summary refs log tree commit diff
path: root/net/rds/iw_rdma.c
diff options
context:
space:
mode:
Diffstat (limited to 'net/rds/iw_rdma.c')
-rw-r--r--net/rds/iw_rdma.c888
1 files changed, 888 insertions, 0 deletions
diff --git a/net/rds/iw_rdma.c b/net/rds/iw_rdma.c
new file mode 100644
index 000000000000..1c02a8f952d0
--- /dev/null
+++ b/net/rds/iw_rdma.c
@@ -0,0 +1,888 @@
+/*
+ * Copyright (c) 2006 Oracle.  All rights reserved.
+ *
+ * This software is available to you under a choice of one of two
+ * licenses.  You may choose to be licensed under the terms of the GNU
+ * General Public License (GPL) Version 2, available from the file
+ * COPYING in the main directory of this source tree, or the
+ * OpenIB.org BSD license below:
+ *
+ *     Redistribution and use in source and binary forms, with or
+ *     without modification, are permitted provided that the following
+ *     conditions are met:
+ *
+ *      - Redistributions of source code must retain the above
+ *        copyright notice, this list of conditions and the following
+ *        disclaimer.
+ *
+ *      - Redistributions in binary form must reproduce the above
+ *        copyright notice, this list of conditions and the following
+ *        disclaimer in the documentation and/or other materials
+ *        provided with the distribution.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ *
+ */
+#include <linux/kernel.h>
+
+#include "rds.h"
+#include "rdma.h"
+#include "iw.h"
+
+
+/*
+ * This is stored as mr->r_trans_private.
+ */
+struct rds_iw_mr {
+	struct rds_iw_device	*device;
+	struct rds_iw_mr_pool	*pool;
+	struct rdma_cm_id	*cm_id;
+
+	struct ib_mr	*mr;
+	struct ib_fast_reg_page_list *page_list;
+
+	struct rds_iw_mapping	mapping;
+	unsigned char		remap_count;
+};
+
+/*
+ * Our own little MR pool
+ */
+struct rds_iw_mr_pool {
+	struct rds_iw_device	*device;		/* back ptr to the device that owns us */
+
+	struct mutex		flush_lock;		/* serialize fmr invalidate */
+	struct work_struct	flush_worker;		/* flush worker */
+
+	spinlock_t		list_lock;		/* protect variables below */
+	atomic_t		item_count;		/* total # of MRs */
+	atomic_t		dirty_count;		/* # dirty of MRs */
+	struct list_head	dirty_list;		/* dirty mappings */
+	struct list_head	clean_list;		/* unused & unamapped MRs */
+	atomic_t		free_pinned;		/* memory pinned by free MRs */
+	unsigned long		max_message_size;	/* in pages */
+	unsigned long		max_items;
+	unsigned long		max_items_soft;
+	unsigned long		max_free_pinned;
+	int			max_pages;
+};
+
+static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
+static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
+static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
+static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
+			  struct rds_iw_mr *ibmr,
+			  struct scatterlist *sg, unsigned int nents);
+static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
+static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
+			struct list_head *unmap_list,
+			struct list_head *kill_list);
+static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
+
+static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id)
+{
+	struct rds_iw_device *iwdev;
+	struct rds_iw_cm_id *i_cm_id;
+
+	*rds_iwdev = NULL;
+	*cm_id = NULL;
+
+	list_for_each_entry(iwdev, &rds_iw_devices, list) {
+		spin_lock_irq(&iwdev->spinlock);
+		list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
+			struct sockaddr_in *src_addr, *dst_addr;
+
+			src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
+			dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
+
+			rdsdebug("local ipaddr = %x port %d, "
+				 "remote ipaddr = %x port %d"
+				 "..looking for %x port %d, "
+				 "remote ipaddr = %x port %d\n",
+				src_addr->sin_addr.s_addr,
+				src_addr->sin_port,
+				dst_addr->sin_addr.s_addr,
+				dst_addr->sin_port,
+				rs->rs_bound_addr,
+				rs->rs_bound_port,
+				rs->rs_conn_addr,
+				rs->rs_conn_port);
+#ifdef WORKING_TUPLE_DETECTION
+			if (src_addr->sin_addr.s_addr == rs->rs_bound_addr &&
+			    src_addr->sin_port == rs->rs_bound_port &&
+			    dst_addr->sin_addr.s_addr == rs->rs_conn_addr &&
+			    dst_addr->sin_port == rs->rs_conn_port) {
+#else
+			/* FIXME - needs to compare the local and remote
+			 * ipaddr/port tuple, but the ipaddr is the only
+			 * available infomation in the rds_sock (as the rest are
+			 * zero'ed.  It doesn't appear to be properly populated
+			 * during connection setup...
