summary refs log tree commit diff
path: root/mm/damon/core.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/damon/core.c')
-rw-r--r--mm/damon/core.c720
1 files changed, 720 insertions, 0 deletions
diff --git a/mm/damon/core.c b/mm/damon/core.c
new file mode 100644
index 000000000000..30e9211f494a
--- /dev/null
+++ b/mm/damon/core.c
@@ -0,0 +1,720 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Data Access Monitor
+ *
+ * Author: SeongJae Park <sjpark@amazon.de>
+ */
+
+#define pr_fmt(fmt) "damon: " fmt
+
+#include <linux/damon.h>
+#include <linux/delay.h>
+#include <linux/kthread.h>
+#include <linux/random.h>
+#include <linux/slab.h>
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/damon.h>
+
+#ifdef CONFIG_DAMON_KUNIT_TEST
+#undef DAMON_MIN_REGION
+#define DAMON_MIN_REGION 1
+#endif
+
+/* Get a random number in [l, r) */
+#define damon_rand(l, r) (l + prandom_u32_max(r - l))
+
+static DEFINE_MUTEX(damon_lock);
+static int nr_running_ctxs;
+
+/*
+ * Construct a damon_region struct
+ *
+ * Returns the pointer to the new struct if success, or NULL otherwise
+ */
+struct damon_region *damon_new_region(unsigned long start, unsigned long end)
+{
+	struct damon_region *region;
+
+	region = kmalloc(sizeof(*region), GFP_KERNEL);
+	if (!region)
+		return NULL;
+
+	region->ar.start = start;
+	region->ar.end = end;
+	region->nr_accesses = 0;
+	INIT_LIST_HEAD(&region->list);
+
+	return region;
+}
+
+/*
+ * Add a region between two other regions
+ */
+inline void damon_insert_region(struct damon_region *r,
+		struct damon_region *prev, struct damon_region *next,
+		struct damon_target *t)
+{
+	__list_add(&r->list, &prev->list, &next->list);
+	t->nr_regions++;
+}
+
+void damon_add_region(struct damon_region *r, struct damon_target *t)
+{
+	list_add_tail(&r->list, &t->regions_list);
+	t->nr_regions++;
+}
+
+static void damon_del_region(struct damon_region *r, struct damon_target *t)
+{
+	list_del(&r->list);
+	t->nr_regions--;
+}
+
+static void damon_free_region(struct damon_region *r)
+{
+	kfree(r);
+}
+
+void damon_destroy_region(struct damon_region *r, struct damon_target *t)
+{
+	damon_del_region(r, t);
+	damon_free_region(r);
+}
+
+/*
+ * Construct a damon_target struct
+ *
+ * Returns the pointer to the new struct if success, or NULL otherwise
+ */
+struct damon_target *damon_new_target(unsigned long id)
+{
+	struct damon_target *t;
+
+	t = kmalloc(sizeof(*t), GFP_KERNEL);
+	if (!t)
+		return NULL;
+
+	t->id = id;
+	t->nr_regions = 0;
+	INIT_LIST_HEAD(&t->regions_list);
+
+	return t;
+}
+
+void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
+{
+	list_add_tail(&t->list, &ctx->adaptive_targets);
+}
+
+static void damon_del_target(struct damon_target *t)
+{
+	list_del(&t->list);
+}
+
+void damon_free_target(struct damon_target *t)
+{
+	struct damon_region *r, *next;
+
+	damon_for_each_region_safe(r, next, t)
+		damon_free_region(r);
+	kfree(t);
+}
+
+void damon_destroy_target(struct damon_target *t)
+{
+	damon_del_target(t);
+	damon_free_target(t);
+}
+
+unsigned int damon_nr_regions(struct damon_target *t)
+{
+	return t->nr_regions;
+}
+
+struct damon_ctx *damon_new_ctx(void)
+{
+	struct damon_ctx *ctx;
+
+	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
+	if (!ctx)
+		return NULL;
+
+	ctx->sample_interval = 5 * 1000;
+	ctx->aggr_interval = 100 * 1000;
+	ctx->primitive_update_interval = 60 * 1000 * 1000;
+
+	ktime_get_coarse_ts64(&ctx->last_aggregation);
+	ctx->last_primitive_update = ctx->last_aggregation;
+
+	mutex_init(&ctx->kdamond_lock);
+
+	ctx->min_nr_regions = 10;
+	ctx->max_nr_regions = 1000;
+
+	INIT_LIST_HEAD(&ctx->adaptive_targets);
+
+	return ctx;
+}
+
+static void damon_destroy_targets(struct damon_ctx *ctx)
+{
+	struct damon_target *t, *next_t;
+
+	if (ctx->primitive.cleanup) {
+		ctx->primitive.cleanup(ctx);
+		return;
+	}
+
+	damon_for_each_target_safe(t, next_t, ctx)
+		damon_destroy_target(t);
+}
+
+void damon_destroy_ctx(struct damon_ctx *ctx)
+{
+	damon_destroy_targets(ctx);
+	kfree(ctx);
+}
+
+/**
+ * damon_set_targets() - Set monitoring targets.
