the case that the async callback leads to a callchain which exceeds the stack depth, but this is never reachable while only exploring the entry point from main subprog. Hence, repeat the check for the main subprog *and* all async callbacks marked by the symbolic execution pass of the verifier, as execution of the program may begin at any of them. Consider functions with following stack depths: main: 256 async: 256 foo: 256 main: rX = async bpf_timer_set_callback(...) async: foo() Here, async is not descended as it does not contribute to stack depth of main (since it is referenced using bpf_pseudo_func and not bpf_pseudo_call). However, when async is invoked asynchronously, it will end up breaching the MAX_BPF_STACK limit by calling foo. Hence, in addition to main, we also need to explore call chains beginning at all async callback subprogs in a program. Fixes: 7ddc80a476c2 ("bpf: Teach stack depth check about async callbacks.") Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20230717161530.1238-3-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27bpf: Fix subprog idx logic in check_max_stack_depthKumar Kartikeya Dwivedi
[ Upstream commit ba7b3e7d5f9014be65879ede8fd599cb222901c9 ] The assignment to idx in check_max_stack_depth happens once we see a bpf_pseudo_call or bpf_pseudo_func. This is not an issue as the rest of the code performs a few checks and then pushes the frame to the frame stack, except the case of async callbacks. If the async callback case causes the loop iteration to be skipped, the idx assignment will be incorrect on the next iteration of the loop. The value stored in the frame stack (as the subprogno of the current subprog) will be incorrect. This leads to incorrect checks and incorrect tail_call_reachable marking. Save the target subprog in a new variable and only assign to idx once we are done with the is_async_cb check which may skip pushing of frame to the frame stack and subsequent stack depth checks and tail call markings. Fixes: 7ddc80a476c2 ("bpf: Teach stack depth check about async callbacks.") Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20230717161530.1238-2-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27kallsyms: strip LTO-only suffixes from promoted global functionsYonghong Song
[ Upstream commit 8cc32a9bbf2934d90762d9de0187adcb5ad46a11 ] Commit 6eb4bd92c1ce ("kallsyms: strip LTO suffixes from static functions") stripped all function/variable suffixes started with '.' regardless of whether those suffixes are generated at LTO mode or not. In fact, as far as I know, in LTO mode, when a static function/variable is promoted to the global scope, '.llvm.<...>' suffix is added. The existing mechanism breaks live patch for a LTO kernel even if no <symbol>.llvm.<...> symbols are involved. For example, for the following kernel symbols: $ grep bpf_verifier_vlog /proc/kallsyms ffffffff81549f60 t bpf_verifier_vlog ffffffff8268b430 d bpf_verifier_vlog._entry ffffffff8282a958 d bpf_verifier_vlog._entry_ptr ffffffff82e12a1f d bpf_verifier_vlog.__already_done 'bpf_verifier_vlog' is a static function. '_entry', '_entry_ptr' and '__already_done' are static variables used inside 'bpf_verifier_vlog', so llvm promotes them to file-level static with prefix 'bpf_verifier_vlog.'. Note that the func-level to file-level static function promotion also happens without LTO. Given a symbol name 'bpf_verifier_vlog', with LTO kernel, current mechanism will return 4 symbols to live patch subsystem which current live patching subsystem cannot handle it. With non-LTO kernel, only one symbol is returned. In [1], we have a lengthy discussion, the suggestion is to separate two cases: (1). new symbols with suffix which are generated regardless of whether LTO is enabled or not, and (2). new symbols with suffix generated only when LTO is enabled. The cleanup_symbol_name() should only remove suffixes for case (2). Case (1) should not be changed so it can work uniformly with or without LTO. This patch removed LTO-only suffix '.llvm.<...>' so live patching and tracing should work the same way for non-LTO kernel. The cleanup_symbol_name() in scripts/kallsyms.c is also changed to have the same filtering pattern so both kernel and kallsyms tool have the same expectation on the order of symbols. [1] https://lore.kernel.org/live-patching/20230615170048.2382735-1-song@kernel.org/T/#u Fixes: 6eb4bd92c1ce ("kallsyms: strip LTO suffixes from static functions") Reported-by: Song Liu <song@kernel.org> Signed-off-by: Yonghong Song <yhs@fb.com> Reviewed-by: Zhen Lei <thunder.leizhen@huawei.com> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Acked-by: Song Liu <song@kernel.org> Link: https://lore.kernel.org/r/20230628181926.4102448-1-yhs@fb.com Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27kallsyms: Improve the performance of kallsyms_lookup_name()Zhen Lei
[ Upstream commit 60443c88f3a89fd303a9e8c0e84895910675c316 ] Currently, to search for a symbol, we need to expand the symbols in 'kallsyms_names' one by one, and then use the expanded string for comparison. It's O(n). If we sort names in ascending order like addresses, we can also use binary search. It's O(log(n)). In order not to change the implementation of "/proc/kallsyms", the table kallsyms_names[] is still stored in a one-to-one correspondence with the address in ascending order. Add array kallsyms_seqs_of_names[], it's indexed by the sequence number of the sorted names, and the corresponding content is the sequence number of the sorted addresses. For example: Assume that the index of NameX in array kallsyms_seqs_of_names[] is 'i', the content of kallsyms_seqs_of_names[i] is 'k', then the corresponding address of NameX is kallsyms_addresses[k]. The offset in kallsyms_names[] is get_symbol_offset(k). Note that the memory usage will increase by (4 * kallsyms_num_syms) bytes, the next two patches will reduce (1 * kallsyms_num_syms) bytes and properly handle the case CONFIG_LTO_CLANG=y. Performance test results: (x86) Before: min=234, max=10364402, avg=5206926 min=267, max=11168517, avg=5207587 After: min=1016, max=90894, avg=7272 min=1014, max=93470, avg=7293 The average lookup performance of kallsyms_lookup_name() improved 715x. Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> Stable-dep-of: 8cc32a9bbf29 ("kallsyms: strip LTO-only suffixes from promoted global functions") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27sched/psi: use kernfs polling functions for PSI trigger pollingSuren Baghdasaryan
