summary refs log tree commit diff
path: root/drivers/char/rtc.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/char/rtc.c')
-rw-r--r--drivers/char/rtc.c1311
1 files changed, 0 insertions, 1311 deletions
diff --git a/drivers/char/rtc.c b/drivers/char/rtc.c
deleted file mode 100644
index 3b91184b77ae..000000000000
--- a/drivers/char/rtc.c
+++ /dev/null
@@ -1,1311 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- *	Real Time Clock interface for Linux
- *
- *	Copyright (C) 1996 Paul Gortmaker
- *
- *	This driver allows use of the real time clock (built into
- *	nearly all computers) from user space. It exports the /dev/rtc
- *	interface supporting various ioctl() and also the
- *	/proc/driver/rtc pseudo-file for status information.
- *
- *	The ioctls can be used to set the interrupt behaviour and
- *	generation rate from the RTC via IRQ 8. Then the /dev/rtc
- *	interface can be used to make use of these timer interrupts,
- *	be they interval or alarm based.
- *
- *	The /dev/rtc interface will block on reads until an interrupt
- *	has been received. If a RTC interrupt has already happened,
- *	it will output an unsigned long and then block. The output value
- *	contains the interrupt status in the low byte and the number of
- *	interrupts since the last read in the remaining high bytes. The
- *	/dev/rtc interface can also be used with the select(2) call.
- *
- *	Based on other minimal char device drivers, like Alan's
- *	watchdog, Ted's random, etc. etc.
- *
- *	1.07	Paul Gortmaker.
- *	1.08	Miquel van Smoorenburg: disallow certain things on the
- *		DEC Alpha as the CMOS clock is also used for other things.
- *	1.09	Nikita Schmidt: epoch support and some Alpha cleanup.
- *	1.09a	Pete Zaitcev: Sun SPARC
- *	1.09b	Jeff Garzik: Modularize, init cleanup
- *	1.09c	Jeff Garzik: SMP cleanup
- *	1.10	Paul Barton-Davis: add support for async I/O
- *	1.10a	Andrea Arcangeli: Alpha updates
- *	1.10b	Andrew Morton: SMP lock fix
- *	1.10c	Cesar Barros: SMP locking fixes and cleanup
- *	1.10d	Paul Gortmaker: delete paranoia check in rtc_exit
- *	1.10e	Maciej W. Rozycki: Handle DECstation's year weirdness.
- *	1.11	Takashi Iwai: Kernel access functions
- *			      rtc_register/rtc_unregister/rtc_control
- *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
- *	1.12	Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
- *		CONFIG_HPET_EMULATE_RTC
- *	1.12a	Maciej W. Rozycki: Handle memory-mapped chips properly.
- *	1.12ac	Alan Cox: Allow read access to the day of week register
- *	1.12b	David John: Remove calls to the BKL.
- */
-
-#define RTC_VERSION		"1.12b"
-
-/*
- *	Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
- *	interrupts disabled. Due to the index-port/data-port (0x70/0x71)
- *	design of the RTC, we don't want two different things trying to
- *	get to it at once. (e.g. the periodic 11 min sync from
- *      kernel/time/ntp.c vs. this driver.)
- */
-
-#include <linux/interrupt.h>
-#include <linux/module.h>
-#include <linux/kernel.h>
-#include <linux/types.h>
-#include <linux/miscdevice.h>
-#include <linux/ioport.h>
-#include <linux/fcntl.h>
-#include <linux/mc146818rtc.h>
-#include <linux/init.h>
-#include <linux/poll.h>
-#include <linux/proc_fs.h>
-#include <linux/seq_file.h>
-#include <linux/spinlock.h>
-#include <linux/sched/signal.h>
-#include <linux/sysctl.h>
-#include <linux/wait.h>
-#include <linux/bcd.h>
-#include <linux/delay.h>
-#include <linux/uaccess.h>
-#include <linux/ratelimit.h>
-
-#include <asm/current.h>
-
-#ifdef CONFIG_X86
-#include <asm/hpet.h>
-#endif
-
-#ifdef CONFIG_SPARC32
-#include <linux/of.h>
-#include <linux/of_device.h>
-#include <asm/io.h>
-
-static unsigned long rtc_port;
-static int rtc_irq;
-#endif
-
-#ifdef	CONFIG_HPET_EMULATE_RTC
-#undef	RTC_IRQ
-#endif
-
-#ifdef RTC_IRQ
-static int rtc_has_irq = 1;
-#endif
-
-#ifndef CONFIG_HPET_EMULATE_RTC
-#define is_hpet_enabled()			0
-#define hpet_set_alarm_time(hrs, min, sec)	0
-#define hpet_set_periodic_freq(arg)		0
-#define hpet_mask_rtc_irq_bit(arg)		0
-#define hpet_set_rtc_irq_bit(arg)		0
-#define hpet_rtc_timer_init()			do { } while (0)
-#define hpet_rtc_dropped_irq()			0
-#define hpet_register_irq_handler(h)		({ 0; })
-#define hpet_unregister_irq_handler(h)		({ 0; })
-#ifdef RTC_IRQ
-static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
-{
-	return 0;
-}
-#endif
-#endif
-
-/*
- *	We sponge a minor off of the misc major. No need slurping
- *	up another valuable major dev number for this. If you add
- *	an ioctl, make sure you don't conflict with SPARC's RTC
- *	ioctls.