+ * @ctx:	monitoring context
+ * @ids:	array of target ids
+ * @nr_ids:	number of entries in @ids
+ *
+ * This function should not be called while the kdamond is running.
+ *
+ * Return: 0 on success, negative error code otherwise.
+ */
+int damon_set_targets(struct damon_ctx *ctx,
+		      unsigned long *ids, ssize_t nr_ids)
+{
+	ssize_t i;
+	struct damon_target *t, *next;
+
+	damon_destroy_targets(ctx);
+
+	for (i = 0; i < nr_ids; i++) {
+		t = damon_new_target(ids[i]);
+		if (!t) {
+			pr_err("Failed to alloc damon_target\n");
+			/* The caller should do cleanup of the ids itself */
+			damon_for_each_target_safe(t, next, ctx)
+				damon_destroy_target(t);
+			return -ENOMEM;
+		}
+		damon_add_target(ctx, t);
+	}
+
+	return 0;
+}
+
+/**
+ * damon_set_attrs() - Set attributes for the monitoring.
+ * @ctx:		monitoring context
+ * @sample_int:		time interval between samplings
+ * @aggr_int:		time interval between aggregations
+ * @primitive_upd_int:	time interval between monitoring primitive updates
+ * @min_nr_reg:		minimal number of regions
+ * @max_nr_reg:		maximum number of regions
+ *
+ * This function should not be called while the kdamond is running.
+ * Every time interval is in micro-seconds.
+ *
+ * Return: 0 on success, negative error code otherwise.
+ */
+int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
+		    unsigned long aggr_int, unsigned long primitive_upd_int,
+		    unsigned long min_nr_reg, unsigned long max_nr_reg)
+{
+	if (min_nr_reg < 3) {
+		pr_err("min_nr_regions (%lu) must be at least 3\n",
+				min_nr_reg);
+		return -EINVAL;
+	}
+	if (min_nr_reg > max_nr_reg) {
+		pr_err("invalid nr_regions.  min (%lu) > max (%lu)\n",
+				min_nr_reg, max_nr_reg);
+		return -EINVAL;
+	}
+
+	ctx->sample_interval = sample_int;
+	ctx->aggr_interval = aggr_int;
+	ctx->primitive_update_interval = primitive_upd_int;
+	ctx->min_nr_regions = min_nr_reg;
+	ctx->max_nr_regions = max_nr_reg;
+
+	return 0;
+}
+
+/**
+ * damon_nr_running_ctxs() - Return number of currently running contexts.
+ */
+int damon_nr_running_ctxs(void)
+{
+	int nr_ctxs;
+
+	mutex_lock(&damon_lock);
+	nr_ctxs = nr_running_ctxs;
+	mutex_unlock(&damon_lock);
+
+	return nr_ctxs;
+}
+
+/* Returns the size upper limit for each monitoring region */
+static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
+{
+	struct damon_target *t;
+	struct damon_region *r;
+	unsigned long sz = 0;
+
+	damon_for_each_target(t, ctx) {
+		damon_for_each_region(r, t)
+			sz += r->ar.end - r->ar.start;
+	}
+
+	if (ctx->min_nr_regions)
+		sz /= ctx->min_nr_regions;
+	if (sz < DAMON_MIN_REGION)
+		sz = DAMON_MIN_REGION;
+
+	return sz;
+}
+
+static bool damon_kdamond_running(struct damon_ctx *ctx)
+{
+	bool running;
+
+	mutex_lock(&ctx->kdamond_lock);
+	running = ctx->kdamond != NULL;
+	mutex_unlock(&ctx->kdamond_lock);
+
+	return running;
+}
+
+static int kdamond_fn(void *data);
+
+/*
+ * __damon_start() - Starts monitoring with given context.
+ * @ctx:	monitoring context
+ *
+ * This function should be called while damon_lock is hold.
+ *
+ * Return: 0 on success, negative error code otherwise.