[ Upstream commit aff037078ecaecf34a7c2afab1341815f90fba5e ] Destroying psi trigger in cgroup_file_release causes UAF issues when a cgroup is removed from under a polling process. This is happening because cgroup removal causes a call to cgroup_file_release while the actual file is still alive. Destroying the trigger at this point would also destroy its waitqueue head and if there is still a polling process on that file accessing the waitqueue, it will step on the freed pointer: do_select vfs_poll do_rmdir cgroup_rmdir kernfs_drain_open_files cgroup_file_release cgroup_pressure_release psi_trigger_destroy wake_up_pollfree(&t->event_wait) // vfs_poll is unblocked synchronize_rcu kfree(t) poll_freewait -> UAF access to the trigger's waitqueue head Patch [1] fixed this issue for epoll() case using wake_up_pollfree(), however the same issue exists for synchronous poll() case. The root cause of this issue is that the lifecycles of the psi trigger's waitqueue and of the file associated with the trigger are different. Fix this by using kernfs_generic_poll function when polling on cgroup-specific psi triggers. It internally uses kernfs_open_node->poll waitqueue head with its lifecycle tied to the file's lifecycle. This also renders the fix in [1] obsolete, so revert it. [1] commit c2dbe32d5db5 ("sched/psi: Fix use-after-free in ep_remove_wait_queue()") Fixes: 0e94682b73bf ("psi: introduce psi monitor") Closes: https://lore.kernel.org/all/20230613062306.101831-1-lujialin4@huawei.com/ Reported-by: Lu Jialin <lujialin4@huawei.com> Signed-off-by: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20230630005612.1014540-1-surenb@google.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27sched/psi: Allow unprivileged polling of N*2s periodDomenico Cerasuolo
[ Upstream commit d82caa273565b45fcf103148950549af76c314b0 ] PSI offers 2 mechanisms to get information about a specific resource pressure. One is reading from /proc/pressure/<resource>, which gives average pressures aggregated every 2s. The other is creating a pollable fd for a specific resource and cgroup. The trigger creation requires CAP_SYS_RESOURCE, and gives the possibility to pick specific time window and threshold, spawing an RT thread to aggregate the data. Systemd would like to provide containers the option to monitor pressure on their own cgroup and sub-cgroups. For example, if systemd launches a container that itself then launches services, the container should have the ability to poll() for pressure in individual services. But neither the container nor the services are privileged. This patch implements a mechanism to allow unprivileged users to create pressure triggers. The difference with privileged triggers creation is that unprivileged ones must have a time window that's a multiple of 2s. This is so that we can avoid unrestricted spawning of rt threads, and use instead the same aggregation mechanism done for the averages, which runs independently of any triggers. Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lore.kernel.org/r/20230330105418.77061-5-cerasuolodomenico@gmail.com Stable-dep-of: aff037078eca ("sched/psi: use kernfs polling functions for PSI trigger polling") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27sched/psi: Extract update_triggers side effectDomenico Cerasuolo
[ Upstream commit 4468fcae49f08e88fbbffe05b29496192df89991 ] This change moves update_total flag out of update_triggers function, currently called only in psi_poll_work. In the next patch, update_triggers will be called also in psi_avgs_work, but the total update information is specific to psi_poll_work. Returning update_total value to the caller let us avoid differentiating the implementation of update_triggers for different aggregators. Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lore.kernel.org/r/20230330105418.77061-4-cerasuolodomenico@gmail.com Stable-dep-of: aff037078eca ("sched/psi: use kernfs polling functions for PSI trigger polling") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27sched/psi: Rename existing poll members in preparationDomenico Cerasuolo
[ Upstream commit 65457b74aa9437418e552e8d52d7112d4f9901a6 ] Renaming in PSI implementation to make a clear distinction between privileged and unprivileged triggers code to be implemented in the next patch. Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lore.kernel.org/r/20230330105418.77061-3-cerasuolodomenico@gmail.com Stable-dep-of: aff037078eca ("sched/psi: use kernfs polling functions for PSI trigger polling") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27sched/psi: Rearrange polling code in preparationDomenico Cerasuolo
[ Upstream commit 7fab21fa0d000a0ea32d73ce8eec68557c6c268b ] Move a few functions up in the file to avoid forward declaration needed in the patch implementing unprivileged PSI triggers. Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lore.kernel.org/r/20230330105418.77061-2-cerasuolodomenico@gmail.com Stable-dep-of: aff037078eca ("sched/psi: use kernfs polling functions for PSI trigger polling") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27sched/psi: Fix avgs_work re-arm in psi_avgs_work()Chengming Zhou
[ Upstream commit 2fcd7bbae90a6d844da8660a9d27079281dfbba2 ] Pavan reported a problem that PSI avgs_work idle shutoff is not working at all. Because PSI_NONIDLE condition would be observed in psi_avgs_work()->collect_percpu_times()->get_recent_times() even if only the kworker running avgs_work on the CPU. Although commit 1b69ac6b40eb ("psi: fix aggregation idle shut-off") avoided the ping-pong wake problem when the worker sleep, psi_avgs_work() still will always re-arm the avgs_work, so shutoff is not working. This patch changes to use PSI_STATE_RESCHEDULE to flag whether to re-arm avgs_work in get_recent_times(). For the current CPU, we re-arm avgs_work only when (NR_RUNNING > 1 || NR_IOWAIT > 0 || NR_MEMSTALL > 0), for other CPUs we can just check PSI_NONIDLE delta. The new flag is only used in psi_avgs_work(), so we check in get_recent_times() that current_work() is avgs_work. One potential problem is that the brief period of non-idle time incurred between the aggregation run and the kworker's dequeue will be stranded in the per-cpu buckets until avgs_work run next time. The buckets can hold 4s worth of time, and future activity will wake the avgs_work with a 2s delay, giving us 2s worth of data we can leave behind when shut off the avgs_work. If the kworker run other works after avgs_work shut off and doesn't have any scheduler activities for 2s, this maybe a problem. Reported-by: Pavan Kondeti <quic_pkondeti@quicinc.com> Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Suren Baghdasaryan <surenb@google.com> Tested-by: Chengming Zhou <zhouchengming@bytedance.com> Link: https://lore.kernel.org/r/20221014110551.22695-1-zhouchengming@bytedance.com Stable-dep-of: aff037078eca ("sched/psi: use kernfs polling functions for PSI trigger polling") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27sched/fair: Use recent_used_cpu to test p->cpus_ptrMiaohe Lin
