summary refs log tree commit diff
path: root/drivers/md/bcache/extents.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/md/bcache/extents.c')
-rw-r--r--drivers/md/bcache/extents.c616
1 files changed, 616 insertions, 0 deletions
diff --git a/drivers/md/bcache/extents.c b/drivers/md/bcache/extents.c
new file mode 100644
index 000000000000..c3ead586dc27
--- /dev/null
+++ b/drivers/md/bcache/extents.c
@@ -0,0 +1,616 @@
+/*
+ * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
+ *
+ * Uses a block device as cache for other block devices; optimized for SSDs.
+ * All allocation is done in buckets, which should match the erase block size
+ * of the device.
+ *
+ * Buckets containing cached data are kept on a heap sorted by priority;
+ * bucket priority is increased on cache hit, and periodically all the buckets
+ * on the heap have their priority scaled down. This currently is just used as
+ * an LRU but in the future should allow for more intelligent heuristics.
+ *
+ * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
+ * counter. Garbage collection is used to remove stale pointers.
+ *
+ * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
+ * as keys are inserted we only sort the pages that have not yet been written.
+ * When garbage collection is run, we resort the entire node.
+ *
+ * All configuration is done via sysfs; see Documentation/bcache.txt.
+ */
+
+#include "bcache.h"
+#include "btree.h"
+#include "debug.h"
+#include "extents.h"
+#include "writeback.h"
+
+static void sort_key_next(struct btree_iter *iter,
+			  struct btree_iter_set *i)
+{
+	i->k = bkey_next(i->k);
+
+	if (i->k == i->end)
+		*i = iter->data[--iter->used];
+}
+
+static bool bch_key_sort_cmp(struct btree_iter_set l,
+			     struct btree_iter_set r)
+{
+	int64_t c = bkey_cmp(l.k, r.k);
+
+	return c ? c > 0 : l.k < r.k;
+}
+
+static bool __ptr_invalid(struct cache_set *c, const struct bkey *k)
+{
+	unsigned i;
+
+	for (i = 0; i < KEY_PTRS(k); i++)
+		if (ptr_available(c, k, i)) {
+			struct cache *ca = PTR_CACHE(c, k, i);
+			size_t bucket = PTR_BUCKET_NR(c, k, i);
+			size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
+
+			if (KEY_SIZE(k) + r > c->sb.bucket_size ||
+			    bucket <  ca->sb.first_bucket ||
+			    bucket >= ca->sb.nbuckets)
+				return true;
+		}
+
+	return false;
+}
+
+/* Common among btree and extent ptrs */
+
+static const char *bch_ptr_status(struct cache_set *c, const struct bkey *k)
+{
+	unsigned i;
+
+	for (i = 0; i < KEY_PTRS(k); i++)
+		if (ptr_available(c, k, i)) {
+			struct cache *ca = PTR_CACHE(c, k, i);
+			size_t bucket = PTR_BUCKET_NR(c, k, i);
+			size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
+
+			if (KEY_SIZE(k) + r > c->sb.bucket_size)
+				return "bad, length too big";
+			if (bucket <  ca->sb.first_bucket)
+				return "bad, short offset";
+			if (bucket >= ca->sb.nbuckets)
+				return "bad, offset past end of device";
+			if (ptr_stale(c, k, i))
+				return "stale";
+		}
+
+	if (!bkey_cmp(k, &ZERO_KEY))
+		return "bad, null key";
+	if (!KEY_PTRS(k))
+		return "bad, no pointers";
+	if (!KEY_SIZE(k))
+		return "zeroed key";
+	return "";
+}
+
+void bch_extent_to_text(char *buf, size_t size, const struct bkey *k)
+{
+	unsigned i = 0;
+	char *out = buf, *end = buf + size;
+
+#define p(...)	(out += scnprintf(out, end - out, __VA_ARGS__))
+
+	p("%llu:%llu len %llu -> [", KEY_INODE(k), KEY_START(k), KEY_SIZE(k));
+
+	for (i = 0; i < KEY_PTRS(k); i++) {
+		if (i)
