summary refs log tree commit diff
path: root/arch/x86
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86')
-rw-r--r--arch/x86/Kbuild2
-rw-r--r--arch/x86/Kconfig93
-rw-r--r--arch/x86/Makefile24
-rw-r--r--arch/x86/Makefile.um9
-rw-r--r--arch/x86/boot/boot.h2
-rw-r--r--arch/x86/boot/compressed/eboot.c65
-rw-r--r--arch/x86/boot/header.S6
-rw-r--r--arch/x86/boot/memory.c31
-rw-r--r--arch/x86/boot/tools/build.c1
-rw-r--r--arch/x86/configs/i386_defconfig1
-rw-r--r--arch/x86/configs/x86_64_defconfig1
-rw-r--r--arch/x86/crypto/Makefile18
-rw-r--r--arch/x86/crypto/aesni-intel_avx-x86_64.S2125
-rw-r--r--arch/x86/crypto/aesni-intel_glue.c353
-rw-r--r--arch/x86/crypto/cast5_avx_glue.c2
-rw-r--r--arch/x86/crypto/cast6_avx_glue.c2
-rw-r--r--arch/x86/crypto/chacha-avx2-x86_64.S1025
-rw-r--r--arch/x86/crypto/chacha-avx512vl-x86_64.S836
-rw-r--r--arch/x86/crypto/chacha-ssse3-x86_64.S (renamed from arch/x86/crypto/chacha20-ssse3-x86_64.S)327
-rw-r--r--arch/x86/crypto/chacha20-avx2-x86_64.S448
-rw-r--r--arch/x86/crypto/chacha20_glue.c146
-rw-r--r--arch/x86/crypto/chacha_glue.c304
-rw-r--r--arch/x86/crypto/nh-avx2-x86_64.S157
-rw-r--r--arch/x86/crypto/nh-sse2-x86_64.S123
-rw-r--r--arch/x86/crypto/nhpoly1305-avx2-glue.c77
-rw-r--r--arch/x86/crypto/nhpoly1305-sse2-glue.c76
-rw-r--r--arch/x86/crypto/poly1305_glue.c20
-rw-r--r--arch/x86/entry/calling.h2
-rw-r--r--arch/x86/entry/common.c2
-rw-r--r--arch/x86/entry/entry_64.S4
-rw-r--r--arch/x86/entry/vdso/Makefile7
-rw-r--r--arch/x86/entry/vdso/vdso-layout.lds.S27
-rw-r--r--arch/x86/entry/vdso/vdso2c.c8
-rw-r--r--arch/x86/entry/vdso/vma.c2
-rw-r--r--arch/x86/entry/vsyscall/vsyscall_64.c4
-rw-r--r--arch/x86/events/core.c20
-rw-r--r--arch/x86/events/intel/bts.c2
-rw-r--r--arch/x86/events/intel/core.c70
-rw-r--r--arch/x86/events/intel/ds.c2
-rw-r--r--arch/x86/events/intel/p4.c2
-rw-r--r--arch/x86/events/intel/pt.c60
-rw-r--r--arch/x86/events/intel/pt.h58
-rw-r--r--arch/x86/events/intel/uncore.h33
-rw-r--r--arch/x86/events/intel/uncore_snb.c121
-rw-r--r--arch/x86/events/perf_event.h13
-rw-r--r--arch/x86/hyperv/nested.c80
-rw-r--r--arch/x86/ia32/ia32_aout.c4
-rw-r--r--arch/x86/ia32/ia32_signal.c8
-rw-r--r--arch/x86/ia32/sys_ia32.c2
-rw-r--r--arch/x86/include/asm/alternative-asm.h20
-rw-r--r--arch/x86/include/asm/alternative.h13
-rw-r--r--arch/x86/include/asm/arch_hweight.h10
-rw-r--r--arch/x86/include/asm/asm.h53
-rw-r--r--arch/x86/include/asm/bitops.h2
-rw-r--r--arch/x86/include/asm/bootparam_utils.h1
-rw-r--r--arch/x86/include/asm/bug.h98
-rw-r--r--arch/x86/include/asm/checksum_32.h2
-rw-r--r--arch/x86/include/asm/cmpxchg.h2
-rw-r--r--arch/x86/include/asm/cpufeature.h82
-rw-r--r--arch/x86/include/asm/cpufeatures.h2
-rw-r--r--arch/x86/include/asm/crash.h1
-rw-r--r--arch/x86/include/asm/disabled-features.h8
-rw-r--r--arch/x86/include/asm/efi.h10
-rw-r--r--arch/x86/include/asm/fpu/api.h15
-rw-r--r--arch/x86/include/asm/fpu/internal.h5
-rw-r--r--arch/x86/include/asm/fsgsbase.h15
-rw-r--r--arch/x86/include/asm/hyperv-tlfs.h335
-rw-r--r--arch/x86/include/asm/intel_pt.h26
-rw-r--r--arch/x86/include/asm/io.h8
-rw-r--r--arch/x86/include/asm/irq.h7
-rw-r--r--arch/x86/include/asm/irq_work.h1
-rw-r--r--arch/x86/include/asm/jump_label.h72
-rw-r--r--arch/x86/include/asm/kvm_host.h28
-rw-r--r--arch/x86/include/asm/kvm_para.h1
-rw-r--r--arch/x86/include/asm/mce.h2
-rw-r--r--arch/x86/include/asm/mshyperv.h17
-rw-r--r--arch/x86/include/asm/msr-index.h43
-rw-r--r--arch/x86/include/asm/nospec-branch.h27
-rw-r--r--arch/x86/include/asm/page_64_types.h12
-rw-r--r--arch/x86/include/asm/paravirt.h5
-rw-r--r--arch/x86/include/asm/paravirt_types.h56
-rw-r--r--arch/x86/include/asm/pci_x86.h7
-rw-r--r--arch/x86/include/asm/pgalloc.h31
-rw-r--r--arch/x86/include/asm/pgtable_32.h2
-rw-r--r--arch/x86/include/asm/pgtable_64_types.h9
-rw-r--r--arch/x86/include/asm/pgtable_types.h8
-rw-r--r--arch/x86/include/asm/preempt.h3
-rw-r--r--arch/x86/include/asm/processor.h2
-rw-r--r--arch/x86/include/asm/qspinlock.h13
-rw-r--r--arch/x86/include/asm/reboot.h1
-rw-r--r--arch/x86/include/asm/refcount.h81
-rw-r--r--arch/x86/include/asm/resctrl_sched.h (renamed from arch/x86/include/asm/intel_rdt_sched.h)28
-rw-r--r--arch/x86/include/asm/setup.h3
-rw-r--r--arch/x86/include/asm/sighandling.h5
-rw-r--r--arch/x86/include/asm/smp.h6
-rw-r--r--arch/x86/include/asm/spec-ctrl.h20
-rw-r--r--arch/x86/include/asm/string_64.h18
-rw-r--r--arch/x86/include/asm/svm.h7
-rw-r--r--arch/x86/include/asm/switch_to.h3
-rw-r--r--arch/x86/include/asm/thread_info.h28
-rw-r--r--arch/x86/include/asm/tlbflush.h8
-rw-r--r--arch/x86/include/asm/trace/exceptions.h1
-rw-r--r--arch/x86/include/asm/trace/hyperv.h14
-rw-r--r--arch/x86/include/asm/trace/irq_vectors.h1
-rw-r--r--arch/x86/include/asm/traps.h59
-rw-r--r--arch/x86/include/asm/tsc.h1
-rw-r--r--arch/x86/include/asm/uaccess.h97
-rw-r--r--arch/x86/include/asm/vmx.h9
-rw-r--r--arch/x86/include/asm/x86_init.h2
-rw-r--r--arch/x86/include/asm/xen/page.h35
-rw-r--r--arch/x86/include/uapi/asm/bootparam.h7
-rw-r--r--arch/x86/kernel/Makefile4
-rw-r--r--arch/x86/kernel/acpi/boot.c4
-rw-r--r--arch/x86/kernel/amd_gart_64.c63
-rw-r--r--arch/x86/kernel/amd_nb.c53
-rw-r--r--arch/x86/kernel/aperture_64.c25
-rw-r--r--arch/x86/kernel/apic/apic.c1
-rw-r--r--arch/x86/kernel/apic/apic_flat_64.c7
-rw-r--r--arch/x86/kernel/apic/vector.c1
-rw-r--r--arch/x86/kernel/apic/x2apic_uv_x.c4
-rw-r--r--arch/x86/kernel/asm-offsets.c3
-rw-r--r--arch/x86/kernel/check.c3
-rw-r--r--arch/x86/kernel/cpu/Makefile7
-rw-r--r--arch/x86/kernel/cpu/amd.c1
-rw-r--r--arch/x86/kernel/cpu/aperfmperf.c1
-rw-r--r--arch/x86/kernel/cpu/bugs.c546
-rw-r--r--arch/x86/kernel/cpu/cacheinfo.c1
-rw-r--r--arch/x86/kernel/cpu/common.c2
-rw-r--r--arch/x86/kernel/cpu/cpu.h3
-rw-r--r--arch/x86/kernel/cpu/mce/Makefile (renamed from arch/x86/kernel/cpu/mcheck/Makefile)10
-rw-r--r--arch/x86/kernel/cpu/mce/amd.c (renamed from arch/x86/kernel/cpu/mcheck/mce_amd.c)26
-rw-r--r--arch/x86/kernel/cpu/mce/apei.c (renamed from arch/x86/kernel/cpu/mcheck/mce-apei.c)2
-rw-r--r--arch/x86/kernel/cpu/mce/core.c (renamed from arch/x86/kernel/cpu/mcheck/mce.c)12
-rw-r--r--arch/x86/kernel/cpu/mce/dev-mcelog.c (renamed from arch/x86/kernel/cpu/mcheck/dev-mcelog.c)4
-rw-r--r--arch/x86/kernel/cpu/mce/genpool.c (renamed from arch/x86/kernel/cpu/mcheck/mce-genpool.c)2
-rw-r--r--arch/x86/kernel/cpu/mce/inject.c (renamed from arch/x86/kernel/cpu/mcheck/mce-inject.c)2
-rw-r--r--arch/x86/kernel/cpu/mce/intel.c (renamed from arch/x86/kernel/cpu/mcheck/mce_intel.c)2
-rw-r--r--arch/x86/kernel/cpu/mce/internal.h (renamed from arch/x86/kernel/cpu/mcheck/mce-internal.h)3
-rw-r--r--arch/x86/kernel/cpu/mce/p5.c (renamed from arch/x86/kernel/cpu/mcheck/p5.c)2
-rw-r--r--arch/x86/kernel/cpu/mce/severity.c (renamed from arch/x86/kernel/cpu/mcheck/mce-severity.c)2
-rw-r--r--arch/x86/kernel/cpu/mce/therm_throt.c (renamed from arch/x86/kernel/cpu/mcheck/therm_throt.c)5
-rw-r--r--arch/x86/kernel/cpu/mce/threshold.c (renamed from arch/x86/kernel/cpu/mcheck/threshold.c)5
-rw-r--r--arch/x86/kernel/cpu/mce/winchip.c (renamed from arch/x86/kernel/cpu/mcheck/winchip.c)2
-rw-r--r--arch/x86/kernel/cpu/microcode/amd.c470
-rw-r--r--arch/x86/kernel/cpu/microcode/core.c5
-rw-r--r--arch/x86/kernel/cpu/mshyperv.c11
-rw-r--r--arch/x86/kernel/cpu/mtrr/if.c2
-rw-r--r--arch/x86/kernel/cpu/resctrl/Makefile4
-rw-r--r--arch/x86/kernel/cpu/resctrl/core.c (renamed from arch/x86/kernel/cpu/intel_rdt.c)186
-rw-r--r--arch/x86/kernel/cpu/resctrl/ctrlmondata.c (renamed from arch/x86/kernel/cpu/intel_rdt_ctrlmondata.c)111
-rw-r--r--arch/x86/kernel/cpu/resctrl/internal.h (renamed from arch/x86/kernel/cpu/intel_rdt.h)55
-rw-r--r--arch/x86/kernel/cpu/resctrl/monitor.c (renamed from arch/x86/kernel/cpu/intel_rdt_monitor.c)16
-rw-r--r--arch/x86/kernel/cpu/resctrl/pseudo_lock.c (renamed from arch/x86/kernel/cpu/intel_rdt_pseudo_lock.c)40
-rw-r--r--arch/x86/kernel/cpu/resctrl/pseudo_lock_event.h (renamed from arch/x86/kernel/cpu/intel_rdt_pseudo_lock_event.h)2
-rw-r--r--arch/x86/kernel/cpu/resctrl/rdtgroup.c (renamed from arch/x86/kernel/cpu/intel_rdt_rdtgroup.c)61
-rw-r--r--arch/x86/kernel/cpu/scattered.c34
-rw-r--r--arch/x86/kernel/cpu/topology.c2
-rw-r--r--arch/x86/kernel/cpu/vmware.c2
-rw-r--r--arch/x86/kernel/crash.c1
-rw-r--r--arch/x86/kernel/crash_dump_64.c2
-rw-r--r--arch/x86/kernel/devicetree.c1
-rw-r--r--arch/x86/kernel/fpu/core.c6
-rw-r--r--arch/x86/kernel/fpu/signal.c8
-rw-r--r--arch/x86/kernel/fpu/xstate.c6
-rw-r--r--arch/x86/kernel/ftrace.c56
-rw-r--r--arch/x86/kernel/ftrace_64.S8
-rw-r--r--arch/x86/kernel/head32.c1
-rw-r--r--arch/x86/kernel/head64.c2
-rw-r--r--arch/x86/kernel/head_64.S2
-rw-r--r--arch/x86/kernel/ima_arch.c75
-rw-r--r--arch/x86/kernel/jailhouse.c1
-rw-r--r--arch/x86/kernel/kgdb.c11
-rw-r--r--arch/x86/kernel/kprobes/core.c10
-rw-r--r--arch/x86/kernel/kprobes/opt.c2
-rw-r--r--arch/x86/kernel/kvmclock.c15
-rw-r--r--arch/x86/kernel/ldt.c59
-rw-r--r--arch/x86/kernel/macros.S16
-rw-r--r--arch/x86/kernel/pci-calgary_64.c30
-rw-r--r--arch/x86/kernel/pci-dma.c2
-rw-r--r--arch/x86/kernel/pci-swiotlb.c4
-rw-r--r--arch/x86/kernel/process.c106
-rw-r--r--arch/x86/kernel/process.h39
-rw-r--r--arch/x86/kernel/process_32.c17
-rw-r--r--arch/x86/kernel/process_64.c120
-rw-r--r--arch/x86/kernel/ptrace.c9
-rw-r--r--arch/x86/kernel/quirks.c1
-rw-r--r--arch/x86/kernel/setup.c17
-rw-r--r--arch/x86/kernel/signal.c14
-rw-r--r--arch/x86/kernel/smpboot.c2
-rw-r--r--arch/x86/kernel/stacktrace.c2
-rw-r--r--arch/x86/kernel/sysfb_efi.c3
-rw-r--r--arch/x86/kernel/tboot.c2
-rw-r--r--arch/x86/kernel/tracepoint.c2
-rw-r--r--arch/x86/kernel/vm86_32.c4
-rw-r--r--arch/x86/kernel/vsmp_64.c84
-rw-r--r--arch/x86/kvm/Kconfig2
-rw-r--r--arch/x86/kvm/Makefile2
-rw-r--r--arch/x86/kvm/cpuid.c31
-rw-r--r--arch/x86/kvm/hyperv.c305
-rw-r--r--arch/x86/kvm/hyperv.h4
-rw-r--r--arch/x86/kvm/kvm_cache_regs.h2
-rw-r--r--arch/x86/kvm/lapic.c12
-rw-r--r--arch/x86/kvm/mmu.c125
-rw-r--r--arch/x86/kvm/paging_tmpl.h3
-rw-r--r--arch/x86/kvm/svm.c116
-rw-r--r--arch/x86/kvm/trace.h10
-rw-r--r--arch/x86/kvm/vmx.c15218
-rw-r--r--arch/x86/kvm/vmx/capabilities.h343
-rw-r--r--arch/x86/kvm/vmx/evmcs.c (renamed from arch/x86/kvm/vmx_evmcs.h)78
-rw-r--r--arch/x86/kvm/vmx/evmcs.h202
-rw-r--r--arch/x86/kvm/vmx/nested.c5721
-rw-r--r--arch/x86/kvm/vmx/nested.h282
-rw-r--r--arch/x86/kvm/vmx/ops.h285
-rw-r--r--arch/x86/kvm/vmx/pmu_intel.c (renamed from arch/x86/kvm/pmu_intel.c)0
-rw-r--r--arch/x86/kvm/vmx/vmcs.h136
-rw-r--r--arch/x86/kvm/vmx/vmcs12.c157
-rw-r--r--arch/x86/kvm/vmx/vmcs12.h462
-rw-r--r--arch/x86/kvm/vmx/vmcs_shadow_fields.h (renamed from arch/x86/kvm/vmx_shadow_fields.h)0
-rw-r--r--arch/x86/kvm/vmx/vmenter.S57
-rw-r--r--arch/x86/kvm/vmx/vmx.c7935
-rw-r--r--arch/x86/kvm/vmx/vmx.h519
-rw-r--r--arch/x86/kvm/x86.c175
-rw-r--r--arch/x86/lib/Makefile1
-rw-r--r--arch/x86/lib/csum-wrappers_64.c4
-rw-r--r--arch/x86/lib/iomem.c42
-rw-r--r--arch/x86/lib/usercopy_32.c2
-rw-r--r--arch/x86/lib/usercopy_64.c2
-rw-r--r--arch/x86/math-emu/fpu_system.h4
-rw-r--r--arch/x86/math-emu/load_store.c6
-rw-r--r--arch/x86/math-emu/reg_ld_str.c48
-rw-r--r--arch/x86/mm/debug_pagetables.c58
-rw-r--r--arch/x86/mm/dump_pagetables.c26
-rw-r--r--arch/x86/mm/fault.c244
-rw-r--r--arch/x86/mm/init.c4
-rw-r--r--arch/x86/mm/init_32.c2
-rw-r--r--arch/x86/mm/init_64.c33
-rw-r--r--arch/x86/mm/kasan_init_64.c55
-rw-r--r--arch/x86/mm/mem_encrypt.c7
-rw-r--r--arch/x86/mm/mm_internal.h2
-rw-r--r--arch/x86/mm/mpx.c2
-rw-r--r--arch/x86/mm/pageattr-test.c31
-rw-r--r--arch/x86/mm/pageattr.c309
-rw-r--r--arch/x86/mm/pat.c13
-rw-r--r--arch/x86/mm/pgtable.c18
-rw-r--r--arch/x86/mm/pkeys.c1
-rw-r--r--arch/x86/mm/tlb.c119
-rw-r--r--arch/x86/net/bpf_jit_comp.c2
-rw-r--r--arch/x86/pci/i386.c2
-rw-r--r--arch/x86/pci/sta2x11-fixup.c1
-rw-r--r--arch/x86/platform/ce4100/ce4100.c4
-rw-r--r--arch/x86/platform/efi/early_printk.c2
-rw-r--r--arch/x86/platform/efi/efi.c2
-rw-r--r--arch/x86/platform/efi/quirks.c41
-rw-r--r--arch/x86/platform/intel-mid/device_libs/platform_bcm43xx.c2
-rw-r--r--arch/x86/platform/intel-mid/device_libs/platform_mrfld_spidev.c2
-rw-r--r--arch/x86/platform/intel-mid/device_libs/platform_pcal9555a.c2
-rw-r--r--arch/x86/platform/intel/iosf_mbi.c2
-rw-r--r--arch/x86/platform/olpc/olpc-xo1-sci.c2
-rw-r--r--arch/x86/platform/olpc/olpc_dt.c18
-rw-r--r--arch/x86/platform/pvh/Makefile5
-rw-r--r--arch/x86/platform/pvh/enlighten.c137
-rw-r--r--arch/x86/platform/pvh/head.S (renamed from arch/x86/xen/xen-pvh.S)0
-rw-r--r--arch/x86/platform/uv/uv_nmi.c2
-rw-r--r--arch/x86/um/Makefile5
-rw-r--r--arch/x86/um/asm/checksum_32.h2
-rw-r--r--arch/x86/um/signal.c6
-rw-r--r--arch/x86/um/vdso/Makefile2
-rw-r--r--arch/x86/xen/Kconfig3
-rw-r--r--arch/x86/xen/Makefile2
-rw-r--r--arch/x86/xen/enlighten.c78
-rw-r--r--arch/x86/xen/enlighten_pvh.c92
-rw-r--r--arch/x86/xen/mmu_pv.c17
-rw-r--r--arch/x86/xen/multicalls.c35
-rw-r--r--arch/x86/xen/p2m.c3
-rw-r--r--arch/x86/xen/setup.c8
-rw-r--r--arch/x86/xen/spinlock.c21
-rw-r--r--arch/x86/xen/xen-asm_64.S2
277 files changed, 24532 insertions, 20027 deletions
diff --git a/arch/x86/Kbuild b/arch/x86/Kbuild
index 0038a2d10a7a..c625f57472f7 100644
--- a/arch/x86/Kbuild
+++ b/arch/x86/Kbuild
@@ -7,6 +7,8 @@ obj-$(CONFIG_KVM) += kvm/
 # Xen paravirtualization support
 obj-$(CONFIG_XEN) += xen/
 
+obj-$(CONFIG_PVH) += platform/pvh/
+
 # Hyper-V paravirtualization support
 obj-$(subst m,y,$(CONFIG_HYPERV)) += hyperv/
 
diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig
index ba7e3464ee92..6185d4f33296 100644
--- a/arch/x86/Kconfig
+++ b/arch/x86/Kconfig
@@ -66,7 +66,6 @@ config X86
 	select ARCH_HAS_UACCESS_FLUSHCACHE	if X86_64
 	select ARCH_HAS_UACCESS_MCSAFE		if X86_64 && X86_MCE
 	select ARCH_HAS_SET_MEMORY
-	select ARCH_HAS_SG_CHAIN
 	select ARCH_HAS_STRICT_KERNEL_RWX
 	select ARCH_HAS_STRICT_MODULE_RWX
 	select ARCH_HAS_SYNC_CORE_BEFORE_USERMODE
@@ -90,7 +89,6 @@ config X86
 	select CLOCKSOURCE_VALIDATE_LAST_CYCLE
 	select CLOCKSOURCE_WATCHDOG
 	select DCACHE_WORD_ACCESS
-	select DMA_DIRECT_OPS
 	select EDAC_ATOMIC_SCRUB
 	select EDAC_SUPPORT
 	select GENERIC_CLOCKEVENTS
@@ -147,6 +145,7 @@ config X86
 	select HAVE_DYNAMIC_FTRACE_WITH_REGS
 	select HAVE_EBPF_JIT
 	select HAVE_EFFICIENT_UNALIGNED_ACCESS
+	select HAVE_EISA
 	select HAVE_EXIT_THREAD
 	select HAVE_FENTRY			if X86_64 || DYNAMIC_FTRACE
 	select HAVE_FTRACE_MCOUNT_RECORD
@@ -173,6 +172,7 @@ config X86
 	select HAVE_MEMBLOCK_NODE_MAP
 	select HAVE_MIXED_BREAKPOINTS_REGS
 	select HAVE_MOD_ARCH_SPECIFIC
+	select HAVE_MOVE_PMD
 	select HAVE_NMI
 	select HAVE_OPROFILE
 	select HAVE_OPTPROBES
@@ -180,6 +180,7 @@ config X86
 	select HAVE_PERF_EVENTS
 	select HAVE_PERF_EVENTS_NMI
 	select HAVE_HARDLOCKUP_DETECTOR_PERF	if PERF_EVENTS && HAVE_PERF_EVENTS_NMI
+	select HAVE_PCI
 	select HAVE_PERF_REGS
 	select HAVE_PERF_USER_STACK_DUMP
 	select HAVE_RCU_TABLE_FREE		if PARAVIRT
@@ -196,6 +197,7 @@ config X86
 	select HOTPLUG_SMT			if SMP
 	select IRQ_FORCED_THREADING
 	select NEED_SG_DMA_LENGTH
+	select PCI_DOMAINS			if PCI
 	select PCI_LOCKLESS_CONFIG
 	select PERF_EVENTS
 	select RTC_LIB
@@ -444,19 +446,23 @@ config RETPOLINE
 	  branches. Requires a compiler with -mindirect-branch=thunk-extern
 	  support for full protection. The kernel may run slower.
 