+ */
+static int __damon_start(struct damon_ctx *ctx)
+{
+	int err = -EBUSY;
+
+	mutex_lock(&ctx->kdamond_lock);
+	if (!ctx->kdamond) {
+		err = 0;
+		ctx->kdamond_stop = false;
+		ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
+				nr_running_ctxs);
+		if (IS_ERR(ctx->kdamond)) {
+			err = PTR_ERR(ctx->kdamond);
+			ctx->kdamond = 0;
+		}
+	}
+	mutex_unlock(&ctx->kdamond_lock);
+
+	return err;
+}
+
+/**
+ * damon_start() - Starts the monitorings for a given group of contexts.
+ * @ctxs:	an array of the pointers for contexts to start monitoring
+ * @nr_ctxs:	size of @ctxs
+ *
+ * This function starts a group of monitoring threads for a group of monitoring
+ * contexts.  One thread per each context is created and run in parallel.  The
+ * caller should handle synchronization between the threads by itself.  If a
+ * group of threads that created by other 'damon_start()' call is currently
+ * running, this function does nothing but returns -EBUSY.
+ *
+ * Return: 0 on success, negative error code otherwise.
+ */
+int damon_start(struct damon_ctx **ctxs, int nr_ctxs)
+{
+	int i;
+	int err = 0;
+
+	mutex_lock(&damon_lock);
+	if (nr_running_ctxs) {
+		mutex_unlock(&damon_lock);
+		return -EBUSY;
+	}
+
+	for (i = 0; i < nr_ctxs; i++) {
+		err = __damon_start(ctxs[i]);
+		if (err)
+			break;
+		nr_running_ctxs++;
+	}
+	mutex_unlock(&damon_lock);
+
+	return err;
+}
+
+/*
+ * __damon_stop() - Stops monitoring of given context.
+ * @ctx:	monitoring context
+ *
+ * Return: 0 on success, negative error code otherwise.
+ */
+static int __damon_stop(struct damon_ctx *ctx)
+{
+	mutex_lock(&ctx->kdamond_lock);
+	if (ctx->kdamond) {
+		ctx->kdamond_stop = true;
+		mutex_unlock(&ctx->kdamond_lock);
+		while (damon_kdamond_running(ctx))
+			usleep_range(ctx->sample_interval,
+					ctx->sample_interval * 2);
+		return 0;
+	}
+	mutex_unlock(&ctx->kdamond_lock);
+
+	return -EPERM;
+}
+
+/**
+ * damon_stop() - Stops the monitorings for a given group of contexts.
+ * @ctxs:	an array of the pointers for contexts to stop monitoring
+ * @nr_ctxs:	size of @ctxs
+ *
+ * Return: 0 on success, negative error code otherwise.
+ */
+int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
+{
+	int i, err = 0;
+
+	for (i = 0; i < nr_ctxs; i++) {
+		/* nr_running_ctxs is decremented in kdamond_fn */
+		err = __damon_stop(ctxs[i]);
+		if (err)
+			return err;
+	}
+
+	return err;
+}
+
+/*
+ * damon_check_reset_time_interval() - Check if a time interval is elapsed.
+ * @baseline:	the time to check whether the interval has elapsed since
+ * @interval:	the time interval (microseconds)
+ *
+ * See whether the given time interval has passed since the given baseline
+ * time.  If so, it also updates the baseline to current time for next check.
+ *
+ * Return:	true if the time interval has passed, or false otherwise.
+ */
+static bool damon_check_reset_time_interval(struct timespec64 *baseline,
+		unsigned long interval)
+{
+	struct timespec64 now;
+
+	ktime_get_coarse_ts64(&now);
+	if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) <
+			interval * 1000)
+		return false;
+	*baseline = now;
+	return true;
+}
+
+/*
+ * Check whether it is time to flush the aggregated information
+ */
+static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx)
+{
+	return damon_check_reset_time_interval(&ctx->last_aggregation,
+			ctx->aggr_interval);
+}
+
+/*
+ * Reset the aggregated monitoring results ('nr_accesses' of each region).