+			p(", ");
+
+		if (PTR_DEV(k, i) == PTR_CHECK_DEV)
+			p("check dev");
+		else
+			p("%llu:%llu gen %llu", PTR_DEV(k, i),
+			  PTR_OFFSET(k, i), PTR_GEN(k, i));
+	}
+
+	p("]");
+
+	if (KEY_DIRTY(k))
+		p(" dirty");
+	if (KEY_CSUM(k))
+		p(" cs%llu %llx", KEY_CSUM(k), k->ptr[1]);
+#undef p
+}
+
+static void bch_bkey_dump(struct btree_keys *keys, const struct bkey *k)
+{
+	struct btree *b = container_of(keys, struct btree, keys);
+	unsigned j;
+	char buf[80];
+
+	bch_extent_to_text(buf, sizeof(buf), k);
+	printk(" %s", buf);
+
+	for (j = 0; j < KEY_PTRS(k); j++) {
+		size_t n = PTR_BUCKET_NR(b->c, k, j);
+		printk(" bucket %zu", n);
+
+		if (n >= b->c->sb.first_bucket && n < b->c->sb.nbuckets)
+			printk(" prio %i",
+			       PTR_BUCKET(b->c, k, j)->prio);
+	}
+
+	printk(" %s\n", bch_ptr_status(b->c, k));
+}
+
+/* Btree ptrs */
+
+bool __bch_btree_ptr_invalid(struct cache_set *c, const struct bkey *k)
+{
+	char buf[80];
+
+	if (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k))
+		goto bad;
+
+	if (__ptr_invalid(c, k))
+		goto bad;
+
+	return false;
+bad:
+	bch_extent_to_text(buf, sizeof(buf), k);
+	cache_bug(c, "spotted btree ptr %s: %s", buf, bch_ptr_status(c, k));
+	return true;
+}
+
+static bool bch_btree_ptr_invalid(struct btree_keys *bk, const struct bkey *k)
+{
+	struct btree *b = container_of(bk, struct btree, keys);
+	return __bch_btree_ptr_invalid(b->c, k);
+}
+
+static bool btree_ptr_bad_expensive(struct btree *b, const struct bkey *k)
+{
+	unsigned i;
+	char buf[80];
+	struct bucket *g;
+
+	if (mutex_trylock(&b->c->bucket_lock)) {
+		for (i = 0; i < KEY_PTRS(k); i++)
+			if (ptr_available(b->c, k, i)) {
+				g = PTR_BUCKET(b->c, k, i);
+
+				if (KEY_DIRTY(k) ||
+				    g->prio != BTREE_PRIO ||
+				    (b->c->gc_mark_valid &&
+				     GC_MARK(g) != GC_MARK_METADATA))
+					goto err;
+			}
+
+		mutex_unlock(&b->c->bucket_lock);
+	}
+
+	return false;
+err:
+	mutex_unlock(&b->c->bucket_lock);
+	bch_extent_to_text(buf, sizeof(buf), k);
+	btree_bug(b,
+"inconsistent btree pointer %s: bucket %li pin %i prio %i gen %i last_gc %i mark %llu gc_gen %i",
+		  buf, PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin),
+		  g->prio, g->gen, g->last_gc, GC_MARK(g), g->gc_gen);
+	return true;
+}
+
+static bool bch_btree_ptr_bad(struct btree_keys *bk, const struct bkey *k)
+{
+	struct btree *b = container_of(bk, struct btree, keys);
+	unsigned i;
+
+	if (!bkey_cmp(k, &ZERO_KEY) ||
+	    !KEY_PTRS(k) ||
+	    bch_ptr_invalid(bk, k))
+		return true;
+
+	for (i = 0; i < KEY_PTRS(k); i++)
+		if (!ptr_available(b->c, k, i) ||
+		    ptr_stale(b->c, k, i))
+			return true;
+
+	if (expensive_debug_checks(b->c) &&
+	    btree_ptr_bad_expensive(b, k))
+		return true;
+
+	return false;
+}
+
+static bool bch_btree_ptr_insert_fixup(struct btree_keys *bk,
+				       struct bkey *insert,
+				       struct btree_iter *iter,
+				       struct bkey *replace_key)
+{
+	struct btree *b = container_of(bk, struct btree, keys);
+
+	if (!KEY_OFFSET(insert))
+		btree_current_write(b)->prio_blocked++;
+
+	return false;
+}
+
+const struct btree_keys_ops bch_btree_keys_ops = {
+	.sort_cmp	= bch_key_sort_cmp,
+	.insert_fixup	= bch_btree_ptr_insert_fixup,
+	.key_invalid	= bch_btree_ptr_invalid,
+	.key_bad	= bch_btree_ptr_bad,
+	.key_to_text	= bch_extent_to_text,
+	.key_dump	= bch_bkey_dump,
+};
+
+/* Extents */
+
+/*
+ * Returns true if l > r - unless l == r, in which case returns true if l is
+ * older than r.
