summary refs log tree commit diff
path: root/drivers/net/wireless/ath/ath5k/phy.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/wireless/ath/ath5k/phy.c')
-rw-r--r--drivers/net/wireless/ath/ath5k/phy.c3044
1 files changed, 3044 insertions, 0 deletions
diff --git a/drivers/net/wireless/ath/ath5k/phy.c b/drivers/net/wireless/ath/ath5k/phy.c
new file mode 100644
index 000000000000..a876ca8d69ef
--- /dev/null
+++ b/drivers/net/wireless/ath/ath5k/phy.c
@@ -0,0 +1,3044 @@
+/*
+ * PHY functions
+ *
+ * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
+ * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
+ * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
+ * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ */
+
+#define _ATH5K_PHY
+
+#include <linux/delay.h>
+
+#include "ath5k.h"
+#include "reg.h"
+#include "base.h"
+#include "rfbuffer.h"
+#include "rfgain.h"
+
+/*
+ * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
+ */
+static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
+					const struct ath5k_rf_reg *rf_regs,
+					u32 val, u8 reg_id, bool set)
+{
+	const struct ath5k_rf_reg *rfreg = NULL;
+	u8 offset, bank, num_bits, col, position;
+	u16 entry;
+	u32 mask, data, last_bit, bits_shifted, first_bit;
+	u32 *rfb;
+	s32 bits_left;
+	int i;
+
+	data = 0;
+	rfb = ah->ah_rf_banks;
+
+	for (i = 0; i < ah->ah_rf_regs_count; i++) {
+		if (rf_regs[i].index == reg_id) {
+			rfreg = &rf_regs[i];
+			break;
+		}
+	}
+
+	if (rfb == NULL || rfreg == NULL) {
+		ATH5K_PRINTF("Rf register not found!\n");
+		/* should not happen */
+		return 0;
+	}
+
+	bank = rfreg->bank;
+	num_bits = rfreg->field.len;
+	first_bit = rfreg->field.pos;
+	col = rfreg->field.col;
+
+	/* first_bit is an offset from bank's
+	 * start. Since we have all banks on
+	 * the same array, we use this offset
+	 * to mark each bank's start */
+	offset = ah->ah_offset[bank];
+
+	/* Boundary check */
+	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
+		ATH5K_PRINTF("invalid values at offset %u\n", offset);
+		return 0;
+	}
+
+	entry = ((first_bit - 1) / 8) + offset;
+	position = (first_bit - 1) % 8;
+
+	if (set)
+		data = ath5k_hw_bitswap(val, num_bits);
+
+	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
+	position = 0, entry++) {
+
+		last_bit = (position + bits_left > 8) ? 8 :
+					position + bits_left;
+
+		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
+								(col * 8);
+
+		if (set) {
+			rfb[entry] &= ~mask;
+			rfb[entry] |= ((data << position) << (col * 8)) & mask;
+			data >>= (8 - position);
+		} else {
+			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
+				<< bits_shifted;
+			bits_shifted += last_bit - position;
+		}
+
+		bits_left -= 8 - position;
+	}
+
+	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
+
+	return data;
+}
+
+/**********************\
+* RF Gain optimization *
+\**********************/
+
+/*
+ * This code is used to optimize rf gain on different environments
+ * (temprature mostly) based on feedback from a power detector.
+ *
+ * It's only used on RF5111 and RF5112, later RF chips seem to have
+ * auto adjustment on hw -notice they have a much smaller BANK 7 and
+ * no gain optimization ladder-.
+ *
+ * For more infos check out this patent doc
+ * http://www.freepatentsonline.com/7400691.html
+ *
+ * This paper describes power drops as seen on the receiver due to
+ * probe packets
+ * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
+ * %20of%20Power%20Control.pdf
+ *
+ * And this is the MadWiFi bug entry related to the above
+ * http://madwifi-project.org/ticket/1659
+ * with various measurements and diagrams
+ *
+ * TODO: Deal with power drops due to probes by setting an apropriate
+ * tx power on the probe packets ! Make this part of the calibration process.
+ */
+
+/* Initialize ah_gain durring attach */
+int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
+{
+	/* Initialize the gain optimization values */
+	switch (ah->ah_radio) {
+	case AR5K_RF5111:
+		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
+		ah->ah_gain.g_low = 20;
+		ah->ah_gain.g_high = 35;
+		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
+		break;
+	case AR5K_RF5112:
+		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
+		ah->ah_gain.g_low = 20;
+		ah->ah_gain.g_high = 85;
+		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+/* Schedule a gain probe check on the next transmited packet.
+ * That means our next packet is going to be sent with lower
+ * tx power and a Peak to Average Power Detector (PAPD) will try
+ * to measure the gain.
+ *
+ * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
+ * just after we enable the probe so that we don't mess with
+ * standard traffic ? Maybe it's time to use sw interrupts and
+ * a probe tasklet !!!
+ */
+static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
+{
+
+	/* Skip if gain calibration is inactive or
+	 * we already handle a probe request */
+	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
+		return;
+
+	/* Send the packet with 2dB below max power as
+	 * patent doc suggest */
+	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
+			AR5K_PHY_PAPD_PROBE_TXPOWER) |
+			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
+
+	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
+
+}
+
+/* Calculate gain_F measurement correction
+ * based on the current step for RF5112 rev. 2 */
+static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
+{
+	u32 mix, step;
+	u32 *rf;
+	const struct ath5k_gain_opt *go;
+	const struct ath5k_gain_opt_step *g_step;
+	const struct ath5k_rf_reg *rf_regs;
+
+	/* Only RF5112 Rev. 2 supports it */
+	if ((ah->ah_radio != AR5K_RF5112) ||
+	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
+		return 0;
+
+	go = &rfgain_opt_5112;
+	rf_regs = rf_regs_5112a;
+	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
+
+	g_step = &go->go_step[ah->ah_gain.g_step_idx];
+
+	if (ah->ah_rf_banks == NULL)
+		return 0;
+
+	rf = ah->ah_rf_banks;
+	ah->ah_gain.g_f_corr = 0;
+
+	/* No VGA (Variable Gain Amplifier) override, skip */
+	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
+		return 0;
+
+	/* Mix gain stepping */
+	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
+
+	/* Mix gain override */
+	mix = g_step->gos_param[0];
+
+	switch (mix) {
+	case 3:
+		ah->ah_gain.g_f_corr = step * 2;
+		break;
+	case 2:
+		ah->ah_gain.g_f_corr = (step - 5) * 2;
+		break;
+	case 1:
+		ah->ah_gain.g_f_corr = step;
+		break;
+	default:
+		ah->ah_gain.g_f_corr = 0;
+		break;
+	}
+
+	return ah->ah_gain.g_f_corr;
+}
+
+/* Check if current gain_F measurement is in the range of our
+ * power detector windows. If we get a measurement outside range
+ * we know it's not accurate (detectors can't measure anything outside
+ * their detection window) so we must ignore it */
+static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
+{
+	const struct ath5k_rf_reg *rf_regs;
+	u32 step, mix_ovr, level[4];
+	u32 *rf;
+
+	if (ah->ah_rf_banks == NULL)
+		return false;
+
+	rf = ah->ah_rf_banks;
+
+	if (ah->ah_radio == AR5K_RF5111) {
+
+		rf_regs = rf_regs_5111;
+		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
+
+		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
+			false);
+
+		level[0] = 0;
+		level[1] = (step == 63) ? 50 : step + 4;
+		level[2] = (step != 63) ? 64 : level[0];
+		level[3] = level[2] + 50 ;
+
+		ah->ah_gain.g_high = level[3] -
+			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
+		ah->ah_gain.g_low = level[0] +
+			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
+	} else {
+
+		rf_regs = rf_regs_5112;
+		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
+
+		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
+			false);
+
+		level[0] = level[2] = 0;
+
+		if (mix_ovr == 1) {
+			level[1] = level[3] = 83;
+		} else {
+			level[1] = level[3] = 107;
+			ah->ah_gain.g_high = 55;
+		}
+	}
+
+	return (ah->ah_gain.g_current >= level[0] &&
+			ah->ah_gain.g_current <= level[1]) ||
+		(ah->ah_gain.g_current >= level[2] &&
+			ah->ah_gain.g_current <= level[3]);
+}
+
+/* Perform gain_F adjustment by choosing the right set
+ * of parameters from rf gain optimization ladder */
+static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
+{
+	const struct ath5k_gain_opt *go;
+	const struct ath5k_gain_opt_step *g_step;
+	int ret = 0;
+
+	switch (ah->ah_radio) {
+	case AR5K_RF5111:
+		go = &rfgain_opt_5111;
+		break;
+	case AR5K_RF5112:
+		go = &rfgain_opt_5112;
+		break;
+	default:
+		return 0;
+	}
+
+	g_step = &go->go_step[ah->ah_gain.g_step_idx];
+
+	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
+
+		/* Reached maximum */
+		if (ah->ah_gain.g_step_idx == 0)
+			return -1;
+
+		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
+				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
+				ah->ah_gain.g_step_idx > 0;
+				g_step = &go->go_step[ah->ah_gain.g_step_idx])
+			ah->ah_gain.g_target -= 2 *
+			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
+			    g_step->gos_gain);
+
+		ret = 1;
+		goto done;
+	}
+
+	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
+
+		/* Reached minimum */
+		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
+			return -2;
+
+		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
+				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
+				ah->ah_gain.g_step_idx < go->go_steps_count-1;
+				g_step = &go->go_step[ah->ah_gain.g_step_idx])
+			ah->ah_gain.g_target -= 2 *
+			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
+			    g_step->gos_gain);
+
+		ret = 2;
+		goto done;
+	}
+
+done:
+	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
+		"ret %d, gain step %u, current gain %u, target gain %u\n",
+		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
+		ah->ah_gain.g_target);
+
+	return ret;
+}
+
+/* Main callback for thermal rf gain calibration engine
+ * Check for a new gain reading and schedule an adjustment
+ * if needed.