+			 */
+			if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) {
+#endif
+				spin_unlock_irq(&iwdev->spinlock);
+				*rds_iwdev = iwdev;
+				*cm_id = i_cm_id->cm_id;
+				return 0;
+			}
+		}
+		spin_unlock_irq(&iwdev->spinlock);
+	}
+
+	return 1;
+}
+
+static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
+{
+	struct rds_iw_cm_id *i_cm_id;
+
+	i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
+	if (!i_cm_id)
+		return -ENOMEM;
+
+	i_cm_id->cm_id = cm_id;
+
+	spin_lock_irq(&rds_iwdev->spinlock);
+	list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
+	spin_unlock_irq(&rds_iwdev->spinlock);
+
+	return 0;
+}
+
+void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
+{
+	struct rds_iw_cm_id *i_cm_id;
+
+	spin_lock_irq(&rds_iwdev->spinlock);
+	list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
+		if (i_cm_id->cm_id == cm_id) {
+			list_del(&i_cm_id->list);
+			kfree(i_cm_id);
+			break;
+		}
+	}
+	spin_unlock_irq(&rds_iwdev->spinlock);
+}
+
+
+int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
+{
+	struct sockaddr_in *src_addr, *dst_addr;
+	struct rds_iw_device *rds_iwdev_old;
+	struct rds_sock rs;
+	struct rdma_cm_id *pcm_id;
+	int rc;
+
+	src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
+	dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
+
+	rs.rs_bound_addr = src_addr->sin_addr.s_addr;
+	rs.rs_bound_port = src_addr->sin_port;
+	rs.rs_conn_addr = dst_addr->sin_addr.s_addr;
+	rs.rs_conn_port = dst_addr->sin_port;
+
+	rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id);
+	if (rc)
+		rds_iw_remove_cm_id(rds_iwdev, cm_id);
+
+	return rds_iw_add_cm_id(rds_iwdev, cm_id);
+}
+
+int rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
+{
+	struct rds_iw_connection *ic = conn->c_transport_data;
+
+	/* conn was previously on the nodev_conns_list */
+	spin_lock_irq(&iw_nodev_conns_lock);
+	BUG_ON(list_empty(&iw_nodev_conns));
+	BUG_ON(list_empty(&ic->iw_node));
+	list_del(&ic->iw_node);
+	spin_unlock_irq(&iw_nodev_conns_lock);
+
+	spin_lock_irq(&rds_iwdev->spinlock);
+	list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
+	spin_unlock_irq(&rds_iwdev->spinlock);
+
+	ic->rds_iwdev = rds_iwdev;
+
+	return 0;
+}
+
+void rds_iw_remove_nodev_conns(void)
+{
+	struct rds_iw_connection *ic, *_ic;
+	LIST_HEAD(tmp_list);
+
+	/* avoid calling conn_destroy with irqs off */
+	spin_lock_irq(&iw_nodev_conns_lock);
+	list_splice(&iw_nodev_conns, &tmp_list);
+	INIT_LIST_HEAD(&iw_nodev_conns);
+	spin_unlock_irq(&iw_nodev_conns_lock);
+
+	list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node) {
+		if (ic->conn->c_passive)
+			rds_conn_destroy(ic->conn->c_passive);
+		rds_conn_destroy(ic->conn);
+	}
+}
+
+void rds_iw_remove_conns(struct rds_iw_device *rds_iwdev)
+{
+	struct rds_iw_connection *ic, *_ic;
+	LIST_HEAD(tmp_list);
+
+	/* avoid calling conn_destroy with irqs off */
+	spin_lock_irq(&rds_iwdev->spinlock);
+	list_splice(&rds_iwdev->conn_list, &tmp_list);
+	INIT_LIST_HEAD(&rds_iwdev->conn_list);
+	spin_unlock_irq(&rds_iwdev->spinlock);
+
+	list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node) {