- */
-
-static struct fasync_struct *rtc_async_queue;
-
-static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
-
-#ifdef RTC_IRQ
-static void rtc_dropped_irq(struct timer_list *unused);
-
-static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq);
-#endif
-
-static ssize_t rtc_read(struct file *file, char __user *buf,
-			size_t count, loff_t *ppos);
-
-static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
-static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
-
-#ifdef RTC_IRQ
-static __poll_t rtc_poll(struct file *file, poll_table *wait);
-#endif
-
-static void get_rtc_alm_time(struct rtc_time *alm_tm);
-#ifdef RTC_IRQ
-static void set_rtc_irq_bit_locked(unsigned char bit);
-static void mask_rtc_irq_bit_locked(unsigned char bit);
-
-static inline void set_rtc_irq_bit(unsigned char bit)
-{
-	spin_lock_irq(&rtc_lock);
-	set_rtc_irq_bit_locked(bit);
-	spin_unlock_irq(&rtc_lock);
-}
-
-static void mask_rtc_irq_bit(unsigned char bit)
-{
-	spin_lock_irq(&rtc_lock);
-	mask_rtc_irq_bit_locked(bit);
-	spin_unlock_irq(&rtc_lock);
-}
-#endif
-
-#ifdef CONFIG_PROC_FS
-static int rtc_proc_show(struct seq_file *seq, void *v);
-#endif
-
-/*
- *	Bits in rtc_status. (6 bits of room for future expansion)
- */
-
-#define RTC_IS_OPEN		0x01	/* means /dev/rtc is in use	*/
-#define RTC_TIMER_ON		0x02	/* missed irq timer active	*/
-
-/*
- * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
- * protected by the spin lock rtc_lock. However, ioctl can still disable the
- * timer in rtc_status and then with del_timer after the interrupt has read
- * rtc_status but before mod_timer is called, which would then reenable the
- * timer (but you would need to have an awful timing before you'd trip on it)
- */
-static unsigned long rtc_status;	/* bitmapped status byte.	*/
-static unsigned long rtc_freq;		/* Current periodic IRQ rate	*/
-static unsigned long rtc_irq_data;	/* our output to the world	*/
-static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
-
-/*
- *	If this driver ever becomes modularised, it will be really nice
- *	to make the epoch retain its value across module reload...
- */
-
-static unsigned long epoch = 1900;	/* year corresponding to 0x00	*/
-
-static const unsigned char days_in_mo[] =
-{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
-
-/*
- * Returns true if a clock update is in progress
- */
-static inline unsigned char rtc_is_updating(void)
-{
-	unsigned long flags;
-	unsigned char uip;
-
-	spin_lock_irqsave(&rtc_lock, flags);
-	uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
-	spin_unlock_irqrestore(&rtc_lock, flags);
-	return uip;
-}
-
-#ifdef RTC_IRQ
-/*
- *	A very tiny interrupt handler. It runs with interrupts disabled,
- *	but there is possibility of conflicting with the set_rtc_mmss()
- *	call (the rtc irq and the timer irq can easily run at the same
- *	time in two different CPUs). So we need to serialize
- *	accesses to the chip with the rtc_lock spinlock that each
- *	architecture should implement in the timer code.
- *	(See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
- */
-
-static irqreturn_t rtc_interrupt(int irq, void *dev_id)
-{
-	/*
-	 *	Can be an alarm interrupt, update complete interrupt,
-	 *	or a periodic interrupt. We store the status in the
-	 *	low byte and the number of interrupts received since
-	 *	the last read in the remainder of rtc_irq_data.
-	 */
-
-	spin_lock(&rtc_lock);
-	rtc_irq_data += 0x100;
-	rtc_irq_data &= ~0xff;
-	if (is_hpet_enabled()) {
-		/*
-		 * In this case it is HPET RTC interrupt handler
-		 * calling us, with the interrupt information
-		 * passed as arg1, instead of irq.
-		 */
-		rtc_irq_data |= (unsigned long)irq & 0xF0;
-	} else {
-		rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
-	}
-
-	if (rtc_status & RTC_TIMER_ON)
-		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
-
-	spin_unlock(&rtc_lock);
-
-	wake_up_interruptible(&rtc_wait);
-
-	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
-
-	return IRQ_HANDLED;
-}
-#endif
-
-/*
- * sysctl-tuning infrastructure.
- */
-static struct ctl_table rtc_table[] = {
-	{
-		.procname	= "max-user-freq",
-		.data		= &rtc_max_user_freq,
-		.maxlen		= sizeof(int),
-		.mode		= 0644,
-		.proc_handler	= proc_dointvec,
-	},
-	{ }
-};
-
-static struct ctl_table rtc_root[] = {
-	{
-		.procname	= "rtc",
-		.mode		= 0555,
-		.child		= rtc_table,
-	},
-	{ }
-};
-
-static struct ctl_table dev_root[] = {
-	{
-		.procname	= "dev",
-		.mode		= 0555,
-		.child		= rtc_root,
-	},
-	{ }
-};
-
-static struct ctl_table_header *sysctl_header;
-
-static int __init init_sysctl(void)
-{
-    sysctl_header = register_sysctl_table(dev_root);
-    return 0;
-}
-
-static void __exit cleanup_sysctl(void)
-{
-    unregister_sysctl_table(sysctl_header);
-}
-
-/*
- *	Now all the various file operations that we export.