-	  Without compiler support, at least indirect branches in assembler
-	  code are eliminated. Since this includes the syscall entry path,
-	  it is not entirely pointless.
-
-config INTEL_RDT
-	bool "Intel Resource Director Technology support"
-	depends on X86 && CPU_SUP_INTEL
+config RESCTRL
+	bool "Resource Control support"
+	depends on X86 && (CPU_SUP_INTEL || CPU_SUP_AMD)
 	select KERNFS
 	help
-	  Select to enable resource allocation and monitoring which are
-	  sub-features of Intel Resource Director Technology(RDT). More
-	  information about RDT can be found in the Intel x86
-	  Architecture Software Developer Manual.
+	  Enable Resource Control support.
+
+	  Provide support for the allocation and monitoring of system resources
+	  usage by the CPU.
+
+	  Intel calls this Intel Resource Director Technology
+	  (Intel(R) RDT). More information about RDT can be found in the
+	  Intel x86 Architecture Software Developer Manual.
+
+	  AMD calls this AMD Platform Quality of Service (AMD QoS).
+	  More information about AMD QoS can be found in the AMD64 Technology
+	  Platform Quality of Service Extensions manual.
 
 	  Say N if unsure.
 
@@ -525,7 +531,6 @@ config X86_VSMP
 	bool "ScaleMP vSMP"
 	select HYPERVISOR_GUEST
 	select PARAVIRT
-	select PARAVIRT_XXL
 	depends on X86_64 && PCI
 	depends on X86_EXTENDED_PLATFORM
 	depends on SMP
@@ -801,6 +806,12 @@ config KVM_GUEST
 	  underlying device model, the host provides the guest with
 	  timing infrastructure such as time of day, and system time
 
+config PVH
+	bool "Support for running PVH guests"
+	---help---
+	  This option enables the PVH entry point for guest virtual machines
+	  as specified in the x86/HVM direct boot ABI.
+
 config KVM_DEBUG_FS
 	bool "Enable debug information for KVM Guests in debugfs"
 	depends on KVM_GUEST && DEBUG_FS
@@ -1005,13 +1016,7 @@ config NR_CPUS
 	  to the kernel image.
 
 config SCHED_SMT
-	bool "SMT (Hyperthreading) scheduler support"
-	depends on SMP
-	---help---
-	  SMT scheduler support improves the CPU scheduler's decision making
-	  when dealing with Intel Pentium 4 chips with HyperThreading at a
-	  cost of slightly increased overhead in some places. If unsure say
-	  N here.
+	def_bool y if SMP
 
 config SCHED_MC
 	def_bool y
@@ -1976,7 +1981,7 @@ config SECCOMP
 
 	  If unsure, say Y. Only embedded should say N here.
 
-source kernel/Kconfig.hz
+source "kernel/Kconfig.hz"
 
 config KEXEC
 	bool "kexec system call"
@@ -2573,15 +2578,6 @@ endmenu
 
 menu "Bus options (PCI etc.)"
 
-config PCI
-	bool "PCI support"
-	default y
-	---help---
-	  Find out whether you have a PCI motherboard. PCI is the name of a
-	  bus system, i.e. the way the CPU talks to the other stuff inside
-	  your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
-	  VESA. If you have PCI, say Y, otherwise N.
-
 choice
 	prompt "PCI access mode"
 	depends on X86_32 && PCI
@@ -2643,10 +2639,6 @@ config PCI_XEN
 	depends on PCI && XEN
 	select SWIOTLB_XEN
 
-config PCI_DOMAINS
-	def_bool y
-	depends on PCI
-
 config MMCONF_FAM10H
 	def_bool y
 	depends on X86_64 && PCI_MMCONFIG && ACPI
@@ -2664,8 +2656,6 @@ config PCI_CNB20LE_QUIRK
 
 	  You should say N unless you know you need this.
 
-source "drivers/pci/Kconfig"
-
 config ISA_BUS
 	bool "ISA bus support on modern systems" if EXPERT
 	help
@@ -2696,24 +2686,6 @@ config ISA
 	  (MCA) or VESA.  ISA is an older system, now being displaced by PCI;
 	  newer boards don't support it.  If you have ISA, say Y, otherwise N.
 
-config EISA
-	bool "EISA support"
-	depends on ISA
-	---help---
-	  The Extended Industry Standard Architecture (EISA) bus was
-	  developed as an open alternative to the IBM MicroChannel bus.
-
-	  The EISA bus provided some of the features of the IBM MicroChannel
-	  bus while maintaining backward compatibility with cards made for
-	  the older ISA bus.  The EISA bus saw limited use between 1988 and
-	  1995 when it was made obsolete by the PCI bus.
-
-	  Say Y here if you are building a kernel for an EISA-based machine.
-
-	  Otherwise, say N.
-
-source "drivers/eisa/Kconfig"
-
 config SCx200
 	tristate "NatSemi SCx200 support"
 	---help---
@@ -2825,17 +2797,6 @@ config AMD_NB
 	def_bool y
 	depends on CPU_SUP_AMD && PCI
 
-source "drivers/pcmcia/Kconfig"
-
-config RAPIDIO
-	tristate "RapidIO support"
-	depends on PCI
-	help
-	  If enabled this option will include drivers and the core
-	  infrastructure code to support RapidIO interconnect devices.
-
-source "drivers/rapidio/Kconfig"
-
 config X86_SYSFB
 	bool "Mark VGA/VBE/EFI FB as generic system framebuffer"
 	help
diff --git a/arch/x86/Makefile b/arch/x86/Makefile
index 5b562e464009..16c3145c0a5f 100644
--- a/arch/x86/Makefile
+++ b/arch/x86/Makefile
@@ -130,10 +130,6 @@ else
 
         KBUILD_CFLAGS += -mno-red-zone
         KBUILD_CFLAGS += -mcmodel=kernel
-
-        # -funit-at-a-time shrinks the kernel .text considerably
-        # unfortunately it makes reading oopses harder.
-        KBUILD_CFLAGS += $(call cc-option,-funit-at-a-time)
 endif
 
 ifdef CONFIG_X86_X32
@@ -213,8 +209,6 @@ ifdef CONFIG_X86_64
 KBUILD_LDFLAGS += $(call ld-option, -z max-page-size=0x200000)
 endif
 
-# Speed up the build
-KBUILD_CFLAGS += -pipe
 # Workaround for a gcc prelease that unfortunately was shipped in a suse release
 KBUILD_CFLAGS += -Wno-sign-compare
 #
@@ -222,9 +216,7 @@ KBUILD_CFLAGS += -fno-asynchronous-unwind-tables
 
 # Avoid indirect branches in kernel to deal with Spectre
 ifdef CONFIG_RETPOLINE
-ifneq ($(RETPOLINE_CFLAGS),)
-  KBUILD_CFLAGS += $(RETPOLINE_CFLAGS) -DRETPOLINE
-endif
+  KBUILD_CFLAGS += $(RETPOLINE_CFLAGS)
 endif
 
 archscripts: scripts_basic
@@ -236,13 +228,6 @@ archscripts: scripts_basic
 archheaders:
 	$(Q)$(MAKE) $(build)=arch/x86/entry/syscalls all
 
-archmacros:
-	$(Q)$(MAKE) $(build)=arch/x86/kernel arch/x86/kernel/macros.s
-
-ASM_MACRO_FLAGS = -Wa,arch/x86/kernel/macros.s -Wa,-
-export ASM_MACRO_FLAGS
-KBUILD_CFLAGS += $(ASM_MACRO_FLAGS)
-
 ###
 # Kernel objects
 
@@ -308,6 +293,13 @@ ifndef CC_HAVE_ASM_GOTO
 	@echo Compiler lacks asm-goto support.
 	@exit 1
 endif
+ifdef CONFIG_RETPOLINE
+ifeq ($(RETPOLINE_CFLAGS),)
+	@echo "You are building kernel with non-retpoline compiler." >&2
+	@echo "Please update your compiler." >&2
+	@false
+endif
+endif
 
 archclean:
 	$(Q)rm -rf $(objtree)/arch/i386
diff --git a/arch/x86/Makefile.um b/arch/x86/Makefile.um
index 91085a08de6c..1db7913795f5 100644
--- a/arch/x86/Makefile.um
+++ b/arch/x86/Makefile.um
@@ -26,13 +26,6 @@ cflags-y += $(call cc-option,-mpreferred-stack-boundary=2)
 # an unresolved reference.
 cflags-y += -ffreestanding
 
-# Disable unit-at-a-time mode on pre-gcc-4.0 compilers, it makes gcc use
-# a lot more stack due to the lack of sharing of stacklots.  Also, gcc
-# 4.3.0 needs -funit-at-a-time for extern inline functions.
-KBUILD_CFLAGS += $(shell if [ $(cc-version) -lt 0400 ] ; then \
-			echo $(call cc-option,-fno-unit-at-a-time); \
-			else echo $(call cc-option,-funit-at-a-time); fi ;)
-
 KBUILD_CFLAGS += $(cflags-y)
 
 else
@@ -54,6 +47,4 @@ ELF_FORMAT := elf64-x86-64
 LINK-$(CONFIG_LD_SCRIPT_DYN) += -Wl,-rpath,/lib64
 LINK-y += -m64
 
-# Do unit-at-a-time unconditionally on x86_64, following the host
-KBUILD_CFLAGS += $(call cc-option,-funit-at-a-time)
 endif
diff --git a/arch/x86/boot/boot.h b/arch/x86/boot/boot.h
index ef5a9cc66fb8..32a09eb5c101 100644
--- a/arch/x86/boot/boot.h
+++ b/arch/x86/boot/boot.h
@@ -309,7 +309,7 @@ void query_edd(void);
 void __attribute__((noreturn)) die(void);
 
 /* memory.c */
-int detect_memory(void);
+void detect_memory(void);
 
 /* pm.c */
 void __attribute__((noreturn)) go_to_protected_mode(void);
diff --git a/arch/x86/boot/compressed/eboot.c b/arch/x86/boot/compressed/eboot.c
index 8b4c5e001157..544ac4fafd11 100644
--- a/arch/x86/boot/compressed/eboot.c
+++ b/arch/x86/boot/compressed/eboot.c
@@ -1,3 +1,4 @@
+
 /* -----------------------------------------------------------------------
  *
  *   Copyright 2011 Intel Corporation; author Matt Fleming
@@ -634,37 +635,54 @@ static efi_status_t alloc_e820ext(u32 nr_desc, struct setup_data **e820ext,
 	return status;
 }
 
+static efi_status_t allocate_e820(struct boot_params *params,
+				  struct setup_data **e820ext,
+				  u32 *e820ext_size)
+{
+	unsigned long map_size, desc_size, buff_size;
+	struct efi_boot_memmap boot_map;
+	efi_memory_desc_t *map;
+	efi_status_t status;
+	__u32 nr_desc;
+
+	boot_map.map		= ↦
+	boot_map.map_size	= &map_size;
+	boot_map.desc_size	= &desc_size;
+	boot_map.desc_ver	= NULL;
+	boot_map.key_ptr	= NULL;
+	boot_map.buff_size	= &buff_size;
+
+	status = efi_get_memory_map(sys_table, &boot_map);
+	if (status != EFI_SUCCESS)
+		return status;
+
+	nr_desc = buff_size / desc_size;
+
+	if (nr_desc > ARRAY_SIZE(params->e820_table)) {
+		u32 nr_e820ext = nr_desc - ARRAY_SIZE(params->e820_table);
+
+		status = alloc_e820ext(nr_e820ext, e820ext, e820ext_size);
+		if (status != EFI_SUCCESS)
+			return status;
+	}
+
+	return EFI_SUCCESS;
+}
+
 struct exit_boot_struct {
 	struct boot_params	*boot_params;
 	struct efi_info		*efi;
-	struct setup_data	*e820ext;
-	__u32			e820ext_size;
 };
 
 static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg,
 				   struct efi_boot_memmap *map,
 				   void *priv)
 {
-	static bool first = true;
 	const char *signature;
 	__u32 nr_desc;
 	efi_status_t status;
 	struct exit_boot_struct *p = priv;
 
-	if (first) {
-		nr_desc = *map->buff_size / *map->desc_size;
-		if (nr_desc > ARRAY_SIZE(p->boot_params->e820_table)) {
-			u32 nr_e820ext = nr_desc -
-					ARRAY_SIZE(p->boot_params->e820_table);
-
-			status = alloc_e820ext(nr_e820ext, &p->e820ext,
-					       &p->e820ext_size);
-			if (status != EFI_SUCCESS)
-				return status;
-		}
-		first = false;
-	}
-
 	signature = efi_is_64bit() ? EFI64_LOADER_SIGNATURE
 				   : EFI32_LOADER_SIGNATURE;
 	memcpy(&p->efi->efi_loader_signature, signature, sizeof(__u32));
@@ -687,8 +705,8 @@ static efi_status_t exit_boot(struct boot_params *boot_params, void *handle)
 {
 	unsigned long map_sz, key, desc_size, buff_size;
 	efi_memory_desc_t *mem_map;
-	struct setup_data *e820ext;
-	__u32 e820ext_size;
+	struct setup_data *e820ext = NULL;
+	__u32 e820ext_size = 0;
 	efi_status_t status;
 	__u32 desc_version;
 	struct efi_boot_memmap map;
@@ -702,8 +720,10 @@ static efi_status_t exit_boot(struct boot_params *boot_params, void *handle)
 	map.buff_size		= &buff_size;
 	priv.boot_params	= boot_params;
 	priv.efi		= &boot_params->efi_info;
-	priv.e820ext		= NULL;
-	priv.e820ext_size	= 0;
+
+	status = allocate_e820(boot_params, &e820ext, &e820ext_size);
+	if (status != EFI_SUCCESS)
+		return status;
 
 	/* Might as well exit boot services now */
 	status = efi_exit_boot_services(sys_table, handle, &map, &priv,
@@ -711,9 +731,6 @@ static efi_status_t exit_boot(struct boot_params *boot_params, void *handle)
 	if (status != EFI_SUCCESS)
 		return status;
 
-	e820ext			= priv.e820ext;
-	e820ext_size		= priv.e820ext_size;
-
 	/* Historic? */
 	boot_params->alt_mem_k	= 32 * 1024;
 
diff --git a/arch/x86/boot/header.S b/arch/x86/boot/header.S
index 4c881c850125..850b8762e889 100644
--- a/arch/x86/boot/header.S
+++ b/arch/x86/boot/header.S
@@ -300,7 +300,7 @@ _start:
 	# Part 2 of the header, from the old setup.S
 
 		.ascii	"HdrS"		# header signature
-		.word	0x020e		# header version number (>= 0x0105)
+		.word	0x020d		# header version number (>= 0x0105)
 					# or else old loadlin-1.5 will fail)
 		.globl realmode_swtch
 realmode_swtch:	.word	0, 0		# default_switch, SETUPSEG
@@ -558,10 +558,6 @@ pref_address:		.quad LOAD_PHYSICAL_ADDR	# preferred load addr
 init_size:		.long INIT_SIZE		# kernel initialization size
 handover_offset:	.long 0			# Filled in by build.c
 
-acpi_rsdp_addr:		.quad 0			# 64-bit physical pointer to the
-						# ACPI RSDP table, added with
-						# version 2.14
-
 # End of setup header #####################################################
 
 	.section ".entrytext", "ax"
diff --git a/arch/x86/boot/memory.c b/arch/x86/boot/memory.c
index 7df2b28207be..f06c147b5140 100644
--- a/arch/x86/boot/memory.c
+++ b/arch/x86/boot/memory.c
@@ -17,7 +17,7 @@
 
 #define SMAP	0x534d4150	/* ASCII "SMAP" */
 
-static int detect_memory_e820(void)
+static void detect_memory_e820(void)
 {
 	int count = 0;
 	struct biosregs ireg, oreg;
@@ -68,10 +68,10 @@ static int detect_memory_e820(void)
 		count++;
 	} while (ireg.ebx && count < ARRAY_SIZE(boot_params.e820_table));
 
-	return boot_params.e820_entries = count;
+	boot_params.e820_entries = count;
 }
 
-static int detect_memory_e801(void)
+static void detect_memory_e801(void)
 {
 	struct biosregs ireg, oreg;
 
@@ -80,7 +80,7 @@ static int detect_memory_e801(void)
 	intcall(0x15, &ireg, &oreg);
 
 	if (oreg.eflags & X86_EFLAGS_CF)
-		return -1;
+		return;
 
 	/* Do we really need to do this? */
 	if (oreg.cx || oreg.dx) {
@@ -89,7 +89,7 @@ static int detect_memory_e801(void)
 	}
 
 	if (oreg.ax > 15*1024) {
-		return -1;	/* Bogus! */
+		return;	/* Bogus! */
 	} else if (oreg.ax == 15*1024) {
 		boot_params.alt_mem_k = (oreg.bx << 6) + oreg.ax;
 	} else {
@@ -102,11 +102,9 @@ static int detect_memory_e801(void)
 		 */
 		boot_params.alt_mem_k = oreg.ax;
 	}
-
-	return 0;
 }
 
-static int detect_memory_88(void)
+static void detect_memory_88(void)
 {
 	struct biosregs ireg, oreg;
 
@@ -115,22 +113,13 @@ static int detect_memory_88(void)
 	intcall(0x15, &ireg, &oreg);
 
 	boot_params.screen_info.ext_mem_k = oreg.ax;
-
-	return -(oreg.eflags & X86_EFLAGS_CF); /* 0 or -1 */
 }
 
-int detect_memory(void)
+void detect_memory(void)
 {
-	int err = -1;
-
-	if (detect_memory_e820() > 0)
-		err = 0;
-
-	if (!detect_memory_e801())
-		err = 0;
+	detect_memory_e820();
 
-	if (!detect_memory_88())
-		err = 0;
+	detect_memory_e801();
 
-	return err;
+	detect_memory_88();
 }
diff --git a/arch/x86/boot/tools/build.c b/arch/x86/boot/tools/build.c
index bf0e82400358..a93d44e58f9c 100644
--- a/arch/x86/boot/tools/build.c
+++ b/arch/x86/boot/tools/build.c
@@ -132,6 +132,7 @@ static void die(const char * str, ...)
 	va_list args;
 	va_start(args, str);
 	vfprintf(stderr, str, args);
+	va_end(args);
 	fputc('\n', stderr);
 	exit(1);
 }
diff --git a/arch/x86/configs/i386_defconfig b/arch/x86/configs/i386_defconfig
index 6c3ab05c231d..4bb95d7ad947 100644
--- a/arch/x86/configs/i386_defconfig
+++ b/arch/x86/configs/i386_defconfig
@@ -69,6 +69,7 @@ CONFIG_CPU_FREQ_DEFAULT_GOV_USERSPACE=y
 CONFIG_CPU_FREQ_GOV_PERFORMANCE=y
 CONFIG_CPU_FREQ_GOV_ONDEMAND=y
 CONFIG_X86_ACPI_CPUFREQ=y
+CONFIG_PCI=y
 CONFIG_PCIEPORTBUS=y
 CONFIG_PCI_MSI=y
 CONFIG_PCCARD=y
diff --git a/arch/x86/configs/x86_64_defconfig b/arch/x86/configs/x86_64_defconfig
index ac9ae487cfeb..0fed049422a8 100644
--- a/arch/x86/configs/x86_64_defconfig
+++ b/arch/x86/configs/x86_64_defconfig
@@ -67,6 +67,7 @@ CONFIG_CPU_FREQ_DEFAULT_GOV_USERSPACE=y
 CONFIG_CPU_FREQ_GOV_PERFORMANCE=y
 CONFIG_CPU_FREQ_GOV_ONDEMAND=y
 CONFIG_X86_ACPI_CPUFREQ=y
+CONFIG_PCI=y
 CONFIG_PCI_MMCONFIG=y
 CONFIG_PCIEPORTBUS=y
 CONFIG_PCCARD=y
diff --git a/arch/x86/crypto/Makefile b/arch/x86/crypto/Makefile
index a4b0007a54e1..45734e1cf967 100644
--- a/arch/x86/crypto/Makefile
+++ b/arch/x86/crypto/Makefile
@@ -8,6 +8,7 @@ OBJECT_FILES_NON_STANDARD := y
 avx_supported := $(call as-instr,vpxor %xmm0$(comma)%xmm0$(comma)%xmm0,yes,no)
 avx2_supported := $(call as-instr,vpgatherdd %ymm0$(comma)(%eax$(comma)%ymm1\
 				$(comma)4)$(comma)%ymm2,yes,no)
+avx512_supported :=$(call as-instr,vpmovm2b %k1$(comma)%zmm5,yes,no)
 sha1_ni_supported :=$(call as-instr,sha1msg1 %xmm0$(comma)%xmm1,yes,no)
 sha256_ni_supported :=$(call as-instr,sha256msg1 %xmm0$(comma)%xmm1,yes,no)
 