+ */
+static void kdamond_reset_aggregated(struct damon_ctx *c)
+{
+	struct damon_target *t;
+
+	damon_for_each_target(t, c) {
+		struct damon_region *r;
+
+		damon_for_each_region(r, t) {
+			trace_damon_aggregated(t, r, damon_nr_regions(t));
+			r->nr_accesses = 0;
+		}
+	}
+}
+
+#define sz_damon_region(r) (r->ar.end - r->ar.start)
+
+/*
+ * Merge two adjacent regions into one region
+ */
+static void damon_merge_two_regions(struct damon_target *t,
+		struct damon_region *l, struct damon_region *r)
+{
+	unsigned long sz_l = sz_damon_region(l), sz_r = sz_damon_region(r);
+
+	l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
+			(sz_l + sz_r);
+	l->ar.end = r->ar.end;
+	damon_destroy_region(r, t);
+}
+
+#define diff_of(a, b) (a > b ? a - b : b - a)
+
+/*
+ * Merge adjacent regions having similar access frequencies
+ *
+ * t		target affected by this merge operation
+ * thres	'->nr_accesses' diff threshold for the merge
+ * sz_limit	size upper limit of each region
+ */
+static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
+				   unsigned long sz_limit)
+{
+	struct damon_region *r, *prev = NULL, *next;
+
+	damon_for_each_region_safe(r, next, t) {
+		if (prev && prev->ar.end == r->ar.start &&
+		    diff_of(prev->nr_accesses, r->nr_accesses) <= thres &&
+		    sz_damon_region(prev) + sz_damon_region(r) <= sz_limit)
+			damon_merge_two_regions(t, prev, r);
+		else
+			prev = r;
+	}
+}
+
+/*
+ * Merge adjacent regions having similar access frequencies
+ *
+ * threshold	'->nr_accesses' diff threshold for the merge
+ * sz_limit	size upper limit of each region
+ *
+ * This function merges monitoring target regions which are adjacent and their
+ * access frequencies are similar.  This is for minimizing the monitoring
+ * overhead under the dynamically changeable access pattern.  If a merge was
+ * unnecessarily made, later 'kdamond_split_regions()' will revert it.
+ */
+static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
+				  unsigned long sz_limit)
+{
+	struct damon_target *t;
+
+	damon_for_each_target(t, c)
+		damon_merge_regions_of(t, threshold, sz_limit);
+}
+
+/*
+ * Split a region in two
+ *
+ * r		the region to be split
+ * sz_r		size of the first sub-region that will be made
+ */
+static void damon_split_region_at(struct damon_ctx *ctx,
+		struct damon_target *t, struct damon_region *r,
+		unsigned long sz_r)
+{
+	struct damon_region *new;
+
+	new = damon_new_region(r->ar.start + sz_r, r->ar.end);
+	if (!new)
+		return;
+
+	r->ar.end = new->ar.start;
+
+	damon_insert_region(new, r, damon_next_region(r), t);
+}
+
+/* Split every region in the given target into 'nr_subs' regions */
+static void damon_split_regions_of(struct damon_ctx *ctx,
+				     struct damon_target *t, int nr_subs)
+{
+	struct damon_region *r, *next;
+	unsigned long sz_region, sz_sub = 0;
+	int i;
+
+	damon_for_each_region_safe(r, next, t) {
+		sz_region = r->ar.end - r->ar.start;
+
+		for (i = 0; i < nr_subs - 1 &&
+				sz_region > 2 * DAMON_MIN_REGION; i++) {
+			/*
+			 * Randomly select size of left sub-region to be at
+			 * least 10 percent and at most 90% of original region
+			 */
+			sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
+					sz_region / 10, DAMON_MIN_REGION);
+			/* Do not allow blank region */
+			if (sz_sub == 0 || sz_sub >= sz_region)
+				continue;
+
+			damon_split_region_at(ctx, t, r, sz_sub);
+			sz_region = sz_sub;
+		}
+	}
+}
+
+/*
+ * Split every target region into randomly-sized small regions
+ *
+ * This function splits every target region into random-sized small regions if
+ * current total number of the regions is equal or smaller than half of the
+ * user-specified maximum number of regions.  This is for maximizing the
+ * monitoring accuracy under the dynamically changeable access patterns.  If a
+ * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
+ * it.
+ */
+static void kdamond_split_regions(struct damon_ctx *ctx)
+{
+	struct damon_target *t;
+	unsigned int nr_regions = 0;
+	static unsigned int last_nr_regions;
+	int nr_subregions = 2;
+
+	damon_for_each_target(t, ctx)
+		nr_regions += damon_nr_regions(t);
+
+	if (nr_regions > ctx->max_nr_regions / 2)
+		return;
+
+	/* Maybe the middle of the region has different access frequency */
+	if (last_nr_regions == nr_regions &&
+			nr_regions < ctx->max_nr_regions / 3)
+		nr_subregions = 3;
+
+	damon_for_each_target(t, ctx)
+		damon_split_regions_of(ctx, t, nr_subregions);
+
+	last_nr_regions = nr_regions;
+}
+
+/*
+ * Check whether it is time to check and apply the target monitoring regions
+ *
+ * Returns true if it is.