+		if (ic->conn->c_passive)
+			rds_conn_destroy(ic->conn->c_passive);
+		rds_conn_destroy(ic->conn);
+	}
+}
+
+static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
+		struct scatterlist *list, unsigned int sg_len)
+{
+	sg->list = list;
+	sg->len = sg_len;
+	sg->dma_len = 0;
+	sg->dma_npages = 0;
+	sg->bytes = 0;
+}
+
+static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
+			struct rds_iw_scatterlist *sg,
+			unsigned int dma_page_shift)
+{
+	struct ib_device *dev = rds_iwdev->dev;
+	u64 *dma_pages = NULL;
+	u64 dma_mask;
+	unsigned int dma_page_size;
+	int i, j, ret;
+
+	dma_page_size = 1 << dma_page_shift;
+	dma_mask = dma_page_size - 1;
+
+	WARN_ON(sg->dma_len);
+
+	sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
+	if (unlikely(!sg->dma_len)) {
+		printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
+		return ERR_PTR(-EBUSY);
+	}
+
+	sg->bytes = 0;
+	sg->dma_npages = 0;
+
+	ret = -EINVAL;
+	for (i = 0; i < sg->dma_len; ++i) {
+		unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
+		u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
+		u64 end_addr;
+
+		sg->bytes += dma_len;
+
+		end_addr = dma_addr + dma_len;
+		if (dma_addr & dma_mask) {
+			if (i > 0)
+				goto out_unmap;
+			dma_addr &= ~dma_mask;
+		}
+		if (end_addr & dma_mask) {
+			if (i < sg->dma_len - 1)
+				goto out_unmap;
+			end_addr = (end_addr + dma_mask) & ~dma_mask;
+		}
+
+		sg->dma_npages += (end_addr - dma_addr) >> dma_page_shift;
+	}
+
+	/* Now gather the dma addrs into one list */
+	if (sg->dma_npages > fastreg_message_size)
+		goto out_unmap;
+
+	dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC);
+	if (!dma_pages) {
+		ret = -ENOMEM;
+		goto out_unmap;
+	}
+
+	for (i = j = 0; i < sg->dma_len; ++i) {
+		unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
+		u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
+		u64 end_addr;
+
+		end_addr = dma_addr + dma_len;
+		dma_addr &= ~dma_mask;
+		for (; dma_addr < end_addr; dma_addr += dma_page_size)
+			dma_pages[j++] = dma_addr;
+		BUG_ON(j > sg->dma_npages);
+	}
+
+	return dma_pages;
+
+out_unmap:
+	ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
+	sg->dma_len = 0;
+	kfree(dma_pages);
+	return ERR_PTR(ret);
+}
+
+
+struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
+{
+	struct rds_iw_mr_pool *pool;
+
+	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
+	if (!pool) {
+		printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
+		return ERR_PTR(-ENOMEM);
+	}
+
+	pool->device = rds_iwdev;
+	INIT_LIST_HEAD(&pool->dirty_list);
+	INIT_LIST_HEAD(&pool->clean_list);
+	mutex_init(&pool->flush_lock);
+	spin_lock_init(&pool->list_lock);
+	INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
+
+	pool->max_message_size = fastreg_message_size;
+	pool->max_items = fastreg_pool_size;
+	pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
+	pool->max_pages = fastreg_message_size;
+
+	/* We never allow more than max_items MRs to be allocated.
+	 * When we exceed more than max_items_soft, we start freeing
+	 * items more aggressively.