@@ -23,7 +24,7 @@ obj-$(CONFIG_CRYPTO_CAMELLIA_X86_64) += camellia-x86_64.o
 obj-$(CONFIG_CRYPTO_BLOWFISH_X86_64) += blowfish-x86_64.o
 obj-$(CONFIG_CRYPTO_TWOFISH_X86_64) += twofish-x86_64.o
 obj-$(CONFIG_CRYPTO_TWOFISH_X86_64_3WAY) += twofish-x86_64-3way.o
-obj-$(CONFIG_CRYPTO_CHACHA20_X86_64) += chacha20-x86_64.o
+obj-$(CONFIG_CRYPTO_CHACHA20_X86_64) += chacha-x86_64.o
 obj-$(CONFIG_CRYPTO_SERPENT_SSE2_X86_64) += serpent-sse2-x86_64.o
 obj-$(CONFIG_CRYPTO_AES_NI_INTEL) += aesni-intel.o
 obj-$(CONFIG_CRYPTO_GHASH_CLMUL_NI_INTEL) += ghash-clmulni-intel.o
@@ -46,6 +47,9 @@ obj-$(CONFIG_CRYPTO_MORUS1280_GLUE) += morus1280_glue.o
 obj-$(CONFIG_CRYPTO_MORUS640_SSE2) += morus640-sse2.o
 obj-$(CONFIG_CRYPTO_MORUS1280_SSE2) += morus1280-sse2.o
 
+obj-$(CONFIG_CRYPTO_NHPOLY1305_SSE2) += nhpoly1305-sse2.o
+obj-$(CONFIG_CRYPTO_NHPOLY1305_AVX2) += nhpoly1305-avx2.o
+
 # These modules require assembler to support AVX.
 ifeq ($(avx_supported),yes)
 	obj-$(CONFIG_CRYPTO_CAMELLIA_AESNI_AVX_X86_64) += \
@@ -74,7 +78,7 @@ camellia-x86_64-y := camellia-x86_64-asm_64.o camellia_glue.o
 blowfish-x86_64-y := blowfish-x86_64-asm_64.o blowfish_glue.o
 twofish-x86_64-y := twofish-x86_64-asm_64.o twofish_glue.o
 twofish-x86_64-3way-y := twofish-x86_64-asm_64-3way.o twofish_glue_3way.o
-chacha20-x86_64-y := chacha20-ssse3-x86_64.o chacha20_glue.o
+chacha-x86_64-y := chacha-ssse3-x86_64.o chacha_glue.o
 serpent-sse2-x86_64-y := serpent-sse2-x86_64-asm_64.o serpent_sse2_glue.o
 
 aegis128-aesni-y := aegis128-aesni-asm.o aegis128-aesni-glue.o
@@ -84,6 +88,8 @@ aegis256-aesni-y := aegis256-aesni-asm.o aegis256-aesni-glue.o
 morus640-sse2-y := morus640-sse2-asm.o morus640-sse2-glue.o
 morus1280-sse2-y := morus1280-sse2-asm.o morus1280-sse2-glue.o
 
+nhpoly1305-sse2-y := nh-sse2-x86_64.o nhpoly1305-sse2-glue.o
+
 ifeq ($(avx_supported),yes)
 	camellia-aesni-avx-x86_64-y := camellia-aesni-avx-asm_64.o \
 					camellia_aesni_avx_glue.o
@@ -97,10 +103,16 @@ endif
 
 ifeq ($(avx2_supported),yes)
 	camellia-aesni-avx2-y := camellia-aesni-avx2-asm_64.o camellia_aesni_avx2_glue.o
-	chacha20-x86_64-y += chacha20-avx2-x86_64.o
+	chacha-x86_64-y += chacha-avx2-x86_64.o
 	serpent-avx2-y := serpent-avx2-asm_64.o serpent_avx2_glue.o
 
 	morus1280-avx2-y := morus1280-avx2-asm.o morus1280-avx2-glue.o
+
+	nhpoly1305-avx2-y := nh-avx2-x86_64.o nhpoly1305-avx2-glue.o
+endif
+
+ifeq ($(avx512_supported),yes)
+	chacha-x86_64-y += chacha-avx512vl-x86_64.o
 endif
 
 aesni-intel-y := aesni-intel_asm.o aesni-intel_glue.o
diff --git a/arch/x86/crypto/aesni-intel_avx-x86_64.S b/arch/x86/crypto/aesni-intel_avx-x86_64.S
index 1985ea0b551b..91c039ab5699 100644
--- a/arch/x86/crypto/aesni-intel_avx-x86_64.S
+++ b/arch/x86/crypto/aesni-intel_avx-x86_64.S
@@ -182,43 +182,30 @@ aad_shift_arr:
 .text
 
 
-##define the fields of the gcm aes context
-#{
-#        u8 expanded_keys[16*11] store expanded keys
-#        u8 shifted_hkey_1[16]   store HashKey <<1 mod poly here
-#        u8 shifted_hkey_2[16]   store HashKey^2 <<1 mod poly here
-#        u8 shifted_hkey_3[16]   store HashKey^3 <<1 mod poly here
-#        u8 shifted_hkey_4[16]   store HashKey^4 <<1 mod poly here
-#        u8 shifted_hkey_5[16]   store HashKey^5 <<1 mod poly here
-#        u8 shifted_hkey_6[16]   store HashKey^6 <<1 mod poly here
-#        u8 shifted_hkey_7[16]   store HashKey^7 <<1 mod poly here
-#        u8 shifted_hkey_8[16]   store HashKey^8 <<1 mod poly here
-#        u8 shifted_hkey_1_k[16] store XOR HashKey <<1 mod poly here (for Karatsuba purposes)
-#        u8 shifted_hkey_2_k[16] store XOR HashKey^2 <<1 mod poly here (for Karatsuba purposes)
-#        u8 shifted_hkey_3_k[16] store XOR HashKey^3 <<1 mod poly here (for Karatsuba purposes)
-#        u8 shifted_hkey_4_k[16] store XOR HashKey^4 <<1 mod poly here (for Karatsuba purposes)
-#        u8 shifted_hkey_5_k[16] store XOR HashKey^5 <<1 mod poly here (for Karatsuba purposes)
-#        u8 shifted_hkey_6_k[16] store XOR HashKey^6 <<1 mod poly here (for Karatsuba purposes)
-#        u8 shifted_hkey_7_k[16] store XOR HashKey^7 <<1 mod poly here (for Karatsuba purposes)
-#        u8 shifted_hkey_8_k[16] store XOR HashKey^8 <<1 mod poly here (for Karatsuba purposes)
-#} gcm_ctx#
-
-HashKey        = 16*11   # store HashKey <<1 mod poly here
-HashKey_2      = 16*12   # store HashKey^2 <<1 mod poly here
-HashKey_3      = 16*13   # store HashKey^3 <<1 mod poly here
-HashKey_4      = 16*14   # store HashKey^4 <<1 mod poly here
-HashKey_5      = 16*15   # store HashKey^5 <<1 mod poly here
-HashKey_6      = 16*16   # store HashKey^6 <<1 mod poly here
-HashKey_7      = 16*17   # store HashKey^7 <<1 mod poly here
-HashKey_8      = 16*18   # store HashKey^8 <<1 mod poly here
-HashKey_k      = 16*19   # store XOR of HashKey <<1 mod poly here (for Karatsuba purposes)
-HashKey_2_k    = 16*20   # store XOR of HashKey^2 <<1 mod poly here (for Karatsuba purposes)
-HashKey_3_k    = 16*21   # store XOR of HashKey^3 <<1 mod poly here (for Karatsuba purposes)
-HashKey_4_k    = 16*22   # store XOR of HashKey^4 <<1 mod poly here (for Karatsuba purposes)
-HashKey_5_k    = 16*23   # store XOR of HashKey^5 <<1 mod poly here (for Karatsuba purposes)
-HashKey_6_k    = 16*24   # store XOR of HashKey^6 <<1 mod poly here (for Karatsuba purposes)
-HashKey_7_k    = 16*25   # store XOR of HashKey^7 <<1 mod poly here (for Karatsuba purposes)
-HashKey_8_k    = 16*26   # store XOR of HashKey^8 <<1 mod poly here (for Karatsuba purposes)
+#define AadHash 16*0
+#define AadLen 16*1
+#define InLen (16*1)+8
+#define PBlockEncKey 16*2
+#define OrigIV 16*3
+#define CurCount 16*4
+#define PBlockLen 16*5
+
+HashKey        = 16*6   # store HashKey <<1 mod poly here
+HashKey_2      = 16*7   # store HashKey^2 <<1 mod poly here
+HashKey_3      = 16*8   # store HashKey^3 <<1 mod poly here
+HashKey_4      = 16*9   # store HashKey^4 <<1 mod poly here
+HashKey_5      = 16*10   # store HashKey^5 <<1 mod poly here
+HashKey_6      = 16*11   # store HashKey^6 <<1 mod poly here
+HashKey_7      = 16*12   # store HashKey^7 <<1 mod poly here
+HashKey_8      = 16*13   # store HashKey^8 <<1 mod poly here
+HashKey_k      = 16*14   # store XOR of HashKey <<1 mod poly here (for Karatsuba purposes)
+HashKey_2_k    = 16*15   # store XOR of HashKey^2 <<1 mod poly here (for Karatsuba purposes)
+HashKey_3_k    = 16*16   # store XOR of HashKey^3 <<1 mod poly here (for Karatsuba purposes)
+HashKey_4_k    = 16*17   # store XOR of HashKey^4 <<1 mod poly here (for Karatsuba purposes)
+HashKey_5_k    = 16*18   # store XOR of HashKey^5 <<1 mod poly here (for Karatsuba purposes)
+HashKey_6_k    = 16*19   # store XOR of HashKey^6 <<1 mod poly here (for Karatsuba purposes)
+HashKey_7_k    = 16*20   # store XOR of HashKey^7 <<1 mod poly here (for Karatsuba purposes)
+HashKey_8_k    = 16*21   # store XOR of HashKey^8 <<1 mod poly here (for Karatsuba purposes)
 
 #define arg1 %rdi
 #define arg2 %rsi
@@ -229,6 +216,8 @@ HashKey_8_k    = 16*26   # store XOR of HashKey^8 <<1 mod poly here (for Karatsu
 #define arg7 STACK_OFFSET+8*1(%r14)
 #define arg8 STACK_OFFSET+8*2(%r14)
 #define arg9 STACK_OFFSET+8*3(%r14)
+#define arg10 STACK_OFFSET+8*4(%r14)
+#define keysize 2*15*16(arg1)
 
 i = 0
 j = 0
@@ -267,19 +256,636 @@ VARIABLE_OFFSET = 16*8
 # Utility Macros
 ################################
 
+.macro FUNC_SAVE
+        #the number of pushes must equal STACK_OFFSET
+        push    %r12
+        push    %r13
+        push    %r14
+        push    %r15
+
+        mov     %rsp, %r14
+
+
+
+        sub     $VARIABLE_OFFSET, %rsp
+        and     $~63, %rsp                    # align rsp to 64 bytes
+.endm
+
+.macro FUNC_RESTORE
+        mov     %r14, %rsp
+
+        pop     %r15
+        pop     %r14
+        pop     %r13
+        pop     %r12
+.endm
+
 # Encryption of a single block
-.macro ENCRYPT_SINGLE_BLOCK XMM0
+.macro ENCRYPT_SINGLE_BLOCK REP XMM0
                 vpxor    (arg1), \XMM0, \XMM0
-		i = 1
-		setreg
-.rep 9
+               i = 1
+               setreg
+.rep \REP
                 vaesenc  16*i(arg1), \XMM0, \XMM0
-		i = (i+1)
-		setreg
+               i = (i+1)
+               setreg
 .endr
-                vaesenclast 16*10(arg1), \XMM0, \XMM0
+                vaesenclast 16*i(arg1), \XMM0, \XMM0
 .endm
 