+ *
+ * TODO: Use sw interrupt to schedule reset if gain_F needs
+ * adjustment */
+enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
+{
+	u32 data, type;
+	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+
+	ATH5K_TRACE(ah->ah_sc);
+
+	if (ah->ah_rf_banks == NULL ||
+	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
+		return AR5K_RFGAIN_INACTIVE;
+
+	/* No check requested, either engine is inactive
+	 * or an adjustment is already requested */
+	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
+		goto done;
+
+	/* Read the PAPD (Peak to Average Power Detector)
+	 * register */
+	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
+
+	/* No probe is scheduled, read gain_F measurement */
+	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
+		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
+		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
+
+		/* If tx packet is CCK correct the gain_F measurement
+		 * by cck ofdm gain delta */
+		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
+			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
+				ah->ah_gain.g_current +=
+					ee->ee_cck_ofdm_gain_delta;
+			else
+				ah->ah_gain.g_current +=
+					AR5K_GAIN_CCK_PROBE_CORR;
+		}
+
+		/* Further correct gain_F measurement for
+		 * RF5112A radios */
+		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
+			ath5k_hw_rf_gainf_corr(ah);
+			ah->ah_gain.g_current =
+				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
+				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
+				0;
+		}
+
+		/* Check if measurement is ok and if we need
+		 * to adjust gain, schedule a gain adjustment,
+		 * else switch back to the acive state */
+		if (ath5k_hw_rf_check_gainf_readback(ah) &&
+		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
+		ath5k_hw_rf_gainf_adjust(ah)) {
+			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
+		} else {
+			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
+		}
+	}
+
+done:
+	return ah->ah_gain.g_state;
+}
+
+/* Write initial rf gain table to set the RF sensitivity
+ * this one works on all RF chips and has nothing to do
+ * with gain_F calibration */
+int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
+{
+	const struct ath5k_ini_rfgain *ath5k_rfg;
+	unsigned int i, size;
+
+	switch (ah->ah_radio) {
+	case AR5K_RF5111:
+		ath5k_rfg = rfgain_5111;
+		size = ARRAY_SIZE(rfgain_5111);
+		break;
+	case AR5K_RF5112:
+		ath5k_rfg = rfgain_5112;
+		size = ARRAY_SIZE(rfgain_5112);
+		break;
+	case AR5K_RF2413:
+		ath5k_rfg = rfgain_2413;
+		size = ARRAY_SIZE(rfgain_2413);
+		break;
+	case AR5K_RF2316:
+		ath5k_rfg = rfgain_2316;
+		size = ARRAY_SIZE(rfgain_2316);
+		break;
+	case AR5K_RF5413:
+		ath5k_rfg = rfgain_5413;
+		size = ARRAY_SIZE(rfgain_5413);
+		break;
+	case AR5K_RF2317:
+	case AR5K_RF2425:
+		ath5k_rfg = rfgain_2425;
+		size = ARRAY_SIZE(rfgain_2425);
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	switch (freq) {
+	case AR5K_INI_RFGAIN_2GHZ:
+	case AR5K_INI_RFGAIN_5GHZ:
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	for (i = 0; i < size; i++) {
+		AR5K_REG_WAIT(i);
+		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
+			(u32)ath5k_rfg[i].rfg_register);
+	}
+
+	return 0;
+}
+
+
+
+/********************\
+* RF Registers setup *
+\********************/
+
+
+/*
+ * Setup RF registers by writing rf buffer on hw
+ */
+int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
+		unsigned int mode)
+{
+	const struct ath5k_rf_reg *rf_regs;
+	const struct ath5k_ini_rfbuffer *ini_rfb;
+	const struct ath5k_gain_opt *go = NULL;
+	const struct ath5k_gain_opt_step *g_step;
+	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+	u8 ee_mode = 0;
+	u32 *rfb;
+	int i, obdb = -1, bank = -1;
+
+	switch (ah->ah_radio) {
+	case AR5K_RF5111:
+		rf_regs = rf_regs_5111;
+		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
+		ini_rfb = rfb_5111;
+		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
+		go = &rfgain_opt_5111;
+		break;
+	case AR5K_RF5112:
+		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
+			rf_regs = rf_regs_5112a;
+			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
+			ini_rfb = rfb_5112a;
+			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
+		} else {
+			rf_regs = rf_regs_5112;
+			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
+			ini_rfb = rfb_5112;
+			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
+		}
+		go = &rfgain_opt_5112;
+		break;
+	case AR5K_RF2413:
+		rf_regs = rf_regs_2413;
+		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
+		ini_rfb = rfb_2413;
+		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
+		break;
+	case AR5K_RF2316:
+		rf_regs = rf_regs_2316;
+		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
+		ini_rfb = rfb_2316;
+		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
+		break;
+	case AR5K_RF5413:
+		rf_regs = rf_regs_5413;
+		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
+		ini_rfb = rfb_5413;
+		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
+		break;
+	case AR5K_RF2317:
+		rf_regs = rf_regs_2425;
+		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
+		ini_rfb = rfb_2317;
+		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
+		break;
+	case AR5K_RF2425:
+		rf_regs = rf_regs_2425;
+		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
+		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
+			ini_rfb = rfb_2425;
+			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
+		} else {
+			ini_rfb = rfb_2417;
+			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
+		}
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	/* If it's the first time we set rf buffer, allocate
+	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
+	 * we set above */
+	if (ah->ah_rf_banks == NULL) {
+		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
+								GFP_KERNEL);
+		if (ah->ah_rf_banks == NULL) {
+			ATH5K_ERR(ah->ah_sc, "out of memory\n");
+			return -ENOMEM;
+		}
+	}
+
+	/* Copy values to modify them */
+	rfb = ah->ah_rf_banks;
+
+	for (i = 0; i < ah->ah_rf_banks_size; i++) {
+		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
+			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
+			return -EINVAL;
+		}
+
+		/* Bank changed, write down the offset */
+		if (bank != ini_rfb[i].rfb_bank) {
+			bank = ini_rfb[i].rfb_bank;
+			ah->ah_offset[bank] = i;
+		}
+
+		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
+	}
+
+	/* Set Output and Driver bias current (OB/DB) */
+	if (channel->hw_value & CHANNEL_2GHZ) {
+
+		if (channel->hw_value & CHANNEL_CCK)
+			ee_mode = AR5K_EEPROM_MODE_11B;
+		else
+			ee_mode = AR5K_EEPROM_MODE_11G;
+
+		/* For RF511X/RF211X combination we
+		 * use b_OB and b_DB parameters stored
+		 * in eeprom on ee->ee_ob[ee_mode][0]
+		 *
+		 * For all other chips we use OB/DB for 2Ghz
+		 * stored in the b/g modal section just like
+		 * 802.11a on ee->ee_ob[ee_mode][1] */
+		if ((ah->ah_radio == AR5K_RF5111) ||
+		(ah->ah_radio == AR5K_RF5112))
+			obdb = 0;
+		else
+			obdb = 1;
+
+		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
+						AR5K_RF_OB_2GHZ, true);
+
+		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
+						AR5K_RF_DB_2GHZ, true);
+
+	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
+	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
+			(ah->ah_radio == AR5K_RF5111)) {
+
+		/* For 11a, Turbo and XR we need to choose
+		 * OB/DB based on frequency range */
+		ee_mode = AR5K_EEPROM_MODE_11A;
+		obdb =	 channel->center_freq >= 5725 ? 3 :
+			(channel->center_freq >= 5500 ? 2 :
+			(channel->center_freq >= 5260 ? 1 :
+			 (channel->center_freq > 4000 ? 0 : -1)));
+
+		if (obdb < 0)
+			return -EINVAL;
+
+		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
+						AR5K_RF_OB_5GHZ, true);
+
+		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
+						AR5K_RF_DB_5GHZ, true);
+	}
+
+	g_step = &go->go_step[ah->ah_gain.g_step_idx];
+
+	/* Bank Modifications (chip-specific) */
+	if (ah->ah_radio == AR5K_RF5111) {
+
+		/* Set gain_F settings according to current step */
+		if (channel->hw_value & CHANNEL_OFDM) {
+
+			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
+					AR5K_PHY_FRAME_CTL_TX_CLIP,
+					g_step->gos_param[0]);
+
+			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
+							AR5K_RF_PWD_90, true);
+
+			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
+							AR5K_RF_PWD_84, true);
+
+			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
+						AR5K_RF_RFGAIN_SEL, true);
+
+			/* We programmed gain_F parameters, switch back
+			 * to active state */
+			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
+
+		}
+
+		/* Bank 6/7 setup */
+
+		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
+						AR5K_RF_PWD_XPD, true);
+
+		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
+						AR5K_RF_XPD_GAIN, true);
+
+		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
+						AR5K_RF_GAIN_I, true);
+
+		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
+						AR5K_RF_PLO_SEL, true);
+
+		/* TODO: Half/quarter channel support */
+	}
+
+	if (ah->ah_radio == AR5K_RF5112) {
+
+		/* Set gain_F settings according to current step */
+		if (channel->hw_value & CHANNEL_OFDM) {
+
+			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
+						AR5K_RF_MIXGAIN_OVR, true);
+
+			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
+						AR5K_RF_PWD_138, true);
+
+			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
+						AR5K_RF_PWD_137, true);
+
+			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
+						AR5K_RF_PWD_136, true);
+
+			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
+						AR5K_RF_PWD_132, true);
+
+			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
+						AR5K_RF_PWD_131, true);
+
+			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
+						AR5K_RF_PWD_130, true);
+
+			/* We programmed gain_F parameters, switch back
+			 * to active state */
+			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
+		}
+
+		/* Bank 6/7 setup */
+
+		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
+						AR5K_RF_XPD_SEL, true);
+
+		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
+			/* Rev. 1 supports only one xpd */
+			ath5k_hw_rfb_op(ah, rf_regs,
+						ee->ee_x_gain[ee_mode],
+						AR5K_RF_XPD_GAIN, true);
+
+		} else {
+			/* TODO: Set high and low gain bits */
+			ath5k_hw_rfb_op(ah, rf_regs,
+						ee->ee_x_gain[ee_mode],
+						AR5K_RF_PD_GAIN_LO, true);
+			ath5k_hw_rfb_op(ah, rf_regs,
+						ee->ee_x_gain[ee_mode],
+						AR5K_RF_PD_GAIN_HI, true);
+
+			/* Lower synth voltage on Rev 2 */
+			ath5k_hw_rfb_op(ah, rf_regs, 2,
+					AR5K_RF_HIGH_VC_CP, true);
+
+			ath5k_hw_rfb_op(ah, rf_regs, 2,
+					AR5K_RF_MID_VC_CP, true);
+
+			ath5k_hw_rfb_op(ah, rf_regs, 2,
+					AR5K_RF_LOW_VC_CP, true);
+
+			ath5k_hw_rfb_op(ah, rf_regs, 2,
+					AR5K_RF_PUSH_UP, true);
+
+			/* Decrease power consumption on 5213+ BaseBand */
+			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
+				ath5k_hw_rfb_op(ah, rf_regs, 1,
+						AR5K_RF_PAD2GND, true);
+
+				ath5k_hw_rfb_op(ah, rf_regs, 1,
+						AR5K_RF_XB2_LVL, true);
+
+				ath5k_hw_rfb_op(ah, rf_regs, 1,
+						AR5K_RF_XB5_LVL, true);
+
+				ath5k_hw_rfb_op(ah, rf_regs, 1,
+						AR5K_RF_PWD_167, true);
+
+				ath5k_hw_rfb_op(ah, rf_regs, 1,
+						AR5K_RF_PWD_166, true);
+			}
+		}
+
+		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
+						AR5K_RF_GAIN_I, true);
+
+		/* TODO: Half/quarter channel support */
+
+	}
+
+	if (ah->ah_radio == AR5K_RF5413 &&
+	channel->hw_value & CHANNEL_2GHZ) {
+
+		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
+									true);
+
+		/* Set optimum value for early revisions (on pci-e chips) */
+		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
+		ah->ah_mac_srev < AR5K_SREV_AR5413)
+			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
+						AR5K_RF_PWD_ICLOBUF_2G, true);
+
+	}
+
+	/* Write RF banks on hw */
+	for (i = 0; i < ah->ah_rf_banks_size; i++) {
+		AR5K_REG_WAIT(i);
+		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
+	}
+
+	return 0;
+}
+
+
+/**************************\
+  PHY/RF channel functions
+\**************************/
+
+/*
+ * Check if a channel is supported
+ */
+bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
+{
+	/* Check if the channel is in our supported range */
+	if (flags & CHANNEL_2GHZ) {
+		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
+		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
+			return true;
+	} else if (flags & CHANNEL_5GHZ)
+		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
+		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
+			return true;
+
+	return false;
+}
+
+/*
+ * Convertion needed for RF5110
+ */
+static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
+{
+	u32 athchan;
+
+	/*
+	 * Convert IEEE channel/MHz to an internal channel value used
+	 * by the AR5210 chipset. This has not been verified with
+	 * newer chipsets like the AR5212A who have a completely
+	 * different RF/PHY part.