+	 * Make sure that max_items > max_items_soft > max_items / 2
+	 */
+	pool->max_items_soft = pool->max_items * 3 / 4;
+
+	return pool;
+}
+
+void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
+{
+	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
+
+	iinfo->rdma_mr_max = pool->max_items;
+	iinfo->rdma_mr_size = pool->max_pages;
+}
+
+void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
+{
+	flush_workqueue(rds_wq);
+	rds_iw_flush_mr_pool(pool, 1);
+	BUG_ON(atomic_read(&pool->item_count));
+	BUG_ON(atomic_read(&pool->free_pinned));
+	kfree(pool);
+}
+
+static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
+{
+	struct rds_iw_mr *ibmr = NULL;
+	unsigned long flags;
+
+	spin_lock_irqsave(&pool->list_lock, flags);
+	if (!list_empty(&pool->clean_list)) {
+		ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
+		list_del_init(&ibmr->mapping.m_list);
+	}
+	spin_unlock_irqrestore(&pool->list_lock, flags);
+
+	return ibmr;
+}
+
+static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
+{
+	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
+	struct rds_iw_mr *ibmr = NULL;
+	int err = 0, iter = 0;
+
+	while (1) {
+		ibmr = rds_iw_reuse_fmr(pool);
+		if (ibmr)
+			return ibmr;
+
+		/* No clean MRs - now we have the choice of either
+		 * allocating a fresh MR up to the limit imposed by the
+		 * driver, or flush any dirty unused MRs.
+		 * We try to avoid stalling in the send path if possible,
+		 * so we allocate as long as we're allowed to.
+		 *
+		 * We're fussy with enforcing the FMR limit, though. If the driver
+		 * tells us we can't use more than N fmrs, we shouldn't start
+		 * arguing with it */
+		if (atomic_inc_return(&pool->item_count) <= pool->max_items)
+			break;
+
+		atomic_dec(&pool->item_count);
+
+		if (++iter > 2) {
+			rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
+			return ERR_PTR(-EAGAIN);
+		}
+
+		/* We do have some empty MRs. Flush them out. */
+		rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
+		rds_iw_flush_mr_pool(pool, 0);
+	}
+
+	ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
+	if (!ibmr) {
+		err = -ENOMEM;
+		goto out_no_cigar;
+	}
+
+	spin_lock_init(&ibmr->mapping.m_lock);
+	INIT_LIST_HEAD(&ibmr->mapping.m_list);
+	ibmr->mapping.m_mr = ibmr;
+
+	err = rds_iw_init_fastreg(pool, ibmr);
+	if (err)
+		goto out_no_cigar;
+
+	rds_iw_stats_inc(s_iw_rdma_mr_alloc);
+	return ibmr;
+
+out_no_cigar:
+	if (ibmr) {
+		rds_iw_destroy_fastreg(pool, ibmr);
+		kfree(ibmr);
+	}
+	atomic_dec(&pool->item_count);
+	return ERR_PTR(err);
+}
+
+void rds_iw_sync_mr(void *trans_private, int direction)
+{
+	struct rds_iw_mr *ibmr = trans_private;
+	struct rds_iw_device *rds_iwdev = ibmr->device;
+
+	switch (direction) {
+	case DMA_FROM_DEVICE:
+		ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
+			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
+		break;
+	case DMA_TO_DEVICE:
+		ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
+			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
+		break;
+	}
+}
+
+static inline unsigned int rds_iw_flush_goal(struct rds_iw_mr_pool *pool, int free_all)
+{
+	unsigned int item_count;
+
+	item_count = atomic_read(&pool->item_count);
+	if (free_all)
+		return item_count;
+
+	return 0;
+}
+
+/*
+ * Flush our pool of MRs.
+ * At a minimum, all currently unused MRs are unmapped.
+ * If the number of MRs allocated exceeds the limit, we also try
+ * to free as many MRs as needed to get back to this limit.