+# combined for GCM encrypt and decrypt functions
+# clobbering all xmm registers
+# clobbering r10, r11, r12, r13, r14, r15
+.macro  GCM_ENC_DEC INITIAL_BLOCKS GHASH_8_ENCRYPT_8_PARALLEL GHASH_LAST_8 GHASH_MUL ENC_DEC REP
+        vmovdqu AadHash(arg2), %xmm8
+        vmovdqu  HashKey(arg2), %xmm13      # xmm13 = HashKey
+        add arg5, InLen(arg2)
+
+        # initialize the data pointer offset as zero
+        xor     %r11d, %r11d
+
+        PARTIAL_BLOCK \GHASH_MUL, arg3, arg4, arg5, %r11, %xmm8, \ENC_DEC
+        sub %r11, arg5
+
+        mov     arg5, %r13                  # save the number of bytes of plaintext/ciphertext
+        and     $-16, %r13                  # r13 = r13 - (r13 mod 16)
+
+        mov     %r13, %r12
+        shr     $4, %r12
+        and     $7, %r12
+        jz      _initial_num_blocks_is_0\@
+
+        cmp     $7, %r12
+        je      _initial_num_blocks_is_7\@
+        cmp     $6, %r12
+        je      _initial_num_blocks_is_6\@
+        cmp     $5, %r12
+        je      _initial_num_blocks_is_5\@
+        cmp     $4, %r12
+        je      _initial_num_blocks_is_4\@
+        cmp     $3, %r12
+        je      _initial_num_blocks_is_3\@
+        cmp     $2, %r12
+        je      _initial_num_blocks_is_2\@
+
+        jmp     _initial_num_blocks_is_1\@
+
+_initial_num_blocks_is_7\@:
+        \INITIAL_BLOCKS  \REP, 7, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
+        sub     $16*7, %r13
+        jmp     _initial_blocks_encrypted\@
+
+_initial_num_blocks_is_6\@:
+        \INITIAL_BLOCKS  \REP, 6, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
+        sub     $16*6, %r13
+        jmp     _initial_blocks_encrypted\@
+
+_initial_num_blocks_is_5\@:
+        \INITIAL_BLOCKS  \REP, 5, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
+        sub     $16*5, %r13
+        jmp     _initial_blocks_encrypted\@
+
+_initial_num_blocks_is_4\@:
+        \INITIAL_BLOCKS  \REP, 4, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
+        sub     $16*4, %r13
+        jmp     _initial_blocks_encrypted\@
+
+_initial_num_blocks_is_3\@:
+        \INITIAL_BLOCKS  \REP, 3, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
+        sub     $16*3, %r13
+        jmp     _initial_blocks_encrypted\@
+
+_initial_num_blocks_is_2\@:
+        \INITIAL_BLOCKS  \REP, 2, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
+        sub     $16*2, %r13
+        jmp     _initial_blocks_encrypted\@
+
+_initial_num_blocks_is_1\@:
+        \INITIAL_BLOCKS  \REP, 1, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
+        sub     $16*1, %r13
+        jmp     _initial_blocks_encrypted\@
+
+_initial_num_blocks_is_0\@:
+        \INITIAL_BLOCKS  \REP, 0, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
+
+
+_initial_blocks_encrypted\@:
+        cmp     $0, %r13
+        je      _zero_cipher_left\@
+
+        sub     $128, %r13
+        je      _eight_cipher_left\@
+
+
+
+
+        vmovd   %xmm9, %r15d
+        and     $255, %r15d
+        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
+
+
+_encrypt_by_8_new\@:
+        cmp     $(255-8), %r15d
+        jg      _encrypt_by_8\@
+
+
+
+        add     $8, %r15b
+        \GHASH_8_ENCRYPT_8_PARALLEL      \REP, %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm15, out_order, \ENC_DEC
+        add     $128, %r11
+        sub     $128, %r13
+        jne     _encrypt_by_8_new\@
+
+        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
+        jmp     _eight_cipher_left\@
+
+_encrypt_by_8\@:
+        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
+        add     $8, %r15b
+        \GHASH_8_ENCRYPT_8_PARALLEL      \REP, %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm15, in_order, \ENC_DEC
+        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
+        add     $128, %r11
+        sub     $128, %r13
+        jne     _encrypt_by_8_new\@
+
+        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
+
+
+
+
+_eight_cipher_left\@:
+        \GHASH_LAST_8    %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8
+
+
+_zero_cipher_left\@:
+        vmovdqu %xmm14, AadHash(arg2)
+        vmovdqu %xmm9, CurCount(arg2)
+
+        # check for 0 length
+        mov     arg5, %r13
+        and     $15, %r13                            # r13 = (arg5 mod 16)
+
+        je      _multiple_of_16_bytes\@
+
+        # handle the last <16 Byte block separately
+
+        mov %r13, PBlockLen(arg2)
+
+        vpaddd  ONE(%rip), %xmm9, %xmm9              # INCR CNT to get Yn
+        vmovdqu %xmm9, CurCount(arg2)
+        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
+
+        ENCRYPT_SINGLE_BLOCK    \REP, %xmm9                # E(K, Yn)
+        vmovdqu %xmm9, PBlockEncKey(arg2)
+
+        cmp $16, arg5
+        jge _large_enough_update\@
+
+        lea (arg4,%r11,1), %r10
+        mov %r13, %r12
+
+        READ_PARTIAL_BLOCK %r10 %r12 %xmm1
+
+        lea     SHIFT_MASK+16(%rip), %r12
+        sub     %r13, %r12                           # adjust the shuffle mask pointer to be
+						     # able to shift 16-r13 bytes (r13 is the
+	# number of bytes in plaintext mod 16)
+
+        jmp _final_ghash_mul\@
+
+_large_enough_update\@:
+        sub $16, %r11
+        add %r13, %r11
+
+        # receive the last <16 Byte block
+        vmovdqu	(arg4, %r11, 1), %xmm1
+
+        sub	%r13, %r11
+        add	$16, %r11
+
+        lea	SHIFT_MASK+16(%rip), %r12
+        # adjust the shuffle mask pointer to be able to shift 16-r13 bytes
+        # (r13 is the number of bytes in plaintext mod 16)
+        sub	%r13, %r12
+        # get the appropriate shuffle mask
+        vmovdqu	(%r12), %xmm2
+        # shift right 16-r13 bytes
+        vpshufb  %xmm2, %xmm1, %xmm1
+
+_final_ghash_mul\@:
+        .if  \ENC_DEC ==  DEC
+        vmovdqa %xmm1, %xmm2
+        vpxor   %xmm1, %xmm9, %xmm9                  # Plaintext XOR E(K, Yn)
+        vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1        # get the appropriate mask to
+						     # mask out top 16-r13 bytes of xmm9
+        vpand   %xmm1, %xmm9, %xmm9                  # mask out top 16-r13 bytes of xmm9
+        vpand   %xmm1, %xmm2, %xmm2
+        vpshufb SHUF_MASK(%rip), %xmm2, %xmm2
+        vpxor   %xmm2, %xmm14, %xmm14
+
+        vmovdqu %xmm14, AadHash(arg2)
+        .else
+        vpxor   %xmm1, %xmm9, %xmm9                  # Plaintext XOR E(K, Yn)
+        vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1        # get the appropriate mask to
+						     # mask out top 16-r13 bytes of xmm9
+        vpand   %xmm1, %xmm9, %xmm9                  # mask out top 16-r13 bytes of xmm9
+        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
+        vpxor   %xmm9, %xmm14, %xmm14
+
+        vmovdqu %xmm14, AadHash(arg2)
+        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9        # shuffle xmm9 back to output as ciphertext
+        .endif
+
+
+        #############################
+        # output r13 Bytes
+        vmovq   %xmm9, %rax
+        cmp     $8, %r13
+        jle     _less_than_8_bytes_left\@
+
+        mov     %rax, (arg3 , %r11)
+        add     $8, %r11
+        vpsrldq $8, %xmm9, %xmm9
+        vmovq   %xmm9, %rax
+        sub     $8, %r13
+
+_less_than_8_bytes_left\@:
+        movb    %al, (arg3 , %r11)
+        add     $1, %r11
+        shr     $8, %rax
+        sub     $1, %r13
+        jne     _less_than_8_bytes_left\@
+        #############################
+
+_multiple_of_16_bytes\@:
+.endm
+
+
+# GCM_COMPLETE Finishes update of tag of last partial block
+# Output: Authorization Tag (AUTH_TAG)
+# Clobbers rax, r10-r12, and xmm0, xmm1, xmm5-xmm15
+.macro GCM_COMPLETE GHASH_MUL REP AUTH_TAG AUTH_TAG_LEN
+        vmovdqu AadHash(arg2), %xmm14
+        vmovdqu HashKey(arg2), %xmm13
+
+        mov PBlockLen(arg2), %r12
+        cmp $0, %r12
+        je _partial_done\@
+
+	#GHASH computation for the last <16 Byte block
+        \GHASH_MUL       %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6
+
+_partial_done\@:
+        mov AadLen(arg2), %r12                          # r12 = aadLen (number of bytes)
+        shl     $3, %r12                             # convert into number of bits
+        vmovd   %r12d, %xmm15                        # len(A) in xmm15
+
+        mov InLen(arg2), %r12
+        shl     $3, %r12                        # len(C) in bits  (*128)
+        vmovq   %r12, %xmm1
+        vpslldq $8, %xmm15, %xmm15                   # xmm15 = len(A)|| 0x0000000000000000
+        vpxor   %xmm1, %xmm15, %xmm15                # xmm15 = len(A)||len(C)
+
+        vpxor   %xmm15, %xmm14, %xmm14
+        \GHASH_MUL       %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6    # final GHASH computation
+        vpshufb SHUF_MASK(%rip), %xmm14, %xmm14      # perform a 16Byte swap
+
+        vmovdqu OrigIV(arg2), %xmm9
+
+        ENCRYPT_SINGLE_BLOCK    \REP, %xmm9                # E(K, Y0)
+
+        vpxor   %xmm14, %xmm9, %xmm9
+
+
+
+_return_T\@:
+        mov     \AUTH_TAG, %r10              # r10 = authTag
+        mov     \AUTH_TAG_LEN, %r11              # r11 = auth_tag_len
+
+        cmp     $16, %r11
+        je      _T_16\@
+
+        cmp     $8, %r11
+        jl      _T_4\@
+
+_T_8\@:
+        vmovq   %xmm9, %rax
+        mov     %rax, (%r10)
+        add     $8, %r10
+        sub     $8, %r11
+        vpsrldq $8, %xmm9, %xmm9
+        cmp     $0, %r11
+        je     _return_T_done\@
+_T_4\@:
+        vmovd   %xmm9, %eax
+        mov     %eax, (%r10)
+        add     $4, %r10
+        sub     $4, %r11
+        vpsrldq     $4, %xmm9, %xmm9
+        cmp     $0, %r11
+        je     _return_T_done\@
+_T_123\@:
+        vmovd     %xmm9, %eax
+        cmp     $2, %r11
+        jl     _T_1\@
+        mov     %ax, (%r10)
+        cmp     $2, %r11
+        je     _return_T_done\@
+        add     $2, %r10
+        sar     $16, %eax
+_T_1\@:
+        mov     %al, (%r10)
+        jmp     _return_T_done\@
+
+_T_16\@:
+        vmovdqu %xmm9, (%r10)
+
+_return_T_done\@:
+.endm
+
+.macro CALC_AAD_HASH GHASH_MUL AAD AADLEN T1 T2 T3 T4 T5 T6 T7 T8
+
+	mov     \AAD, %r10                      # r10 = AAD
+	mov     \AADLEN, %r12                      # r12 = aadLen
+
+
+	mov     %r12, %r11
+
+	vpxor   \T8, \T8, \T8
+	vpxor   \T7, \T7, \T7
+	cmp     $16, %r11
+	jl      _get_AAD_rest8\@
+_get_AAD_blocks\@:
+	vmovdqu (%r10), \T7
+	vpshufb SHUF_MASK(%rip), \T7, \T7
+	vpxor   \T7, \T8, \T8
+	\GHASH_MUL       \T8, \T2, \T1, \T3, \T4, \T5, \T6
+	add     $16, %r10
+	sub     $16, %r12
+	sub     $16, %r11
+	cmp     $16, %r11
+	jge     _get_AAD_blocks\@
+	vmovdqu \T8, \T7
+	cmp     $0, %r11
+	je      _get_AAD_done\@
+
+	vpxor   \T7, \T7, \T7
+
+	/* read the last <16B of AAD. since we have at least 4B of
+	data right after the AAD (the ICV, and maybe some CT), we can
+	read 4B/8B blocks safely, and then get rid of the extra stuff */
+_get_AAD_rest8\@:
+	cmp     $4, %r11
+	jle     _get_AAD_rest4\@
+	movq    (%r10), \T1
+	add     $8, %r10
+	sub     $8, %r11
+	vpslldq $8, \T1, \T1
+	vpsrldq $8, \T7, \T7
+	vpxor   \T1, \T7, \T7
+	jmp     _get_AAD_rest8\@
+_get_AAD_rest4\@:
+	cmp     $0, %r11
+	jle      _get_AAD_rest0\@
+	mov     (%r10), %eax
+	movq    %rax, \T1
+	add     $4, %r10
+	sub     $4, %r11
+	vpslldq $12, \T1, \T1
+	vpsrldq $4, \T7, \T7
+	vpxor   \T1, \T7, \T7
+_get_AAD_rest0\@:
+	/* finalize: shift out the extra bytes we read, and align
+	left. since pslldq can only shift by an immediate, we use
+	vpshufb and an array of shuffle masks */
+	movq    %r12, %r11
+	salq    $4, %r11
+	vmovdqu  aad_shift_arr(%r11), \T1
+	vpshufb \T1, \T7, \T7
+_get_AAD_rest_final\@:
+	vpshufb SHUF_MASK(%rip), \T7, \T7
+	vpxor   \T8, \T7, \T7
+	\GHASH_MUL       \T7, \T2, \T1, \T3, \T4, \T5, \T6
+
+_get_AAD_done\@:
+        vmovdqu \T7, AadHash(arg2)
+.endm
+
+.macro INIT GHASH_MUL PRECOMPUTE
+        mov arg6, %r11
+        mov %r11, AadLen(arg2) # ctx_data.aad_length = aad_length
+        xor %r11d, %r11d
+        mov %r11, InLen(arg2) # ctx_data.in_length = 0
+
+        mov %r11, PBlockLen(arg2) # ctx_data.partial_block_length = 0
+        mov %r11, PBlockEncKey(arg2) # ctx_data.partial_block_enc_key = 0
+        mov arg3, %rax
+        movdqu (%rax), %xmm0
+        movdqu %xmm0, OrigIV(arg2) # ctx_data.orig_IV = iv
+
+        vpshufb SHUF_MASK(%rip), %xmm0, %xmm0
+        movdqu %xmm0, CurCount(arg2) # ctx_data.current_counter = iv
+
+        vmovdqu  (arg4), %xmm6              # xmm6 = HashKey
+
+        vpshufb  SHUF_MASK(%rip), %xmm6, %xmm6
+        ###############  PRECOMPUTATION of HashKey<<1 mod poly from the HashKey
+        vmovdqa  %xmm6, %xmm2
+        vpsllq   $1, %xmm6, %xmm6
+        vpsrlq   $63, %xmm2, %xmm2
+        vmovdqa  %xmm2, %xmm1
+        vpslldq  $8, %xmm2, %xmm2
+        vpsrldq  $8, %xmm1, %xmm1
+        vpor     %xmm2, %xmm6, %xmm6
+        #reduction
+        vpshufd  $0b00100100, %xmm1, %xmm2
+        vpcmpeqd TWOONE(%rip), %xmm2, %xmm2
+        vpand    POLY(%rip), %xmm2, %xmm2
+        vpxor    %xmm2, %xmm6, %xmm6        # xmm6 holds the HashKey<<1 mod poly
+        #######################################################################
+        vmovdqu  %xmm6, HashKey(arg2)       # store HashKey<<1 mod poly
+
+        CALC_AAD_HASH \GHASH_MUL, arg5, arg6, %xmm2, %xmm6, %xmm3, %xmm4, %xmm5, %xmm7, %xmm1, %xmm0
+
+        \PRECOMPUTE  %xmm6, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5
+.endm
+
+
+# Reads DLEN bytes starting at DPTR and stores in XMMDst
+# where 0 < DLEN < 16
+# Clobbers %rax, DLEN
+.macro READ_PARTIAL_BLOCK DPTR DLEN XMMDst
+        vpxor \XMMDst, \XMMDst, \XMMDst
+
+        cmp $8, \DLEN
+        jl _read_lt8_\@
+        mov (\DPTR), %rax
+        vpinsrq $0, %rax, \XMMDst, \XMMDst
+        sub $8, \DLEN
+        jz _done_read_partial_block_\@
+        xor %eax, %eax
+_read_next_byte_\@:
+        shl $8, %rax
+        mov 7(\DPTR, \DLEN, 1), %al
+        dec \DLEN
+        jnz _read_next_byte_\@
+        vpinsrq $1, %rax, \XMMDst, \XMMDst
+        jmp _done_read_partial_block_\@
+_read_lt8_\@:
+        xor %eax, %eax
+_read_next_byte_lt8_\@:
+        shl $8, %rax
+        mov -1(\DPTR, \DLEN, 1), %al
+        dec \DLEN
+        jnz _read_next_byte_lt8_\@
+        vpinsrq $0, %rax, \XMMDst, \XMMDst
+_done_read_partial_block_\@:
+.endm
+
+# PARTIAL_BLOCK: Handles encryption/decryption and the tag partial blocks
+# between update calls.
+# Requires the input data be at least 1 byte long due to READ_PARTIAL_BLOCK
+# Outputs encrypted bytes, and updates hash and partial info in gcm_data_context
+# Clobbers rax, r10, r12, r13, xmm0-6, xmm9-13
+.macro PARTIAL_BLOCK GHASH_MUL CYPH_PLAIN_OUT PLAIN_CYPH_IN PLAIN_CYPH_LEN DATA_OFFSET \
+        AAD_HASH ENC_DEC
+        mov 	PBlockLen(arg2), %r13
+        cmp	$0, %r13
+        je	_partial_block_done_\@	# Leave Macro if no partial blocks
+        # Read in input data without over reading
+        cmp	$16, \PLAIN_CYPH_LEN
+        jl	_fewer_than_16_bytes_\@
+        vmovdqu	(\PLAIN_CYPH_IN), %xmm1	# If more than 16 bytes, just fill xmm
+        jmp	_data_read_\@
+
+_fewer_than_16_bytes_\@:
+        lea	(\PLAIN_CYPH_IN, \DATA_OFFSET, 1), %r10
+        mov	\PLAIN_CYPH_LEN, %r12
+        READ_PARTIAL_BLOCK %r10 %r12 %xmm1
+
+        mov PBlockLen(arg2), %r13
+
+_data_read_\@:				# Finished reading in data
+
+        vmovdqu	PBlockEncKey(arg2), %xmm9
+        vmovdqu	HashKey(arg2), %xmm13
+
+        lea	SHIFT_MASK(%rip), %r12
+
+        # adjust the shuffle mask pointer to be able to shift r13 bytes
+        # r16-r13 is the number of bytes in plaintext mod 16)
+        add	%r13, %r12
+        vmovdqu	(%r12), %xmm2		# get the appropriate shuffle mask
+        vpshufb %xmm2, %xmm9, %xmm9		# shift right r13 bytes
+
+.if  \ENC_DEC ==  DEC
+        vmovdqa	%xmm1, %xmm3
+        pxor	%xmm1, %xmm9		# Cyphertext XOR E(K, Yn)
+
+        mov	\PLAIN_CYPH_LEN, %r10
+        add	%r13, %r10
+        # Set r10 to be the amount of data left in CYPH_PLAIN_IN after filling
+        sub	$16, %r10
+        # Determine if if partial block is not being filled and
+        # shift mask accordingly
+        jge	_no_extra_mask_1_\@
+        sub	%r10, %r12
+_no_extra_mask_1_\@:
+
+        vmovdqu	ALL_F-SHIFT_MASK(%r12), %xmm1
+        # get the appropriate mask to mask out bottom r13 bytes of xmm9
+        vpand	%xmm1, %xmm9, %xmm9		# mask out bottom r13 bytes of xmm9
+
+        vpand	%xmm1, %xmm3, %xmm3
+        vmovdqa	SHUF_MASK(%rip), %xmm10
+        vpshufb	%xmm10, %xmm3, %xmm3
+        vpshufb	%xmm2, %xmm3, %xmm3
+        vpxor	%xmm3, \AAD_HASH, \AAD_HASH
+
+        cmp	$0, %r10
+        jl	_partial_incomplete_1_\@
+
+        # GHASH computation for the last <16 Byte block
+        \GHASH_MUL \AAD_HASH, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6
+        xor	%eax,%eax
+
+        mov	%rax, PBlockLen(arg2)
+        jmp	_dec_done_\@
+_partial_incomplete_1_\@:
+        add	\PLAIN_CYPH_LEN, PBlockLen(arg2)
+_dec_done_\@:
+        vmovdqu	\AAD_HASH, AadHash(arg2)
+.else
+        vpxor	%xmm1, %xmm9, %xmm9			# Plaintext XOR E(K, Yn)
+
+        mov	\PLAIN_CYPH_LEN, %r10
+        add	%r13, %r10
+        # Set r10 to be the amount of data left in CYPH_PLAIN_IN after filling
+        sub	$16, %r10
+        # Determine if if partial block is not being filled and
+        # shift mask accordingly
+        jge	_no_extra_mask_2_\@
+        sub	%r10, %r12
+_no_extra_mask_2_\@:
+
+        vmovdqu	ALL_F-SHIFT_MASK(%r12), %xmm1
+        # get the appropriate mask to mask out bottom r13 bytes of xmm9
+        vpand	%xmm1, %xmm9, %xmm9
+
+        vmovdqa	SHUF_MASK(%rip), %xmm1
+        vpshufb %xmm1, %xmm9, %xmm9
+        vpshufb %xmm2, %xmm9, %xmm9
+        vpxor	%xmm9, \AAD_HASH, \AAD_HASH
+
+        cmp	$0, %r10
+        jl	_partial_incomplete_2_\@
+
+        # GHASH computation for the last <16 Byte block
+        \GHASH_MUL \AAD_HASH, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6
+        xor	%eax,%eax
+
+        mov	%rax, PBlockLen(arg2)
+        jmp	_encode_done_\@
+_partial_incomplete_2_\@:
+        add	\PLAIN_CYPH_LEN, PBlockLen(arg2)
+_encode_done_\@:
+        vmovdqu	\AAD_HASH, AadHash(arg2)
+
+        vmovdqa	SHUF_MASK(%rip), %xmm10
+        # shuffle xmm9 back to output as ciphertext
+        vpshufb	%xmm10, %xmm9, %xmm9
+        vpshufb	%xmm2, %xmm9, %xmm9
+.endif
+        # output encrypted Bytes
+        cmp	$0, %r10
+        jl	_partial_fill_\@
+        mov	%r13, %r12
+        mov	$16, %r13
+        # Set r13 to be the number of bytes to write out
+        sub	%r12, %r13
+        jmp	_count_set_\@
+_partial_fill_\@:
+        mov	\PLAIN_CYPH_LEN, %r13
+_count_set_\@:
+        vmovdqa	%xmm9, %xmm0
+        vmovq	%xmm0, %rax
+        cmp	$8, %r13
+        jle	_less_than_8_bytes_left_\@
+
+        mov	%rax, (\CYPH_PLAIN_OUT, \DATA_OFFSET, 1)
+        add	$8, \DATA_OFFSET
+        psrldq	$8, %xmm0
+        vmovq	%xmm0, %rax
+        sub	$8, %r13
+_less_than_8_bytes_left_\@:
+        movb	%al, (\CYPH_PLAIN_OUT, \DATA_OFFSET, 1)
+        add	$1, \DATA_OFFSET
+        shr	$8, %rax
+        sub	$1, %r13
+        jne	_less_than_8_bytes_left_\@
+_partial_block_done_\@:
+.endm # PARTIAL_BLOCK
+
 #ifdef CONFIG_AS_AVX
 ###############################################################################
 # GHASH_MUL MACRO to implement: Data*HashKey mod (128,127,126,121,0)
@@ -341,49 +947,49 @@ VARIABLE_OFFSET = 16*8
 
         vpshufd  $0b01001110, \T5, \T1
         vpxor    \T5, \T1, \T1
-        vmovdqa  \T1, HashKey_k(arg1)
+        vmovdqu  \T1, HashKey_k(arg2)
 
         GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2  #  T5 = HashKey^2<<1 mod poly
-        vmovdqa  \T5, HashKey_2(arg1)                    #  [HashKey_2] = HashKey^2<<1 mod poly
+        vmovdqu  \T5, HashKey_2(arg2)                    #  [HashKey_2] = HashKey^2<<1 mod poly
         vpshufd  $0b01001110, \T5, \T1
         vpxor    \T5, \T1, \T1
-        vmovdqa  \T1, HashKey_2_k(arg1)
+        vmovdqu  \T1, HashKey_2_k(arg2)
 
         GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2  #  T5 = HashKey^3<<1 mod poly
-        vmovdqa  \T5, HashKey_3(arg1)
+        vmovdqu  \T5, HashKey_3(arg2)
         vpshufd  $0b01001110, \T5, \T1
         vpxor    \T5, \T1, \T1
-        vmovdqa  \T1, HashKey_3_k(arg1)
+        vmovdqu  \T1, HashKey_3_k(arg2)
 
         GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2  #  T5 = HashKey^4<<1 mod poly
-        vmovdqa  \T5, HashKey_4(arg1)
+        vmovdqu  \T5, HashKey_4(arg2)
         vpshufd  $0b01001110, \T5, \T1
         vpxor    \T5, \T1, \T1
-        vmovdqa  \T1, HashKey_4_k(arg1)
+        vmovdqu  \T1, HashKey_4_k(arg2)
 
         GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2  #  T5 = HashKey^5<<1 mod poly
-        vmovdqa  \T5, HashKey_5(arg1)
+        vmovdqu  \T5, HashKey_5(arg2)
         vpshufd  $0b01001110, \T5, \T1
         vpxor    \T5, \T1, \T1
-        vmovdqa  \T1, HashKey_5_k(arg1)
+        vmovdqu  \T1, HashKey_5_k(arg2)
 
         GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2  #  T5 = HashKey^6<<1 mod poly
-        vmovdqa  \T5, HashKey_6(arg1)
+        vmovdqu  \T5, HashKey_6(arg2)
         vpshufd  $0b01001110, \T5, \T1
         vpxor    \T5, \T1, \T1
-        vmovdqa  \T1, HashKey_6_k(arg1)
+        vmovdqu  \T1, HashKey_6_k(arg2)
 
         GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2  #  T5 = HashKey^7<<1 mod poly
-        vmovdqa  \T5, HashKey_7(arg1)
+        vmovdqu  \T5, HashKey_7(arg2)
         vpshufd  $0b01001110, \T5, \T1
         vpxor    \T5, \T1, \T1
-        vmovdqa  \T1, HashKey_7_k(arg1)
+        vmovdqu  \T1, HashKey_7_k(arg2)
 
         GHASH_MUL_AVX \T5, \HK, \T1, \T3, \T4, \T6, \T2  #  T5 = HashKey^8<<1 mod poly
-        vmovdqa  \T5, HashKey_8(arg1)
+        vmovdqu  \T5, HashKey_8(arg2)
         vpshufd  $0b01001110, \T5, \T1
         vpxor    \T5, \T1, \T1
-        vmovdqa  \T1, HashKey_8_k(arg1)
+        vmovdqu  \T1, HashKey_8_k(arg2)
 
 .endm
 
@@ -392,84 +998,15 @@ VARIABLE_OFFSET = 16*8
 ## num_initial_blocks = b mod 4#
 ## encrypt the initial num_initial_blocks blocks and apply ghash on the ciphertext
 ## r10, r11, r12, rax are clobbered
-## arg1, arg2, arg3, r14 are used as a pointer only, not modified
+## arg1, arg3, arg4, r14 are used as a pointer only, not modified
 
-.macro INITIAL_BLOCKS_AVX num_initial_blocks T1 T2 T3 T4 T5 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T6 T_key ENC_DEC
+.macro INITIAL_BLOCKS_AVX REP num_initial_blocks T1 T2 T3 T4 T5 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T6 T_key ENC_DEC
 	i = (8-\num_initial_blocks)
-	j = 0
 	setreg
-
-	mov     arg6, %r10                      # r10 = AAD
-	mov     arg7, %r12                      # r12 = aadLen
-
-
-	mov     %r12, %r11
-
-	vpxor   reg_j, reg_j, reg_j
-	vpxor   reg_i, reg_i, reg_i
-	cmp     $16, %r11
-	jl      _get_AAD_rest8\@
-_get_AAD_blocks\@:
-	vmovdqu (%r10), reg_i
-	vpshufb SHUF_MASK(%rip), reg_i, reg_i
-	vpxor   reg_i, reg_j, reg_j
-	GHASH_MUL_AVX       reg_j, \T2, \T1, \T3, \T4, \T5, \T6
-	add     $16, %r10
-	sub     $16, %r12
-	sub     $16, %r11
-	cmp     $16, %r11
-	jge     _get_AAD_blocks\@
-	vmovdqu reg_j, reg_i
-	cmp     $0, %r11
-	je      _get_AAD_done\@
-
-	vpxor   reg_i, reg_i, reg_i
-
-	/* read the last <16B of AAD. since we have at least 4B of
-	data right after the AAD (the ICV, and maybe some CT), we can
-	read 4B/8B blocks safely, and then get rid of the extra stuff */
-_get_AAD_rest8\@:
-	cmp     $4, %r11
-	jle     _get_AAD_rest4\@
-	movq    (%r10), \T1
-	add     $8, %r10
-	sub     $8, %r11
-	vpslldq $8, \T1, \T1
-	vpsrldq $8, reg_i, reg_i
-	vpxor   \T1, reg_i, reg_i
-	jmp     _get_AAD_rest8\@
-_get_AAD_rest4\@:
-	cmp     $0, %r11
-	jle      _get_AAD_rest0\@
-	mov     (%r10), %eax
-	movq    %rax, \T1
-	add     $4, %r10
-	sub     $4, %r11
-	vpslldq $12, \T1, \T1
-	vpsrldq $4, reg_i, reg_i
-	vpxor   \T1, reg_i, reg_i
-_get_AAD_rest0\@:
-	/* finalize: shift out the extra bytes we read, and align
-	left. since pslldq can only shift by an immediate, we use
-	vpshufb and an array of shuffle masks */
-	movq    %r12, %r11
-	salq    $4, %r11
-	movdqu  aad_shift_arr(%r11), \T1
-	vpshufb \T1, reg_i, reg_i
-_get_AAD_rest_final\@:
-	vpshufb SHUF_MASK(%rip), reg_i, reg_i
-	vpxor   reg_j, reg_i, reg_i
-	GHASH_MUL_AVX       reg_i, \T2, \T1, \T3, \T4, \T5, \T6
-
-_get_AAD_done\@:
-	# initialize the data pointer offset as zero
-	xor     %r11d, %r11d
+        vmovdqu AadHash(arg2), reg_i
 