- */
-
-static ssize_t rtc_read(struct file *file, char __user *buf,
-			size_t count, loff_t *ppos)
-{
-#ifndef RTC_IRQ
-	return -EIO;
-#else
-	DECLARE_WAITQUEUE(wait, current);
-	unsigned long data;
-	ssize_t retval;
-
-	if (rtc_has_irq == 0)
-		return -EIO;
-
-	/*
-	 * Historically this function used to assume that sizeof(unsigned long)
-	 * is the same in userspace and kernelspace.  This lead to problems
-	 * for configurations with multiple ABIs such a the MIPS o32 and 64
-	 * ABIs supported on the same kernel.  So now we support read of both
-	 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
-	 * userspace ABI.
-	 */
-	if (count != sizeof(unsigned int) && count !=  sizeof(unsigned long))
-		return -EINVAL;
-
-	add_wait_queue(&rtc_wait, &wait);
-
-	do {
-		/* First make it right. Then make it fast. Putting this whole
-		 * block within the parentheses of a while would be too
-		 * confusing. And no, xchg() is not the answer. */
-
-		__set_current_state(TASK_INTERRUPTIBLE);
-
-		spin_lock_irq(&rtc_lock);
-		data = rtc_irq_data;
-		rtc_irq_data = 0;
-		spin_unlock_irq(&rtc_lock);
-
-		if (data != 0)
-			break;
-
-		if (file->f_flags & O_NONBLOCK) {
-			retval = -EAGAIN;
-			goto out;
-		}
-		if (signal_pending(current)) {
-			retval = -ERESTARTSYS;
-			goto out;
-		}
-		schedule();
-	} while (1);
-
-	if (count == sizeof(unsigned int)) {
-		retval = put_user(data,
-				  (unsigned int __user *)buf) ?: sizeof(int);
-	} else {
-		retval = put_user(data,
-				  (unsigned long __user *)buf) ?: sizeof(long);
-	}
-	if (!retval)
-		retval = count;
- out:
-	__set_current_state(TASK_RUNNING);
-	remove_wait_queue(&rtc_wait, &wait);
-
-	return retval;
-#endif
-}
-
-static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
-{
-	struct rtc_time wtime;
-
-#ifdef RTC_IRQ
-	if (rtc_has_irq == 0) {
-		switch (cmd) {
-		case RTC_AIE_OFF:
-		case RTC_AIE_ON:
-		case RTC_PIE_OFF:
-		case RTC_PIE_ON:
-		case RTC_UIE_OFF:
-		case RTC_UIE_ON:
-		case RTC_IRQP_READ:
-		case RTC_IRQP_SET:
-			return -EINVAL;
-		}
-	}
-#endif
-
-	switch (cmd) {
-#ifdef RTC_IRQ
-	case RTC_AIE_OFF:	/* Mask alarm int. enab. bit	*/
-	{
-		mask_rtc_irq_bit(RTC_AIE);
-		return 0;
-	}
-	case RTC_AIE_ON:	/* Allow alarm interrupts.	*/
-	{
-		set_rtc_irq_bit(RTC_AIE);
-		return 0;
-	}
-	case RTC_PIE_OFF:	/* Mask periodic int. enab. bit	*/
-	{
-		/* can be called from isr via rtc_control() */
-		unsigned long flags;
-
-		spin_lock_irqsave(&rtc_lock, flags);
-		mask_rtc_irq_bit_locked(RTC_PIE);
-		if (rtc_status & RTC_TIMER_ON) {
-			rtc_status &= ~RTC_TIMER_ON;
-			del_timer(&rtc_irq_timer);
-		}
-		spin_unlock_irqrestore(&rtc_lock, flags);
-
-		return 0;
-	}
-	case RTC_PIE_ON:	/* Allow periodic ints		*/
-	{
-		/* can be called from isr via rtc_control() */
-		unsigned long flags;
-
-		/*
-		 * We don't really want Joe User enabling more
-		 * than 64Hz of interrupts on a multi-user machine.
-		 */
-		if (!kernel && (rtc_freq > rtc_max_user_freq) &&
-						(!capable(CAP_SYS_RESOURCE)))
-			return -EACCES;
-
-		spin_lock_irqsave(&rtc_lock, flags);
-		if (!(rtc_status & RTC_TIMER_ON)) {
-			mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
-					2*HZ/100);
-			rtc_status |= RTC_TIMER_ON;
-		}
-		set_rtc_irq_bit_locked(RTC_PIE);
-		spin_unlock_irqrestore(&rtc_lock, flags);
-
-		return 0;
-	}
-	case RTC_UIE_OFF:	/* Mask ints from RTC updates.	*/
-	{
-		mask_rtc_irq_bit(RTC_UIE);
-		return 0;
-	}
-	case RTC_UIE_ON:	/* Allow ints for RTC updates.	*/
-	{
-		set_rtc_irq_bit(RTC_UIE);
-		return 0;
-	}
-#endif
-	case RTC_ALM_READ:	/* Read the present alarm time */
-	{
-		/*
-		 * This returns a struct rtc_time. Reading >= 0xc0
-		 * means "don't care" or "match all". Only the tm_hour,
-		 * tm_min, and tm_sec values are filled in.