[ Upstream commit ae2ad293d6be143ad223f5f947cca07bcbe42595 ] When checking whether a recently used CPU can be a potential idle candidate, recent_used_cpu should be used to test p->cpus_ptr as p->recent_used_cpu is not equal to recent_used_cpu and candidate decision is made based on recent_used_cpu here. Fixes: 89aafd67f28c ("sched/fair: Use prev instead of new target as recent_used_cpu") Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Phil Auld <pauld@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lore.kernel.org/r/20230620080747.359122-1-linmiaohe@huawei.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27bpf: Address KCSAN report on bpf_lru_listMartin KaFai Lau
[ Upstream commit ee9fd0ac3017c4313be91a220a9ac4c99dde7ad4 ] KCSAN reported a data-race when accessing node->ref. Although node->ref does not have to be accurate, take this chance to use a more common READ_ONCE() and WRITE_ONCE() pattern instead of data_race(). There is an existing bpf_lru_node_is_ref() and bpf_lru_node_set_ref(). This patch also adds bpf_lru_node_clear_ref() to do the WRITE_ONCE(node->ref, 0) also. ================================================================== BUG: KCSAN: data-race in __bpf_lru_list_rotate / __htab_lru_percpu_map_update_elem write to 0xffff888137038deb of 1 bytes by task 11240 on cpu 1: __bpf_lru_node_move kernel/bpf/bpf_lru_list.c:113 [inline] __bpf_lru_list_rotate_active kernel/bpf/bpf_lru_list.c:149 [inline] __bpf_lru_list_rotate+0x1bf/0x750 kernel/bpf/bpf_lru_list.c:240 bpf_lru_list_pop_free_to_local kernel/bpf/bpf_lru_list.c:329 [inline] bpf_common_lru_pop_free kernel/bpf/bpf_lru_list.c:447 [inline] bpf_lru_pop_free+0x638/0xe20 kernel/bpf/bpf_lru_list.c:499 prealloc_lru_pop kernel/bpf/hashtab.c:290 [inline] __htab_lru_percpu_map_update_elem+0xe7/0x820 kernel/bpf/hashtab.c:1316 bpf_percpu_hash_update+0x5e/0x90 kernel/bpf/hashtab.c:2313 bpf_map_update_value+0x2a9/0x370 kernel/bpf/syscall.c:200 generic_map_update_batch+0x3ae/0x4f0 kernel/bpf/syscall.c:1687 bpf_map_do_batch+0x2d9/0x3d0 kernel/bpf/syscall.c:4534 __sys_bpf+0x338/0x810 __do_sys_bpf kernel/bpf/syscall.c:5096 [inline] __se_sys_bpf kernel/bpf/syscall.c:5094 [inline] __x64_sys_bpf+0x43/0x50 kernel/bpf/syscall.c:5094 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd read to 0xffff888137038deb of 1 bytes by task 11241 on cpu 0: bpf_lru_node_set_ref kernel/bpf/bpf_lru_list.h:70 [inline] __htab_lru_percpu_map_update_elem+0x2f1/0x820 kernel/bpf/hashtab.c:1332 bpf_percpu_hash_update+0x5e/0x90 kernel/bpf/hashtab.c:2313 bpf_map_update_value+0x2a9/0x370 kernel/bpf/syscall.c:200 generic_map_update_batch+0x3ae/0x4f0 kernel/bpf/syscall.c:1687 bpf_map_do_batch+0x2d9/0x3d0 kernel/bpf/syscall.c:4534 __sys_bpf+0x338/0x810 __do_sys_bpf kernel/bpf/syscall.c:5096 [inline] __se_sys_bpf kernel/bpf/syscall.c:5094 [inline] __x64_sys_bpf+0x43/0x50 kernel/bpf/syscall.c:5094 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd value changed: 0x01 -> 0x00 Reported by Kernel Concurrency Sanitizer on: CPU: 0 PID: 11241 Comm: syz-executor.3 Not tainted 6.3.0-rc7-syzkaller-00136-g6a66fdd29ea1 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/30/2023 ================================================================== Reported-by: syzbot+ebe648a84e8784763f82@syzkaller.appspotmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/r/20230511043748.1384166-1-martin.lau@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27bpf: Print a warning only if writing to unprivileged_bpf_disabled.Kui-Feng Lee
[ Upstream commit fedf99200ab086c42a572fca1d7266b06cdc3e3f ] Only print the warning message if you are writing to "/proc/sys/kernel/unprivileged_bpf_disabled". The kernel may print an annoying warning when you read "/proc/sys/kernel/unprivileged_bpf_disabled" saying WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks! However, this message is only meaningful when the feature is disabled or enabled. Signed-off-by: Kui-Feng Lee <kuifeng@meta.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20230502181418.308479-1-kuifeng@meta.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27sched/fair: Don't balance task to its current running CPUYicong Yang
[ Upstream commit 0dd37d6dd33a9c23351e6115ae8cdac7863bc7de ] We've run into the case that the balancer tries to balance a migration disabled task and trigger the warning in set_task_cpu() like below: ------------[ cut here ]------------ WARNING: CPU: 7 PID: 0 at kernel/sched/core.c:3115 set_task_cpu+0x188/0x240 Modules linked in: hclgevf xt_CHECKSUM ipt_REJECT nf_reject_ipv4 <...snip> CPU: 7 PID: 0 Comm: swapper/7 Kdump: loaded Tainted: G O 6.1.0-rc4+ #1 Hardware name: Huawei TaiShan 2280 V2/BC82AMDC, BIOS 2280-V2 CS V5.B221.01 12/09/2021 pstate: 604000c9 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : set_task_cpu+0x188/0x240 lr : load_balance+0x5d0/0xc60 sp : ffff80000803bc70 x29: ffff80000803bc70 x28: ffff004089e190e8 x27: ffff004089e19040 x26: ffff007effcabc38 x25: 0000000000000000 x24: 0000000000000001 x23: ffff80000803be84 x22: 000000000000000c x21: ffffb093e79e2a78 x20: 000000000000000c x19: ffff004089e19040 x18: 0000000000000000 x17: 0000000000001fad x16: 0000000000000030 x15: 0000000000000000 x14: 0000000000000003 x13: 0000000000000000 x12: 0000000000000000 x11: 0000000000000001 x10: 0000000000000400 x9 : ffffb093e4cee530 x8 : 00000000fffffffe x7 : 0000000000ce168a x6 : 000000000000013e x5 : 00000000ffffffe1 x4 : 0000000000000001 x3 : 0000000000000b2a x2 : 0000000000000b2a x1 : ffffb093e6d6c510 x0 : 0000000000000001 Call trace: set_task_cpu+0x188/0x240 load_balance+0x5d0/0xc60 rebalance_domains+0x26c/0x380 _nohz_idle_balance.isra.0+0x1e0/0x370 run_rebalance_domains+0x6c/0x80 __do_softirq+0x128/0x3d8 ____do_softirq+0x18/0x24 call_on_irq_stack+0x2c/0x38 do_softirq_own_stack+0x24/0x3c __irq_exit_rcu+0xcc/0xf4 irq_exit_rcu+0x18/0x24 el1_interrupt+0x4c/0xe4 el1h_64_irq_handler+0x18/0x2c el1h_64_irq+0x74/0x78 arch_cpu_idle+0x18/0x4c default_idle_call+0x58/0x194 do_idle+0x244/0x2b0 cpu_startup_entry+0x30/0x3c secondary_start_kernel+0x14c/0x190 __secondary_switched+0xb0/0xb4 ---[ end trace 0000000000000000 ]--- Further investigation shows that the warning is superfluous, the migration disabled task is just going to be migrated to its current running CPU. This is because that on load balance if the dst_cpu is not allowed by the task, we'll re-select a new_dst_cpu as a candidate. If no task can be balanced to dst_cpu we'll try to balance the task to the new_dst_cpu instead. In this case when the migration disabled task is not on CPU it only allows to run on its current CPU, load balance will select its current CPU as new_dst_cpu and later triggers the warning above. The new_dst_cpu is chosen from the env->dst_grpmask. Currently it contains CPUs in sched_group_span() and if we have overlapped groups it's possible to run into this case. This patch makes env->dst_grpmask of group_balance_mask() which exclude any CPUs from the busiest group and solve the issue. For balancing in a domain with no overlapped groups the behaviour keeps same as before. Suggested-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Yicong Yang <yangyicong@hisilicon.