 	# start AES for num_initial_blocks blocks
-	mov     arg5, %rax                     # rax = *Y0
-	vmovdqu (%rax), \CTR                   # CTR = Y0
-	vpshufb SHUF_MASK(%rip), \CTR, \CTR
-
+	vmovdqu CurCount(arg2), \CTR
 
 	i = (9-\num_initial_blocks)
 	setreg
@@ -490,10 +1027,10 @@ _get_AAD_done\@:
 	setreg
 .endr
 
-	j = 1
-	setreg
-.rep 9
-	vmovdqa  16*j(arg1), \T_key
+       j = 1
+       setreg
+.rep \REP
+       vmovdqa  16*j(arg1), \T_key
 	i = (9-\num_initial_blocks)
 	setreg
 .rep \num_initial_blocks
@@ -502,12 +1039,11 @@ _get_AAD_done\@:
 	setreg
 .endr
 
-	j = (j+1)
-	setreg
+       j = (j+1)
+       setreg
 .endr
 
-
-	vmovdqa  16*10(arg1), \T_key
+	vmovdqa  16*j(arg1), \T_key
 	i = (9-\num_initial_blocks)
 	setreg
 .rep \num_initial_blocks
@@ -519,9 +1055,9 @@ _get_AAD_done\@:
 	i = (9-\num_initial_blocks)
 	setreg
 .rep \num_initial_blocks
-                vmovdqu (arg3, %r11), \T1
+                vmovdqu (arg4, %r11), \T1
                 vpxor   \T1, reg_i, reg_i
-                vmovdqu reg_i, (arg2 , %r11)           # write back ciphertext for num_initial_blocks blocks
+                vmovdqu reg_i, (arg3 , %r11)           # write back ciphertext for num_initial_blocks blocks
                 add     $16, %r11
 .if  \ENC_DEC == DEC
                 vmovdqa \T1, reg_i
@@ -595,9 +1131,9 @@ _get_AAD_done\@:
                 vpxor    \T_key, \XMM7, \XMM7
                 vpxor    \T_key, \XMM8, \XMM8
 
-		i = 1
-		setreg
-.rep    9       # do 9 rounds
+               i = 1
+               setreg
+.rep    \REP       # do REP rounds
                 vmovdqa  16*i(arg1), \T_key
                 vaesenc  \T_key, \XMM1, \XMM1
                 vaesenc  \T_key, \XMM2, \XMM2
@@ -607,11 +1143,10 @@ _get_AAD_done\@:
                 vaesenc  \T_key, \XMM6, \XMM6
                 vaesenc  \T_key, \XMM7, \XMM7
                 vaesenc  \T_key, \XMM8, \XMM8
-		i = (i+1)
-		setreg
+               i = (i+1)
+               setreg
 .endr
 
-
                 vmovdqa  16*i(arg1), \T_key
                 vaesenclast  \T_key, \XMM1, \XMM1
                 vaesenclast  \T_key, \XMM2, \XMM2
@@ -622,58 +1157,58 @@ _get_AAD_done\@:
                 vaesenclast  \T_key, \XMM7, \XMM7
                 vaesenclast  \T_key, \XMM8, \XMM8
 
-                vmovdqu  (arg3, %r11), \T1
+                vmovdqu  (arg4, %r11), \T1
                 vpxor    \T1, \XMM1, \XMM1
-                vmovdqu  \XMM1, (arg2 , %r11)
+                vmovdqu  \XMM1, (arg3 , %r11)
                 .if   \ENC_DEC == DEC
                 vmovdqa  \T1, \XMM1
                 .endif
 
-                vmovdqu  16*1(arg3, %r11), \T1
+                vmovdqu  16*1(arg4, %r11), \T1
                 vpxor    \T1, \XMM2, \XMM2
-                vmovdqu  \XMM2, 16*1(arg2 , %r11)
+                vmovdqu  \XMM2, 16*1(arg3 , %r11)
                 .if   \ENC_DEC == DEC
                 vmovdqa  \T1, \XMM2
                 .endif
 
-                vmovdqu  16*2(arg3, %r11), \T1
+                vmovdqu  16*2(arg4, %r11), \T1
                 vpxor    \T1, \XMM3, \XMM3
-                vmovdqu  \XMM3, 16*2(arg2 , %r11)
+                vmovdqu  \XMM3, 16*2(arg3 , %r11)
                 .if   \ENC_DEC == DEC
                 vmovdqa  \T1, \XMM3
                 .endif
 
-                vmovdqu  16*3(arg3, %r11), \T1
+                vmovdqu  16*3(arg4, %r11), \T1
                 vpxor    \T1, \XMM4, \XMM4
-                vmovdqu  \XMM4, 16*3(arg2 , %r11)
+                vmovdqu  \XMM4, 16*3(arg3 , %r11)
                 .if   \ENC_DEC == DEC
                 vmovdqa  \T1, \XMM4
                 .endif
 
-                vmovdqu  16*4(arg3, %r11), \T1
+                vmovdqu  16*4(arg4, %r11), \T1
                 vpxor    \T1, \XMM5, \XMM5
-                vmovdqu  \XMM5, 16*4(arg2 , %r11)
+                vmovdqu  \XMM5, 16*4(arg3 , %r11)
                 .if   \ENC_DEC == DEC
                 vmovdqa  \T1, \XMM5
                 .endif
 
-                vmovdqu  16*5(arg3, %r11), \T1
+                vmovdqu  16*5(arg4, %r11), \T1
                 vpxor    \T1, \XMM6, \XMM6
-                vmovdqu  \XMM6, 16*5(arg2 , %r11)
+                vmovdqu  \XMM6, 16*5(arg3 , %r11)
                 .if   \ENC_DEC == DEC
                 vmovdqa  \T1, \XMM6
                 .endif
 
-                vmovdqu  16*6(arg3, %r11), \T1
+                vmovdqu  16*6(arg4, %r11), \T1
                 vpxor    \T1, \XMM7, \XMM7
-                vmovdqu  \XMM7, 16*6(arg2 , %r11)
+                vmovdqu  \XMM7, 16*6(arg3 , %r11)
                 .if   \ENC_DEC == DEC
                 vmovdqa  \T1, \XMM7
                 .endif
 
-                vmovdqu  16*7(arg3, %r11), \T1
+                vmovdqu  16*7(arg4, %r11), \T1
                 vpxor    \T1, \XMM8, \XMM8
-                vmovdqu  \XMM8, 16*7(arg2 , %r11)
+                vmovdqu  \XMM8, 16*7(arg3 , %r11)
                 .if   \ENC_DEC == DEC
                 vmovdqa  \T1, \XMM8
                 .endif
@@ -698,9 +1233,9 @@ _initial_blocks_done\@:
 
 # encrypt 8 blocks at a time
 # ghash the 8 previously encrypted ciphertext blocks
-# arg1, arg2, arg3 are used as pointers only, not modified
+# arg1, arg3, arg4 are used as pointers only, not modified
 # r11 is the data offset value
-.macro GHASH_8_ENCRYPT_8_PARALLEL_AVX T1 T2 T3 T4 T5 T6 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T7 loop_idx ENC_DEC
+.macro GHASH_8_ENCRYPT_8_PARALLEL_AVX REP T1 T2 T3 T4 T5 T6 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T7 loop_idx ENC_DEC
 
         vmovdqa \XMM1, \T2
         vmovdqa \XMM2, TMP2(%rsp)
@@ -784,14 +1319,14 @@ _initial_blocks_done\@:
 
         #######################################################################
 
-        vmovdqa         HashKey_8(arg1), \T5
+        vmovdqu         HashKey_8(arg2), \T5
         vpclmulqdq      $0x11, \T5, \T2, \T4             # T4 = a1*b1
         vpclmulqdq      $0x00, \T5, \T2, \T7             # T7 = a0*b0
 
         vpshufd         $0b01001110, \T2, \T6
         vpxor           \T2, \T6, \T6
 
-        vmovdqa         HashKey_8_k(arg1), \T5
+        vmovdqu         HashKey_8_k(arg2), \T5
         vpclmulqdq      $0x00, \T5, \T6, \T6
 
                 vmovdqu 16*3(arg1), \T1
@@ -805,7 +1340,7 @@ _initial_blocks_done\@:
                 vaesenc \T1, \XMM8, \XMM8
 
         vmovdqa         TMP2(%rsp), \T1
-        vmovdqa         HashKey_7(arg1), \T5
+        vmovdqu         HashKey_7(arg2), \T5
         vpclmulqdq      $0x11, \T5, \T1, \T3
         vpxor           \T3, \T4, \T4
         vpclmulqdq      $0x00, \T5, \T1, \T3
@@ -813,7 +1348,7 @@ _initial_blocks_done\@:
 
         vpshufd         $0b01001110, \T1, \T3
         vpxor           \T1, \T3, \T3
-        vmovdqa         HashKey_7_k(arg1), \T5
+        vmovdqu         HashKey_7_k(arg2), \T5
         vpclmulqdq      $0x10, \T5, \T3, \T3
         vpxor           \T3, \T6, \T6
 
@@ -830,7 +1365,7 @@ _initial_blocks_done\@:
         #######################################################################
 
         vmovdqa         TMP3(%rsp), \T1
-        vmovdqa         HashKey_6(arg1), \T5
+        vmovdqu         HashKey_6(arg2), \T5
         vpclmulqdq      $0x11, \T5, \T1, \T3
         vpxor           \T3, \T4, \T4
         vpclmulqdq      $0x00, \T5, \T1, \T3
@@ -838,7 +1373,7 @@ _initial_blocks_done\@:
 
         vpshufd         $0b01001110, \T1, \T3
         vpxor           \T1, \T3, \T3
-        vmovdqa         HashKey_6_k(arg1), \T5
+        vmovdqu         HashKey_6_k(arg2), \T5
         vpclmulqdq      $0x10, \T5, \T3, \T3
         vpxor           \T3, \T6, \T6
 
@@ -853,7 +1388,7 @@ _initial_blocks_done\@:
                 vaesenc \T1, \XMM8, \XMM8
 
         vmovdqa         TMP4(%rsp), \T1
-        vmovdqa         HashKey_5(arg1), \T5
+        vmovdqu         HashKey_5(arg2), \T5
         vpclmulqdq      $0x11, \T5, \T1, \T3
         vpxor           \T3, \T4, \T4
         vpclmulqdq      $0x00, \T5, \T1, \T3
@@ -861,7 +1396,7 @@ _initial_blocks_done\@:
 
         vpshufd         $0b01001110, \T1, \T3
         vpxor           \T1, \T3, \T3
-        vmovdqa         HashKey_5_k(arg1), \T5
+        vmovdqu         HashKey_5_k(arg2), \T5
         vpclmulqdq      $0x10, \T5, \T3, \T3
         vpxor           \T3, \T6, \T6
 
@@ -877,7 +1412,7 @@ _initial_blocks_done\@:
 
 
         vmovdqa         TMP5(%rsp), \T1
-        vmovdqa         HashKey_4(arg1), \T5
+        vmovdqu         HashKey_4(arg2), \T5
         vpclmulqdq      $0x11, \T5, \T1, \T3
         vpxor           \T3, \T4, \T4
         vpclmulqdq      $0x00, \T5, \T1, \T3
@@ -885,7 +1420,7 @@ _initial_blocks_done\@:
 
         vpshufd         $0b01001110, \T1, \T3
         vpxor           \T1, \T3, \T3
-        vmovdqa         HashKey_4_k(arg1), \T5
+        vmovdqu         HashKey_4_k(arg2), \T5
         vpclmulqdq      $0x10, \T5, \T3, \T3
         vpxor           \T3, \T6, \T6
 
@@ -900,7 +1435,7 @@ _initial_blocks_done\@:
                 vaesenc \T1, \XMM8, \XMM8
 
         vmovdqa         TMP6(%rsp), \T1
-        vmovdqa         HashKey_3(arg1), \T5
+        vmovdqu         HashKey_3(arg2), \T5
         vpclmulqdq      $0x11, \T5, \T1, \T3
         vpxor           \T3, \T4, \T4
         vpclmulqdq      $0x00, \T5, \T1, \T3
@@ -908,7 +1443,7 @@ _initial_blocks_done\@:
 
         vpshufd         $0b01001110, \T1, \T3
         vpxor           \T1, \T3, \T3
-        vmovdqa         HashKey_3_k(arg1), \T5
+        vmovdqu         HashKey_3_k(arg2), \T5
         vpclmulqdq      $0x10, \T5, \T3, \T3
         vpxor           \T3, \T6, \T6
 
@@ -924,7 +1459,7 @@ _initial_blocks_done\@:
                 vaesenc \T1, \XMM8, \XMM8
 
         vmovdqa         TMP7(%rsp), \T1
-        vmovdqa         HashKey_2(arg1), \T5
+        vmovdqu         HashKey_2(arg2), \T5
         vpclmulqdq      $0x11, \T5, \T1, \T3
         vpxor           \T3, \T4, \T4
         vpclmulqdq      $0x00, \T5, \T1, \T3
@@ -932,7 +1467,7 @@ _initial_blocks_done\@:
 
         vpshufd         $0b01001110, \T1, \T3
         vpxor           \T1, \T3, \T3
-        vmovdqa         HashKey_2_k(arg1), \T5
+        vmovdqu         HashKey_2_k(arg2), \T5
         vpclmulqdq      $0x10, \T5, \T3, \T3
         vpxor           \T3, \T6, \T6
 
@@ -949,7 +1484,7 @@ _initial_blocks_done\@:
                 vaesenc \T5, \XMM8, \XMM8
 
         vmovdqa         TMP8(%rsp), \T1
-        vmovdqa         HashKey(arg1), \T5
+        vmovdqu         HashKey(arg2), \T5
         vpclmulqdq      $0x11, \T5, \T1, \T3
         vpxor           \T3, \T4, \T4
         vpclmulqdq      $0x00, \T5, \T1, \T3
@@ -957,7 +1492,7 @@ _initial_blocks_done\@:
 
         vpshufd         $0b01001110, \T1, \T3
         vpxor           \T1, \T3, \T3
-        vmovdqa         HashKey_k(arg1), \T5
+        vmovdqu         HashKey_k(arg2), \T5
         vpclmulqdq      $0x10, \T5, \T3, \T3
         vpxor           \T3, \T6, \T6
 
@@ -966,17 +1501,35 @@ _initial_blocks_done\@:
 
                 vmovdqu 16*10(arg1), \T5
 
+        i = 11
+        setreg
+.rep (\REP-9)
+
+        vaesenc \T5, \XMM1, \XMM1
+        vaesenc \T5, \XMM2, \XMM2
+        vaesenc \T5, \XMM3, \XMM3
+        vaesenc \T5, \XMM4, \XMM4
+        vaesenc \T5, \XMM5, \XMM5
+        vaesenc \T5, \XMM6, \XMM6
+        vaesenc \T5, \XMM7, \XMM7
+        vaesenc \T5, \XMM8, \XMM8
+
+        vmovdqu 16*i(arg1), \T5
+        i = i + 1
+        setreg
+.endr
+
 	i = 0
 	j = 1
 	setreg
 .rep 8
-		vpxor	16*i(arg3, %r11), \T5, \T2
+		vpxor	16*i(arg4, %r11), \T5, \T2
                 .if \ENC_DEC == ENC
                 vaesenclast     \T2, reg_j, reg_j
                 .else
                 vaesenclast     \T2, reg_j, \T3
-                vmovdqu 16*i(arg3, %r11), reg_j
-                vmovdqu \T3, 16*i(arg2, %r11)
+                vmovdqu 16*i(arg4, %r11), reg_j
+                vmovdqu \T3, 16*i(arg3, %r11)
                 .endif
 	i = (i+1)
 	j = (j+1)
@@ -1008,14 +1561,14 @@ _initial_blocks_done\@:
         vpxor   \T2, \T7, \T7                           # first phase of the reduction complete
 	#######################################################################
                 .if \ENC_DEC == ENC
-		vmovdqu	 \XMM1,	16*0(arg2,%r11)		# Write to the Ciphertext buffer
-		vmovdqu	 \XMM2,	16*1(arg2,%r11)		# Write to the Ciphertext buffer
-		vmovdqu	 \XMM3,	16*2(arg2,%r11)		# Write to the Ciphertext buffer
-		vmovdqu	 \XMM4,	16*3(arg2,%r11)		# Write to the Ciphertext buffer
-		vmovdqu	 \XMM5,	16*4(arg2,%r11)		# Write to the Ciphertext buffer
-		vmovdqu	 \XMM6,	16*5(arg2,%r11)		# Write to the Ciphertext buffer
-		vmovdqu	 \XMM7,	16*6(arg2,%r11)		# Write to the Ciphertext buffer
-		vmovdqu	 \XMM8,	16*7(arg2,%r11)		# Write to the Ciphertext buffer
+		vmovdqu	 \XMM1,	16*0(arg3,%r11)		# Write to the Ciphertext buffer
+		vmovdqu	 \XMM2,	16*1(arg3,%r11)		# Write to the Ciphertext buffer
+		vmovdqu	 \XMM3,	16*2(arg3,%r11)		# Write to the Ciphertext buffer
+		vmovdqu	 \XMM4,	16*3(arg3,%r11)		# Write to the Ciphertext buffer
+		vmovdqu	 \XMM5,	16*4(arg3,%r11)		# Write to the Ciphertext buffer
+		vmovdqu	 \XMM6,	16*5(arg3,%r11)		# Write to the Ciphertext buffer
+		vmovdqu	 \XMM7,	16*6(arg3,%r11)		# Write to the Ciphertext buffer
+		vmovdqu	 \XMM8,	16*7(arg3,%r11)		# Write to the Ciphertext buffer
                 .endif
 
 	#######################################################################
@@ -1056,25 +1609,25 @@ _initial_blocks_done\@:
 
         vpshufd         $0b01001110, \XMM1, \T2
         vpxor           \XMM1, \T2, \T2
-        vmovdqa         HashKey_8(arg1), \T5
+        vmovdqu         HashKey_8(arg2), \T5
         vpclmulqdq      $0x11, \T5, \XMM1, \T6
         vpclmulqdq      $0x00, \T5, \XMM1, \T7
 
-        vmovdqa         HashKey_8_k(arg1), \T3
+        vmovdqu         HashKey_8_k(arg2), \T3
         vpclmulqdq      $0x00, \T3, \T2, \XMM1
 
         ######################
 
         vpshufd         $0b01001110, \XMM2, \T2
         vpxor           \XMM2, \T2, \T2
-        vmovdqa         HashKey_7(arg1), \T5
+        vmovdqu         HashKey_7(arg2), \T5
         vpclmulqdq      $0x11, \T5, \XMM2, \T4
         vpxor           \T4, \T6, \T6
 
         vpclmulqdq      $0x00, \T5, \XMM2, \T4
         vpxor           \T4, \T7, \T7
 
-        vmovdqa         HashKey_7_k(arg1), \T3
+        vmovdqu         HashKey_7_k(arg2), \T3
         vpclmulqdq      $0x00, \T3, \T2, \T2
         vpxor           \T2, \XMM1, \XMM1
 
@@ -1082,14 +1635,14 @@ _initial_blocks_done\@:
 
         vpshufd         $0b01001110, \XMM3, \T2
         vpxor           \XMM3, \T2, \T2
-        vmovdqa         HashKey_6(arg1), \T5
+        vmovdqu         HashKey_6(arg2), \T5
         vpclmulqdq      $0x11, \T5, \XMM3, \T4
         vpxor           \T4, \T6, \T6
 
         vpclmulqdq      $0x00, \T5, \XMM3, \T4
         vpxor           \T4, \T7, \T7
 
-        vmovdqa         HashKey_6_k(arg1), \T3
+        vmovdqu         HashKey_6_k(arg2), \T3
         vpclmulqdq      $0x00, \T3, \T2, \T2
         vpxor           \T2, \XMM1, \XMM1
 
@@ -1097,14 +1650,14 @@ _initial_blocks_done\@:
 
         vpshufd         $0b01001110, \XMM4, \T2
         vpxor           \XMM4, \T2, \T2
-        vmovdqa         HashKey_5(arg1), \T5
+        vmovdqu         HashKey_5(arg2), \T5
         vpclmulqdq      $0x11, \T5, \XMM4, \T4
         vpxor           \T4, \T6, \T6
 
         vpclmulqdq      $0x00, \T5, \XMM4, \T4
         vpxor           \T4, \T7, \T7
 
-        vmovdqa         HashKey_5_k(arg1), \T3
+        vmovdqu         HashKey_5_k(arg2), \T3
         vpclmulqdq      $0x00, \T3, \T2, \T2
         vpxor           \T2, \XMM1, \XMM1
 
@@ -1112,14 +1665,14 @@ _initial_blocks_done\@:
 
         vpshufd         $0b01001110, \XMM5, \T2
         vpxor           \XMM5, \T2, \T2
-        vmovdqa         HashKey_4(arg1), \T5
+        vmovdqu         HashKey_4(arg2), \T5
         vpclmulqdq      $0x11, \T5, \XMM5, \T4
         vpxor           \T4, \T6, \T6
 
         vpclmulqdq      $0x00, \T5, \XMM5, \T4
         vpxor           \T4, \T7, \T7
 
-        vmovdqa         HashKey_4_k(arg1), \T3
+        vmovdqu         HashKey_4_k(arg2), \T3
         vpclmulqdq      $0x00, \T3, \T2, \T2
         vpxor           \T2, \XMM1, \XMM1
 