+ *
+ * Necessary for btree_sort_fixup() - if there are multiple keys that compare
+ * equal in different sets, we have to process them newest to oldest.
+ */
+static bool bch_extent_sort_cmp(struct btree_iter_set l,
+				struct btree_iter_set r)
+{
+	int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k));
+
+	return c ? c > 0 : l.k < r.k;
+}
+
+static struct bkey *bch_extent_sort_fixup(struct btree_iter *iter,
+					  struct bkey *tmp)
+{
+	while (iter->used > 1) {
+		struct btree_iter_set *top = iter->data, *i = top + 1;
+
+		if (iter->used > 2 &&
+		    bch_extent_sort_cmp(i[0], i[1]))
+			i++;
+
+		if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0)
+			break;
+
+		if (!KEY_SIZE(i->k)) {
+			sort_key_next(iter, i);
+			heap_sift(iter, i - top, bch_extent_sort_cmp);
+			continue;
+		}
+
+		if (top->k > i->k) {
+			if (bkey_cmp(top->k, i->k) >= 0)
+				sort_key_next(iter, i);
+			else
+				bch_cut_front(top->k, i->k);
+
+			heap_sift(iter, i - top, bch_extent_sort_cmp);
+		} else {
+			/* can't happen because of comparison func */
+			BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k)));
+
+			if (bkey_cmp(i->k, top->k) < 0) {
+				bkey_copy(tmp, top->k);
+
+				bch_cut_back(&START_KEY(i->k), tmp);
+				bch_cut_front(i->k, top->k);
+				heap_sift(iter, 0, bch_extent_sort_cmp);
+
+				return tmp;
+			} else {
+				bch_cut_back(&START_KEY(i->k), top->k);
+			}
+		}
+	}
+
+	return NULL;
+}
+
+static bool bch_extent_insert_fixup(struct btree_keys *b,
+				    struct bkey *insert,
+				    struct btree_iter *iter,
+				    struct bkey *replace_key)
+{
+	struct cache_set *c = container_of(b, struct btree, keys)->c;
+
+	void subtract_dirty(struct bkey *k, uint64_t offset, int sectors)
+	{
+		if (KEY_DIRTY(k))
+			bcache_dev_sectors_dirty_add(c, KEY_INODE(k),
+						     offset, -sectors);
+	}
+
+	uint64_t old_offset;
+	unsigned old_size, sectors_found = 0;
+
+	BUG_ON(!KEY_OFFSET(insert));
+	BUG_ON(!KEY_SIZE(insert));
+
+	while (1) {
+		struct bkey *k = bch_btree_iter_next(iter);
+		if (!k)
+			break;
+
+		if (bkey_cmp(&START_KEY(k), insert) >= 0) {
+			if (KEY_SIZE(k))
+				break;
+			else
+				continue;
+		}
+
+		if (bkey_cmp(k, &START_KEY(insert)) <= 0)
+			continue;
+
+		old_offset = KEY_START(k);
+		old_size = KEY_SIZE(k);
+
+		/*
+		 * We might overlap with 0 size extents; we can't skip these
+		 * because if they're in the set we're inserting to we have to
+		 * adjust them so they don't overlap with the key we're
+		 * inserting. But we don't want to check them for replace
+		 * operations.