-		 */
-		memset(&wtime, 0, sizeof(struct rtc_time));
-		get_rtc_alm_time(&wtime);
-		break;
-	}
-	case RTC_ALM_SET:	/* Store a time into the alarm */
-	{
-		/*
-		 * This expects a struct rtc_time. Writing 0xff means
-		 * "don't care" or "match all". Only the tm_hour,
-		 * tm_min and tm_sec are used.
-		 */
-		unsigned char hrs, min, sec;
-		struct rtc_time alm_tm;
-
-		if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
-				   sizeof(struct rtc_time)))
-			return -EFAULT;
-
-		hrs = alm_tm.tm_hour;
-		min = alm_tm.tm_min;
-		sec = alm_tm.tm_sec;
-
-		spin_lock_irq(&rtc_lock);
-		if (hpet_set_alarm_time(hrs, min, sec)) {
-			/*
-			 * Fallthru and set alarm time in CMOS too,
-			 * so that we will get proper value in RTC_ALM_READ
-			 */
-		}
-		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
-							RTC_ALWAYS_BCD) {
-			if (sec < 60)
-				sec = bin2bcd(sec);
-			else
-				sec = 0xff;
-
-			if (min < 60)
-				min = bin2bcd(min);
-			else
-				min = 0xff;
-
-			if (hrs < 24)
-				hrs = bin2bcd(hrs);
-			else
-				hrs = 0xff;
-		}
-		CMOS_WRITE(hrs, RTC_HOURS_ALARM);
-		CMOS_WRITE(min, RTC_MINUTES_ALARM);
-		CMOS_WRITE(sec, RTC_SECONDS_ALARM);
-		spin_unlock_irq(&rtc_lock);
-
-		return 0;
-	}
-	case RTC_RD_TIME:	/* Read the time/date from RTC	*/
-	{
-		memset(&wtime, 0, sizeof(struct rtc_time));
-		rtc_get_rtc_time(&wtime);
-		break;
-	}
-	case RTC_SET_TIME:	/* Set the RTC */
-	{
-		struct rtc_time rtc_tm;
-		unsigned char mon, day, hrs, min, sec, leap_yr;
-		unsigned char save_control, save_freq_select;
-		unsigned int yrs;
-#ifdef CONFIG_MACH_DECSTATION
-		unsigned int real_yrs;
-#endif
-
-		if (!capable(CAP_SYS_TIME))
-			return -EACCES;
-
-		if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
-				   sizeof(struct rtc_time)))
-			return -EFAULT;
-
-		yrs = rtc_tm.tm_year + 1900;
-		mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
-		day = rtc_tm.tm_mday;
-		hrs = rtc_tm.tm_hour;
-		min = rtc_tm.tm_min;
-		sec = rtc_tm.tm_sec;
-
-		if (yrs < 1970)
-			return -EINVAL;
-
-		leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
-
-		if ((mon > 12) || (day == 0))
-			return -EINVAL;
-
-		if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
-			return -EINVAL;
-
-		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
-			return -EINVAL;
-
-		yrs -= epoch;
-		if (yrs > 255)		/* They are unsigned */
-			return -EINVAL;
-
-		spin_lock_irq(&rtc_lock);
-#ifdef CONFIG_MACH_DECSTATION
-		real_yrs = yrs;
-		yrs = 72;
-
-		/*
-		 * We want to keep the year set to 73 until March
-		 * for non-leap years, so that Feb, 29th is handled
-		 * correctly.
-		 */
-		if (!leap_yr && mon < 3) {
-			real_yrs--;
-			yrs = 73;
-		}
-#endif
-		/* These limits and adjustments are independent of
-		 * whether the chip is in binary mode or not.
-		 */
-		if (yrs > 169) {
-			spin_unlock_irq(&rtc_lock);
-			return -EINVAL;
-		}
-		if (yrs >= 100)
-			yrs -= 100;
-
-		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
-		    || RTC_ALWAYS_BCD) {
-			sec = bin2bcd(sec);
-			min = bin2bcd(min);
-			hrs = bin2bcd(hrs);
-			day = bin2bcd(day);
-			mon = bin2bcd(mon);
-			yrs = bin2bcd(yrs);
-		}
-
-		save_control = CMOS_READ(RTC_CONTROL);
-		CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
-		save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
-		CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
-
-#ifdef CONFIG_MACH_DECSTATION
-		CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
-#endif
-		CMOS_WRITE(yrs, RTC_YEAR);
-		CMOS_WRITE(mon, RTC_MONTH);
-		CMOS_WRITE(day, RTC_DAY_OF_MONTH);
-		CMOS_WRITE(hrs, RTC_HOURS);
-		CMOS_WRITE(min, RTC_MINUTES);
-		CMOS_WRITE(sec, RTC_SECONDS);
-
-		CMOS_WRITE(save_control, RTC_CONTROL);
-		CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
-
-		spin_unlock_irq(&rtc_lock);
-		return 0;
-	}
-#ifdef RTC_IRQ
-	case RTC_IRQP_READ:	/* Read the periodic IRQ rate.	*/
-	{
-		return put_user(rtc_freq, (unsigned long __user *)arg);
-	}
-	case RTC_IRQP_SET:	/* Set periodic IRQ rate.	*/
-	{
-		int tmp = 0;
-		unsigned char val;
-		/* can be called from isr via rtc_control() */
-		unsigned long flags;
-
-		/*
-		 * The max we can do is 8192Hz.