@@ -1127,14 +1680,14 @@ _initial_blocks_done\@:
 
         vpshufd         $0b01001110, \XMM6, \T2
         vpxor           \XMM6, \T2, \T2
-        vmovdqa         HashKey_3(arg1), \T5
+        vmovdqu         HashKey_3(arg2), \T5
         vpclmulqdq      $0x11, \T5, \XMM6, \T4
         vpxor           \T4, \T6, \T6
 
         vpclmulqdq      $0x00, \T5, \XMM6, \T4
         vpxor           \T4, \T7, \T7
 
-        vmovdqa         HashKey_3_k(arg1), \T3
+        vmovdqu         HashKey_3_k(arg2), \T3
         vpclmulqdq      $0x00, \T3, \T2, \T2
         vpxor           \T2, \XMM1, \XMM1
 
@@ -1142,14 +1695,14 @@ _initial_blocks_done\@:
 
         vpshufd         $0b01001110, \XMM7, \T2
         vpxor           \XMM7, \T2, \T2
-        vmovdqa         HashKey_2(arg1), \T5
+        vmovdqu         HashKey_2(arg2), \T5
         vpclmulqdq      $0x11, \T5, \XMM7, \T4
         vpxor           \T4, \T6, \T6
 
         vpclmulqdq      $0x00, \T5, \XMM7, \T4
         vpxor           \T4, \T7, \T7
 
-        vmovdqa         HashKey_2_k(arg1), \T3
+        vmovdqu         HashKey_2_k(arg2), \T3
         vpclmulqdq      $0x00, \T3, \T2, \T2
         vpxor           \T2, \XMM1, \XMM1
 
@@ -1157,14 +1710,14 @@ _initial_blocks_done\@:
 
         vpshufd         $0b01001110, \XMM8, \T2
         vpxor           \XMM8, \T2, \T2
-        vmovdqa         HashKey(arg1), \T5
+        vmovdqu         HashKey(arg2), \T5
         vpclmulqdq      $0x11, \T5, \XMM8, \T4
         vpxor           \T4, \T6, \T6
 
         vpclmulqdq      $0x00, \T5, \XMM8, \T4
         vpxor           \T4, \T7, \T7
 
-        vmovdqa         HashKey_k(arg1), \T3
+        vmovdqu         HashKey_k(arg2), \T3
         vpclmulqdq      $0x00, \T3, \T2, \T2
 
         vpxor           \T2, \XMM1, \XMM1
@@ -1210,413 +1763,112 @@ _initial_blocks_done\@:
 
 .endm
 
-
-# combined for GCM encrypt and decrypt functions
-# clobbering all xmm registers
-# clobbering r10, r11, r12, r13, r14, r15
-.macro  GCM_ENC_DEC_AVX     ENC_DEC
-
-        #the number of pushes must equal STACK_OFFSET
-        push    %r12
-        push    %r13
-        push    %r14
-        push    %r15
-
-        mov     %rsp, %r14
-
-
-
-
-        sub     $VARIABLE_OFFSET, %rsp
-        and     $~63, %rsp                  # align rsp to 64 bytes
-
-
-        vmovdqu  HashKey(arg1), %xmm13      # xmm13 = HashKey
-
-        mov     arg4, %r13                  # save the number of bytes of plaintext/ciphertext
-        and     $-16, %r13                  # r13 = r13 - (r13 mod 16)
-
-        mov     %r13, %r12
-        shr     $4, %r12
-        and     $7, %r12
-        jz      _initial_num_blocks_is_0\@
-
-        cmp     $7, %r12
-        je      _initial_num_blocks_is_7\@
-        cmp     $6, %r12
-        je      _initial_num_blocks_is_6\@
-        cmp     $5, %r12
-        je      _initial_num_blocks_is_5\@
-        cmp     $4, %r12
-        je      _initial_num_blocks_is_4\@
-        cmp     $3, %r12
-        je      _initial_num_blocks_is_3\@
-        cmp     $2, %r12
-        je      _initial_num_blocks_is_2\@
-
-        jmp     _initial_num_blocks_is_1\@
-
-_initial_num_blocks_is_7\@:
-        INITIAL_BLOCKS_AVX  7, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
-        sub     $16*7, %r13
-        jmp     _initial_blocks_encrypted\@
-
-_initial_num_blocks_is_6\@:
-        INITIAL_BLOCKS_AVX  6, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
-        sub     $16*6, %r13
-        jmp     _initial_blocks_encrypted\@
-
-_initial_num_blocks_is_5\@:
-        INITIAL_BLOCKS_AVX  5, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
-        sub     $16*5, %r13
-        jmp     _initial_blocks_encrypted\@
-
-_initial_num_blocks_is_4\@:
-        INITIAL_BLOCKS_AVX  4, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
-        sub     $16*4, %r13
-        jmp     _initial_blocks_encrypted\@
-
-_initial_num_blocks_is_3\@:
-        INITIAL_BLOCKS_AVX  3, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
-        sub     $16*3, %r13
-        jmp     _initial_blocks_encrypted\@
-
-_initial_num_blocks_is_2\@:
-        INITIAL_BLOCKS_AVX  2, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
-        sub     $16*2, %r13
-        jmp     _initial_blocks_encrypted\@
-
-_initial_num_blocks_is_1\@:
-        INITIAL_BLOCKS_AVX  1, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
-        sub     $16*1, %r13
-        jmp     _initial_blocks_encrypted\@
-
-_initial_num_blocks_is_0\@:
-        INITIAL_BLOCKS_AVX  0, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
-
-
-_initial_blocks_encrypted\@:
-        cmp     $0, %r13
-        je      _zero_cipher_left\@
-
-        sub     $128, %r13
-        je      _eight_cipher_left\@
-
-
-
-
-        vmovd   %xmm9, %r15d
-        and     $255, %r15d
-        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
-
-
-_encrypt_by_8_new\@:
-        cmp     $(255-8), %r15d
-        jg      _encrypt_by_8\@
-
-
-
-        add     $8, %r15b
-        GHASH_8_ENCRYPT_8_PARALLEL_AVX      %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm15, out_order, \ENC_DEC
-        add     $128, %r11
-        sub     $128, %r13
-        jne     _encrypt_by_8_new\@
-
-        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
-        jmp     _eight_cipher_left\@
-
-_encrypt_by_8\@:
-        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
-        add     $8, %r15b
-        GHASH_8_ENCRYPT_8_PARALLEL_AVX      %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm15, in_order, \ENC_DEC
-        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
-        add     $128, %r11
-        sub     $128, %r13
-        jne     _encrypt_by_8_new\@
-
-        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
-
-
-
-
-_eight_cipher_left\@:
-        GHASH_LAST_8_AVX    %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8
-
-
-_zero_cipher_left\@:
-        cmp     $16, arg4
-        jl      _only_less_than_16\@
-
-        mov     arg4, %r13
-        and     $15, %r13                            # r13 = (arg4 mod 16)
-
-        je      _multiple_of_16_bytes\@
-
-        # handle the last <16 Byte block seperately
-
-
-        vpaddd   ONE(%rip), %xmm9, %xmm9             # INCR CNT to get Yn
-        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
-        ENCRYPT_SINGLE_BLOCK    %xmm9                # E(K, Yn)
-
-        sub     $16, %r11
-        add     %r13, %r11
-        vmovdqu (arg3, %r11), %xmm1                  # receive the last <16 Byte block
-
-        lea     SHIFT_MASK+16(%rip), %r12
-        sub     %r13, %r12                           # adjust the shuffle mask pointer to be
-						     # able to shift 16-r13 bytes (r13 is the
-						     # number of bytes in plaintext mod 16)
-        vmovdqu (%r12), %xmm2                        # get the appropriate shuffle mask
-        vpshufb %xmm2, %xmm1, %xmm1                  # shift right 16-r13 bytes
-        jmp     _final_ghash_mul\@
-
-_only_less_than_16\@:
-        # check for 0 length
-        mov     arg4, %r13
-        and     $15, %r13                            # r13 = (arg4 mod 16)
-
-        je      _multiple_of_16_bytes\@
-
-        # handle the last <16 Byte block seperately
-
-
-        vpaddd  ONE(%rip), %xmm9, %xmm9              # INCR CNT to get Yn
-        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
-        ENCRYPT_SINGLE_BLOCK    %xmm9                # E(K, Yn)
-
-
-        lea     SHIFT_MASK+16(%rip), %r12
-        sub     %r13, %r12                           # adjust the shuffle mask pointer to be
-						     # able to shift 16-r13 bytes (r13 is the
-						     # number of bytes in plaintext mod 16)
-
-_get_last_16_byte_loop\@:
-        movb    (arg3, %r11),  %al
-        movb    %al,  TMP1 (%rsp , %r11)
-        add     $1, %r11
-        cmp     %r13,  %r11
-        jne     _get_last_16_byte_loop\@
-
-        vmovdqu  TMP1(%rsp), %xmm1
-
-        sub     $16, %r11
-
-_final_ghash_mul\@:
-        .if  \ENC_DEC ==  DEC
-        vmovdqa %xmm1, %xmm2
-        vpxor   %xmm1, %xmm9, %xmm9                  # Plaintext XOR E(K, Yn)
-        vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1        # get the appropriate mask to
-						     # mask out top 16-r13 bytes of xmm9
-        vpand   %xmm1, %xmm9, %xmm9                  # mask out top 16-r13 bytes of xmm9
-        vpand   %xmm1, %xmm2, %xmm2
-        vpshufb SHUF_MASK(%rip), %xmm2, %xmm2
-        vpxor   %xmm2, %xmm14, %xmm14
-	#GHASH computation for the last <16 Byte block
-        GHASH_MUL_AVX       %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6
-        sub     %r13, %r11
-        add     $16, %r11
-        .else
-        vpxor   %xmm1, %xmm9, %xmm9                  # Plaintext XOR E(K, Yn)
-        vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1        # get the appropriate mask to
-						     # mask out top 16-r13 bytes of xmm9
-        vpand   %xmm1, %xmm9, %xmm9                  # mask out top 16-r13 bytes of xmm9
-        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
-        vpxor   %xmm9, %xmm14, %xmm14
-	#GHASH computation for the last <16 Byte block
-        GHASH_MUL_AVX       %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6
-        sub     %r13, %r11
-        add     $16, %r11
-        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9        # shuffle xmm9 back to output as ciphertext
-        .endif
-
-
-        #############################
-        # output r13 Bytes
-        vmovq   %xmm9, %rax
-        cmp     $8, %r13
-        jle     _less_than_8_bytes_left\@
-
-        mov     %rax, (arg2 , %r11)
-        add     $8, %r11
-        vpsrldq $8, %xmm9, %xmm9
-        vmovq   %xmm9, %rax
-        sub     $8, %r13
-
-_less_than_8_bytes_left\@:
-        movb    %al, (arg2 , %r11)
-        add     $1, %r11
-        shr     $8, %rax
-        sub     $1, %r13
-        jne     _less_than_8_bytes_left\@
-        #############################
-
-_multiple_of_16_bytes\@:
-        mov     arg7, %r12                           # r12 = aadLen (number of bytes)
-        shl     $3, %r12                             # convert into number of bits
-        vmovd   %r12d, %xmm15                        # len(A) in xmm15
-
-        shl     $3, arg4                             # len(C) in bits  (*128)
-        vmovq   arg4, %xmm1
-        vpslldq $8, %xmm15, %xmm15                   # xmm15 = len(A)|| 0x0000000000000000
-        vpxor   %xmm1, %xmm15, %xmm15                # xmm15 = len(A)||len(C)
-
-        vpxor   %xmm15, %xmm14, %xmm14
-        GHASH_MUL_AVX       %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6    # final GHASH computation
-        vpshufb SHUF_MASK(%rip), %xmm14, %xmm14      # perform a 16Byte swap
-
-        mov     arg5, %rax                           # rax = *Y0
-        vmovdqu (%rax), %xmm9                        # xmm9 = Y0
-
-        ENCRYPT_SINGLE_BLOCK    %xmm9                # E(K, Y0)
-
-        vpxor   %xmm14, %xmm9, %xmm9
-
-
-
-_return_T\@:
-        mov     arg8, %r10              # r10 = authTag
-        mov     arg9, %r11              # r11 = auth_tag_len
-
-        cmp     $16, %r11
-        je      _T_16\@
-
-        cmp     $8, %r11
-        jl      _T_4\@
-
-_T_8\@:
-        vmovq   %xmm9, %rax
-        mov     %rax, (%r10)
-        add     $8, %r10
-        sub     $8, %r11
-        vpsrldq $8, %xmm9, %xmm9
-        cmp     $0, %r11
-        je     _return_T_done\@
-_T_4\@:
-        vmovd   %xmm9, %eax
-        mov     %eax, (%r10)
-        add     $4, %r10
-        sub     $4, %r11
-        vpsrldq     $4, %xmm9, %xmm9
-        cmp     $0, %r11
-        je     _return_T_done\@
-_T_123\@:
-        vmovd     %xmm9, %eax
-        cmp     $2, %r11
-        jl     _T_1\@
-        mov     %ax, (%r10)
-        cmp     $2, %r11
-        je     _return_T_done\@
-        add     $2, %r10
-        sar     $16, %eax
-_T_1\@:
-        mov     %al, (%r10)
-        jmp     _return_T_done\@
-
-_T_16\@:
-        vmovdqu %xmm9, (%r10)
-
-_return_T_done\@:
-        mov     %r14, %rsp
-
-        pop     %r15
-        pop     %r14
-        pop     %r13
-        pop     %r12
-.endm
-
-
 #############################################################
 #void   aesni_gcm_precomp_avx_gen2
 #        (gcm_data     *my_ctx_data,
-#        u8     *hash_subkey)# /* H, the Hash sub key input. Data starts on a 16-byte boundary. */
+#         gcm_context_data *data,
+#        u8     *hash_subkey# /* H, the Hash sub key input. Data starts on a 16-byte boundary. */
+#        u8      *iv, /* Pre-counter block j0: 4 byte salt
+#			(from Security Association) concatenated with 8 byte
+#			Initialisation Vector (from IPSec ESP Payload)
+#			concatenated with 0x00000001. 16-byte aligned pointer. */
+#        const   u8 *aad, /* Additional Authentication Data (AAD)*/
+#        u64     aad_len) /* Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 Bytes */
 #############################################################
-ENTRY(aesni_gcm_precomp_avx_gen2)
-        #the number of pushes must equal STACK_OFFSET
-        push    %r12
-        push    %r13
-        push    %r14
-        push    %r15
-
-        mov     %rsp, %r14
-
-
-
-        sub     $VARIABLE_OFFSET, %rsp
-        and     $~63, %rsp                  # align rsp to 64 bytes
-
-        vmovdqu  (arg2), %xmm6              # xmm6 = HashKey
-
-        vpshufb  SHUF_MASK(%rip), %xmm6, %xmm6
-        ###############  PRECOMPUTATION of HashKey<<1 mod poly from the HashKey
-        vmovdqa  %xmm6, %xmm2
-        vpsllq   $1, %xmm6, %xmm6
-        vpsrlq   $63, %xmm2, %xmm2
-        vmovdqa  %xmm2, %xmm1
-        vpslldq  $8, %xmm2, %xmm2
-        vpsrldq  $8, %xmm1, %xmm1
-        vpor     %xmm2, %xmm6, %xmm6
-        #reduction
-        vpshufd  $0b00100100, %xmm1, %xmm2
-        vpcmpeqd TWOONE(%rip), %xmm2, %xmm2
-        vpand    POLY(%rip), %xmm2, %xmm2
-        vpxor    %xmm2, %xmm6, %xmm6        # xmm6 holds the HashKey<<1 mod poly
-        #######################################################################
-        vmovdqa  %xmm6, HashKey(arg1)       # store HashKey<<1 mod poly
-
-
-        PRECOMPUTE_AVX  %xmm6, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5
-
-        mov     %r14, %rsp
-
-        pop     %r15
-        pop     %r14
-        pop     %r13
-        pop     %r12
+ENTRY(aesni_gcm_init_avx_gen2)
+        FUNC_SAVE
+        INIT GHASH_MUL_AVX, PRECOMPUTE_AVX
+        FUNC_RESTORE
         ret
-ENDPROC(aesni_gcm_precomp_avx_gen2)
+ENDPROC(aesni_gcm_init_avx_gen2)
 
 ###############################################################################
-#void   aesni_gcm_enc_avx_gen2(
+#void   aesni_gcm_enc_update_avx_gen2(
 #        gcm_data        *my_ctx_data,     /* aligned to 16 Bytes */
+#        gcm_context_data *data,
 #        u8      *out, /* Ciphertext output. Encrypt in-place is allowed.  */
 #        const   u8 *in, /* Plaintext input */
-#        u64     plaintext_len, /* Length of data in Bytes for encryption. */
-#        u8      *iv, /* Pre-counter block j0: 4 byte salt
-#			(from Security Association) concatenated with 8 byte
-#			Initialisation Vector (from IPSec ESP Payload)
-#			concatenated with 0x00000001. 16-byte aligned pointer. */
-#        const   u8 *aad, /* Additional Authentication Data (AAD)*/
-#        u64     aad_len, /* Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 Bytes */
-#        u8      *auth_tag, /* Authenticated Tag output. */
-#        u64     auth_tag_len)# /* Authenticated Tag Length in bytes.
-#				Valid values are 16 (most likely), 12 or 8. */
+#        u64     plaintext_len) /* Length of data in Bytes for encryption. */
 ###############################################################################
-ENTRY(aesni_gcm_enc_avx_gen2)
-        GCM_ENC_DEC_AVX     ENC
-	ret
-ENDPROC(aesni_gcm_enc_avx_gen2)
+ENTRY(aesni_gcm_enc_update_avx_gen2)
+        FUNC_SAVE
+        mov     keysize, %eax
+        cmp     $32, %eax
+        je      key_256_enc_update
+        cmp     $16, %eax
+        je      key_128_enc_update
+        # must be 192
+        GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, ENC, 11
+        FUNC_RESTORE
+        ret
+key_128_enc_update:
+        GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, ENC, 9
+        FUNC_RESTORE
+        ret
+key_256_enc_update:
+        GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, ENC, 13
+        FUNC_RESTORE
+        ret
+ENDPROC(aesni_gcm_enc_update_avx_gen2)
 
 ###############################################################################
-#void   aesni_gcm_dec_avx_gen2(
+#void   aesni_gcm_dec_update_avx_gen2(
 #        gcm_data        *my_ctx_data,     /* aligned to 16 Bytes */
+#        gcm_context_data *data,
 #        u8      *out, /* Plaintext output. Decrypt in-place is allowed.  */
 #        const   u8 *in, /* Ciphertext input */
-#        u64     plaintext_len, /* Length of data in Bytes for encryption. */
-#        u8      *iv, /* Pre-counter block j0: 4 byte salt
-#			(from Security Association) concatenated with 8 byte
-#			Initialisation Vector (from IPSec ESP Payload)
-#			concatenated with 0x00000001. 16-byte aligned pointer. */
-#        const   u8 *aad, /* Additional Authentication Data (AAD)*/
-#        u64     aad_len, /* Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 Bytes */
+#        u64     plaintext_len) /* Length of data in Bytes for encryption. */
+###############################################################################
+ENTRY(aesni_gcm_dec_update_avx_gen2)
+        FUNC_SAVE
+        mov     keysize,%eax
+        cmp     $32, %eax
+        je      key_256_dec_update
+        cmp     $16, %eax
+        je      key_128_dec_update
+        # must be 192
+        GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, DEC, 11
+        FUNC_RESTORE
+        ret
+key_128_dec_update:
+        GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, DEC, 9
+        FUNC_RESTORE
+        ret
+key_256_dec_update:
+        GCM_ENC_DEC INITIAL_BLOCKS_AVX, GHASH_8_ENCRYPT_8_PARALLEL_AVX, GHASH_LAST_8_AVX, GHASH_MUL_AVX, DEC, 13
+        FUNC_RESTORE
+        ret
+ENDPROC(aesni_gcm_dec_update_avx_gen2)
+
+###############################################################################
+#void   aesni_gcm_finalize_avx_gen2(
+#        gcm_data        *my_ctx_data,     /* aligned to 16 Bytes */
+#        gcm_context_data *data,
 #        u8      *auth_tag, /* Authenticated Tag output. */
 #        u64     auth_tag_len)# /* Authenticated Tag Length in bytes.
 #				Valid values are 16 (most likely), 12 or 8. */
 ###############################################################################
-ENTRY(aesni_gcm_dec_avx_gen2)
-        GCM_ENC_DEC_AVX     DEC
-	ret
-ENDPROC(aesni_gcm_dec_avx_gen2)
+ENTRY(aesni_gcm_finalize_avx_gen2)
+        FUNC_SAVE
+        mov	keysize,%eax
+        cmp     $32, %eax
+        je      key_256_finalize
+        cmp     $16, %eax
+        je      key_128_finalize
+        # must be 192
+        GCM_COMPLETE GHASH_MUL_AVX, 11, arg3, arg4
+        FUNC_RESTORE
+        ret
+key_128_finalize:
+        GCM_COMPLETE GHASH_MUL_AVX, 9, arg3, arg4
+        FUNC_RESTORE
+        ret
+key_256_finalize:
+        GCM_COMPLETE GHASH_MUL_AVX, 13, arg3, arg4
+        FUNC_RESTORE
+        ret
+ENDPROC(aesni_gcm_finalize_avx_gen2)
+
 #endif /* CONFIG_AS_AVX */
 
 #ifdef CONFIG_AS_AVX2
@@ -1670,113 +1922,42 @@ ENDPROC(aesni_gcm_dec_avx_gen2)
         # Haskey_i_k holds XORed values of the low and high parts of the Haskey_i
         vmovdqa  \HK, \T5
         GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2    #  T5 = HashKey^2<<1 mod poly
-        vmovdqa  \T5, HashKey_2(arg1)                       #  [HashKey_2] = HashKey^2<<1 mod poly
+        vmovdqu  \T5, HashKey_2(arg2)                       #  [HashKey_2] = HashKey^2<<1 mod poly
 
         GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2    #  T5 = HashKey^3<<1 mod poly
-        vmovdqa  \T5, HashKey_3(arg1)
+        vmovdqu  \T5, HashKey_3(arg2)
 
         GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2    #  T5 = HashKey^4<<1 mod poly
-        vmovdqa  \T5, HashKey_4(arg1)
+        vmovdqu  \T5, HashKey_4(arg2)
 
         GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2    #  T5 = HashKey^5<<1 mod poly
-        vmovdqa  \T5, HashKey_5(arg1)
+        vmovdqu  \T5, HashKey_5(arg2)
 
         GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2    #  T5 = HashKey^6<<1 mod poly
-        vmovdqa  \T5, HashKey_6(arg1)
+        vmovdqu  \T5, HashKey_6(arg2)
 
         GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2    #  T5 = HashKey^7<<1 mod poly
-        vmovdqa  \T5, HashKey_7(arg1)
+        vmovdqu  \T5, HashKey_7(arg2)
 
         GHASH_MUL_AVX2 \T5, \HK, \T1, \T3, \T4, \T6, \T2    #  T5 = HashKey^8<<1 mod poly
-        vmovdqa  \T5, HashKey_8(arg1)
+        vmovdqu  \T5, HashKey_8(arg2)
 
 .endm
 
-
 ## if a = number of total plaintext bytes
 ## b = floor(a/16)
 ## num_initial_blocks = b mod 4#
 ## encrypt the initial num_initial_blocks blocks and apply ghash on the ciphertext
 ## r10, r11, r12, rax are clobbered
-## arg1, arg2, arg3, r14 are used as a pointer only, not modified
+## arg1, arg3, arg4, r14 are used as a pointer only, not modified
 
-.macro INITIAL_BLOCKS_AVX2 num_initial_blocks T1 T2 T3 T4 T5 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T6 T_key ENC_DEC VER
+.macro INITIAL_BLOCKS_AVX2 REP num_initial_blocks T1 T2 T3 T4 T5 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T6 T_key ENC_DEC VER
 	i = (8-\num_initial_blocks)
-	j = 0
 	setreg
-
-	mov     arg6, %r10                       # r10 = AAD
-	mov     arg7, %r12                       # r12 = aadLen
-
-
-	mov     %r12, %r11
-
-	vpxor   reg_j, reg_j, reg_j
-	vpxor   reg_i, reg_i, reg_i
-
-	cmp     $16, %r11
-	jl      _get_AAD_rest8\@
-_get_AAD_blocks\@:
-	vmovdqu (%r10), reg_i
-	vpshufb SHUF_MASK(%rip), reg_i, reg_i
-	vpxor   reg_i, reg_j, reg_j
-	GHASH_MUL_AVX2      reg_j, \T2, \T1, \T3, \T4, \T5, \T6
-	add     $16, %r10
-	sub     $16, %r12
-	sub     $16, %r11
-	cmp     $16, %r11
-	jge     _get_AAD_blocks\@
-	vmovdqu reg_j, reg_i
-	cmp     $0, %r11
-	je      _get_AAD_done\@
-
-	vpxor   reg_i, reg_i, reg_i
-
-	/* read the last <16B of AAD. since we have at least 4B of
-	data right after the AAD (the ICV, and maybe some CT), we can
-	read 4B/8B blocks safely, and then get rid of the extra stuff */
-_get_AAD_rest8\@:
-	cmp     $4, %r11
-	jle     _get_AAD_rest4\@
-	movq    (%r10), \T1
-	add     $8, %r10
-	sub     $8, %r11
-	vpslldq $8, \T1, \T1
-	vpsrldq $8, reg_i, reg_i
-	vpxor   \T1, reg_i, reg_i
-	jmp     _get_AAD_rest8\@
-_get_AAD_rest4\@:
-	cmp     $0, %r11
-	jle     _get_AAD_rest0\@
-	mov     (%r10), %eax
-	movq    %rax, \T1
-	add     $4, %r10
-	sub     $4, %r11
-	vpslldq $12, \T1, \T1
-	vpsrldq $4, reg_i, reg_i
-	vpxor   \T1, reg_i, reg_i
-_get_AAD_rest0\@:
-	/* finalize: shift out the extra bytes we read, and align
-	left. since pslldq can only shift by an immediate, we use
-	vpshufb and an array of shuffle masks */
-	movq    %r12, %r11
-	salq    $4, %r11
-	movdqu  aad_shift_arr(%r11), \T1
-	vpshufb \T1, reg_i, reg_i
-_get_AAD_rest_final\@:
-	vpshufb SHUF_MASK(%rip), reg_i, reg_i
-	vpxor   reg_j, reg_i, reg_i
-	GHASH_MUL_AVX2      reg_i, \T2, \T1, \T3, \T4, \T5, \T6
-
-_get_AAD_done\@:
-	# initialize the data pointer offset as zero
-	xor     %r11d, %r11d
+	vmovdqu AadHash(arg2), reg_i
 
 	# start AES for num_initial_blocks blocks
-	mov     arg5, %rax                     # rax = *Y0
-	vmovdqu (%rax), \CTR                   # CTR = Y0
-	vpshufb SHUF_MASK(%rip), \CTR, \CTR
-
+	vmovdqu CurCount(arg2), \CTR
 
 	i = (9-\num_initial_blocks)
 	setreg
@@ -1799,7 +1980,7 @@ _get_AAD_done\@:
 
 	j = 1
 	setreg
-.rep 9
+.rep \REP
 	vmovdqa  16*j(arg1), \T_key
 	i = (9-\num_initial_blocks)
 	setreg
@@ -1814,7 +1995,7 @@ _get_AAD_done\@:
 .endr
 
 
-	vmovdqa  16*10(arg1), \T_key
+	vmovdqa  16*j(arg1), \T_key
 	i = (9-\num_initial_blocks)
 	setreg
 .rep \num_initial_blocks
@@ -1826,9 +2007,9 @@ _get_AAD_done\@:
 	i = (9-\num_initial_blocks)
 	setreg
 .rep \num_initial_blocks
-                vmovdqu (arg3, %r11), \T1
+                vmovdqu (arg4, %r11), \T1
                 vpxor   \T1, reg_i, reg_i
-                vmovdqu reg_i, (arg2 , %r11)           # write back ciphertext for
+                vmovdqu reg_i, (arg3 , %r11)           # write back ciphertext for
 						       # num_initial_blocks blocks
                 add     $16, %r11
 .if  \ENC_DEC == DEC
@@ -1905,7 +2086,7 @@ _get_AAD_done\@:
 
 		i = 1
 		setreg
-.rep    9       # do 9 rounds
+.rep    \REP       # do REP rounds
                 vmovdqa  16*i(arg1), \T_key
                 vaesenc  \T_key, \XMM1, \XMM1
                 vaesenc  \T_key, \XMM2, \XMM2
@@ -1930,58 +2111,58 @@ _get_AAD_done\@:
                 vaesenclast  \T_key, \XMM7, \XMM7
                 vaesenclast  \T_key, \XMM8, \XMM8
 
-                vmovdqu  (arg3, %r11), \T1
+                vmovdqu  (arg4, %r11), \T1
                 vpxor    \T1, \XMM1, \XMM1
-                vmovdqu  \XMM1, (arg2 , %r11)
+                vmovdqu  \XMM1, (arg3 , %r11)
                 .if   \ENC_DEC == DEC
                 vmovdqa  \T1, \XMM1
                 .endif
 
-                vmovdqu  16*1(arg3, %r11), \T1
+                vmovdqu  16*1(arg4, %r11), \T1
                 vpxor    \T1, \XMM2, \XMM2
-                vmovdqu  \XMM2, 16*1(arg2 , %r11)
+                vmovdqu  \XMM2, 16*1(arg3 , %r11)
                 .if   \ENC_DEC == DEC
                 vmovdqa  \T1, \XMM2
                 .endif
 
-                vmovdqu  16*2(arg3, %r11), \T1
+                vmovdqu  16*2(arg4, %r11), \T1
                 vpxor    \T1, \XMM3, \XMM3
-                vmovdqu  \XMM3, 16*2(arg2 , %r11)
+                vmovdqu  \XMM3, 16*2(arg3 , %r11)
                 .if   \ENC_DEC == DEC
                 vmovdqa  \T1, \XMM3
                 .endif
 
-                vmovdqu  16*3(arg3, %r11), \T1
+                vmovdqu  16*3(arg4, %r11), \T1
                 vpxor    \T1, \XMM4, \XMM4
-                vmovdqu  \XMM4, 16*3(arg2 , %r11)
+                vmovdqu  \XMM4, 16*3(arg3 , %r11)
                 .if   \ENC_DEC == DEC
                 vmovdqa  \T1, \XMM4
                 .endif
 
-                vmovdqu  16*4(arg3, %r11), \T1
+                vmovdqu  16*4(arg4, %r11), \T1
                 vpxor    \T1, \XMM5, \XMM5
-                vmovdqu  \XMM5, 16*4(arg2 , %r11)
+                vmovdqu  \XMM5, 16*4(arg3 , %r11)
                 .if   \ENC_DEC == DEC
                 vmovdqa  \T1, \XMM5
                 .endif
 
-                vmovdqu  16*5(arg3, %r11), \T1
+                vmovdqu  16*5(arg4, %r11), \T1
                 vpxor    \T1, \XMM6, \XMM6
-                vmovdqu  \XMM6, 16*5(arg2 , %r11)
+                vmovdqu  \XMM6, 16*5(arg3 , %r11)
                 .if   \ENC_DEC == DEC
                 vmovdqa  \T1, \XMM6
                 .endif
 
-                vmovdqu  16*6(arg3, %r11), \T1
+                vmovdqu  16*6(arg4, %r11), \T1
                 vpxor    \T1, \XMM7, \XMM7
-                vmovdqu  \XMM7, 16*6(arg2 , %r11)
+                vmovdqu  \XMM7, 16*6(arg3 , %r11)
                 .if   \ENC_DEC == DEC
                 vmovdqa  \T1, \XMM7
                 .endif
 
-                vmovdqu  16*7(arg3, %r11), \T1
+                vmovdqu  16*7(arg4, %r11), \T1
                 vpxor    \T1, \XMM8, \XMM8
-                vmovdqu  \XMM8, 16*7(arg2 , %r11)
+                vmovdqu  \XMM8, 16*7(arg3 , %r11)
                 .if   \ENC_DEC == DEC
                 vmovdqa  \T1, \XMM8
                 .endif
@@ -2010,9 +2191,9 @@ _initial_blocks_done\@:
 
 # encrypt 8 blocks at a time
 # ghash the 8 previously encrypted ciphertext blocks
-# arg1, arg2, arg3 are used as pointers only, not modified
+# arg1, arg3, arg4 are used as pointers only, not modified
 # r11 is the data offset value
-.macro GHASH_8_ENCRYPT_8_PARALLEL_AVX2 T1 T2 T3 T4 T5 T6 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T7 loop_idx ENC_DEC
+.macro GHASH_8_ENCRYPT_8_PARALLEL_AVX2 REP T1 T2 T3 T4 T5 T6 CTR XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7 XMM8 T7 loop_idx ENC_DEC
 
         vmovdqa \XMM1, \T2
         vmovdqa \XMM2, TMP2(%rsp)
@@ -2096,7 +2277,7 @@ _initial_blocks_done\@:
 
         #######################################################################
 
-        vmovdqa         HashKey_8(arg1), \T5
+        vmovdqu         HashKey_8(arg2), \T5
         vpclmulqdq      $0x11, \T5, \T2, \T4              # T4 = a1*b1
         vpclmulqdq      $0x00, \T5, \T2, \T7              # T7 = a0*b0
         vpclmulqdq      $0x01, \T5, \T2, \T6              # T6 = a1*b0
@@ -2114,7 +2295,7 @@ _initial_blocks_done\@:
                 vaesenc \T1, \XMM8, \XMM8
 
         vmovdqa         TMP2(%rsp), \T1
-        vmovdqa         HashKey_7(arg1), \T5
+        vmovdqu         HashKey_7(arg2), \T5
         vpclmulqdq      $0x11, \T5, \T1, \T3
         vpxor           \T3, \T4, \T4
 
@@ -2140,7 +2321,7 @@ _initial_blocks_done\@:
         #######################################################################
 
         vmovdqa         TMP3(%rsp), \T1
-        vmovdqa         HashKey_6(arg1), \T5
+        vmovdqu         HashKey_6(arg2), \T5
         vpclmulqdq      $0x11, \T5, \T1, \T3
         vpxor           \T3, \T4, \T4
 
@@ -2164,7 +2345,7 @@ _initial_blocks_done\@:
                 vaesenc \T1, \XMM8, \XMM8
 
         vmovdqa         TMP4(%rsp), \T1
-        vmovdqa         HashKey_5(arg1), \T5
+        vmovdqu         HashKey_5(arg2), \T5
         vpclmulqdq      $0x11, \T5, \T1, \T3
         vpxor           \T3, \T4, \T4
 
@@ -2189,7 +2370,7 @@ _initial_blocks_done\@:
 
 
         vmovdqa         TMP5(%rsp), \T1
-        vmovdqa         HashKey_4(arg1), \T5
+        vmovdqu         HashKey_4(arg2), \T5
         vpclmulqdq      $0x11, \T5, \T1, \T3
         vpxor           \T3, \T4, \T4
 
@@ -2213,7 +2394,7 @@ _initial_blocks_done\@:
                 vaesenc \T1, \XMM8, \XMM8
 
         vmovdqa         TMP6(%rsp), \T1
-        vmovdqa         HashKey_3(arg1), \T5
+        vmovdqu         HashKey_3(arg2), \T5
         vpclmulqdq      $0x11, \T5, \T1, \T3
         vpxor           \T3, \T4, \T4
 
@@ -2237,7 +2418,7 @@ _initial_blocks_done\@:
                 vaesenc \T1, \XMM8, \XMM8
 
         vmovdqa         TMP7(%rsp), \T1
-        vmovdqa         HashKey_2(arg1), \T5
+        vmovdqu         HashKey_2(arg2), \T5
         vpclmulqdq      $0x11, \T5, \T1, \T3
         vpxor           \T3, \T4, \T4
 
@@ -2264,7 +2445,7 @@ _initial_blocks_done\@:
                 vaesenc \T5, \XMM8, \XMM8
 
         vmovdqa         TMP8(%rsp), \T1
-        vmovdqa         HashKey(arg1), \T5
+        vmovdqu         HashKey(arg2), \T5
 
         vpclmulqdq      $0x00, \T5, \T1, \T3
         vpxor           \T3, \T7, \T7
@@ -2281,17 +2462,34 @@ _initial_blocks_done\@:
 
                 vmovdqu 16*10(arg1), \T5
 
+        i = 11
+        setreg
+.rep (\REP-9)
+        vaesenc \T5, \XMM1, \XMM1
+        vaesenc \T5, \XMM2, \XMM2
+        vaesenc \T5, \XMM3, \XMM3
+        vaesenc \T5, \XMM4, \XMM4
+        vaesenc \T5, \XMM5, \XMM5
+        vaesenc \T5, \XMM6, \XMM6
+        vaesenc \T5, \XMM7, \XMM7
+        vaesenc \T5, \XMM8, \XMM8
+
+        vmovdqu 16*i(arg1), \T5
+        i = i + 1
+        setreg
+.endr
+
 	i = 0
 	j = 1
 	setreg
 .rep 8
-		vpxor	16*i(arg3, %r11), \T5, \T2
+		vpxor	16*i(arg4, %r11), \T5, \T2
                 .if \ENC_DEC == ENC
                 vaesenclast     \T2, reg_j, reg_j
                 .else
                 vaesenclast     \T2, reg_j, \T3
-                vmovdqu 16*i(arg3, %r11), reg_j
-                vmovdqu \T3, 16*i(arg2, %r11)
+                vmovdqu 16*i(arg4, %r11), reg_j
+                vmovdqu \T3, 16*i(arg3, %r11)
                 .endif
 	i = (i+1)
 	j = (j+1)
@@ -2317,14 +2515,14 @@ _initial_blocks_done\@:
 	vpxor		\T2, \T7, \T7			# first phase of the reduction complete
 	#######################################################################
                 .if \ENC_DEC == ENC
-		vmovdqu	 \XMM1,	16*0(arg2,%r11)		# Write to the Ciphertext buffer
-		vmovdqu	 \XMM2,	16*1(arg2,%r11)		# Write to the Ciphertext buffer
-		vmovdqu	 \XMM3,	16*2(arg2,%r11)		# Write to the Ciphertext buffer
-		vmovdqu	 \XMM4,	16*3(arg2,%r11)		# Write to the Ciphertext buffer
-		vmovdqu	 \XMM5,	16*4(arg2,%r11)		# Write to the Ciphertext buffer
-		vmovdqu	 \XMM6,	16*5(arg2,%r11)		# Write to the Ciphertext buffer
-		vmovdqu	 \XMM7,	16*6(arg2,%r11)		# Write to the Ciphertext buffer
-		vmovdqu	 \XMM8,	16*7(arg2,%r11)		# Write to the Ciphertext buffer
+		vmovdqu	 \XMM1,	16*0(arg3,%r11)		# Write to the Ciphertext buffer
+		vmovdqu	 \XMM2,	16*1(arg3,%r11)		# Write to the Ciphertext buffer
+		vmovdqu	 \XMM3,	16*2(arg3,%r11)		# Write to the Ciphertext buffer
+		vmovdqu	 \XMM4,	16*3(arg3,%r11)		# Write to the Ciphertext buffer
+		vmovdqu	 \XMM5,	16*4(arg3,%r11)		# Write to the Ciphertext buffer
+		vmovdqu	 \XMM6,	16*5(arg3,%r11)		# Write to the Ciphertext buffer
+		vmovdqu	 \XMM7,	16*6(arg3,%r11)		# Write to the Ciphertext buffer
+		vmovdqu	 \XMM8,	16*7(arg3,%r11)		# Write to the Ciphertext buffer
                 .endif
 
 	#######################################################################
@@ -2361,7 +2559,7 @@ _initial_blocks_done\@:
 
         ## Karatsuba Method
 
-        vmovdqa         HashKey_8(arg1), \T5
+        vmovdqu         HashKey_8(arg2), \T5
 
         vpshufd         $0b01001110, \XMM1, \T2
         vpshufd         $0b01001110, \T5, \T3
@@ -2375,7 +2573,7 @@ _initial_blocks_done\@:
 
         ######################
 
-        vmovdqa         HashKey_7(arg1), \T5
+        vmovdqu         HashKey_7(arg2), \T5
         vpshufd         $0b01001110, \XMM2, \T2
         vpshufd         $0b01001110, \T5, \T3
         vpxor           \XMM2, \T2, \T2
@@ -2393,7 +2591,7 @@ _initial_blocks_done\@:
 
         ######################
 
-        vmovdqa         HashKey_6(arg1), \T5
+        vmovdqu         HashKey_6(arg2), \T5
         vpshufd         $0b01001110, \XMM3, \T2
         vpshufd         $0b01001110, \T5, \T3
         vpxor           \XMM3, \T2, \T2
@@ -2411,7 +2609,7 @@ _initial_blocks_done\@:
 
         ######################
 
-        vmovdqa         HashKey_5(arg1), \T5
+        vmovdqu         HashKey_5(arg2), \T5
         vpshufd         $0b01001110, \XMM4, \T2
         vpshufd         $0b01001110, \T5, \T3
         vpxor           \XMM4, \T2, \T2
@@ -2429,7 +2627,7 @@ _initial_blocks_done\@:
 
         ######################
 
-        vmovdqa         HashKey_4(arg1), \T5
+        vmovdqu         HashKey_4(arg2), \T5
         vpshufd         $0b01001110, \XMM5, \T2
         vpshufd         $0b01001110, \T5, \T3
         vpxor           \XMM5, \T2, \T2
@@ -2447,7 +2645,7 @@ _initial_blocks_done\@:
 
         ######################
 
-        vmovdqa         HashKey_3(arg1), \T5
+        vmovdqu         HashKey_3(arg2), \T5
         vpshufd         $0b01001110, \XMM6, \T2
         vpshufd         $0b01001110, \T5, \T3
         vpxor           \XMM6, \T2, \T2
@@ -2465,7 +2663,7 @@ _initial_blocks_done\@:
 
         ######################
 
-        vmovdqa         HashKey_2(arg1), \T5
+        vmovdqu         HashKey_2(arg2), \T5
         vpshufd         $0b01001110, \XMM7, \T2
         vpshufd         $0b01001110, \T5, \T3
         vpxor           \XMM7, \T2, \T2
@@ -2483,7 +2681,7 @@ _initial_blocks_done\@:
 
         ######################
 
-        vmovdqa         HashKey(arg1), \T5
+        vmovdqu         HashKey(arg2), \T5
         vpshufd         $0b01001110, \XMM8, \T2
         vpshufd         $0b01001110, \T5, \T3
         vpxor           \XMM8, \T2, \T2
@@ -2536,411 +2734,110 @@ _initial_blocks_done\@:
 
 
 