+	 */
+	athchan = (ath5k_hw_bitswap(
+			(ieee80211_frequency_to_channel(
+				channel->center_freq) - 24) / 2, 5)
+				<< 1) | (1 << 6) | 0x1;
+	return athchan;
+}
+
+/*
+ * Set channel on RF5110
+ */
+static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
+		struct ieee80211_channel *channel)
+{
+	u32 data;
+
+	/*
+	 * Set the channel and wait
+	 */
+	data = ath5k_hw_rf5110_chan2athchan(channel);
+	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
+	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
+	mdelay(1);
+
+	return 0;
+}
+
+/*
+ * Convertion needed for 5111
+ */
+static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
+		struct ath5k_athchan_2ghz *athchan)
+{
+	int channel;
+
+	/* Cast this value to catch negative channel numbers (>= -19) */
+	channel = (int)ieee;
+
+	/*
+	 * Map 2GHz IEEE channel to 5GHz Atheros channel
+	 */
+	if (channel <= 13) {
+		athchan->a2_athchan = 115 + channel;
+		athchan->a2_flags = 0x46;
+	} else if (channel == 14) {
+		athchan->a2_athchan = 124;
+		athchan->a2_flags = 0x44;
+	} else if (channel >= 15 && channel <= 26) {
+		athchan->a2_athchan = ((channel - 14) * 4) + 132;
+		athchan->a2_flags = 0x46;
+	} else
+		return -EINVAL;
+
+	return 0;
+}
+
+/*
+ * Set channel on 5111
+ */
+static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
+		struct ieee80211_channel *channel)
+{
+	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
+	unsigned int ath5k_channel =
+		ieee80211_frequency_to_channel(channel->center_freq);
+	u32 data0, data1, clock;
+	int ret;
+
+	/*
+	 * Set the channel on the RF5111 radio
+	 */
+	data0 = data1 = 0;
+
+	if (channel->hw_value & CHANNEL_2GHZ) {
+		/* Map 2GHz channel to 5GHz Atheros channel ID */
+		ret = ath5k_hw_rf5111_chan2athchan(
+			ieee80211_frequency_to_channel(channel->center_freq),
+			&ath5k_channel_2ghz);
+		if (ret)
+			return ret;
+
+		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
+		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
+		    << 5) | (1 << 4);
+	}
+
+	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
+		clock = 1;
+		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
+			(clock << 1) | (1 << 10) | 1;
+	} else {
+		clock = 0;
+		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
+			<< 2) | (clock << 1) | (1 << 10) | 1;
+	}
+
+	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
+			AR5K_RF_BUFFER);
+	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
+			AR5K_RF_BUFFER_CONTROL_3);
+
+	return 0;
+}
+
+/*
+ * Set channel on 5112 and newer
+ */
+static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
+		struct ieee80211_channel *channel)
+{
+	u32 data, data0, data1, data2;
+	u16 c;
+
+	data = data0 = data1 = data2 = 0;
+	c = channel->center_freq;
+
+	if (c < 4800) {
+		if (!((c - 2224) % 5)) {
+			data0 = ((2 * (c - 704)) - 3040) / 10;
+			data1 = 1;
+		} else if (!((c - 2192) % 5)) {
+			data0 = ((2 * (c - 672)) - 3040) / 10;
+			data1 = 0;
+		} else
+			return -EINVAL;
+
+		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
+	} else if ((c - (c % 5)) != 2 || c > 5435) {
+		if (!(c % 20) && c >= 5120) {
+			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
+			data2 = ath5k_hw_bitswap(3, 2);
+		} else if (!(c % 10)) {
+			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
+			data2 = ath5k_hw_bitswap(2, 2);
+		} else if (!(c % 5)) {
+			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
+			data2 = ath5k_hw_bitswap(1, 2);
+		} else
+			return -EINVAL;
+	} else {
+		data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
+		data2 = ath5k_hw_bitswap(0, 2);
+	}
+
+	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
+
+	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
+	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
+
+	return 0;
+}
+
+/*
+ * Set the channel on the RF2425
+ */
+static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
+		struct ieee80211_channel *channel)
+{
+	u32 data, data0, data2;
+	u16 c;
+
+	data = data0 = data2 = 0;
+	c = channel->center_freq;
+
+	if (c < 4800) {
+		data0 = ath5k_hw_bitswap((c - 2272), 8);
+		data2 = 0;
+	/* ? 5GHz ? */
+	} else if ((c - (c % 5)) != 2 || c > 5435) {
+		if (!(c % 20) && c < 5120)
+			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
+		else if (!(c % 10))
+			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
+		else if (!(c % 5))
+			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
+		else
+			return -EINVAL;
+		data2 = ath5k_hw_bitswap(1, 2);
+	} else {
+		data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
+		data2 = ath5k_hw_bitswap(0, 2);
+	}
+
+	data = (data0 << 4) | data2 << 2 | 0x1001;
+
+	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
+	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
+
+	return 0;
+}
+
+/*
+ * Set a channel on the radio chip
+ */
+int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
+{
+	int ret;
+	/*
+	 * Check bounds supported by the PHY (we don't care about regultory
+	 * restrictions at this point). Note: hw_value already has the band
+	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
+	 * of the band by that */
+	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
+		ATH5K_ERR(ah->ah_sc,
+			"channel frequency (%u MHz) out of supported "
+			"band range\n",
+			channel->center_freq);
+			return -EINVAL;
+	}
+
+	/*
+	 * Set the channel and wait
+	 */
+	switch (ah->ah_radio) {
+	case AR5K_RF5110:
+		ret = ath5k_hw_rf5110_channel(ah, channel);
+		break;
+	case AR5K_RF5111:
+		ret = ath5k_hw_rf5111_channel(ah, channel);
+		break;
+	case AR5K_RF2425:
+		ret = ath5k_hw_rf2425_channel(ah, channel);
+		break;
+	default:
+		ret = ath5k_hw_rf5112_channel(ah, channel);
+		break;
+	}
+
+	if (ret)
+		return ret;
+
+	/* Set JAPAN setting for channel 14 */
+	if (channel->center_freq == 2484) {
+		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
+				AR5K_PHY_CCKTXCTL_JAPAN);
+	} else {
+		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
+				AR5K_PHY_CCKTXCTL_WORLD);
+	}
+
+	ah->ah_current_channel.center_freq = channel->center_freq;
+	ah->ah_current_channel.hw_value = channel->hw_value;
+	ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
+
+	return 0;
+}
+
+/*****************\
+  PHY calibration
+\*****************/
+
+/**
+ * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
+ *
+ * @ah: struct ath5k_hw pointer we are operating on
+ * @freq: the channel frequency, just used for error logging
+ *
+ * This function performs a noise floor calibration of the PHY and waits for
+ * it to complete. Then the noise floor value is compared to some maximum
+ * noise floor we consider valid.
+ *
+ * Note that this is different from what the madwifi HAL does: it reads the
+ * noise floor and afterwards initiates the calibration. Since the noise floor
+ * calibration can take some time to finish, depending on the current channel
+ * use, that avoids the occasional timeout warnings we are seeing now.
+ *
+ * See the following link for an Atheros patent on noise floor calibration:
+ * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
+ * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
+ *
+ * XXX: Since during noise floor calibration antennas are detached according to
+ * the patent, we should stop tx queues here.