-		 */
-		if ((arg < 2) || (arg > 8192))
-			return -EINVAL;
-		/*
-		 * We don't really want Joe User generating more
-		 * than 64Hz of interrupts on a multi-user machine.
-		 */
-		if (!kernel && (arg > rtc_max_user_freq) &&
-					!capable(CAP_SYS_RESOURCE))
-			return -EACCES;
-
-		while (arg > (1<<tmp))
-			tmp++;
-
-		/*
-		 * Check that the input was really a power of 2.
-		 */
-		if (arg != (1<<tmp))
-			return -EINVAL;
-
-		rtc_freq = arg;
-
-		spin_lock_irqsave(&rtc_lock, flags);
-		if (hpet_set_periodic_freq(arg)) {
-			spin_unlock_irqrestore(&rtc_lock, flags);
-			return 0;
-		}
-
-		val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
-		val |= (16 - tmp);
-		CMOS_WRITE(val, RTC_FREQ_SELECT);
-		spin_unlock_irqrestore(&rtc_lock, flags);
-		return 0;
-	}
-#endif
-	case RTC_EPOCH_READ:	/* Read the epoch.	*/
-	{
-		return put_user(epoch, (unsigned long __user *)arg);
-	}
-	case RTC_EPOCH_SET:	/* Set the epoch.	*/
-	{
-		/*
-		 * There were no RTC clocks before 1900.
-		 */
-		if (arg < 1900)
-			return -EINVAL;
-
-		if (!capable(CAP_SYS_TIME))
-			return -EACCES;
-
-		epoch = arg;
-		return 0;
-	}
-	default:
-		return -ENOTTY;
-	}
-	return copy_to_user((void __user *)arg,
-			    &wtime, sizeof wtime) ? -EFAULT : 0;
-}
-
-static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
-{
-	long ret;
-	ret = rtc_do_ioctl(cmd, arg, 0);
-	return ret;
-}
-
-/*
- *	We enforce only one user at a time here with the open/close.
- *	Also clear the previous interrupt data on an open, and clean
- *	up things on a close.
- */
-static int rtc_open(struct inode *inode, struct file *file)
-{
-	spin_lock_irq(&rtc_lock);
-
-	if (rtc_status & RTC_IS_OPEN)
-		goto out_busy;
-
-	rtc_status |= RTC_IS_OPEN;
-
-	rtc_irq_data = 0;
-	spin_unlock_irq(&rtc_lock);
-	return 0;
-
-out_busy:
-	spin_unlock_irq(&rtc_lock);
-	return -EBUSY;
-}
-
-static int rtc_fasync(int fd, struct file *filp, int on)
-{
-	return fasync_helper(fd, filp, on, &rtc_async_queue);
-}
-
-static int rtc_release(struct inode *inode, struct file *file)
-{
-#ifdef RTC_IRQ
-	unsigned char tmp;
-
-	if (rtc_has_irq == 0)
-		goto no_irq;
-
-	/*
-	 * Turn off all interrupts once the device is no longer
-	 * in use, and clear the data.
-	 */
-
-	spin_lock_irq(&rtc_lock);
-	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
-		tmp = CMOS_READ(RTC_CONTROL);
-		tmp &=  ~RTC_PIE;
-		tmp &=  ~RTC_AIE;
-		tmp &=  ~RTC_UIE;
-		CMOS_WRITE(tmp, RTC_CONTROL);
-		CMOS_READ(RTC_INTR_FLAGS);
-	}
-	if (rtc_status & RTC_TIMER_ON) {
-		rtc_status &= ~RTC_TIMER_ON;
-		del_timer(&rtc_irq_timer);
-	}
-	spin_unlock_irq(&rtc_lock);
-
-no_irq:
-#endif
-
-	spin_lock_irq(&rtc_lock);
-	rtc_irq_data = 0;
-	rtc_status &= ~RTC_IS_OPEN;
-	spin_unlock_irq(&rtc_lock);
-
-	return 0;
-}
-
-#ifdef RTC_IRQ
-static __poll_t rtc_poll(struct file *file, poll_table *wait)
-{
-	unsigned long l;
-
-	if (rtc_has_irq == 0)
-		return 0;
-
-	poll_wait(file, &rtc_wait, wait);
-
-	spin_lock_irq(&rtc_lock);
-	l = rtc_irq_data;
-	spin_unlock_irq(&rtc_lock);
-
-	if (l != 0)
-		return EPOLLIN | EPOLLRDNORM;
-	return 0;
-}
-#endif
-
-/*
- *	The various file operations we support.