+ */
+static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
+{
+	struct rds_iw_mr *ibmr, *next;
+	LIST_HEAD(unmap_list);
+	LIST_HEAD(kill_list);
+	unsigned long flags;
+	unsigned int nfreed = 0, ncleaned = 0, free_goal;
+	int ret = 0;
+
+	rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
+
+	mutex_lock(&pool->flush_lock);
+
+	spin_lock_irqsave(&pool->list_lock, flags);
+	/* Get the list of all mappings to be destroyed */
+	list_splice_init(&pool->dirty_list, &unmap_list);
+	if (free_all)
+		list_splice_init(&pool->clean_list, &kill_list);
+	spin_unlock_irqrestore(&pool->list_lock, flags);
+
+	free_goal = rds_iw_flush_goal(pool, free_all);
+
+	/* Batched invalidate of dirty MRs.
+	 * For FMR based MRs, the mappings on the unmap list are
+	 * actually members of an ibmr (ibmr->mapping). They either
+	 * migrate to the kill_list, or have been cleaned and should be
+	 * moved to the clean_list.
+	 * For fastregs, they will be dynamically allocated, and
+	 * will be destroyed by the unmap function.
+	 */
+	if (!list_empty(&unmap_list)) {
+		ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list, &kill_list);
+		/* If we've been asked to destroy all MRs, move those
+		 * that were simply cleaned to the kill list */
+		if (free_all)
+			list_splice_init(&unmap_list, &kill_list);
+	}
+
+	/* Destroy any MRs that are past their best before date */
+	list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
+		rds_iw_stats_inc(s_iw_rdma_mr_free);
+		list_del(&ibmr->mapping.m_list);
+		rds_iw_destroy_fastreg(pool, ibmr);
+		kfree(ibmr);
+		nfreed++;
+	}
+
+	/* Anything that remains are laundered ibmrs, which we can add
+	 * back to the clean list. */
+	if (!list_empty(&unmap_list)) {
+		spin_lock_irqsave(&pool->list_lock, flags);
+		list_splice(&unmap_list, &pool->clean_list);
+		spin_unlock_irqrestore(&pool->list_lock, flags);
+	}
+
+	atomic_sub(ncleaned, &pool->dirty_count);
+	atomic_sub(nfreed, &pool->item_count);
+
+	mutex_unlock(&pool->flush_lock);
+	return ret;
+}
+
+static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
+{
+	struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
+
+	rds_iw_flush_mr_pool(pool, 0);
+}
+
+void rds_iw_free_mr(void *trans_private, int invalidate)
+{
+	struct rds_iw_mr *ibmr = trans_private;
+	struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
+
+	rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
+	if (!pool)
+		return;
+
+	/* Return it to the pool's free list */
+	rds_iw_free_fastreg(pool, ibmr);
+
+	/* If we've pinned too many pages, request a flush */
+	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned
+	 || atomic_read(&pool->dirty_count) >= pool->max_items / 10)
+		queue_work(rds_wq, &pool->flush_worker);
+
+	if (invalidate) {
+		if (likely(!in_interrupt())) {
+			rds_iw_flush_mr_pool(pool, 0);
+		} else {
+			/* We get here if the user created a MR marked
+			 * as use_once and invalidate at the same time. */
+			queue_work(rds_wq, &pool->flush_worker);
+		}
+	}
+}
+
+void rds_iw_flush_mrs(void)
+{
+	struct rds_iw_device *rds_iwdev;
+
+	list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
+		struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
+
+		if (pool)
+			rds_iw_flush_mr_pool(pool, 0);
+	}
+}
+
+void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
+		    struct rds_sock *rs, u32 *key_ret)
+{
+	struct rds_iw_device *rds_iwdev;
+	struct rds_iw_mr *ibmr = NULL;
+	struct rdma_cm_id *cm_id;
+	int ret;
+
+	ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id);
+	if (ret || !cm_id) {
+		ret = -ENODEV;
+		goto out;
+	}
+
+	if (!rds_iwdev->mr_pool) {
+		ret = -ENODEV;
+		goto out;
+	}
+
+	ibmr = rds_iw_alloc_mr(rds_iwdev);
+	if (IS_ERR(ibmr))
+		return ibmr;
+
+	ibmr->cm_id = cm_id;
+	ibmr->device = rds_iwdev;
+
+	ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents);
+	if (ret == 0)
+		*key_ret = ibmr->mr->rkey;
+	else
+		printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
+
+out:
+	if (ret) {
+		if (ibmr)
+			rds_iw_free_mr(ibmr, 0);
+		ibmr = ERR_PTR(ret);
+	}
+	return ibmr;
+}
+
+/*
+ * iWARP fastreg handling
+ *
+ * The life cycle of a fastreg registration is a bit different from
+ * FMRs.