+ */
+int
+ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq)
+{
+	int ret;
+	unsigned int i;
+	s32 noise_floor;
+
+	/*
+	 * Enable noise floor calibration
+	 */
+	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
+				AR5K_PHY_AGCCTL_NF);
+
+	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
+			AR5K_PHY_AGCCTL_NF, 0, false);
+	if (ret) {
+		ATH5K_ERR(ah->ah_sc,
+			"noise floor calibration timeout (%uMHz)\n", freq);
+		return -EAGAIN;
+	}
+
+	/* Wait until the noise floor is calibrated and read the value */
+	for (i = 20; i > 0; i--) {
+		mdelay(1);
+		noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
+		noise_floor = AR5K_PHY_NF_RVAL(noise_floor);
+		if (noise_floor & AR5K_PHY_NF_ACTIVE) {
+			noise_floor = AR5K_PHY_NF_AVAL(noise_floor);
+
+			if (noise_floor <= AR5K_TUNE_NOISE_FLOOR)
+				break;
+		}
+	}
+
+	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
+		"noise floor %d\n", noise_floor);
+
+	if (noise_floor > AR5K_TUNE_NOISE_FLOOR) {
+		ATH5K_ERR(ah->ah_sc,
+			"noise floor calibration failed (%uMHz)\n", freq);
+		return -EAGAIN;
+	}
+
+	ah->ah_noise_floor = noise_floor;
+
+	return 0;
+}
+
+/*
+ * Perform a PHY calibration on RF5110
+ * -Fix BPSK/QAM Constellation (I/Q correction)
+ * -Calculate Noise Floor
+ */
+static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
+		struct ieee80211_channel *channel)
+{
+	u32 phy_sig, phy_agc, phy_sat, beacon;
+	int ret;
+
+	/*
+	 * Disable beacons and RX/TX queues, wait
+	 */
+	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
+		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
+	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
+	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
+
+	mdelay(2);
+
+	/*
+	 * Set the channel (with AGC turned off)
+	 */
+	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
+	udelay(10);
+	ret = ath5k_hw_channel(ah, channel);
+
+	/*
+	 * Activate PHY and wait
+	 */
+	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
+	mdelay(1);
+
+	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
+
+	if (ret)
+		return ret;
+
+	/*
+	 * Calibrate the radio chip
+	 */
+
+	/* Remember normal state */
+	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
+	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
+	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
+
+	/* Update radio registers */
+	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
+		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
+
+	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
+			AR5K_PHY_AGCCOARSE_LO)) |
+		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
+		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
+
+	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
+			AR5K_PHY_ADCSAT_THR)) |
+		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
+		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
+
+	udelay(20);
+
+	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
+	udelay(10);
+	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
+	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
+
+	mdelay(1);
+
+	/*
+	 * Enable calibration and wait until completion
+	 */
+	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
+
+	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
+			AR5K_PHY_AGCCTL_CAL, 0, false);
+
+	/* Reset to normal state */
+	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
+	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
+	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
+
+	if (ret) {
+		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
+				channel->center_freq);
+		return ret;
+	}
+
+	ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
+
+	/*
+	 * Re-enable RX/TX and beacons
+	 */
+	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
+		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
+	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
+
+	return 0;
+}
+
+/*
+ * Perform a PHY calibration on RF5111/5112 and newer chips
+ */
+static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
+		struct ieee80211_channel *channel)
+{
+	u32 i_pwr, q_pwr;
+	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
+	int i;
+	ATH5K_TRACE(ah->ah_sc);
+
+	if (!ah->ah_calibration ||
+		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
+		goto done;
+
+	/* Calibration has finished, get the results and re-run */
+	for (i = 0; i <= 10; i++) {
+		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
+		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
+		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
+	}
+
+	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
+	q_coffd = q_pwr >> 7;
+
+	/* No correction */
+	if (i_coffd == 0 || q_coffd == 0)
+		goto done;
+
+	i_coff = ((-iq_corr) / i_coffd) & 0x3f;
+
+	/* Boundary check */
+	if (i_coff > 31)
+		i_coff = 31;
+	if (i_coff < -32)
+		i_coff = -32;
+
+	q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f;
+
+	/* Boundary check */
+	if (q_coff > 15)
+		q_coff = 15;
+	if (q_coff < -16)
+		q_coff = -16;
+
+	/* Commit new I/Q value */
+	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
+		((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
+
+	/* Re-enable calibration -if we don't we'll commit
+	 * the same values again and again */
+	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
+			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
+	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
+
+done:
+
+	/* TODO: Separate noise floor calibration from I/Q calibration
+	 * since noise floor calibration interrupts rx path while I/Q
+	 * calibration doesn't. We don't need to run noise floor calibration
+	 * as often as I/Q calibration.*/
+	ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
+
+	/* Initiate a gain_F calibration */
+	ath5k_hw_request_rfgain_probe(ah);
+
+	return 0;
+}
+
+/*
+ * Perform a PHY calibration
+ */
+int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
+		struct ieee80211_channel *channel)
+{
+	int ret;
+
+	if (ah->ah_radio == AR5K_RF5110)
+		ret = ath5k_hw_rf5110_calibrate(ah, channel);
+	else
+		ret = ath5k_hw_rf511x_calibrate(ah, channel);
+
+	return ret;
+}
+
+/***************************\
+* Spur mitigation functions *
+\***************************/
+
+bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
+				struct ieee80211_channel *channel)
+{
+	u8 refclk_freq;
+
+	if ((ah->ah_radio == AR5K_RF5112) ||
+	(ah->ah_radio == AR5K_RF5413) ||
+	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
+		refclk_freq = 40;
+	else
+		refclk_freq = 32;
+
+	if ((channel->center_freq % refclk_freq != 0) &&
+	((channel->center_freq % refclk_freq < 10) ||
+	(channel->center_freq % refclk_freq > 22)))
+		return true;
+	else
+		return false;
+}
+
+void
+ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
+				struct ieee80211_channel *channel)
+{
+	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+	u32 mag_mask[4] = {0, 0, 0, 0};
+	u32 pilot_mask[2] = {0, 0};
+	/* Note: fbin values are scaled up by 2 */
+	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
+	s32 spur_delta_phase, spur_freq_sigma_delta;
+	s32 spur_offset, num_symbols_x16;
+	u8 num_symbol_offsets, i, freq_band;
+
+	/* Convert current frequency to fbin value (the same way channels
+	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
+	 * up by 2 so we can compare it later */
+	if (channel->hw_value & CHANNEL_2GHZ) {
+		chan_fbin = (channel->center_freq - 2300) * 10;
+		freq_band = AR5K_EEPROM_BAND_2GHZ;
+	} else {
+		chan_fbin = (channel->center_freq - 4900) * 10;
+		freq_band = AR5K_EEPROM_BAND_5GHZ;
+	}
+
+	/* Check if any spur_chan_fbin from EEPROM is
+	 * within our current channel's spur detection range */
+	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
+	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
+	/* XXX: Half/Quarter channels ?*/
+	if (channel->hw_value & CHANNEL_TURBO)
+		spur_detection_window *= 2;
+
+	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
+		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
+
+		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
+		 * so it's zero if we got nothing from EEPROM */
+		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
+			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
+			break;
+		}
+
+		if ((chan_fbin - spur_detection_window <=
+		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
+		(chan_fbin + spur_detection_window >=
+		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
+			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
+			break;
+		}
+	}
+
+	/* We need to enable spur filter for this channel */
+	if (spur_chan_fbin) {
+		spur_offset = spur_chan_fbin - chan_fbin;
+		/*
+		 * Calculate deltas:
+		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
+		 * spur_delta_phase -> spur_offset / chip_freq << 11
+		 * Note: Both values have 100KHz resolution
+		 */
+		/* XXX: Half/Quarter rate channels ? */
+		switch (channel->hw_value) {
+		case CHANNEL_A:
+			/* Both sample_freq and chip_freq are 40MHz */
+			spur_delta_phase = (spur_offset << 17) / 25;
+			spur_freq_sigma_delta = (spur_delta_phase >> 10);
+			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
+			break;
+		case CHANNEL_G:
+			/* sample_freq -> 40MHz chip_freq -> 44MHz
+			 * (for b compatibility) */
+			spur_freq_sigma_delta = (spur_offset << 8) / 55;
+			spur_delta_phase = (spur_offset << 17) / 25;
+			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
+			break;
+		case CHANNEL_T:
+		case CHANNEL_TG:
+			/* Both sample_freq and chip_freq are 80MHz */
+			spur_delta_phase = (spur_offset << 16) / 25;
+			spur_freq_sigma_delta = (spur_delta_phase >> 10);
+			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
+			break;
+		default:
+			return;
+		}
+
+		/* Calculate pilot and magnitude masks */
+
+		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
+		 * and divide by symbol_width to find how many symbols we have
+		 * Note: number of symbols is scaled up by 16 */
+		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
+
+		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
+		if (!(num_symbols_x16 & 0xF))
+			/* _X_ */
+			num_symbol_offsets = 3;
+		else
+			/* _xx_ */
+			num_symbol_offsets = 4;
+
+		for (i = 0; i < num_symbol_offsets; i++) {
+
+			/* Calculate pilot mask */
+			s32 curr_sym_off =
+				(num_symbols_x16 / 16) + i + 25;
+
+			/* Pilot magnitude mask seems to be a way to
+			 * declare the boundaries for our detection
+			 * window or something, it's 2 for the middle
+			 * value(s) where the symbol is expected to be
+			 * and 1 on the boundary values */
+			u8 plt_mag_map =
+				(i == 0 || i == (num_symbol_offsets - 1))
+								? 1 : 2;
+
+			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
+				if (curr_sym_off <= 25)
+					pilot_mask[0] |= 1 << curr_sym_off;
+				else if (curr_sym_off >= 27)
+					pilot_mask[0] |= 1 << (curr_sym_off - 1);
+			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
+				pilot_mask[1] |= 1 << (curr_sym_off - 33);
+
+			/* Calculate magnitude mask (for viterbi decoder) */
+			if (curr_sym_off >= -1 && curr_sym_off <= 14)
+				mag_mask[0] |=
+					plt_mag_map << (curr_sym_off + 1) * 2;
+			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
+				mag_mask[1] |=
+					plt_mag_map << (curr_sym_off - 15) * 2;
+			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
+				mag_mask[2] |=
+					plt_mag_map << (curr_sym_off - 31) * 2;
+			else if (curr_sym_off >= 46 && curr_sym_off <= 53)
+				mag_mask[3] |=