- */
-
-static const struct file_operations rtc_fops = {
-	.owner		= THIS_MODULE,
-	.llseek		= no_llseek,
-	.read		= rtc_read,
-#ifdef RTC_IRQ
-	.poll		= rtc_poll,
-#endif
-	.unlocked_ioctl	= rtc_ioctl,
-	.open		= rtc_open,
-	.release	= rtc_release,
-	.fasync		= rtc_fasync,
-};
-
-static struct miscdevice rtc_dev = {
-	.minor		= RTC_MINOR,
-	.name		= "rtc",
-	.fops		= &rtc_fops,
-};
-
-static resource_size_t rtc_size;
-
-static struct resource * __init rtc_request_region(resource_size_t size)
-{
-	struct resource *r;
-
-	if (RTC_IOMAPPED)
-		r = request_region(RTC_PORT(0), size, "rtc");
-	else
-		r = request_mem_region(RTC_PORT(0), size, "rtc");
-
-	if (r)
-		rtc_size = size;
-
-	return r;
-}
-
-static void rtc_release_region(void)
-{
-	if (RTC_IOMAPPED)
-		release_region(RTC_PORT(0), rtc_size);
-	else
-		release_mem_region(RTC_PORT(0), rtc_size);
-}
-
-static int __init rtc_init(void)
-{
-#ifdef CONFIG_PROC_FS
-	struct proc_dir_entry *ent;
-#endif
-#if defined(__alpha__) || defined(__mips__)
-	unsigned int year, ctrl;
-	char *guess = NULL;
-#endif
-#ifdef CONFIG_SPARC32
-	struct device_node *ebus_dp;
-	struct platform_device *op;
-#else
-	void *r;
-#ifdef RTC_IRQ
-	irq_handler_t rtc_int_handler_ptr;
-#endif
-#endif
-
-#ifdef CONFIG_SPARC32
-	for_each_node_by_name(ebus_dp, "ebus") {
-		struct device_node *dp;
-		for_each_child_of_node(ebus_dp, dp) {
-			if (of_node_name_eq(dp, "rtc")) {
-				op = of_find_device_by_node(dp);
-				if (op) {
-					rtc_port = op->resource[0].start;
-					rtc_irq = op->irqs[0];
-					goto found;
-				}
-			}
-		}
-	}
-	rtc_has_irq = 0;
-	printk(KERN_ERR "rtc_init: no PC rtc found\n");
-	return -EIO;
-
-found:
-	if (!rtc_irq) {
-		rtc_has_irq = 0;
-		goto no_irq;
-	}
-
-	/*
-	 * XXX Interrupt pin #7 in Espresso is shared between RTC and
-	 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
-	 */
-	if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
-			(void *)&rtc_port)) {
-		rtc_has_irq = 0;
-		printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
-		return -EIO;
-	}
-no_irq:
-#else
-	r = rtc_request_region(RTC_IO_EXTENT);
-
-	/*
-	 * If we've already requested a smaller range (for example, because
-	 * PNPBIOS or ACPI told us how the device is configured), the request
-	 * above might fail because it's too big.
-	 *
-	 * If so, request just the range we actually use.
-	 */
-	if (!r)
-		r = rtc_request_region(RTC_IO_EXTENT_USED);
-	if (!r) {
-#ifdef RTC_IRQ
-		rtc_has_irq = 0;
-#endif
-		printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
-		       (long)(RTC_PORT(0)));
-		return -EIO;
-	}
-
-#ifdef RTC_IRQ
-	if (is_hpet_enabled()) {
-		int err;
-
-		rtc_int_handler_ptr = hpet_rtc_interrupt;
-		err = hpet_register_irq_handler(rtc_interrupt);
-		if (err != 0) {
-			printk(KERN_WARNING "hpet_register_irq_handler failed "
-					"in rtc_init().");
-			return err;
-		}
-	} else {
-		rtc_int_handler_ptr = rtc_interrupt;
-	}
-
-	if (request_irq(RTC_IRQ, rtc_int_handler_ptr, 0, "rtc", NULL)) {
-		/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
-		rtc_has_irq = 0;
-		printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
-		rtc_release_region();
-
-		return -EIO;
-	}
-	hpet_rtc_timer_init();
-
-#endif
-
-#endif /* CONFIG_SPARC32 vs. others */
-
-	if (misc_register(&rtc_dev)) {
-#ifdef RTC_IRQ
-		free_irq(RTC_IRQ, NULL);
-		hpet_unregister_irq_handler(rtc_interrupt);
-		rtc_has_irq = 0;
-#endif
-		rtc_release_region();
-		return -ENODEV;
-	}
-
-#ifdef CONFIG_PROC_FS
-	ent = proc_create_single("driver/rtc", 0, NULL, rtc_proc_show);
-	if (!ent)
-		printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
-#endif
-
-#if defined(__alpha__) || defined(__mips__)
-	rtc_freq = HZ;
-
-	/* Each operating system on an Alpha uses its own epoch.