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20230530082507.10444-1-yangyicong@huawei.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27rcu: Mark additional concurrent load from ->cpu_no_qs.b.expPaul E. McKenney
[ Upstream commit 9146eb25495ea8bfb5010192e61e3ed5805ce9ef ] The per-CPU rcu_data structure's ->cpu_no_qs.b.exp field is updated only on the instance corresponding to the current CPU, but can be read more widely. Unmarked accesses are OK from the corresponding CPU, but only if interrupts are disabled, given that interrupt handlers can and do modify this field. Unfortunately, although the load from rcu_preempt_deferred_qs() is always carried out from the corresponding CPU, interrupts are not necessarily disabled. This commit therefore upgrades this load to READ_ONCE. Similarly, the diagnostic access from synchronize_rcu_expedited_wait() might run with interrupts disabled and from some other CPU. This commit therefore marks this load with data_race(). Finally, the C-language access in rcu_preempt_ctxt_queue() is OK as is because interrupts are disabled and this load is always from the corresponding CPU. This commit adds a comment giving the rationale for this access being safe. This data race was reported by KCSAN. Not appropriate for backporting due to failure being unlikely. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27rcu-tasks: Avoid pr_info() with spin lock in cblist_init_generic()Shigeru Yoshida
[ Upstream commit 5fc8cbe4cf0fd34ded8045c385790c3bf04f6785 ] pr_info() is called with rtp->cbs_gbl_lock spin lock locked. Because pr_info() calls printk() that might sleep, this will result in BUG like below: [ 0.206455] cblist_init_generic: Setting adjustable number of callback queues. [ 0.206463] [ 0.206464] ============================= [ 0.206464] [ BUG: Invalid wait context ] [ 0.206465] 5.19.0-00428-g9de1f9c8ca51 #5 Not tainted [ 0.206466] ----------------------------- [ 0.206466] swapper/0/1 is trying to lock: [ 0.206467] ffffffffa0167a58 (&port_lock_key){....}-{3:3}, at: serial8250_console_write+0x327/0x4a0 [ 0.206473] other info that might help us debug this: [ 0.206473] context-{5:5} [ 0.206474] 3 locks held by swapper/0/1: [ 0.206474] #0: ffffffff9eb597e0 (rcu_tasks.cbs_gbl_lock){....}-{2:2}, at: cblist_init_generic.constprop.0+0x14/0x1f0 [ 0.206478] #1: ffffffff9eb579c0 (console_lock){+.+.}-{0:0}, at: _printk+0x63/0x7e [ 0.206482] #2: ffffffff9ea77780 (console_owner){....}-{0:0}, at: console_emit_next_record.constprop.0+0x111/0x330 [ 0.206485] stack backtrace: [ 0.206486] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-00428-g9de1f9c8ca51 #5 [ 0.206488] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.fc36 04/01/2014 [ 0.206489] Call Trace: [ 0.206490] <TASK> [ 0.206491] dump_stack_lvl+0x6a/0x9f [ 0.206493] __lock_acquire.cold+0x2d7/0x2fe [ 0.206496] ? stack_trace_save+0x46/0x70 [ 0.206497] lock_acquire+0xd1/0x2f0 [ 0.206499] ? serial8250_console_write+0x327/0x4a0 [ 0.206500] ? __lock_acquire+0x5c7/0x2720 [ 0.206502] _raw_spin_lock_irqsave+0x3d/0x90 [ 0.206504] ? serial8250_console_write+0x327/0x4a0 [ 0.206506] serial8250_console_write+0x327/0x4a0 [ 0.206508] console_emit_next_record.constprop.0+0x180/0x330 [ 0.206511] console_unlock+0xf7/0x1f0 [ 0.206512] vprintk_emit+0xf7/0x330 [ 0.206514] _printk+0x63/0x7e [ 0.206516] cblist_init_generic.constprop.0.cold+0x24/0x32 [ 0.206518] rcu_init_tasks_generic+0x5/0xd9 [ 0.206522] kernel_init_freeable+0x15b/0x2a2 [ 0.206523] ? rest_init+0x160/0x160 [ 0.206526] kernel_init+0x11/0x120 [ 0.206527] ret_from_fork+0x1f/0x30 [ 0.206530] </TASK> [ 0.207018] cblist_init_generic: Setting shift to 1 and lim to 1. This patch moves pr_info() so that it is called without rtp->cbs_gbl_lock locked. Signed-off-by: Shigeru Yoshida <syoshida@redhat.com> Tested-by: "Zhang, Qiang1" <qiang1.zhang@intel.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-23swiotlb: mark swiotlb_memblock_alloc() as __initRandy Dunlap
commit 9b07d27d0fbb7f7441aa986859a0f53ec93a0335 upstream. swiotlb_memblock_alloc() calls memblock_alloc(), which calls (__init) memblock_alloc_try_nid(). However, swiotlb_membloc_alloc() can be marked as __init since it is only called by swiotlb_init_remap(), which is already marked as __init. This prevents a modpost build warning/error: WARNING: modpost: vmlinux.o: section mismatch in reference: swiotlb_memblock_alloc (section: .text) -> memblock_alloc_try_nid (section: .init.text) WARNING: modpost: vmlinux.o: section mismatch in reference: swiotlb_memblock_alloc (section: .text) -> memblock_alloc_try_nid (section: .init.text) This fixes the build warning/error seen on ARM64, PPC64, S390, i386, and x86_64. Fixes: 8d58aa484920 ("swiotlb: reduce the swiotlb buffer size on allocation failure") Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Cc: Alexey Kardashevskiy <aik@amd.com> Cc: Christoph Hellwig <hch@lst.de> Cc: iommu@lists.linux.dev Cc: Mike Rapoport <rppt@kernel.org> Cc: linux-mm@kvack.org Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-23tracing/user_events: Fix struct arg size match checkBeau Belgrave