+					plt_mag_map << (curr_sym_off - 47) * 2;
+
+		}
+
+		/* Write settings on hw to enable spur filter */
+		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
+					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
+		/* XXX: Self correlator also ? */
+		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
+					AR5K_PHY_IQ_PILOT_MASK_EN |
+					AR5K_PHY_IQ_CHAN_MASK_EN |
+					AR5K_PHY_IQ_SPUR_FILT_EN);
+
+		/* Set delta phase and freq sigma delta */
+		ath5k_hw_reg_write(ah,
+				AR5K_REG_SM(spur_delta_phase,
+					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
+				AR5K_REG_SM(spur_freq_sigma_delta,
+				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
+				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
+				AR5K_PHY_TIMING_11);
+
+		/* Write pilot masks */
+		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
+		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
+					AR5K_PHY_TIMING_8_PILOT_MASK_2,
+					pilot_mask[1]);
+
+		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
+		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
+					AR5K_PHY_TIMING_10_PILOT_MASK_2,
+					pilot_mask[1]);
+
+		/* Write magnitude masks */
+		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
+		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
+		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
+		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
+					AR5K_PHY_BIN_MASK_CTL_MASK_4,
+					mag_mask[3]);
+
+		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
+		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
+		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
+		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
+					AR5K_PHY_BIN_MASK2_4_MASK_4,
+					mag_mask[3]);
+
+	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
+	AR5K_PHY_IQ_SPUR_FILT_EN) {
+		/* Clean up spur mitigation settings and disable fliter */
+		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
+					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
+		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
+					AR5K_PHY_IQ_PILOT_MASK_EN |
+					AR5K_PHY_IQ_CHAN_MASK_EN |
+					AR5K_PHY_IQ_SPUR_FILT_EN);
+		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
+
+		/* Clear pilot masks */
+		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
+		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
+					AR5K_PHY_TIMING_8_PILOT_MASK_2,
+					0);
+
+		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
+		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
+					AR5K_PHY_TIMING_10_PILOT_MASK_2,
+					0);
+
+		/* Clear magnitude masks */
+		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
+		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
+		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
+		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
+					AR5K_PHY_BIN_MASK_CTL_MASK_4,
+					0);
+
+		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
+		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
+		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
+		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
+					AR5K_PHY_BIN_MASK2_4_MASK_4,
+					0);
+	}
+}
+
+/********************\
+  Misc PHY functions
+\********************/
+
+int ath5k_hw_phy_disable(struct ath5k_hw *ah)
+{
+	ATH5K_TRACE(ah->ah_sc);
+	/*Just a try M.F.*/
+	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
+
+	return 0;
+}
+
+/*
+ * Get the PHY Chip revision
+ */
+u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
+{
+	unsigned int i;
+	u32 srev;
+	u16 ret;
+
+	ATH5K_TRACE(ah->ah_sc);
+
+	/*
+	 * Set the radio chip access register
+	 */
+	switch (chan) {
+	case CHANNEL_2GHZ:
+		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
+		break;
+	case CHANNEL_5GHZ:
+		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
+		break;
+	default:
+		return 0;
+	}
+
+	mdelay(2);
+
+	/* ...wait until PHY is ready and read the selected radio revision */
+	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
+
+	for (i = 0; i < 8; i++)
+		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
+
+	if (ah->ah_version == AR5K_AR5210) {
+		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
+		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
+	} else {
+		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
+		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
+				((srev & 0x0f) << 4), 8);
+	}
+
+	/* Reset to the 5GHz mode */
+	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
+
+	return ret;
+}
+
+/*****************\
+* Antenna control *
+\*****************/
+
+void /*TODO:Boundary check*/
+ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
+{
+	ATH5K_TRACE(ah->ah_sc);
+
+	if (ah->ah_version != AR5K_AR5210)
+		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
+}
+
+unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
+{
+	ATH5K_TRACE(ah->ah_sc);
+
+	if (ah->ah_version != AR5K_AR5210)
+		return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA) & 0x7;
+
+	return false; /*XXX: What do we return for 5210 ?*/
+}
+
+/*
+ * Enable/disable fast rx antenna diversity
+ */
+static void
+ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
+{
+	switch (ee_mode) {
+	case AR5K_EEPROM_MODE_11G:
+		/* XXX: This is set to
+		 * disabled on initvals !!! */
+	case AR5K_EEPROM_MODE_11A:
+		if (enable)
+			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
+					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
+		else
+			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
+					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
+		break;
+	case AR5K_EEPROM_MODE_11B:
+		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
+					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
+		break;
+	default:
+		return;
+	}
+
+	if (enable) {
+		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
+				AR5K_PHY_RESTART_DIV_GC, 0xc);
+
+		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
+					AR5K_PHY_FAST_ANT_DIV_EN);
+	} else {
+		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
+				AR5K_PHY_RESTART_DIV_GC, 0x8);
+
+		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
+					AR5K_PHY_FAST_ANT_DIV_EN);
+	}
+}
+
+/*
+ * Set antenna operating mode
+ */
+void
+ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
+{
+	struct ieee80211_channel *channel = &ah->ah_current_channel;
+	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
+	bool use_def_for_sg;
+	u8 def_ant, tx_ant, ee_mode;
+	u32 sta_id1 = 0;
+
+	def_ant = ah->ah_def_ant;
+
+	ATH5K_TRACE(ah->ah_sc);
+
+	switch (channel->hw_value & CHANNEL_MODES) {
+	case CHANNEL_A:
+	case CHANNEL_T:
+	case CHANNEL_XR:
+		ee_mode = AR5K_EEPROM_MODE_11A;
+		break;
+	case CHANNEL_G:
+	case CHANNEL_TG:
+		ee_mode = AR5K_EEPROM_MODE_11G;
+		break;
+	case CHANNEL_B:
+		ee_mode = AR5K_EEPROM_MODE_11B;
+		break;
+	default:
+		ATH5K_ERR(ah->ah_sc,
+			"invalid channel: %d\n", channel->center_freq);
+		return;
+	}
+
+	switch (ant_mode) {
+	case AR5K_ANTMODE_DEFAULT:
+		tx_ant = 0;
+		use_def_for_tx = false;
+		update_def_on_tx = false;
+		use_def_for_rts = false;
+		use_def_for_sg = false;
+		fast_div = true;
+		break;
+	case AR5K_ANTMODE_FIXED_A:
+		def_ant = 1;
+		tx_ant = 0;
+		use_def_for_tx = true;
+		update_def_on_tx = false;
+		use_def_for_rts = true;
+		use_def_for_sg = true;
+		fast_div = false;
+		break;
+	case AR5K_ANTMODE_FIXED_B:
+		def_ant = 2;
+		tx_ant = 0;
+		use_def_for_tx = true;
+		update_def_on_tx = false;
+		use_def_for_rts = true;
+		use_def_for_sg = true;
+		fast_div = false;
+		break;
+	case AR5K_ANTMODE_SINGLE_AP:
+		def_ant = 1;	/* updated on tx */
+		tx_ant = 0;
+		use_def_for_tx = true;
+		update_def_on_tx = true;
+		use_def_for_rts = true;
+		use_def_for_sg = true;
+		fast_div = true;
+		break;
+	case AR5K_ANTMODE_SECTOR_AP:
+		tx_ant = 1;	/* variable */
+		use_def_for_tx = false;
+		update_def_on_tx = false;
+		use_def_for_rts = true;
+		use_def_for_sg = false;
+		fast_div = false;
+		break;
+	case AR5K_ANTMODE_SECTOR_STA:
+		tx_ant = 1;	/* variable */
+		use_def_for_tx = true;
+		update_def_on_tx = false;
+		use_def_for_rts = true;
+		use_def_for_sg = false;
+		fast_div = true;
+		break;
+	case AR5K_ANTMODE_DEBUG:
+		def_ant = 1;
+		tx_ant = 2;
+		use_def_for_tx = false;
+		update_def_on_tx = false;
+		use_def_for_rts = false;
+		use_def_for_sg = false;
+		fast_div = false;
+		break;
+	default:
+		return;
+	}
+
+	ah->ah_tx_ant = tx_ant;
+	ah->ah_ant_mode = ant_mode;
+
+	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
+	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
+	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
+	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
+
+	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
+
+	if (sta_id1)
+		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
+
+	/* Note: set diversity before default antenna
+	 * because it won't work correctly */
+	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
+	ath5k_hw_set_def_antenna(ah, def_ant);
+}
+
+
+/****************\
+* TX power setup *
+\****************/
+
+/*
+ * Helper functions
+ */
+
+/*
+ * Do linear interpolation between two given (x, y) points
+ */
+static s16
+ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
+					s16 y_left, s16 y_right)
+{
+	s16 ratio, result;
+
+	/* Avoid divide by zero and skip interpolation
+	 * if we have the same point */
+	if ((x_left == x_right) || (y_left == y_right))
+		return y_left;
+
+	/*
+	 * Since we use ints and not fps, we need to scale up in
+	 * order to get a sane ratio value (or else we 'll eg. get
+	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
+	 * to have some accuracy both for 0.5 and 0.25 steps.
+	 */
+	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
+
+	/* Now scale down to be in range */
+	result = y_left + (ratio * (target - x_left) / 100);
+
+	return result;
+}
+
+/*
+ * Find vertical boundary (min pwr) for the linear PCDAC curve.
+ *
+ * Since we have the top of the curve and we draw the line below
+ * until we reach 1 (1 pcdac step) we need to know which point
+ * (x value) that is so that we don't go below y axis and have negative
+ * pcdac values when creating the curve, or fill the table with zeroes.
+ */
+static s16
+ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
+				const s16 *pwrL, const s16 *pwrR)
+{
+	s8 tmp;
+	s16 min_pwrL, min_pwrR;
+	s16 pwr_i;
+
+	if (WARN_ON(stepL[0] == stepL[1] || stepR[0] == stepR[1]))
+		return 0;
+
+	if (pwrL[0] == pwrL[1])
+		min_pwrL = pwrL[0];
+	else {
+		pwr_i = pwrL[0];
+		do {
+			pwr_i--;
+			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
+							pwrL[0], pwrL[1],
+							stepL[0], stepL[1]);
+		} while (tmp > 1);
+
+		min_pwrL = pwr_i;
+	}
+
+	if (pwrR[0] == pwrR[1])
+		min_pwrR = pwrR[0];
+	else {
+		pwr_i = pwrR[0];
+		do {
+			pwr_i--;
+			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
+							pwrR[0], pwrR[1],
+							stepR[0], stepR[1]);
+		} while (tmp > 1);
+
+		min_pwrR = pwr_i;
+	}
+
+	/* Keep the right boundary so that it works for both curves */
+	return max(min_pwrL, min_pwrR);
+}
+
+/*
+ * Interpolate (pwr,vpd) points to create a Power to PDADC or a
+ * Power to PCDAC curve.
+ *
+ * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
+ * steps (offsets) on y axis. Power can go up to 31.5dB and max
+ * PCDAC/PDADC step for each curve is 64 but we can write more than
+ * one curves on hw so we can go up to 128 (which is the max step we
+ * can write on the final table).
+ *
+ * We write y values (PCDAC/PDADC steps) on hw.