-	   Let's try to guess which one we are using now. */
-
-	if (rtc_is_updating() != 0)
-		msleep(20);
-
-	spin_lock_irq(&rtc_lock);
-	year = CMOS_READ(RTC_YEAR);
-	ctrl = CMOS_READ(RTC_CONTROL);
-	spin_unlock_irq(&rtc_lock);
-
-	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
-		year = bcd2bin(year);       /* This should never happen... */
-
-	if (year < 20) {
-		epoch = 2000;
-		guess = "SRM (post-2000)";
-	} else if (year >= 20 && year < 48) {
-		epoch = 1980;
-		guess = "ARC console";
-	} else if (year >= 48 && year < 72) {
-		epoch = 1952;
-		guess = "Digital UNIX";
-#if defined(__mips__)
-	} else if (year >= 72 && year < 74) {
-		epoch = 2000;
-		guess = "Digital DECstation";
-#else
-	} else if (year >= 70) {
-		epoch = 1900;
-		guess = "Standard PC (1900)";
-#endif
-	}
-	if (guess)
-		printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
-			guess, epoch);
-#endif
-#ifdef RTC_IRQ
-	if (rtc_has_irq == 0)
-		goto no_irq2;
-
-	spin_lock_irq(&rtc_lock);
-	rtc_freq = 1024;
-	if (!hpet_set_periodic_freq(rtc_freq)) {
-		/*
-		 * Initialize periodic frequency to CMOS reset default,
-		 * which is 1024Hz
-		 */
-		CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
-			   RTC_FREQ_SELECT);
-	}
-	spin_unlock_irq(&rtc_lock);
-no_irq2:
-#endif
-
-	(void) init_sysctl();
-
-	printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
-
-	return 0;
-}
-
-static void __exit rtc_exit(void)
-{
-	cleanup_sysctl();
-	remove_proc_entry("driver/rtc", NULL);
-	misc_deregister(&rtc_dev);
-
-#ifdef CONFIG_SPARC32
-	if (rtc_has_irq)
-		free_irq(rtc_irq, &rtc_port);
-#else
-	rtc_release_region();
-#ifdef RTC_IRQ
-	if (rtc_has_irq) {
-		free_irq(RTC_IRQ, NULL);
-		hpet_unregister_irq_handler(hpet_rtc_interrupt);
-	}
-#endif
-#endif /* CONFIG_SPARC32 */
-}
-
-module_init(rtc_init);
-module_exit(rtc_exit);
-
-#ifdef RTC_IRQ
-/*
- *	At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
- *	(usually during an IDE disk interrupt, with IRQ unmasking off)
- *	Since the interrupt handler doesn't get called, the IRQ status
- *	byte doesn't get read, and the RTC stops generating interrupts.
- *	A timer is set, and will call this function if/when that happens.
- *	To get it out of this stalled state, we just read the status.
- *	At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
- *	(You *really* shouldn't be trying to use a non-realtime system
- *	for something that requires a steady > 1KHz signal anyways.)
- */
-
-static void rtc_dropped_irq(struct timer_list *unused)
-{
-	unsigned long freq;
-
-	spin_lock_irq(&rtc_lock);
-
-	if (hpet_rtc_dropped_irq()) {
-		spin_unlock_irq(&rtc_lock);
-		return;
-	}
-
-	/* Just in case someone disabled the timer from behind our back... */
-	if (rtc_status & RTC_TIMER_ON)
-		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
-
-	rtc_irq_data += ((rtc_freq/HZ)<<8);
-	rtc_irq_data &= ~0xff;
-	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);	/* restart */
-
-	freq = rtc_freq;
-
-	spin_unlock_irq(&rtc_lock);
-
-	printk_ratelimited(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
-			   freq);
-
-	/* Now we have new data */
-	wake_up_interruptible(&rtc_wait);
-
-	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
-}
-#endif
-
-#ifdef CONFIG_PROC_FS
-/*
- *	Info exported via "/proc/driver/rtc".
- */
-
-static int rtc_proc_show(struct seq_file *seq, void *v)
-{
-#define YN(bit) ((ctrl & bit) ? "yes" : "no")
-#define NY(bit) ((ctrl & bit) ? "no" : "yes")
-	struct rtc_time tm;
-	unsigned char batt, ctrl;
-	unsigned long freq;
-
-	spin_lock_irq(&rtc_lock);
-	batt = CMOS_READ(RTC_VALID) & RTC_VRT;
-	ctrl = CMOS_READ(RTC_CONTROL);
-	freq = rtc_freq;
-	spin_unlock_irq(&rtc_lock);
-
-
-	rtc_get_rtc_time(&tm);
-
-	/*
-	 * There is no way to tell if the luser has the RTC set for local
-	 * time or for Universal Standard Time (GMT). Probably local though.
-	 */
-	seq_printf(seq,
-		   "rtc_time\t: %ptRt\n"
-		   "rtc_date\t: %ptRd\n"
-		   "rtc_epoch\t: %04lu\n",
-		   &tm, &tm, epoch);
-
-	get_rtc_alm_time(&tm);
-
-	/*
-	 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
-	 * match any value for that particular field. Values that are
-	 * greater than a valid time, but less than 0xc0 shouldn't appear.