commit d0a3022f30629a208e5944022caeca3568add9e7 upstream. When users register an event the name of the event and it's argument are checked to ensure they match if the event already exists. Normally all arguments are in the form of "type name", except for when the type starts with "struct ". In those cases, the size of the struct is passed in addition to the name, IE: "struct my_struct a 20" for an argument that is of type "struct my_struct" with a field name of "a" and has the size of 20 bytes. The current code does not honor the above case properly when comparing a match. This causes the event register to fail even when the same string was used for events that contain a struct argument within them. The example above "struct my_struct a 20" generates a match string of "struct my_struct a" omitting the size field. Add the struct size of the existing field when generating a comparison string for a struct field to ensure proper match checking. Link: https://lkml.kernel.org/r/20230629235049.581-2-beaub@linux.microsoft.com Cc: stable@vger.kernel.org Fixes: e6f89a149872 ("tracing/user_events: Ensure user provided strings are safely formatted") Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-23tracing/probes: Fix to update dynamic data counter if fetcharg uses itMasami Hiramatsu (Google)
commit e38e2c6a9efc435f9de344b7c91f7697e01b47d5 upstream. Fix to update dynamic data counter ('dyndata') and max length ('maxlen') only if the fetcharg uses the dynamic data. Also get out arg->dynamic from unlikely(). This makes dynamic data address wrong if process_fetch_insn() returns error on !arg->dynamic case. Link: https://lore.kernel.org/all/168908494781.123124.8160245359962103684.stgit@devnote2/ Suggested-by: Steven Rostedt <rostedt@goodmis.org> Link: https://lore.kernel.org/all/20230710233400.5aaf024e@gandalf.local.home/ Fixes: 9178412ddf5a ("tracing: probeevent: Return consumed bytes of dynamic area") Cc: stable@vger.kernel.org Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-23tracing/probes: Fix not to count error code to total lengthMasami Hiramatsu (Google)
commit b41326b5e0f82e93592c4366359917b5d67b529f upstream. Fix not to count the error code (which is minus value) to the total used length of array, because it can mess up the return code of process_fetch_insn_bottom(). Also clear the 'ret' value because it will be used for calculating next data_loc entry. Link: https://lore.kernel.org/all/168908493827.123124.2175257289106364229.stgit@devnote2/ Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Closes: https://lore.kernel.org/all/8819b154-2ba1-43c3-98a2-cbde20892023@moroto.mountain/ Fixes: 9b960a38835f ("tracing: probeevent: Unify fetch_insn processing common part") Cc: stable@vger.kernel.org Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-23tracing: Fix null pointer dereference in tracing_err_log_open()Mateusz Stachyra
commit 02b0095e2fbbc060560c1065f86a211d91e27b26 upstream. Fix an issue in function 'tracing_err_log_open'. The function doesn't call 'seq_open' if the file is opened only with write permissions, which results in 'file->private_data' being left as null. If we then use 'lseek' on that opened file, 'seq_lseek' dereferences 'file->private_data' in 'mutex_lock(&m->lock)', resulting in a kernel panic. Writing to this node requires root privileges, therefore this bug has very little security impact. Tracefs node: /sys/kernel/tracing/error_log Example Kernel panic: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000038 Call trace: mutex_lock+0x30/0x110 seq_lseek+0x34/0xb8 __arm64_sys_lseek+0x6c/0xb8 invoke_syscall+0x58/0x13c el0_svc_common+0xc4/0x10c do_el0_svc+0x24/0x98 el0_svc+0x24/0x88 el0t_64_sync_handler+0x84/0xe4 el0t_64_sync+0x1b4/0x1b8 Code: d503201f aa0803e0 aa1f03e1 aa0103e9 (c8e97d02) ---[ end trace 561d1b49c12cf8a5 ]--- Kernel panic - not syncing: Oops: Fatal exception Link: https://lore.kernel.org/linux-trace-kernel/20230703155237eucms1p4dfb6a19caa14c79eb6c823d127b39024@eucms1p4 Link: https://lore.kernel.org/linux-trace-kernel/20230704102706eucms1p30d7ecdcc287f46ad67679fc8491b2e0f@eucms1p3 Cc: stable@vger.kernel.org Fixes: 8a062902be725 ("tracing: Add tracing error log") Signed-off-by: Mateusz Stachyra <m.stachyra@samsung.com> Suggested-by: Steven Rostedt <rostedt@goodmis.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-23fprobe: Ensure running fprobe_exit_handler() finished before calling ↵Masami Hiramatsu (Google)
rethook_free() commit 195b9cb5b288fec1c871ef89f78cc9a7461aad3a upstream. Ensure running fprobe_exit_handler() has finished before calling rethook_free() in the unregister_fprobe() so that caller can free the fprobe right after unregister_fprobe(). unregister_fprobe() ensured that all running fprobe_entry/exit_handler() have finished by calling unregister_ftrace_function() which synchronizes RCU. But commit 5f81018753df ("fprobe: Release rethook after the ftrace_ops is unregistered") changed to call rethook_free() after unregister_ftrace_function(). So call rethook_stop() to make rethook disabled before unregister_ftrace_function() and ensure it again. Here is the possible code flow that can call the exit handler after unregister_fprobe(). ------ CPU1 CPU2 call unregister_fprobe(fp) ... __fprobe_handler() rethook_hook() on probed function unregister_ftrace_function() return from probed function rethook hooks find rh->handler == fprobe_exit_handler call fprobe_exit_handler() rethook_free(): set rh->handler = NULL; return from unreigster_fprobe; call fp->exit_handler() <- (*) ------ (*) At this point, the exit handler is called after returning from unregister_fprobe(). This fixes it as following; ------ CPU1 CPU2 call unregister_fprobe() ... rethook_stop(): set rh->handler = NULL; __fprobe_handler() rethook_hook() on probed function unregister_ftrace_function() return from probed function rethook hooks find rh->handler == NULL return from rethook rethook_free() return from unreigster_fprobe; ------ Link: https://lore.kernel.org/all/168873859949.156157.13039240432299335849.stgit@devnote2/ Fixes: 5f81018753df ("fprobe: Release rethook after the ftrace_ops is unregistered") Cc: stable@vger.kernel.org Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-23fprobe: Release rethook after the ftrace_ops is unregisteredJiri Olsa
commit 5f81018753dfd4989e33ece1f0cb6b8aae498b82 upstream. While running bpf selftests it's possible to get following fault: general protection fault, probably for non-canonical address \ 0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC NOPTI ... Call Trace: <TASK> fprobe_handler+0xc1/0x270 ? __pfx_bpf_testmod_init+0x10/0x10 ? __pfx_bpf_testmod_init+0x10/0x10 ? bpf_fentry_test1+0x5/0x10 ? bpf_fentry_test1+0x5/0x10 ? bpf_testmod_init+0x22/0x80 ? do_one_initcall+0x63/0x2e0 ? rcu_is_watching+0xd/0x40 ? kmalloc_trace+0xaf/0xc0 ? do_init_module+0x60/0x250 ? __do_sys_finit_module+0xac/0x120 ? do_syscall_64+0x37/0x90 ? entry_SYSCALL_64_after_hwframe+0x72/0xdc </TASK> In unregister_fprobe function we can't release fp->rethook while it's possible there are some of its users still running on another cpu. Moving rethook_free call after fp->ops is unregistered with unregister_ftrace_function call. Link: https://lore.kernel.org/all/20230615115236.3476617-1-jolsa@kernel.org/ Fixes: 5b0ab78998e3 ("fprobe: Add exit_handler support") Cc: stable@vger.kernel.org Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-23PM: QoS: Restore support for default value on frequency QoSChungkai Yang