+ */
+static void
+ath5k_create_power_curve(s16 pmin, s16 pmax,
+			const s16 *pwr, const u8 *vpd,
+			u8 num_points,
+			u8 *vpd_table, u8 type)
+{
+	u8 idx[2] = { 0, 1 };
+	s16 pwr_i = 2*pmin;
+	int i;
+
+	if (num_points < 2)
+		return;
+
+	/* We want the whole line, so adjust boundaries
+	 * to cover the entire power range. Note that
+	 * power values are already 0.25dB so no need
+	 * to multiply pwr_i by 2 */
+	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
+		pwr_i = pmin;
+		pmin = 0;
+		pmax = 63;
+	}
+
+	/* Find surrounding turning points (TPs)
+	 * and interpolate between them */
+	for (i = 0; (i <= (u16) (pmax - pmin)) &&
+	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
+
+		/* We passed the right TP, move to the next set of TPs
+		 * if we pass the last TP, extrapolate above using the last
+		 * two TPs for ratio */
+		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
+			idx[0]++;
+			idx[1]++;
+		}
+
+		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
+						pwr[idx[0]], pwr[idx[1]],
+						vpd[idx[0]], vpd[idx[1]]);
+
+		/* Increase by 0.5dB
+		 * (0.25 dB units) */
+		pwr_i += 2;
+	}
+}
+
+/*
+ * Get the surrounding per-channel power calibration piers
+ * for a given frequency so that we can interpolate between
+ * them and come up with an apropriate dataset for our current
+ * channel.
+ */
+static void
+ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
+			struct ieee80211_channel *channel,
+			struct ath5k_chan_pcal_info **pcinfo_l,
+			struct ath5k_chan_pcal_info **pcinfo_r)
+{
+	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+	struct ath5k_chan_pcal_info *pcinfo;
+	u8 idx_l, idx_r;
+	u8 mode, max, i;
+	u32 target = channel->center_freq;
+
+	idx_l = 0;
+	idx_r = 0;
+
+	if (!(channel->hw_value & CHANNEL_OFDM)) {
+		pcinfo = ee->ee_pwr_cal_b;
+		mode = AR5K_EEPROM_MODE_11B;
+	} else if (channel->hw_value & CHANNEL_2GHZ) {
+		pcinfo = ee->ee_pwr_cal_g;
+		mode = AR5K_EEPROM_MODE_11G;
+	} else {
+		pcinfo = ee->ee_pwr_cal_a;
+		mode = AR5K_EEPROM_MODE_11A;
+	}
+	max = ee->ee_n_piers[mode] - 1;
+
+	/* Frequency is below our calibrated
+	 * range. Use the lowest power curve
+	 * we have */
+	if (target < pcinfo[0].freq) {
+		idx_l = idx_r = 0;
+		goto done;
+	}
+
+	/* Frequency is above our calibrated
+	 * range. Use the highest power curve
+	 * we have */
+	if (target > pcinfo[max].freq) {
+		idx_l = idx_r = max;
+		goto done;
+	}
+
+	/* Frequency is inside our calibrated
+	 * channel range. Pick the surrounding
+	 * calibration piers so that we can
+	 * interpolate */
+	for (i = 0; i <= max; i++) {
+
+		/* Frequency matches one of our calibration
+		 * piers, no need to interpolate, just use
+		 * that calibration pier */
+		if (pcinfo[i].freq == target) {
+			idx_l = idx_r = i;
+			goto done;
+		}
+
+		/* We found a calibration pier that's above
+		 * frequency, use this pier and the previous
+		 * one to interpolate */
+		if (target < pcinfo[i].freq) {
+			idx_r = i;
+			idx_l = idx_r - 1;
+			goto done;
+		}
+	}
+
+done:
+	*pcinfo_l = &pcinfo[idx_l];
+	*pcinfo_r = &pcinfo[idx_r];
+
+	return;
+}
+
+/*
+ * Get the surrounding per-rate power calibration data
+ * for a given frequency and interpolate between power
+ * values to set max target power supported by hw for
+ * each rate.
+ */
+static void
+ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
+			struct ieee80211_channel *channel,
+			struct ath5k_rate_pcal_info *rates)
+{
+	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+	struct ath5k_rate_pcal_info *rpinfo;
+	u8 idx_l, idx_r;
+	u8 mode, max, i;
+	u32 target = channel->center_freq;
+
+	idx_l = 0;
+	idx_r = 0;
+
+	if (!(channel->hw_value & CHANNEL_OFDM)) {
+		rpinfo = ee->ee_rate_tpwr_b;
+		mode = AR5K_EEPROM_MODE_11B;
+	} else if (channel->hw_value & CHANNEL_2GHZ) {
+		rpinfo = ee->ee_rate_tpwr_g;
+		mode = AR5K_EEPROM_MODE_11G;
+	} else {
+		rpinfo = ee->ee_rate_tpwr_a;
+		mode = AR5K_EEPROM_MODE_11A;
+	}
+	max = ee->ee_rate_target_pwr_num[mode] - 1;
+
+	/* Get the surrounding calibration
+	 * piers - same as above */
+	if (target < rpinfo[0].freq) {
+		idx_l = idx_r = 0;
+		goto done;
+	}
+
+	if (target > rpinfo[max].freq) {
+		idx_l = idx_r = max;
+		goto done;
+	}
+
+	for (i = 0; i <= max; i++) {
+
+		if (rpinfo[i].freq == target) {
+			idx_l = idx_r = i;
+			goto done;
+		}
+
+		if (target < rpinfo[i].freq) {
+			idx_r = i;
+			idx_l = idx_r - 1;
+			goto done;
+		}
+	}
+
+done:
+	/* Now interpolate power value, based on the frequency */
+	rates->freq = target;
+
+	rates->target_power_6to24 =
+		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
+					rpinfo[idx_r].freq,
+					rpinfo[idx_l].target_power_6to24,
+					rpinfo[idx_r].target_power_6to24);
+
+	rates->target_power_36 =
+		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
+					rpinfo[idx_r].freq,
+					rpinfo[idx_l].target_power_36,
+					rpinfo[idx_r].target_power_36);
+
+	rates->target_power_48 =
+		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
+					rpinfo[idx_r].freq,
+					rpinfo[idx_l].target_power_48,
+					rpinfo[idx_r].target_power_48);
+
+	rates->target_power_54 =
+		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
+					rpinfo[idx_r].freq,
+					rpinfo[idx_l].target_power_54,
+					rpinfo[idx_r].target_power_54);
+}
+
+/*
+ * Get the max edge power for this channel if
+ * we have such data from EEPROM's Conformance Test
+ * Limits (CTL), and limit max power if needed.
+ */
+static void
+ath5k_get_max_ctl_power(struct ath5k_hw *ah,
+			struct ieee80211_channel *channel)
+{
+	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
+	u8 *ctl_val = ee->ee_ctl;
+	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
+	s16 edge_pwr = 0;
+	u8 rep_idx;
+	u8 i, ctl_mode;
+	u8 ctl_idx = 0xFF;
+	u32 target = channel->center_freq;
+
+	ctl_mode = ath_regd_get_band_ctl(&ah->ah_regulatory, channel->band);
+
+	switch (channel->hw_value & CHANNEL_MODES) {
+	case CHANNEL_A:
+		ctl_mode |= AR5K_CTL_11A;
+		break;
+	case CHANNEL_G:
+		ctl_mode |= AR5K_CTL_11G;
+		break;
+	case CHANNEL_B:
+		ctl_mode |= AR5K_CTL_11B;
+		break;
+	case CHANNEL_T:
+		ctl_mode |= AR5K_CTL_TURBO;
+		break;
+	case CHANNEL_TG:
+		ctl_mode |= AR5K_CTL_TURBOG;
+		break;
+	case CHANNEL_XR:
+		/* Fall through */
+	default:
+		return;
+	}
+
+	for (i = 0; i < ee->ee_ctls; i++) {
+		if (ctl_val[i] == ctl_mode) {
+			ctl_idx = i;
+			break;
+		}
+	}
+
+	/* If we have a CTL dataset available grab it and find the
+	 * edge power for our frequency */
+	if (ctl_idx == 0xFF)
+		return;
+
+	/* Edge powers are sorted by frequency from lower
+	 * to higher. Each CTL corresponds to 8 edge power
+	 * measurements. */
+	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
+
+	/* Don't do boundaries check because we
+	 * might have more that one bands defined
+	 * for this mode */
+
+	/* Get the edge power that's closer to our
+	 * frequency */
+	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
+		rep_idx += i;
+		if (target <= rep[rep_idx].freq)
+			edge_pwr = (s16) rep[rep_idx].edge;
+	}
+
+	if (edge_pwr)
+		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
+}
+
+
+/*
+ * Power to PCDAC table functions
+ */
+
+/*
+ * Fill Power to PCDAC table on RF5111
+ *
+ * No further processing is needed for RF5111, the only thing we have to
+ * do is fill the values below and above calibration range since eeprom data
+ * may not cover the entire PCDAC table.
+ */
+static void
+ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
+							s16 *table_max)
+{
+	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
+	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
+	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
+	s16	min_pwr, max_pwr;
+
+	/* Get table boundaries */
+	min_pwr = table_min[0];
+	pcdac_0 = pcdac_tmp[0];
+
+	max_pwr = table_max[0];
+	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
+
+	/* Extrapolate below minimum using pcdac_0 */
+	pcdac_i = 0;
+	for (i = 0; i < min_pwr; i++)
+		pcdac_out[pcdac_i++] = pcdac_0;
+
+	/* Copy values from pcdac_tmp */
+	pwr_idx = min_pwr;
+	for (i = 0 ; pwr_idx <= max_pwr &&
+	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
+		pcdac_out[pcdac_i++] = pcdac_tmp[i];
+		pwr_idx++;
+	}
+
+	/* Extrapolate above maximum */
+	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
+		pcdac_out[pcdac_i++] = pcdac_n;
+
+}
+
+/*
+ * Combine available XPD Curves and fill Linear Power to PCDAC table
+ * on RF5112
+ *
+ * RFX112 can have up to 2 curves (one for low txpower range and one for
+ * higher txpower range). We need to put them both on pcdac_out and place
+ * them in the correct location. In case we only have one curve available
+ * just fit it on pcdac_out (it's supposed to cover the entire range of
+ * available pwr levels since it's always the higher power curve). Extrapolate
+ * below and above final table if needed.