-	 */
-	seq_puts(seq, "alarm\t\t: ");
-	if (tm.tm_hour <= 24)
-		seq_printf(seq, "%02d:", tm.tm_hour);
-	else
-		seq_puts(seq, "**:");
-
-	if (tm.tm_min <= 59)
-		seq_printf(seq, "%02d:", tm.tm_min);
-	else
-		seq_puts(seq, "**:");
-
-	if (tm.tm_sec <= 59)
-		seq_printf(seq, "%02d\n", tm.tm_sec);
-	else
-		seq_puts(seq, "**\n");
-
-	seq_printf(seq,
-		   "DST_enable\t: %s\n"
-		   "BCD\t\t: %s\n"
-		   "24hr\t\t: %s\n"
-		   "square_wave\t: %s\n"
-		   "alarm_IRQ\t: %s\n"
-		   "update_IRQ\t: %s\n"
-		   "periodic_IRQ\t: %s\n"
-		   "periodic_freq\t: %ld\n"
-		   "batt_status\t: %s\n",
-		   YN(RTC_DST_EN),
-		   NY(RTC_DM_BINARY),
-		   YN(RTC_24H),
-		   YN(RTC_SQWE),
-		   YN(RTC_AIE),
-		   YN(RTC_UIE),
-		   YN(RTC_PIE),
-		   freq,
-		   batt ? "okay" : "dead");
-
-	return  0;
-#undef YN
-#undef NY
-}
-#endif
-
-static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
-{
-	unsigned long uip_watchdog = jiffies, flags;
-	unsigned char ctrl;
-#ifdef CONFIG_MACH_DECSTATION
-	unsigned int real_year;
-#endif
-
-	/*
-	 * read RTC once any update in progress is done. The update
-	 * can take just over 2ms. We wait 20ms. There is no need to
-	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
-	 * If you need to know *exactly* when a second has started, enable
-	 * periodic update complete interrupts, (via ioctl) and then
-	 * immediately read /dev/rtc which will block until you get the IRQ.
-	 * Once the read clears, read the RTC time (again via ioctl). Easy.
-	 */
-
-	while (rtc_is_updating() != 0 &&
-	       time_before(jiffies, uip_watchdog + 2*HZ/100))
-		cpu_relax();
-
-	/*
-	 * Only the values that we read from the RTC are set. We leave
-	 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
-	 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
-	 * only updated by the RTC when initially set to a non-zero value.
-	 */
-	spin_lock_irqsave(&rtc_lock, flags);
-	rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
-	rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
-	rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
-	rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
-	rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
-	rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
-	/* Only set from 2.6.16 onwards */
-	rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
-
-#ifdef CONFIG_MACH_DECSTATION
-	real_year = CMOS_READ(RTC_DEC_YEAR);
-#endif
-	ctrl = CMOS_READ(RTC_CONTROL);
-	spin_unlock_irqrestore(&rtc_lock, flags);
-
-	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
-		rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
-		rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
-		rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
-		rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
-		rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
-		rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
-		rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
-	}
-
-#ifdef CONFIG_MACH_DECSTATION
-	rtc_tm->tm_year += real_year - 72;
-#endif
-
-	/*
-	 * Account for differences between how the RTC uses the values
-	 * and how they are defined in a struct rtc_time;
-	 */
-	rtc_tm->tm_year += epoch - 1900;
-	if (rtc_tm->tm_year <= 69)
-		rtc_tm->tm_year += 100;
-
-	rtc_tm->tm_mon--;
-}
-
-static void get_rtc_alm_time(struct rtc_time *alm_tm)
-{
-	unsigned char ctrl;
-
-	/*
-	 * Only the values that we read from the RTC are set. That
-	 * means only tm_hour, tm_min, and tm_sec.
-	 */
-	spin_lock_irq(&rtc_lock);
-	alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
-	alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
-	alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
-	ctrl = CMOS_READ(RTC_CONTROL);
-	spin_unlock_irq(&rtc_lock);
-
-	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
-		alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
-		alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
-		alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
-	}
-}
-
-#ifdef RTC_IRQ
-/*
- * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
- * Rumour has it that if you frob the interrupt enable/disable
- * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
- * ensure you actually start getting interrupts. Probably for
- * compatibility with older/broken chipset RTC implementations.
- * We also clear out any old irq data after an ioctl() that
- * meddles with the interrupt enable/disable bits.
- */
-
-static void mask_rtc_irq_bit_locked(unsigned char bit)
-{
-	unsigned char val;
-
-	if (hpet_mask_rtc_irq_bit(bit))
-		return;
-	val = CMOS_READ(RTC_CONTROL);
-	val &=  ~bit;
-	CMOS_WRITE(val, RTC_CONTROL);
-	CMOS_READ(RTC_INTR_FLAGS);
-
-	rtc_irq_data = 0;
-}
-
-static void set_rtc_irq_bit_locked(unsigned char bit)
-{
-	unsigned char val;
-
-	if (hpet_set_rtc_irq_bit(bit))
-		return;
-	val = CMOS_READ(RTC_CONTROL);
-	val |= bit;
-	CMOS_WRITE(val, RTC_CONTROL);
-	CMOS_READ(RTC_INTR_FLAGS);
-
-	rtc_irq_data = 0;
-}
-#endif
-
-MODULE_AUTHOR("Paul Gortmaker");
-MODULE_LICENSE("GPL");
-MODULE_ALIAS_MISCDEV(RTC_MINOR);