commit 3a8395b565b5b4f019b3dc182be4c4541eb35ac8 upstream. Commit 8d36694245f2 ("PM: QoS: Add check to make sure CPU freq is non-negative") makes sure CPU freq is non-negative to avoid negative value converting to unsigned data type. However, when the value is PM_QOS_DEFAULT_VALUE, pm_qos_update_target specifically uses c->default_value which is set to FREQ_QOS_MIN/MAX_DEFAULT_VALUE when cpufreq_policy_alloc is executed, for this case handling. Adding check for PM_QOS_DEFAULT_VALUE to let default setting work will fix this problem. Fixes: 8d36694245f2 ("PM: QoS: Add check to make sure CPU freq is non-negative") Link: https://lore.kernel.org/lkml/20230626035144.19717-1-Chung-kai.Yang@mediatek.com/ Link: https://lore.kernel.org/lkml/20230627071727.16646-1-Chung-kai.Yang@mediatek.com/ Link: https://lore.kernel.org/lkml/CAJZ5v0gxNOWhC58PHeUhW_tgf6d1fGJVZ1x91zkDdht11yUv-A@mail.gmail.com/ Signed-off-by: Chungkai Yang <Chung-kai.Yang@mediatek.com> Cc: 6.0+ <stable@vger.kernel.org> # 6.0+ Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-23ftrace: Fix possible warning on checking all pages used in ftrace_process_locs()Zheng Yejian
commit 26efd79c4624294e553aeaa3439c646729bad084 upstream. As comments in ftrace_process_locs(), there may be NULL pointers in mcount_loc section: > Some architecture linkers will pad between > the different mcount_loc sections of different > object files to satisfy alignments. > Skip any NULL pointers. After commit 20e5227e9f55 ("ftrace: allow NULL pointers in mcount_loc"), NULL pointers will be accounted when allocating ftrace pages but skipped before adding into ftrace pages, this may result in some pages not being used. Then after commit 706c81f87f84 ("ftrace: Remove extra helper functions"), warning may occur at: WARN_ON(pg->next); To fix it, only warn for case that no pointers skipped but pages not used up, then free those unused pages after releasing ftrace_lock. Link: https://lore.kernel.org/linux-trace-kernel/20230712060452.3175675-1-zhengyejian1@huawei.com Cc: stable@vger.kernel.org Fixes: 706c81f87f84 ("ftrace: Remove extra helper functions") Suggested-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-23ring-buffer: Fix deadloop issue on reading trace_pipeZheng Yejian
commit 7e42907f3a7b4ce3a2d1757f6d78336984daf8f5 upstream. Soft lockup occurs when reading file 'trace_pipe': watchdog: BUG: soft lockup - CPU#6 stuck for 22s! [cat:4488] [...] RIP: 0010:ring_buffer_empty_cpu+0xed/0x170 RSP: 0018:ffff88810dd6fc48 EFLAGS: 00000246 RAX: 0000000000000000 RBX: 0000000000000246 RCX: ffffffff93d1aaeb RDX: ffff88810a280040 RSI: 0000000000000008 RDI: ffff88811164b218 RBP: ffff88811164b218 R08: 0000000000000000 R09: ffff88815156600f R10: ffffed102a2acc01 R11: 0000000000000001 R12: 0000000051651901 R13: 0000000000000000 R14: ffff888115e49500 R15: 0000000000000000 [...] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f8d853c2000 CR3: 000000010dcd8000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: __find_next_entry+0x1a8/0x4b0 ? peek_next_entry+0x250/0x250 ? down_write+0xa5/0x120 ? down_write_killable+0x130/0x130 trace_find_next_entry_inc+0x3b/0x1d0 tracing_read_pipe+0x423/0xae0 ? tracing_splice_read_pipe+0xcb0/0xcb0 vfs_read+0x16b/0x490 ksys_read+0x105/0x210 ? __ia32_sys_pwrite64+0x200/0x200 ? switch_fpu_return+0x108/0x220 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x61/0xc6 Through the vmcore, I found it's because in tracing_read_pipe(), ring_buffer_empty_cpu() found some buffer is not empty but then it cannot read anything due to "rb_num_of_entries() == 0" always true, Then it infinitely loop the procedure due to user buffer not been filled, see following code path: tracing_read_pipe() { ... ... waitagain: tracing_wait_pipe() // 1. find non-empty buffer here trace_find_next_entry_inc() // 2. loop here try to find an entry __find_next_entry() ring_buffer_empty_cpu(); // 3. find non-empty buffer peek_next_entry() // 4. but peek always return NULL ring_buffer_peek() rb_buffer_peek() rb_get_reader_page() // 5. because rb_num_of_entries() == 0 always true here // then return NULL // 6. user buffer not been filled so goto 'waitgain' // and eventually leads to an deadloop in kernel!!! } By some analyzing, I found that when resetting ringbuffer, the 'entries' of its pages are not all cleared (see rb_reset_cpu()). Then when reducing the ringbuffer, and if some reduced pages exist dirty 'entries' data, they will be added into 'cpu_buffer->overrun' (see rb_remove_pages()), which cause wrong 'overrun' count and eventually cause the deadloop issue. To fix it, we need to clear every pages in rb_reset_cpu(). Link: https://lore.kernel.org/linux-trace-kernel/20230708225144.3785600-1-zhengyejian1@huawei.com Cc: stable@vger.kernel.org Fixes: a5fb833172eca ("ring-buffer: Fix uninitialized read_stamp") Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-23tracing: Fix memory leak of iter->temp when reading trace_pipeZheng Yejian
commit d5a821896360cc8b93a15bd888fabc858c038dc0 upstream. kmemleak reports: unreferenced object 0xffff88814d14e200 (size 256): comm "cat", pid 336, jiffies 4294871818 (age 779.490s) hex dump (first 32 bytes): 04 00 01 03 00 00 00 00 08 00 00 00 00 00 00 00 ................ 0c d8 c8 9b ff ff ff ff 04 5a ca 9b ff ff ff ff .........Z...... backtrace: [<ffffffff9bdff18f>] __kmalloc+0x4f/0x140 [<ffffffff9bc9238b>] trace_find_next_entry+0xbb/0x1d0 [<ffffffff9bc9caef>] trace_print_lat_context+0xaf/0x4e0 [<ffffffff9bc94490>] print_trace_line+0x3e0/0x950 [<ffffffff9bc95499>] tracing_read_pipe+0x2d9/0x5a0 [<ffffffff9bf03a43>] vfs_read+0x143/0x520 [<ffffffff9bf04c2d>] ksys_read+0xbd/0x160 [<ffffffff9d0f0edf>] do_syscall_64+0x3f/0x90 [<ffffffff9d2000aa>] entry_SYSCALL_64_after_hwframe+0x6e/0xd8 when reading file 'trace_pipe', 'iter->temp' is allocated or relocated in trace_find_next_entry() but not freed before 'trace_pipe' is closed. To fix it, free 'iter->temp' in tracing_release_pipe(). Link: https://lore.kernel.org/linux-trace-kernel/20230713141435.1133021-1-zhengyejian1@huawei.com Cc: stable@vger.kernel.org Fixes: ff895103a84ab ("tracing: Save off entry when peeking at next entry") Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-23tracing/histograms: Add histograms to hist_vars if they have referenced ↵Mohamed Khalfella