+ */
+static void
+ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
+						s16 *table_max, u8 pdcurves)
+{
+	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
+	u8	*pcdac_low_pwr;
+	u8	*pcdac_high_pwr;
+	u8	*pcdac_tmp;
+	u8	pwr;
+	s16	max_pwr_idx;
+	s16	min_pwr_idx;
+	s16	mid_pwr_idx = 0;
+	/* Edge flag turs on the 7nth bit on the PCDAC
+	 * to delcare the higher power curve (force values
+	 * to be greater than 64). If we only have one curve
+	 * we don't need to set this, if we have 2 curves and
+	 * fill the table backwards this can also be used to
+	 * switch from higher power curve to lower power curve */
+	u8	edge_flag;
+	int	i;
+
+	/* When we have only one curve available
+	 * that's the higher power curve. If we have
+	 * two curves the first is the high power curve
+	 * and the next is the low power curve. */
+	if (pdcurves > 1) {
+		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
+		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
+		mid_pwr_idx = table_max[1] - table_min[1] - 1;
+		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
+
+		/* If table size goes beyond 31.5dB, keep the
+		 * upper 31.5dB range when setting tx power.
+		 * Note: 126 = 31.5 dB in quarter dB steps */
+		if (table_max[0] - table_min[1] > 126)
+			min_pwr_idx = table_max[0] - 126;
+		else
+			min_pwr_idx = table_min[1];
+
+		/* Since we fill table backwards
+		 * start from high power curve */
+		pcdac_tmp = pcdac_high_pwr;
+
+		edge_flag = 0x40;
+#if 0
+		/* If both min and max power limits are in lower
+		 * power curve's range, only use the low power curve.
+		 * TODO: min/max levels are related to target
+		 * power values requested from driver/user
+		 * XXX: Is this really needed ? */
+		if (min_pwr < table_max[1] &&
+		max_pwr < table_max[1]) {
+			edge_flag = 0;
+			pcdac_tmp = pcdac_low_pwr;
+			max_pwr_idx = (table_max[1] - table_min[1])/2;
+		}
+#endif
+	} else {
+		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
+		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
+		min_pwr_idx = table_min[0];
+		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
+		pcdac_tmp = pcdac_high_pwr;
+		edge_flag = 0;
+	}
+
+	/* This is used when setting tx power*/
+	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
+
+	/* Fill Power to PCDAC table backwards */
+	pwr = max_pwr_idx;
+	for (i = 63; i >= 0; i--) {
+		/* Entering lower power range, reset
+		 * edge flag and set pcdac_tmp to lower
+		 * power curve.*/
+		if (edge_flag == 0x40 &&
+		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
+			edge_flag = 0x00;
+			pcdac_tmp = pcdac_low_pwr;
+			pwr = mid_pwr_idx/2;
+		}
+
+		/* Don't go below 1, extrapolate below if we have
+		 * already swithced to the lower power curve -or
+		 * we only have one curve and edge_flag is zero
+		 * anyway */
+		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
+			while (i >= 0) {
+				pcdac_out[i] = pcdac_out[i + 1];
+				i--;
+			}
+			break;
+		}
+
+		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
+
+		/* Extrapolate above if pcdac is greater than
+		 * 126 -this can happen because we OR pcdac_out
+		 * value with edge_flag on high power curve */
+		if (pcdac_out[i] > 126)
+			pcdac_out[i] = 126;
+
+		/* Decrease by a 0.5dB step */
+		pwr--;
+	}
+}
+
+/* Write PCDAC values on hw */
+static void
+ath5k_setup_pcdac_table(struct ath5k_hw *ah)
+{
+	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
+	int	i;
+
+	/*
+	 * Write TX power values
+	 */
+	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
+		ath5k_hw_reg_write(ah,
+			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
+			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
+			AR5K_PHY_PCDAC_TXPOWER(i));
+	}
+}
+
+
+/*
+ * Power to PDADC table functions
+ */
+
+/*
+ * Set the gain boundaries and create final Power to PDADC table
+ *
+ * We can have up to 4 pd curves, we need to do a simmilar process
+ * as we do for RF5112. This time we don't have an edge_flag but we
+ * set the gain boundaries on a separate register.
+ */
+static void
+ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
+			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
+{
+	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
+	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
+	u8 *pdadc_tmp;
+	s16 pdadc_0;
+	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
+	u8 pd_gain_overlap;
+
+	/* Note: Register value is initialized on initvals
+	 * there is no feedback from hw.
+	 * XXX: What about pd_gain_overlap from EEPROM ? */
+	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
+		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
+
+	/* Create final PDADC table */
+	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
+		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
+
+		if (pdg == pdcurves - 1)
+			/* 2 dB boundary stretch for last
+			 * (higher power) curve */
+			gain_boundaries[pdg] = pwr_max[pdg] + 4;
+		else
+			/* Set gain boundary in the middle
+			 * between this curve and the next one */
+			gain_boundaries[pdg] =
+				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
+
+		/* Sanity check in case our 2 db stretch got out of
+		 * range. */
+		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
+			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
+
+		/* For the first curve (lower power)
+		 * start from 0 dB */
+		if (pdg == 0)
+			pdadc_0 = 0;
+		else
+			/* For the other curves use the gain overlap */
+			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
+							pd_gain_overlap;
+
+		/* Force each power step to be at least 0.5 dB */
+		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
+			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
+		else
+			pwr_step = 1;
+
+		/* If pdadc_0 is negative, we need to extrapolate
+		 * below this pdgain by a number of pwr_steps */
+		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
+			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
+			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
+			pdadc_0++;
+		}
+
+		/* Set last pwr level, using gain boundaries */
+		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
+		/* Limit it to be inside pwr range */
+		table_size = pwr_max[pdg] - pwr_min[pdg];
+		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
+
+		/* Fill pdadc_out table */
+		while (pdadc_0 < max_idx)
+			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
+
+		/* Need to extrapolate above this pdgain? */
+		if (pdadc_n <= max_idx)
+			continue;
+
+		/* Force each power step to be at least 0.5 dB */
+		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
+			pwr_step = pdadc_tmp[table_size - 1] -
+						pdadc_tmp[table_size - 2];
+		else
+			pwr_step = 1;
+
+		/* Extrapolate above */
+		while ((pdadc_0 < (s16) pdadc_n) &&
+		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
+			s16 tmp = pdadc_tmp[table_size - 1] +
+					(pdadc_0 - max_idx) * pwr_step;
+			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
+			pdadc_0++;
+		}
+	}
+
+	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
+		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
+		pdg++;
+	}
+
+	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
+		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
+		pdadc_i++;
+	}
+
+	/* Set gain boundaries */
+	ath5k_hw_reg_write(ah,
+		AR5K_REG_SM(pd_gain_overlap,
+			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
+		AR5K_REG_SM(gain_boundaries[0],
+			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
+		AR5K_REG_SM(gain_boundaries[1],
+			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
+		AR5K_REG_SM(gain_boundaries[2],
+			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
+		AR5K_REG_SM(gain_boundaries[3],
+			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
+		AR5K_PHY_TPC_RG5);
+
+	/* Used for setting rate power table */
+	ah->ah_txpower.txp_min_idx = pwr_min[0];
+
+}
+
+/* Write PDADC values on hw */
+static void
+ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
+			u8 pdcurves, u8 *pdg_to_idx)
+{
+	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
+	u32 reg;
+	u8 i;
+
+	/* Select the right pdgain curves */
+
+	/* Clear current settings */
+	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
+	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
+		AR5K_PHY_TPC_RG1_PDGAIN_2 |
+		AR5K_PHY_TPC_RG1_PDGAIN_3 |
+		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
+
+	/*
+	 * Use pd_gains curve from eeprom
+	 *
+	 * This overrides the default setting from initvals
+	 * in case some vendors (e.g. Zcomax) don't use the default
+	 * curves. If we don't honor their settings we 'll get a
+	 * 5dB (1 * gain overlap ?) drop.
+	 */
+	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
+
+	switch (pdcurves) {
+	case 3:
+		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
+		/* Fall through */
+	case 2:
+		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
+		/* Fall through */
+	case 1:
+		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
+		break;
+	}
+	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
+
+	/*
+	 * Write TX power values
+	 */
+	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
+		ath5k_hw_reg_write(ah,
+			((pdadc_out[4*i + 0] & 0xff) << 0) |
+			((pdadc_out[4*i + 1] & 0xff) << 8) |
+			((pdadc_out[4*i + 2] & 0xff) << 16) |
+			((pdadc_out[4*i + 3] & 0xff) << 24),
+			AR5K_PHY_PDADC_TXPOWER(i));
+	}
+}
+
+
+/*
+ * Common code for PCDAC/PDADC tables
+ */
+
+/*
+ * This is the main function that uses all of the above
+ * to set PCDAC/PDADC table on hw for the current channel.
+ * This table is used for tx power calibration on the basband,
+ * without it we get weird tx power levels and in some cases
+ * distorted spectral mask
+ */
+static int
+ath5k_setup_channel_powertable(struct ath5k_hw *ah,
+			struct ieee80211_channel *channel,
+			u8 ee_mode, u8 type)
+{
+	struct ath5k_pdgain_info *pdg_L, *pdg_R;
+	struct ath5k_chan_pcal_info *pcinfo_L;
+	struct ath5k_chan_pcal_info *pcinfo_R;
+	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
+	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
+	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
+	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
+	u8 *tmpL;
+	u8 *tmpR;
+	u32 target = channel->center_freq;
+	int pdg, i;
+
+	/* Get surounding freq piers for this channel */
+	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
+						&pcinfo_L,
+						&pcinfo_R);
+
+	/* Loop over pd gain curves on
+	 * surounding freq piers by index */
+	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
+
+		/* Fill curves in reverse order
+		 * from lower power (max gain)
+		 * to higher power. Use curve -> idx
+		 * backmaping we did on eeprom init */
+		u8 idx = pdg_curve_to_idx[pdg];
+
+		/* Grab the needed curves by index */
+		pdg_L = &pcinfo_L->pd_curves[idx];
+		pdg_R = &pcinfo_R->pd_curves[idx];
+
+		/* Initialize the temp tables */
+		tmpL = ah->ah_txpower.tmpL[pdg];
+		tmpR = ah->ah_txpower.tmpR[pdg];
+
+		/* Set curve's x boundaries and create
+		 * curves so that they cover the same
+		 * range (if we don't do that one table
+		 * will have values on some range and the
+		 * other one won't have any so interpolation
+		 * will fail) */
+		table_min[pdg] = min(pdg_L->pd_pwr[0],
+					pdg_R->pd_pwr[0]) / 2;
+
+		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
+				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
+
+		/* Now create the curves on surrounding channels
+		 * and interpolate if needed to get the final
+		 * curve for this gain on this channel */
+		switch (type) {
+		case AR5K_PWRTABLE_LINEAR_PCDAC:
+			/* Override min/max so that we don't loose
+			 * accuracy (don't divide by 2) */
+			table_min[pdg] = min(pdg_L->pd_pwr[0],
+						pdg_R->pd_pwr[0]);
+
+			table_max[pdg] =
+				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
+					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
+
+			/* Override minimum so that we don't get
+			 * out of bounds while extrapolating
+			 * below. Don't do this when we have 2
+			 * curves and we are on the high power curve
+			 * because table_min is ok in this case */
+			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
+
+				table_min[pdg] =
+					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
+								pdg_R->pd_step,
+								pdg_L->pd_pwr,
+								pdg_R->pd_pwr);
+
+				/* Don't go too low because we will
+				 * miss the upper part of the curve.