+ */
+static bool kdamond_need_update_primitive(struct damon_ctx *ctx)
+{
+	return damon_check_reset_time_interval(&ctx->last_primitive_update,
+			ctx->primitive_update_interval);
+}
+
+/*
+ * Check whether current monitoring should be stopped
+ *
+ * The monitoring is stopped when either the user requested to stop, or all
+ * monitoring targets are invalid.
+ *
+ * Returns true if need to stop current monitoring.
+ */
+static bool kdamond_need_stop(struct damon_ctx *ctx)
+{
+	struct damon_target *t;
+	bool stop;
+
+	mutex_lock(&ctx->kdamond_lock);
+	stop = ctx->kdamond_stop;
+	mutex_unlock(&ctx->kdamond_lock);
+	if (stop)
+		return true;
+
+	if (!ctx->primitive.target_valid)
+		return false;
+
+	damon_for_each_target(t, ctx) {
+		if (ctx->primitive.target_valid(t))
+			return false;
+	}
+
+	return true;
+}
+
+static void set_kdamond_stop(struct damon_ctx *ctx)
+{
+	mutex_lock(&ctx->kdamond_lock);
+	ctx->kdamond_stop = true;
+	mutex_unlock(&ctx->kdamond_lock);
+}
+
+/*
+ * The monitoring daemon that runs as a kernel thread
+ */
+static int kdamond_fn(void *data)
+{
+	struct damon_ctx *ctx = (struct damon_ctx *)data;
+	struct damon_target *t;
+	struct damon_region *r, *next;
+	unsigned int max_nr_accesses = 0;
+	unsigned long sz_limit = 0;
+
+	mutex_lock(&ctx->kdamond_lock);
+	pr_info("kdamond (%d) starts\n", ctx->kdamond->pid);
+	mutex_unlock(&ctx->kdamond_lock);
+
+	if (ctx->primitive.init)
+		ctx->primitive.init(ctx);
+	if (ctx->callback.before_start && ctx->callback.before_start(ctx))
+		set_kdamond_stop(ctx);
+
+	sz_limit = damon_region_sz_limit(ctx);
+
+	while (!kdamond_need_stop(ctx)) {
+		if (ctx->primitive.prepare_access_checks)
+			ctx->primitive.prepare_access_checks(ctx);
+		if (ctx->callback.after_sampling &&
+				ctx->callback.after_sampling(ctx))
+			set_kdamond_stop(ctx);
+
+		usleep_range(ctx->sample_interval, ctx->sample_interval + 1);
+
+		if (ctx->primitive.check_accesses)
+			max_nr_accesses = ctx->primitive.check_accesses(ctx);
+
+		if (kdamond_aggregate_interval_passed(ctx)) {
+			kdamond_merge_regions(ctx,
+					max_nr_accesses / 10,
+					sz_limit);
+			if (ctx->callback.after_aggregation &&
+					ctx->callback.after_aggregation(ctx))
+				set_kdamond_stop(ctx);
+			kdamond_reset_aggregated(ctx);
+			kdamond_split_regions(ctx);
+			if (ctx->primitive.reset_aggregated)
+				ctx->primitive.reset_aggregated(ctx);
+		}
+
+		if (kdamond_need_update_primitive(ctx)) {
+			if (ctx->primitive.update)
+				ctx->primitive.update(ctx);
+			sz_limit = damon_region_sz_limit(ctx);
+		}
+	}
+	damon_for_each_target(t, ctx) {
+		damon_for_each_region_safe(r, next, t)
+			damon_destroy_region(r, t);
+	}
+
+	if (ctx->callback.before_terminate &&
+			ctx->callback.before_terminate(ctx))
+		set_kdamond_stop(ctx);
+	if (ctx->primitive.cleanup)
+		ctx->primitive.cleanup(ctx);
+
+	pr_debug("kdamond (%d) finishes\n", ctx->kdamond->pid);
+	mutex_lock(&ctx->kdamond_lock);
+	ctx->kdamond = NULL;
+	mutex_unlock(&ctx->kdamond_lock);
+
+	mutex_lock(&damon_lock);
+	nr_running_ctxs--;
+	mutex_unlock(&damon_lock);
+
+	do_exit(0);
+}
+
+#include "core-test.h"