variables commit 6018b585e8c6fa7d85d4b38d9ce49a5b67be7078 upstream. Hist triggers can have referenced variables without having direct variables fields. This can be the case if referenced variables are added for trigger actions. In this case the newly added references will not have field variables. Not taking such referenced variables into consideration can result in a bug where it would be possible to remove hist trigger with variables being refenced. This will result in a bug that is easily reproducable like so $ cd /sys/kernel/tracing $ echo 'synthetic_sys_enter char[] comm; long id' >> synthetic_events $ echo 'hist:keys=common_pid.execname,id.syscall:vals=hitcount:comm=common_pid.execname' >> events/raw_syscalls/sys_enter/trigger $ echo 'hist:keys=common_pid.execname,id.syscall:onmatch(raw_syscalls.sys_enter).synthetic_sys_enter($comm, id)' >> events/raw_syscalls/sys_enter/trigger $ echo '!hist:keys=common_pid.execname,id.syscall:vals=hitcount:comm=common_pid.execname' >> events/raw_syscalls/sys_enter/trigger [ 100.263533] ================================================================== [ 100.264634] BUG: KASAN: slab-use-after-free in resolve_var_refs+0xc7/0x180 [ 100.265520] Read of size 8 at addr ffff88810375d0f0 by task bash/439 [ 100.266320] [ 100.266533] CPU: 2 PID: 439 Comm: bash Not tainted 6.5.0-rc1 #4 [ 100.267277] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-20220807_005459-localhost 04/01/2014 [ 100.268561] Call Trace: [ 100.268902] <TASK> [ 100.269189] dump_stack_lvl+0x4c/0x70 [ 100.269680] print_report+0xc5/0x600 [ 100.270165] ? resolve_var_refs+0xc7/0x180 [ 100.270697] ? kasan_complete_mode_report_info+0x80/0x1f0 [ 100.271389] ? resolve_var_refs+0xc7/0x180 [ 100.271913] kasan_report+0xbd/0x100 [ 100.272380] ? resolve_var_refs+0xc7/0x180 [ 100.272920] __asan_load8+0x71/0xa0 [ 100.273377] resolve_var_refs+0xc7/0x180 [ 100.273888] event_hist_trigger+0x749/0x860 [ 100.274505] ? kasan_save_stack+0x2a/0x50 [ 100.275024] ? kasan_set_track+0x29/0x40 [ 100.275536] ? __pfx_event_hist_trigger+0x10/0x10 [ 100.276138] ? ksys_write+0xd1/0x170 [ 100.276607] ? do_syscall_64+0x3c/0x90 [ 100.277099] ? entry_SYSCALL_64_after_hwframe+0x6e/0xd8 [ 100.277771] ? destroy_hist_data+0x446/0x470 [ 100.278324] ? event_hist_trigger_parse+0xa6c/0x3860 [ 100.278962] ? __pfx_event_hist_trigger_parse+0x10/0x10 [ 100.279627] ? __kasan_check_write+0x18/0x20 [ 100.280177] ? mutex_unlock+0x85/0xd0 [ 100.280660] ? __pfx_mutex_unlock+0x10/0x10 [ 100.281200] ? kfree+0x7b/0x120 [ 100.281619] ? ____kasan_slab_free+0x15d/0x1d0 [ 100.282197] ? event_trigger_write+0xac/0x100 [ 100.282764] ? __kasan_slab_free+0x16/0x20 [ 100.283293] ? __kmem_cache_free+0x153/0x2f0 [ 100.283844] ? sched_mm_cid_remote_clear+0xb1/0x250 [ 100.284550] ? __pfx_sched_mm_cid_remote_clear+0x10/0x10 [ 100.285221] ? event_trigger_write+0xbc/0x100 [ 100.285781] ? __kasan_check_read+0x15/0x20 [ 100.286321] ? __bitmap_weight+0x66/0xa0 [ 100.286833] ? _find_next_bit+0x46/0xe0 [ 100.287334] ? task_mm_cid_work+0x37f/0x450 [ 100.287872] event_triggers_call+0x84/0x150 [ 100.288408] trace_event_buffer_commit+0x339/0x430 [ 100.289073] ? ring_buffer_event_data+0x3f/0x60 [ 100.292189] trace_event_raw_event_sys_enter+0x8b/0xe0 [ 100.295434] syscall_trace_enter.constprop.0+0x18f/0x1b0 [ 100.298653] syscall_enter_from_user_mode+0x32/0x40 [ 100.301808] do_syscall_64+0x1a/0x90 [ 100.304748] entry_SYSCALL_64_after_hwframe+0x6e/0xd8 [ 100.307775] RIP: 0033:0x7f686c75c1cb [ 100.310617] Code: 73 01 c3 48 8b 0d 65 3c 10 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa b8 21 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 35 3c 10 00 f7 d8 64 89 01 48 [ 100.317847] RSP: 002b:00007ffc60137a38 EFLAGS: 00000246 ORIG_RAX: 0000000000000021 [ 100.321200] RAX: ffffffffffffffda RBX: 000055f566469ea0 RCX: 00007f686c75c1cb [ 100.324631] RDX: 0000000000000001 RSI: 0000000000000001 RDI: 000000000000000a [ 100.328104] RBP: 00007ffc60137ac0 R08: 00007f686c818460 R09: 000000000000000a [ 100.331509] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000009 [ 100.334992] R13: 0000000000000007 R14: 000000000000000a R15: 0000000000000007 [ 100.338381] </TASK> We hit the bug because when second hist trigger has was created has_hist_vars() returned false because hist trigger did not have variables. As a result of that save_hist_vars() was not called to add the trigger to trace_array->hist_vars. Later on when we attempted to remove the first histogram find_any_var_ref() failed to detect it is being used because it did not find the second trigger in hist_vars list. With this change we wait until trigger actions are created so we can take into consideration if hist trigger has variable references. Also, now we check the return value of save_hist_vars() and fail trigger creation if save_hist_vars() fails. Link: https://lore.kernel.org/linux-trace-kernel/20230712223021.636335-1-mkhalfella@purestorage.com Cc: stable@vger.kernel.org Fixes: 067fe038e70f6 ("tracing: Add variable reference handling to hist triggers") Signed-off-by: Mohamed Khalfella <mkhalfella@purestorage.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-23tracing/user_events: Fix incorrect return value for writing operation when ↵sunliming
events are disabled commit f6d026eea390d59787a6cdc2ef5c983d02e029d0 upstream. The writing operation return the count of writes regardless of whether events are enabled or disabled. Switch it to return -EBADF to indicates that the event is disabled. Link: https://lkml.kernel.org/r/20230626111344.19136-2-sunliming@kylinos.cn Cc: stable@vger.kernel.org 7f5a08c79df35 ("user_events: Add minimal support for trace_event into ftrace") Acked-by: Beau Belgrave <beaub@linux.microsoft.com> Signed-off-by: sunliming <sunliming@kylinos.cn> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-23bpf: cpumap: Fix memory leak in cpu_map_update_elemPu Lehui