+				 * Note: 126 = 31.5dB (max power supported)
+				 * in 0.25dB units */
+				if (table_max[pdg] - table_min[pdg] > 126)
+					table_min[pdg] = table_max[pdg] - 126;
+			}
+
+			/* Fall through */
+		case AR5K_PWRTABLE_PWR_TO_PCDAC:
+		case AR5K_PWRTABLE_PWR_TO_PDADC:
+
+			ath5k_create_power_curve(table_min[pdg],
+						table_max[pdg],
+						pdg_L->pd_pwr,
+						pdg_L->pd_step,
+						pdg_L->pd_points, tmpL, type);
+
+			/* We are in a calibration
+			 * pier, no need to interpolate
+			 * between freq piers */
+			if (pcinfo_L == pcinfo_R)
+				continue;
+
+			ath5k_create_power_curve(table_min[pdg],
+						table_max[pdg],
+						pdg_R->pd_pwr,
+						pdg_R->pd_step,
+						pdg_R->pd_points, tmpR, type);
+			break;
+		default:
+			return -EINVAL;
+		}
+
+		/* Interpolate between curves
+		 * of surounding freq piers to
+		 * get the final curve for this
+		 * pd gain. Re-use tmpL for interpolation
+		 * output */
+		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
+		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
+			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
+							(s16) pcinfo_L->freq,
+							(s16) pcinfo_R->freq,
+							(s16) tmpL[i],
+							(s16) tmpR[i]);
+		}
+	}
+
+	/* Now we have a set of curves for this
+	 * channel on tmpL (x range is table_max - table_min
+	 * and y values are tmpL[pdg][]) sorted in the same
+	 * order as EEPROM (because we've used the backmaping).
+	 * So for RF5112 it's from higher power to lower power
+	 * and for RF2413 it's from lower power to higher power.
+	 * For RF5111 we only have one curve. */
+
+	/* Fill min and max power levels for this
+	 * channel by interpolating the values on
+	 * surounding channels to complete the dataset */
+	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
+					(s16) pcinfo_L->freq,
+					(s16) pcinfo_R->freq,
+					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
+
+	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
+					(s16) pcinfo_L->freq,
+					(s16) pcinfo_R->freq,
+					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
+
+	/* We are ready to go, fill PCDAC/PDADC
+	 * table and write settings on hardware */
+	switch (type) {
+	case AR5K_PWRTABLE_LINEAR_PCDAC:
+		/* For RF5112 we can have one or two curves
+		 * and each curve covers a certain power lvl
+		 * range so we need to do some more processing */
+		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
+						ee->ee_pd_gains[ee_mode]);
+
+		/* Set txp.offset so that we can
+		 * match max power value with max
+		 * table index */
+		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
+
+		/* Write settings on hw */
+		ath5k_setup_pcdac_table(ah);
+		break;
+	case AR5K_PWRTABLE_PWR_TO_PCDAC:
+		/* We are done for RF5111 since it has only
+		 * one curve, just fit the curve on the table */
+		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
+
+		/* No rate powertable adjustment for RF5111 */
+		ah->ah_txpower.txp_min_idx = 0;
+		ah->ah_txpower.txp_offset = 0;
+
+		/* Write settings on hw */
+		ath5k_setup_pcdac_table(ah);
+		break;
+	case AR5K_PWRTABLE_PWR_TO_PDADC:
+		/* Set PDADC boundaries and fill
+		 * final PDADC table */
+		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
+						ee->ee_pd_gains[ee_mode]);
+
+		/* Write settings on hw */
+		ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
+
+		/* Set txp.offset, note that table_min
+		 * can be negative */
+		ah->ah_txpower.txp_offset = table_min[0];
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+
+/*
+ * Per-rate tx power setting
+ *
+ * This is the code that sets the desired tx power (below
+ * maximum) on hw for each rate (we also have TPC that sets
+ * power per packet). We do that by providing an index on the
+ * PCDAC/PDADC table we set up.
+ */
+
+/*
+ * Set rate power table
+ *
+ * For now we only limit txpower based on maximum tx power
+ * supported by hw (what's inside rate_info). We need to limit
+ * this even more, based on regulatory domain etc.
+ *
+ * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
+ * and is indexed as follows:
+ * rates[0] - rates[7] -> OFDM rates
+ * rates[8] - rates[14] -> CCK rates
+ * rates[15] -> XR rates (they all have the same power)
+ */
+static void
+ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
+			struct ath5k_rate_pcal_info *rate_info,
+			u8 ee_mode)
+{
+	unsigned int i;
+	u16 *rates;
+
+	/* max_pwr is power level we got from driver/user in 0.5dB
+	 * units, switch to 0.25dB units so we can compare */
+	max_pwr *= 2;
+	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
+
+	/* apply rate limits */
+	rates = ah->ah_txpower.txp_rates_power_table;
+
+	/* OFDM rates 6 to 24Mb/s */
+	for (i = 0; i < 5; i++)
+		rates[i] = min(max_pwr, rate_info->target_power_6to24);
+
+	/* Rest OFDM rates */
+	rates[5] = min(rates[0], rate_info->target_power_36);
+	rates[6] = min(rates[0], rate_info->target_power_48);
+	rates[7] = min(rates[0], rate_info->target_power_54);
+
+	/* CCK rates */
+	/* 1L */
+	rates[8] = min(rates[0], rate_info->target_power_6to24);
+	/* 2L */
+	rates[9] = min(rates[0], rate_info->target_power_36);
+	/* 2S */
+	rates[10] = min(rates[0], rate_info->target_power_36);
+	/* 5L */
+	rates[11] = min(rates[0], rate_info->target_power_48);
+	/* 5S */
+	rates[12] = min(rates[0], rate_info->target_power_48);
+	/* 11L */
+	rates[13] = min(rates[0], rate_info->target_power_54);
+	/* 11S */
+	rates[14] = min(rates[0], rate_info->target_power_54);
+
+	/* XR rates */
+	rates[15] = min(rates[0], rate_info->target_power_6to24);
+
+	/* CCK rates have different peak to average ratio
+	 * so we have to tweak their power so that gainf
+	 * correction works ok. For this we use OFDM to
+	 * CCK delta from eeprom */
+	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
+	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
+		for (i = 8; i <= 15; i++)
+			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
+
+	/* Now that we have all rates setup use table offset to
+	 * match the power range set by user with the power indices
+	 * on PCDAC/PDADC table */
+	for (i = 0; i < 16; i++) {
+		rates[i] += ah->ah_txpower.txp_offset;
+		/* Don't get out of bounds */
+		if (rates[i] > 63)
+			rates[i] = 63;
+	}
+
+	/* Min/max in 0.25dB units */
+	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
+	ah->ah_txpower.txp_max_pwr = 2 * rates[0];
+	ah->ah_txpower.txp_ofdm = rates[7];
+}
+
+
+/*
+ * Set transmition power
+ */
+int
+ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
+		u8 ee_mode, u8 txpower)
+{
+	struct ath5k_rate_pcal_info rate_info;
+	u8 type;
+	int ret;
+
+	ATH5K_TRACE(ah->ah_sc);
+	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
+		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
+		return -EINVAL;
+	}
+	if (txpower == 0)
+		txpower = AR5K_TUNE_DEFAULT_TXPOWER;
+
+	/* Reset TX power values */
+	memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
+	ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
+	ah->ah_txpower.txp_min_pwr = 0;
+	ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
+
+	/* Initialize TX power table */
+	switch (ah->ah_radio) {
+	case AR5K_RF5111:
+		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
+		break;
+	case AR5K_RF5112:
+		type = AR5K_PWRTABLE_LINEAR_PCDAC;
+		break;
+	case AR5K_RF2413:
+	case AR5K_RF5413:
+	case AR5K_RF2316:
+	case AR5K_RF2317:
+	case AR5K_RF2425:
+		type = AR5K_PWRTABLE_PWR_TO_PDADC;
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	/* FIXME: Only on channel/mode change */
+	ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
+	if (ret)
+		return ret;
+
+	/* Limit max power if we have a CTL available */
+	ath5k_get_max_ctl_power(ah, channel);
+
+	/* FIXME: Tx power limit for this regdomain
+	 * XXX: Mac80211/CRDA will do that anyway ? */
+
+	/* FIXME: Antenna reduction stuff */
+
+	/* FIXME: Limit power on turbo modes */
+
+	/* FIXME: TPC scale reduction */
+
+	/* Get surounding channels for per-rate power table
+	 * calibration */
+	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
+
+	/* Setup rate power table */
+	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
+
+	/* Write rate power table on hw */
+	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
+		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
+		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
+
+	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
+		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
+		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
+
+	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
+		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
+		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
+
+	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
+		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
+		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
+
+	/* FIXME: TPC support */
+	if (ah->ah_txpower.txp_tpc) {
+		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
+			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
+
+		ath5k_hw_reg_write(ah,
+			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
+			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
+			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
+			AR5K_TPC);
+	} else {
+		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
+			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
+	}
+
+	return 0;
+}
+
+int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
+{
+	/*Just a try M.F.*/
+	struct ieee80211_channel *channel = &ah->ah_current_channel;
+	u8 ee_mode;
+
+	ATH5K_TRACE(ah->ah_sc);
+
+	switch (channel->hw_value & CHANNEL_MODES) {
+	case CHANNEL_A:
+	case CHANNEL_T:
+	case CHANNEL_XR:
+		ee_mode = AR5K_EEPROM_MODE_11A;
+		break;
+	case CHANNEL_G:
+	case CHANNEL_TG:
+		ee_mode = AR5K_EEPROM_MODE_11G;
+		break;
+	case CHANNEL_B:
+		ee_mode = AR5K_EEPROM_MODE_11B;
+		break;
+	default:
+		ATH5K_ERR(ah->ah_sc,
+			"invalid channel: %d\n", channel->center_freq);
+		return -EINVAL;
+	}
+
+	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
+		"changing txpower to %d\n", txpower);
+
+	return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
+}
+
+#undef _ATH5K_PHY