+		 */
+
+		if (replace_key && KEY_SIZE(k)) {
+			/*
+			 * k might have been split since we inserted/found the
+			 * key we're replacing
+			 */
+			unsigned i;
+			uint64_t offset = KEY_START(k) -
+				KEY_START(replace_key);
+
+			/* But it must be a subset of the replace key */
+			if (KEY_START(k) < KEY_START(replace_key) ||
+			    KEY_OFFSET(k) > KEY_OFFSET(replace_key))
+				goto check_failed;
+
+			/* We didn't find a key that we were supposed to */
+			if (KEY_START(k) > KEY_START(insert) + sectors_found)
+				goto check_failed;
+
+			if (!bch_bkey_equal_header(k, replace_key))
+				goto check_failed;
+
+			/* skip past gen */
+			offset <<= 8;
+
+			BUG_ON(!KEY_PTRS(replace_key));
+
+			for (i = 0; i < KEY_PTRS(replace_key); i++)
+				if (k->ptr[i] != replace_key->ptr[i] + offset)
+					goto check_failed;
+
+			sectors_found = KEY_OFFSET(k) - KEY_START(insert);
+		}
+
+		if (bkey_cmp(insert, k) < 0 &&
+		    bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
+			/*
+			 * We overlapped in the middle of an existing key: that
+			 * means we have to split the old key. But we have to do
+			 * slightly different things depending on whether the
+			 * old key has been written out yet.
+			 */
+
+			struct bkey *top;
+
+			subtract_dirty(k, KEY_START(insert), KEY_SIZE(insert));
+
+			if (bkey_written(b, k)) {
+				/*
+				 * We insert a new key to cover the top of the
+				 * old key, and the old key is modified in place
+				 * to represent the bottom split.
+				 *
+				 * It's completely arbitrary whether the new key
+				 * is the top or the bottom, but it has to match
+				 * up with what btree_sort_fixup() does - it
+				 * doesn't check for this kind of overlap, it
+				 * depends on us inserting a new key for the top
+				 * here.
+				 */
+				top = bch_bset_search(b, bset_tree_last(b),
+						      insert);
+				bch_bset_insert(b, top, k);
+			} else {
+				BKEY_PADDED(key) temp;
+				bkey_copy(&temp.key, k);
+				bch_bset_insert(b, k, &temp.key);
+				top = bkey_next(k);
+			}
+
+			bch_cut_front(insert, top);
+			bch_cut_back(&START_KEY(insert), k);
+			bch_bset_fix_invalidated_key(b, k);
+			goto out;
+		}
+
+		if (bkey_cmp(insert, k) < 0) {
+			bch_cut_front(insert, k);
+		} else {
+			if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
+				old_offset = KEY_START(insert);
+
+			if (bkey_written(b, k) &&
+			    bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
+				/*
+				 * Completely overwrote, so we don't have to
+				 * invalidate the binary search tree
+				 */
+				bch_cut_front(k, k);
+			} else {
+				__bch_cut_back(&START_KEY(insert), k);
+				bch_bset_fix_invalidated_key(b, k);
+			}
+		}
+
+		subtract_dirty(k, old_offset, old_size - KEY_SIZE(k));
+	}
+
+check_failed:
+	if (replace_key) {
+		if (!sectors_found) {
+			return true;
+		} else if (sectors_found < KEY_SIZE(insert)) {
+			SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
+				       (KEY_SIZE(insert) - sectors_found));
+			SET_KEY_SIZE(insert, sectors_found);
+		}
+	}
+out:
+	if (KEY_DIRTY(insert))
+		bcache_dev_sectors_dirty_add(c, KEY_INODE(insert),
+					     KEY_START(insert),
+					     KEY_SIZE(insert));
+
+	return false;
+}
+
+static bool bch_extent_invalid(struct btree_keys *bk, const struct bkey *k)
+{
+	struct btree *b = container_of(bk, struct btree, keys);
+	char buf[80];
+
+	if (!KEY_SIZE(k))
+		return true;
+