+ * The idea behind fastreg is to have one MR, to which we bind different
+ * mappings over time. To avoid stalling on the expensive map and invalidate
+ * operations, these operations are pipelined on the same send queue on
+ * which we want to send the message containing the r_key.
+ *
+ * This creates a bit of a problem for us, as we do not have the destination
+ * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
+ * RDMA to be correctly setup.  If a fastreg request is present, rds_iw_xmit
+ * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request
+ * before queuing the SEND. When completions for these arrive, they are
+ * dispatched to the MR has a bit set showing that RDMa can be performed.
+ *
+ * There is another interesting aspect that's related to invalidation.
+ * The application can request that a mapping is invalidated in FREE_MR.
+ * The expectation there is that this invalidation step includes ALL
+ * PREVIOUSLY FREED MRs.
+ */
+static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool,
+				struct rds_iw_mr *ibmr)
+{
+	struct rds_iw_device *rds_iwdev = pool->device;
+	struct ib_fast_reg_page_list *page_list = NULL;
+	struct ib_mr *mr;
+	int err;
+
+	mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size);
+	if (IS_ERR(mr)) {
+		err = PTR_ERR(mr);
+
+		printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err);
+		return err;
+	}
+
+	/* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages
+	 * is not filled in.
+	 */
+	page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size);
+	if (IS_ERR(page_list)) {
+		err = PTR_ERR(page_list);
+
+		printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err);
+		ib_dereg_mr(mr);
+		return err;
+	}
+
+	ibmr->page_list = page_list;
+	ibmr->mr = mr;
+	return 0;
+}
+
+static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping)
+{
+	struct rds_iw_mr *ibmr = mapping->m_mr;
+	struct ib_send_wr f_wr, *failed_wr;
+	int ret;
+
+	/*
+	 * Perform a WR for the fast_reg_mr. Each individual page
+	 * in the sg list is added to the fast reg page list and placed
+	 * inside the fast_reg_mr WR.  The key used is a rolling 8bit
+	 * counter, which should guarantee uniqueness.
+	 */
+	ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
+	mapping->m_rkey = ibmr->mr->rkey;
+
+	memset(&f_wr, 0, sizeof(f_wr));
+	f_wr.wr_id = RDS_IW_FAST_REG_WR_ID;
+	f_wr.opcode = IB_WR_FAST_REG_MR;
+	f_wr.wr.fast_reg.length = mapping->m_sg.bytes;
+	f_wr.wr.fast_reg.rkey = mapping->m_rkey;
+	f_wr.wr.fast_reg.page_list = ibmr->page_list;
+	f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len;
+	f_wr.wr.fast_reg.page_shift = ibmr->device->page_shift;
+	f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE |
+				IB_ACCESS_REMOTE_READ |
+				IB_ACCESS_REMOTE_WRITE;
+	f_wr.wr.fast_reg.iova_start = 0;
+	f_wr.send_flags = IB_SEND_SIGNALED;
+
+	failed_wr = &f_wr;
+	ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr);
+	BUG_ON(failed_wr != &f_wr);
+	if (ret && printk_ratelimit())
+		printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
+			__func__, __LINE__, ret);
+	return ret;
+}
+
+static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
+{
+	struct ib_send_wr s_wr, *failed_wr;
+	int ret = 0;
+
+	if (!ibmr->cm_id->qp || !ibmr->mr)
+		goto out;
+
+	memset(&s_wr, 0, sizeof(s_wr));
+	s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
+	s_wr.opcode = IB_WR_LOCAL_INV;
+	s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
+	s_wr.send_flags = IB_SEND_SIGNALED;