[ Upstream commit 4369016497319a9635702da010d02af1ebb1849d ] Syzkaller reported a memory leak as follows: BUG: memory leak unreferenced object 0xff110001198ef748 (size 192): comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s) hex dump (first 32 bytes): 00 00 00 00 4a 19 00 00 80 ad e3 e4 fe ff c0 00 ....J........... 00 b2 d3 0c 01 00 11 ff 28 f5 8e 19 01 00 11 ff ........(....... backtrace: [<ffffffffadd28087>] __cpu_map_entry_alloc+0xf7/0xb00 [<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0 [<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520 [<ffffffffadc7349b>] map_update_elem+0x4cb/0x720 [<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90 [<ffffffffb029cc80>] do_syscall_64+0x30/0x40 [<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6 BUG: memory leak unreferenced object 0xff110001198ef528 (size 192): comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffffadd281f0>] __cpu_map_entry_alloc+0x260/0xb00 [<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0 [<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520 [<ffffffffadc7349b>] map_update_elem+0x4cb/0x720 [<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90 [<ffffffffb029cc80>] do_syscall_64+0x30/0x40 [<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6 BUG: memory leak unreferenced object 0xff1100010fd93d68 (size 8): comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s) hex dump (first 8 bytes): 00 00 00 00 00 00 00 00 ........ backtrace: [<ffffffffade5db3e>] kvmalloc_node+0x11e/0x170 [<ffffffffadd28280>] __cpu_map_entry_alloc+0x2f0/0xb00 [<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0 [<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520 [<ffffffffadc7349b>] map_update_elem+0x4cb/0x720 [<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90 [<ffffffffb029cc80>] do_syscall_64+0x30/0x40 [<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6 In the cpu_map_update_elem flow, when kthread_stop is called before calling the threadfn of rcpu->kthread, since the KTHREAD_SHOULD_STOP bit of kthread has been set by kthread_stop, the threadfn of rcpu->kthread will never be executed, and rcpu->refcnt will never be 0, which will lead to the allocated rcpu, rcpu->queue and rcpu->queue->queue cannot be released. Calling kthread_stop before executing kthread's threadfn will return -EINTR. We can complete the release of memory resources in this state. Fixes: 6710e1126934 ("bpf: introduce new bpf cpu map type BPF_MAP_TYPE_CPUMAP") Signed-off-by: Pu Lehui <pulehui@huawei.com> Acked-by: Jesper Dangaard Brouer <hawk@kernel.org> Acked-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/r/20230711115848.2701559-1-pulehui@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-23kernel/trace: Fix cleanup logic of enable_trace_eprobeTzvetomir Stoyanov (VMware)
[ Upstream commit cf0a624dc706c306294c14e6b3e7694702f25191 ] The enable_trace_eprobe() function enables all event probes, attached to given trace probe. If an error occurs in enabling one of the event probes, all others should be roll backed. There is a bug in that roll back logic - instead of all event probes, only the failed one is disabled. Link: https://lore.kernel.org/all/20230703042853.1427493-1-tz.stoyanov@gmail.com/ Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Fixes: 7491e2c44278 ("tracing: Add a probe that attaches to trace events") Signed-off-by: Tzvetomir Stoyanov (VMware) <tz.stoyanov@gmail.com> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-23bpf: Fix max stack depth check for async callbacksKumar Kartikeya Dwivedi
[ Upstream commit 5415ccd50a8620c8cbaa32d6f18c946c453566f5 ] The check_max_stack_depth pass happens after the verifier's symbolic execution, and attempts to walk the call graph of the BPF program, ensuring that the stack usage stays within bounds for all possible call chains. There are two cases to consider: bpf_pseudo_func and bpf_pseudo_call. In the former case, the callback pointer is loaded into a register, and is assumed that it is passed to some helper later which calls it (however there is no way to be sure), but the check remains conservative and accounts the stack usage anyway. For this particular case, asynchronous callbacks are skipped as they execute asynchronously when their corresponding event fires. The case of bpf_pseudo_call is simpler and we know that the call is definitely made, hence the stack depth of the subprog is accounted for. However, the current check still skips an asynchronous callback even if a bpf_pseudo_call was made for it. This is erroneous, as it will miss accounting for the stack usage of the asynchronous callback, which can be used to breach the maximum stack depth limit. Fix this by only skipping asynchronous callbacks when the instruction is not a pseudo call to the subprog. Fixes: 7ddc80a476c2 ("bpf: Teach stack depth check about async callbacks.") Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20230705144730.235802-2-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-23swiotlb: reduce the number of areas to match actual memory pool sizePetr Tesarik
[ Upstream commit 8ac04063354a01a484d2e55d20ed1958aa0d3392 ] Although the desired size of the SWIOTLB memory pool is increased in swiotlb_adjust_nareas() to match the number of areas, the actual allocation may be smaller, which may require reducing the number of areas. For example, Xen uses swiotlb_init_late(), which in turn uses the page allocator. On x86, page size is 4 KiB and MAX_ORDER is 10 (1024 pages), resulting in a maximum memory pool size of 4 MiB. This corresponds to 2048 slots of 2 KiB each. The minimum area size is 128 (IO_TLB_SEGSIZE), allowing at most 2048 / 128 = 16 areas. If num_possible_cpus() is greater than the maximum number of areas, areas are smaller than IO_TLB_SEGSIZE and contiguous groups of free slots will span multiple areas. When allocating and freeing slots, only one area will be properly locked, causing race conditions on the unlocked slots and ultimately data corruption, kernel hangs and crashes. Fixes: 20347fca71a3 ("swiotlb: split up the global swiotlb lock") Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com> Reviewed-by: Roberto Sassu <roberto.sassu@huawei.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-23swiotlb: reduce the swiotlb buffer size on allocation failureAlexey Kardashevskiy
[ Upstream commit 8d58aa484920c4f9be4834a7aeb446cdced21a37 ] At the moment the AMD encrypted platform reserves 6% of RAM for SWIOTLB or 1GB, whichever is less. However it is possible that there is no block big enough in the low memory which make SWIOTLB allocation fail and the kernel continues without DMA. In such case a VM hangs on DMA. This moves alloc+remap to a helper and calls it from a loop where the size is halved on each iteration. This updates default_nslabs on successful allocation which looks like an oversight as not doing so should have broken callers of swiotlb_size_or_default(). Signed-off-by: Alexey Kardashevskiy <aik@amd.com> Reviewed-by: Pankaj Gupta <pankaj.gupta@amd.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Stable-dep-of: 8ac04063354a ("swiotlb: reduce the number of areas to match actual memory pool size") Signed-off-by: Sasha Levin <sashal@kernel.org>