+	if (KEY_SIZE(k) > KEY_OFFSET(k))
+		goto bad;
+
+	if (__ptr_invalid(b->c, k))
+		goto bad;
+
+	return false;
+bad:
+	bch_extent_to_text(buf, sizeof(buf), k);
+	cache_bug(b->c, "spotted extent %s: %s", buf, bch_ptr_status(b->c, k));
+	return true;
+}
+
+static bool bch_extent_bad_expensive(struct btree *b, const struct bkey *k,
+				     unsigned ptr)
+{
+	struct bucket *g = PTR_BUCKET(b->c, k, ptr);
+	char buf[80];
+
+	if (mutex_trylock(&b->c->bucket_lock)) {
+		if (b->c->gc_mark_valid &&
+		    ((GC_MARK(g) != GC_MARK_DIRTY &&
+		      KEY_DIRTY(k)) ||
+		     GC_MARK(g) == GC_MARK_METADATA))
+			goto err;
+
+		if (g->prio == BTREE_PRIO)
+			goto err;
+
+		mutex_unlock(&b->c->bucket_lock);
+	}
+
+	return false;
+err:
+	mutex_unlock(&b->c->bucket_lock);
+	bch_extent_to_text(buf, sizeof(buf), k);
+	btree_bug(b,
+"inconsistent extent pointer %s:\nbucket %zu pin %i prio %i gen %i last_gc %i mark %llu gc_gen %i",
+		  buf, PTR_BUCKET_NR(b->c, k, ptr), atomic_read(&g->pin),
+		  g->prio, g->gen, g->last_gc, GC_MARK(g), g->gc_gen);
+	return true;
+}
+
+static bool bch_extent_bad(struct btree_keys *bk, const struct bkey *k)
+{
+	struct btree *b = container_of(bk, struct btree, keys);
+	struct bucket *g;
+	unsigned i, stale;
+
+	if (!KEY_PTRS(k) ||
+	    bch_extent_invalid(bk, k))
+		return true;
+
+	for (i = 0; i < KEY_PTRS(k); i++)
+		if (!ptr_available(b->c, k, i))
+			return true;
+
+	if (!expensive_debug_checks(b->c) && KEY_DIRTY(k))
+		return false;
+
+	for (i = 0; i < KEY_PTRS(k); i++) {
+		g = PTR_BUCKET(b->c, k, i);
+		stale = ptr_stale(b->c, k, i);
+
+		btree_bug_on(stale > 96, b,
+			     "key too stale: %i, need_gc %u",
+			     stale, b->c->need_gc);
+
+		btree_bug_on(stale && KEY_DIRTY(k) && KEY_SIZE(k),
+			     b, "stale dirty pointer");
+
+		if (stale)
+			return true;
+
+		if (expensive_debug_checks(b->c) &&
+		    bch_extent_bad_expensive(b, k, i))
+			return true;
+	}
+
+	return false;
+}
+
+static uint64_t merge_chksums(struct bkey *l, struct bkey *r)
+{
+	return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) &
+		~((uint64_t)1 << 63);
+}
+
+static bool bch_extent_merge(struct btree_keys *bk, struct bkey *l, struct bkey *r)
+{
+	struct btree *b = container_of(bk, struct btree, keys);
+	unsigned i;
+
+	if (key_merging_disabled(b->c))
+		return false;
+
+	for (i = 0; i < KEY_PTRS(l); i++)
+		if (l->ptr[i] + PTR(0, KEY_SIZE(l), 0) != r->ptr[i] ||
+		    PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i))
+			return false;
+
+	/* Keys with no pointers aren't restricted to one bucket and could
+	 * overflow KEY_SIZE
+	 */
+	if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) {
+		SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l));
+		SET_KEY_SIZE(l, USHRT_MAX);
+
+		bch_cut_front(l, r);
+		return false;
+	}
+
+	if (KEY_CSUM(l)) {
+		if (KEY_CSUM(r))
+			l->ptr[KEY_PTRS(l)] = merge_chksums(l, r);
+		else
+			SET_KEY_CSUM(l, 0);
+	}
+
+	SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r));
+	SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r));
+
+	return true;
+}
+
+const struct btree_keys_ops bch_extent_keys_ops = {
+	.sort_cmp	= bch_extent_sort_cmp,
+	.sort_fixup	= bch_extent_sort_fixup,
+	.insert_fixup	= bch_extent_insert_fixup,
+	.key_invalid	= bch_extent_invalid,
+	.key_bad	= bch_extent_bad,
+	.key_merge	= bch_extent_merge,
+	.key_to_text	= bch_extent_to_text,
+	.key_dump	= bch_bkey_dump,
+	.is_extents	= true,
+};