+
+	failed_wr = &s_wr;
+	ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
+	if (ret && printk_ratelimit()) {
+		printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
+			__func__, __LINE__, ret);
+		goto out;
+	}
+out:
+	return ret;
+}
+
+static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
+			struct rds_iw_mr *ibmr,
+			struct scatterlist *sg,
+			unsigned int sg_len)
+{
+	struct rds_iw_device *rds_iwdev = pool->device;
+	struct rds_iw_mapping *mapping = &ibmr->mapping;
+	u64 *dma_pages;
+	int i, ret = 0;
+
+	rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
+
+	dma_pages = rds_iw_map_scatterlist(rds_iwdev,
+				&mapping->m_sg,
+				rds_iwdev->page_shift);
+	if (IS_ERR(dma_pages)) {
+		ret = PTR_ERR(dma_pages);
+		dma_pages = NULL;
+		goto out;
+	}
+
+	if (mapping->m_sg.dma_len > pool->max_message_size) {
+		ret = -EMSGSIZE;
+		goto out;
+	}
+
+	for (i = 0; i < mapping->m_sg.dma_npages; ++i)
+		ibmr->page_list->page_list[i] = dma_pages[i];
+
+	ret = rds_iw_rdma_build_fastreg(mapping);
+	if (ret)
+		goto out;
+
+	rds_iw_stats_inc(s_iw_rdma_mr_used);
+
+out:
+	kfree(dma_pages);
+
+	return ret;
+}
+
+/*
+ * "Free" a fastreg MR.
+ */
+static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
+		struct rds_iw_mr *ibmr)
+{
+	unsigned long flags;
+	int ret;
+
+	if (!ibmr->mapping.m_sg.dma_len)
+		return;
+
+	ret = rds_iw_rdma_fastreg_inv(ibmr);
+	if (ret)
+		return;
+
+	/* Try to post the LOCAL_INV WR to the queue. */
+	spin_lock_irqsave(&pool->list_lock, flags);
+
+	list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
+	atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
+	atomic_inc(&pool->dirty_count);
+
+	spin_unlock_irqrestore(&pool->list_lock, flags);
+}
+
+static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
+				struct list_head *unmap_list,
+				struct list_head *kill_list)
+{
+	struct rds_iw_mapping *mapping, *next;
+	unsigned int ncleaned = 0;
+	LIST_HEAD(laundered);
+
+	/* Batched invalidation of fastreg MRs.
+	 * Why do we do it this way, even though we could pipeline unmap
+	 * and remap? The reason is the application semantics - when the
+	 * application requests an invalidation of MRs, it expects all
+	 * previously released R_Keys to become invalid.
+	 *
+	 * If we implement MR reuse naively, we risk memory corruption
+	 * (this has actually been observed). So the default behavior
+	 * requires that a MR goes through an explicit unmap operation before
+	 * we can reuse it again.
+	 *
+	 * We could probably improve on this a little, by allowing immediate
+	 * reuse of a MR on the same socket (eg you could add small
+	 * cache of unused MRs to strct rds_socket - GET_MR could grab one
+	 * of these without requiring an explicit invalidate).
+	 */
+	while (!list_empty(unmap_list)) {
+		unsigned long flags;
+
+		spin_lock_irqsave(&pool->list_lock, flags);
+		list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
+			list_move(&mapping->m_list, &laundered);
+			ncleaned++;
+		}
+		spin_unlock_irqrestore(&pool->list_lock, flags);
+	}
+
+	/* Move all laundered mappings back to the unmap list.
+	 * We do not kill any WRs right now - it doesn't seem the
+	 * fastreg API has a max_remap limit. */
+	list_splice_init(&laundered, unmap_list);
+
+	return ncleaned;
+}
+
+static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
+		struct rds_iw_mr *ibmr)
+{
+	if (ibmr->page_list)
+		ib_free_fast_reg_page_list(ibmr->page_list);
+	if (ibmr->mr)
+		ib_dereg_mr(ibmr->mr);
+}