-# combined for GCM encrypt and decrypt functions
-# clobbering all xmm registers
-# clobbering r10, r11, r12, r13, r14, r15
-.macro  GCM_ENC_DEC_AVX2     ENC_DEC
-
-        #the number of pushes must equal STACK_OFFSET
-        push    %r12
-        push    %r13
-        push    %r14
-        push    %r15
-
-        mov     %rsp, %r14
-
-
-
-
-        sub     $VARIABLE_OFFSET, %rsp
-        and     $~63, %rsp                         # align rsp to 64 bytes
-
-
-        vmovdqu  HashKey(arg1), %xmm13             # xmm13 = HashKey
-
-        mov     arg4, %r13                         # save the number of bytes of plaintext/ciphertext
-        and     $-16, %r13                         # r13 = r13 - (r13 mod 16)
-
-        mov     %r13, %r12
-        shr     $4, %r12
-        and     $7, %r12
-        jz      _initial_num_blocks_is_0\@
-
-        cmp     $7, %r12
-        je      _initial_num_blocks_is_7\@
-        cmp     $6, %r12
-        je      _initial_num_blocks_is_6\@
-        cmp     $5, %r12
-        je      _initial_num_blocks_is_5\@
-        cmp     $4, %r12
-        je      _initial_num_blocks_is_4\@
-        cmp     $3, %r12
-        je      _initial_num_blocks_is_3\@
-        cmp     $2, %r12
-        je      _initial_num_blocks_is_2\@
-
-        jmp     _initial_num_blocks_is_1\@
-
-_initial_num_blocks_is_7\@:
-        INITIAL_BLOCKS_AVX2  7, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
-        sub     $16*7, %r13
-        jmp     _initial_blocks_encrypted\@
-
-_initial_num_blocks_is_6\@:
-        INITIAL_BLOCKS_AVX2  6, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
-        sub     $16*6, %r13
-        jmp     _initial_blocks_encrypted\@
-
-_initial_num_blocks_is_5\@:
-        INITIAL_BLOCKS_AVX2  5, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
-        sub     $16*5, %r13
-        jmp     _initial_blocks_encrypted\@
-
-_initial_num_blocks_is_4\@:
-        INITIAL_BLOCKS_AVX2  4, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
-        sub     $16*4, %r13
-        jmp     _initial_blocks_encrypted\@
-
-_initial_num_blocks_is_3\@:
-        INITIAL_BLOCKS_AVX2  3, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
-        sub     $16*3, %r13
-        jmp     _initial_blocks_encrypted\@
-
-_initial_num_blocks_is_2\@:
-        INITIAL_BLOCKS_AVX2  2, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
-        sub     $16*2, %r13
-        jmp     _initial_blocks_encrypted\@
-
-_initial_num_blocks_is_1\@:
-        INITIAL_BLOCKS_AVX2  1, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
-        sub     $16*1, %r13
-        jmp     _initial_blocks_encrypted\@
-
-_initial_num_blocks_is_0\@:
-        INITIAL_BLOCKS_AVX2  0, %xmm12, %xmm13, %xmm14, %xmm15, %xmm11, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm10, %xmm0, \ENC_DEC
-
-
-_initial_blocks_encrypted\@:
-        cmp     $0, %r13
-        je      _zero_cipher_left\@
-
-        sub     $128, %r13
-        je      _eight_cipher_left\@
-
-
-
-
-        vmovd   %xmm9, %r15d
-        and     $255, %r15d
-        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
-
-
-_encrypt_by_8_new\@:
-        cmp     $(255-8), %r15d
-        jg      _encrypt_by_8\@
-
-
-
-        add     $8, %r15b
-        GHASH_8_ENCRYPT_8_PARALLEL_AVX2      %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm15, out_order, \ENC_DEC
-        add     $128, %r11
-        sub     $128, %r13
-        jne     _encrypt_by_8_new\@
-
-        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
-        jmp     _eight_cipher_left\@
-
-_encrypt_by_8\@:
-        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
-        add     $8, %r15b
-        GHASH_8_ENCRYPT_8_PARALLEL_AVX2      %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm9, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8, %xmm15, in_order, \ENC_DEC
-        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
-        add     $128, %r11
-        sub     $128, %r13
-        jne     _encrypt_by_8_new\@
-
-        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
-
-
-
-
-_eight_cipher_left\@:
-        GHASH_LAST_8_AVX2    %xmm0, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, %xmm8
-
-
-_zero_cipher_left\@:
-        cmp     $16, arg4
-        jl      _only_less_than_16\@
-
-        mov     arg4, %r13
-        and     $15, %r13                            # r13 = (arg4 mod 16)
-
-        je      _multiple_of_16_bytes\@
-
-        # handle the last <16 Byte block seperately
-
-
-        vpaddd   ONE(%rip), %xmm9, %xmm9             # INCR CNT to get Yn
-        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
-        ENCRYPT_SINGLE_BLOCK    %xmm9                # E(K, Yn)
-
-        sub     $16, %r11
-        add     %r13, %r11
-        vmovdqu (arg3, %r11), %xmm1                  # receive the last <16 Byte block
-
-        lea     SHIFT_MASK+16(%rip), %r12
-        sub     %r13, %r12                           # adjust the shuffle mask pointer
-						     # to be able to shift 16-r13 bytes
-						     # (r13 is the number of bytes in plaintext mod 16)
-        vmovdqu (%r12), %xmm2                        # get the appropriate shuffle mask
-        vpshufb %xmm2, %xmm1, %xmm1                  # shift right 16-r13 bytes
-        jmp     _final_ghash_mul\@
-
-_only_less_than_16\@:
-        # check for 0 length
-        mov     arg4, %r13
-        and     $15, %r13                            # r13 = (arg4 mod 16)
-
-        je      _multiple_of_16_bytes\@
-
-        # handle the last <16 Byte block seperately
-
-
-        vpaddd  ONE(%rip), %xmm9, %xmm9              # INCR CNT to get Yn
-        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
-        ENCRYPT_SINGLE_BLOCK    %xmm9                # E(K, Yn)
-
-
-        lea     SHIFT_MASK+16(%rip), %r12
-        sub     %r13, %r12                           # adjust the shuffle mask pointer to be
-						     # able to shift 16-r13 bytes (r13 is the
-						     # number of bytes in plaintext mod 16)
-
-_get_last_16_byte_loop\@:
-        movb    (arg3, %r11),  %al
-        movb    %al,  TMP1 (%rsp , %r11)
-        add     $1, %r11
-        cmp     %r13,  %r11
-        jne     _get_last_16_byte_loop\@
-
-        vmovdqu  TMP1(%rsp), %xmm1
-
-        sub     $16, %r11
-
-_final_ghash_mul\@:
-        .if  \ENC_DEC ==  DEC
-        vmovdqa %xmm1, %xmm2
-        vpxor   %xmm1, %xmm9, %xmm9                  # Plaintext XOR E(K, Yn)
-        vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1        # get the appropriate mask to mask out top 16-r13 bytes of xmm9
-        vpand   %xmm1, %xmm9, %xmm9                  # mask out top 16-r13 bytes of xmm9
-        vpand   %xmm1, %xmm2, %xmm2
-        vpshufb SHUF_MASK(%rip), %xmm2, %xmm2
-        vpxor   %xmm2, %xmm14, %xmm14
-	#GHASH computation for the last <16 Byte block
-        GHASH_MUL_AVX2       %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6
-        sub     %r13, %r11
-        add     $16, %r11
-        .else
-        vpxor   %xmm1, %xmm9, %xmm9                  # Plaintext XOR E(K, Yn)
-        vmovdqu ALL_F-SHIFT_MASK(%r12), %xmm1        # get the appropriate mask to mask out top 16-r13 bytes of xmm9
-        vpand   %xmm1, %xmm9, %xmm9                  # mask out top 16-r13 bytes of xmm9
-        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9
-        vpxor   %xmm9, %xmm14, %xmm14
-	#GHASH computation for the last <16 Byte block
-        GHASH_MUL_AVX2       %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6
-        sub     %r13, %r11
-        add     $16, %r11
-        vpshufb SHUF_MASK(%rip), %xmm9, %xmm9        # shuffle xmm9 back to output as ciphertext
-        .endif
-
-
-        #############################
-        # output r13 Bytes
-        vmovq   %xmm9, %rax
-        cmp     $8, %r13
-        jle     _less_than_8_bytes_left\@
-
-        mov     %rax, (arg2 , %r11)
-        add     $8, %r11
-        vpsrldq $8, %xmm9, %xmm9
-        vmovq   %xmm9, %rax
-        sub     $8, %r13
-
-_less_than_8_bytes_left\@:
-        movb    %al, (arg2 , %r11)
-        add     $1, %r11
-        shr     $8, %rax
-        sub     $1, %r13
-        jne     _less_than_8_bytes_left\@
-        #############################
-
-_multiple_of_16_bytes\@:
-        mov     arg7, %r12                           # r12 = aadLen (number of bytes)
-        shl     $3, %r12                             # convert into number of bits
-        vmovd   %r12d, %xmm15                        # len(A) in xmm15
-
-        shl     $3, arg4                             # len(C) in bits  (*128)
-        vmovq   arg4, %xmm1
-        vpslldq $8, %xmm15, %xmm15                   # xmm15 = len(A)|| 0x0000000000000000
-        vpxor   %xmm1, %xmm15, %xmm15                # xmm15 = len(A)||len(C)
-
-        vpxor   %xmm15, %xmm14, %xmm14
-        GHASH_MUL_AVX2       %xmm14, %xmm13, %xmm0, %xmm10, %xmm11, %xmm5, %xmm6    # final GHASH computation
-        vpshufb SHUF_MASK(%rip), %xmm14, %xmm14              # perform a 16Byte swap
-
-        mov     arg5, %rax                           # rax = *Y0
-        vmovdqu (%rax), %xmm9                        # xmm9 = Y0
-
-        ENCRYPT_SINGLE_BLOCK    %xmm9                # E(K, Y0)
-
-        vpxor   %xmm14, %xmm9, %xmm9
-
-
-
-_return_T\@:
-        mov     arg8, %r10              # r10 = authTag
-        mov     arg9, %r11              # r11 = auth_tag_len
-
-        cmp     $16, %r11
-        je      _T_16\@
-
-        cmp     $8, %r11
-        jl      _T_4\@
-
-_T_8\@:
-        vmovq   %xmm9, %rax
-        mov     %rax, (%r10)
-        add     $8, %r10
-        sub     $8, %r11
-        vpsrldq $8, %xmm9, %xmm9
-        cmp     $0, %r11
-        je     _return_T_done\@
-_T_4\@:
-        vmovd   %xmm9, %eax
-        mov     %eax, (%r10)
-        add     $4, %r10
-        sub     $4, %r11
-        vpsrldq     $4, %xmm9, %xmm9
-        cmp     $0, %r11
-        je     _return_T_done\@
-_T_123\@:
-        vmovd     %xmm9, %eax
-        cmp     $2, %r11
-        jl     _T_1\@
-        mov     %ax, (%r10)
-        cmp     $2, %r11
-        je     _return_T_done\@
-        add     $2, %r10
-        sar     $16, %eax
-_T_1\@:
-        mov     %al, (%r10)
-        jmp     _return_T_done\@
-
-_T_16\@:
-        vmovdqu %xmm9, (%r10)
-
-_return_T_done\@:
-        mov     %r14, %rsp
-
-        pop     %r15
-        pop     %r14
-        pop     %r13
-        pop     %r12
-.endm
-
-
 #############################################################
-#void   aesni_gcm_precomp_avx_gen4
+#void   aesni_gcm_init_avx_gen4
 #        (gcm_data     *my_ctx_data,
-#        u8     *hash_subkey)# /* H, the Hash sub key input.
-#				Data starts on a 16-byte boundary. */
+#         gcm_context_data *data,
+#        u8      *iv, /* Pre-counter block j0: 4 byte salt
+#			(from Security Association) concatenated with 8 byte
+#			Initialisation Vector (from IPSec ESP Payload)
+#			concatenated with 0x00000001. 16-byte aligned pointer. */
+#        u8     *hash_subkey# /* H, the Hash sub key input. Data starts on a 16-byte boundary. */
+#        const   u8 *aad, /* Additional Authentication Data (AAD)*/
+#        u64     aad_len) /* Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 Bytes */
 #############################################################
-ENTRY(aesni_gcm_precomp_avx_gen4)
-        #the number of pushes must equal STACK_OFFSET
-        push    %r12
-        push    %r13
-        push    %r14
-        push    %r15
-
-        mov     %rsp, %r14
-
-
-
-        sub     $VARIABLE_OFFSET, %rsp
-        and     $~63, %rsp                    # align rsp to 64 bytes
-
-        vmovdqu  (arg2), %xmm6                # xmm6 = HashKey
-
-        vpshufb  SHUF_MASK(%rip), %xmm6, %xmm6
-        ###############  PRECOMPUTATION of HashKey<<1 mod poly from the HashKey
-        vmovdqa  %xmm6, %xmm2
-        vpsllq   $1, %xmm6, %xmm6
-        vpsrlq   $63, %xmm2, %xmm2
-        vmovdqa  %xmm2, %xmm1
-        vpslldq  $8, %xmm2, %xmm2
-        vpsrldq  $8, %xmm1, %xmm1
-        vpor     %xmm2, %xmm6, %xmm6
-        #reduction
-        vpshufd  $0b00100100, %xmm1, %xmm2
-        vpcmpeqd TWOONE(%rip), %xmm2, %xmm2
-        vpand    POLY(%rip), %xmm2, %xmm2
-        vpxor    %xmm2, %xmm6, %xmm6          # xmm6 holds the HashKey<<1 mod poly
-        #######################################################################
-        vmovdqa  %xmm6, HashKey(arg1)         # store HashKey<<1 mod poly
-
-
-        PRECOMPUTE_AVX2  %xmm6, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5
-
-        mov     %r14, %rsp
-
-        pop     %r15
-        pop     %r14
-        pop     %r13
-        pop     %r12
+ENTRY(aesni_gcm_init_avx_gen4)
+        FUNC_SAVE
+        INIT GHASH_MUL_AVX2, PRECOMPUTE_AVX2
+        FUNC_RESTORE
         ret
-ENDPROC(aesni_gcm_precomp_avx_gen4)
-
+ENDPROC(aesni_gcm_init_avx_gen4)
 
 ###############################################################################
 #void   aesni_gcm_enc_avx_gen4(
 #        gcm_data        *my_ctx_data,     /* aligned to 16 Bytes */
+#        gcm_context_data *data,
 #        u8      *out, /* Ciphertext output. Encrypt in-place is allowed.  */
 #        const   u8 *in, /* Plaintext input */
-#        u64     plaintext_len, /* Length of data in Bytes for encryption. */
-#        u8      *iv, /* Pre-counter block j0: 4 byte salt
-#			(from Security Association) concatenated with 8 byte
-#			 Initialisation Vector (from IPSec ESP Payload)
-#			 concatenated with 0x00000001. 16-byte aligned pointer. */
-#        const   u8 *aad, /* Additional Authentication Data (AAD)*/
-#        u64     aad_len, /* Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 Bytes */
-#        u8      *auth_tag, /* Authenticated Tag output. */
-#        u64     auth_tag_len)# /* Authenticated Tag Length in bytes.
-#				Valid values are 16 (most likely), 12 or 8. */
+#        u64     plaintext_len) /* Length of data in Bytes for encryption. */
 ###############################################################################
-ENTRY(aesni_gcm_enc_avx_gen4)
-        GCM_ENC_DEC_AVX2     ENC
+ENTRY(aesni_gcm_enc_update_avx_gen4)
+        FUNC_SAVE
+        mov     keysize,%eax
+        cmp     $32, %eax
+        je      key_256_enc_update4
+        cmp     $16, %eax
+        je      key_128_enc_update4
+        # must be 192
+        GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, ENC, 11
+        FUNC_RESTORE
+	ret
+key_128_enc_update4:
+        GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, ENC, 9
+        FUNC_RESTORE
+	ret
+key_256_enc_update4:
+        GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, ENC, 13
+        FUNC_RESTORE
 	ret
-ENDPROC(aesni_gcm_enc_avx_gen4)
+ENDPROC(aesni_gcm_enc_update_avx_gen4)
 
 ###############################################################################
-#void   aesni_gcm_dec_avx_gen4(
+#void   aesni_gcm_dec_update_avx_gen4(
 #        gcm_data        *my_ctx_data,     /* aligned to 16 Bytes */
+#        gcm_context_data *data,
 #        u8      *out, /* Plaintext output. Decrypt in-place is allowed.  */
 #        const   u8 *in, /* Ciphertext input */
-#        u64     plaintext_len, /* Length of data in Bytes for encryption. */
-#        u8      *iv, /* Pre-counter block j0: 4 byte salt
-#			(from Security Association) concatenated with 8 byte
-#			Initialisation Vector (from IPSec ESP Payload)
-#			concatenated with 0x00000001. 16-byte aligned pointer. */
-#        const   u8 *aad, /* Additional Authentication Data (AAD)*/
-#        u64     aad_len, /* Length of AAD in bytes. With RFC4106 this is going to be 8 or 12 Bytes */
+#        u64     plaintext_len) /* Length of data in Bytes for encryption. */
+###############################################################################
+ENTRY(aesni_gcm_dec_update_avx_gen4)
+        FUNC_SAVE
+        mov     keysize,%eax
+        cmp     $32, %eax
+        je      key_256_dec_update4
+        cmp     $16, %eax
+        je      key_128_dec_update4
+        # must be 192
+        GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, DEC, 11
+        FUNC_RESTORE
+        ret
+key_128_dec_update4:
+        GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, DEC, 9
+        FUNC_RESTORE
+        ret
+key_256_dec_update4:
+        GCM_ENC_DEC INITIAL_BLOCKS_AVX2, GHASH_8_ENCRYPT_8_PARALLEL_AVX2, GHASH_LAST_8_AVX2, GHASH_MUL_AVX2, DEC, 13
+        FUNC_RESTORE
+        ret
+ENDPROC(aesni_gcm_dec_update_avx_gen4)
+
+###############################################################################
+#void   aesni_gcm_finalize_avx_gen4(
+#        gcm_data        *my_ctx_data,     /* aligned to 16 Bytes */
+#        gcm_context_data *data,
 #        u8      *auth_tag, /* Authenticated Tag output. */
 #        u64     auth_tag_len)# /* Authenticated Tag Length in bytes.
-#				Valid values are 16 (most likely), 12 or 8. */
+#                              Valid values are 16 (most likely), 12 or 8. */
 ###############################################################################
-ENTRY(aesni_gcm_dec_avx_gen4)
-        GCM_ENC_DEC_AVX2     DEC
-	ret
-ENDPROC(aesni_gcm_dec_avx_gen4)
+ENTRY(aesni_gcm_finalize_avx_gen4)
+        FUNC_SAVE
+        mov	keysize,%eax
+        cmp     $32, %eax
+        je      key_256_finalize4
+        cmp     $16, %eax
+        je      key_128_finalize4
+        # must be 192
+        GCM_COMPLETE GHASH_MUL_AVX2, 11, arg3, arg4
+        FUNC_RESTORE
+        ret
+key_128_finalize4:
+        GCM_COMPLETE GHASH_MUL_AVX2, 9, arg3, arg4
+        FUNC_RESTORE
+        ret
+key_256_finalize4:
+        GCM_COMPLETE GHASH_MUL_AVX2, 13, arg3, arg4
+        FUNC_RESTORE
+        ret
+ENDPROC(aesni_gcm_finalize_avx_gen4)
 
 #endif /* CONFIG_AS_AVX2 */
diff --git a/arch/x86/crypto/aesni-intel_glue.c b/arch/x86/crypto/aesni-intel_glue.c
index 661f7daf43da..1321700d6647 100644
--- a/arch/x86/crypto/aesni-intel_glue.c
+++ b/arch/x86/crypto/aesni-intel_glue.c
@@ -84,7 +84,7 @@ struct gcm_context_data {
 	u8 current_counter[GCM_BLOCK_LEN];
 	u64 partial_block_len;
 	u64 unused;
-	u8 hash_keys[GCM_BLOCK_LEN * 8];
+	u8 hash_keys[GCM_BLOCK_LEN * 16];
 };
 
 asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
@@ -175,6 +175,32 @@ asmlinkage void aesni_gcm_finalize(void *ctx,
 				   struct gcm_context_data *gdata,
 				   u8 *auth_tag, unsigned long auth_tag_len);
 
+static struct aesni_gcm_tfm_s {
+void (*init)(void *ctx,
+				struct gcm_context_data *gdata,
+				u8 *iv,
+				u8 *hash_subkey, const u8 *aad,
+				unsigned long aad_len);
+void (*enc_update)(void *ctx,
+					struct gcm_context_data *gdata, u8 *out,
+					const u8 *in,
+					unsigned long plaintext_len);
+void (*dec_update)(void *ctx,
+					struct gcm_context_data *gdata, u8 *out,
+					const u8 *in,
+					unsigned long ciphertext_len);
+void (*finalize)(void *ctx,
+				struct gcm_context_data *gdata,
+				u8 *auth_tag, unsigned long auth_tag_len);
+} *aesni_gcm_tfm;
+
+struct aesni_gcm_tfm_s aesni_gcm_tfm_sse = {
+	.init = &aesni_gcm_init,
+	.enc_update = &aesni_gcm_enc_update,
+	.dec_update = &aesni_gcm_dec_update,
+	.finalize = &aesni_gcm_finalize,
+};
+
 #ifdef CONFIG_AS_AVX
 asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
 		void *keys, u8 *out, unsigned int num_bytes);
@@ -183,136 +209,94 @@ asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
 asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
 		void *keys, u8 *out, unsigned int num_bytes);
 /*
- * asmlinkage void aesni_gcm_precomp_avx_gen2()
+ * asmlinkage void aesni_gcm_init_avx_gen2()
  * gcm_data *my_ctx_data, context data
  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
  */
-asmlinkage void aesni_gcm_precomp_avx_gen2(void *my_ctx_data, u8 *hash_subkey);
+asmlinkage void aesni_gcm_init_avx_gen2(void *my_ctx_data,
+					struct gcm_context_data *gdata,
+					u8 *iv,
+					u8 *hash_subkey,
+					const u8 *aad,
+					unsigned long aad_len);
+
+asmlinkage void aesni_gcm_enc_update_avx_gen2(void *ctx,
+				     struct gcm_context_data *gdata, u8 *out,
+				     const u8 *in, unsigned long plaintext_len);
+asmlinkage void aesni_gcm_dec_update_avx_gen2(void *ctx,
+				     struct gcm_context_data *gdata, u8 *out,
+				     const u8 *in,
+				     unsigned long ciphertext_len);
+asmlinkage void aesni_gcm_finalize_avx_gen2(void *ctx,
+				   struct gcm_context_data *gdata,
+				   u8 *auth_tag, unsigned long auth_tag_len);
 
-asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx, u8 *out,
+asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx,
+				struct gcm_context_data *gdata, u8 *out,
 			const u8 *in, unsigned long plaintext_len, u8 *iv,
 			const u8 *aad, unsigned long aad_len,
 			u8 *auth_tag, unsigned long auth_tag_len);
 
-asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx, u8 *out,
+asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx,
+				struct gcm_context_data *gdata, u8 *out,
 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
 			const u8 *aad, unsigned long aad_len,
 			u8 *auth_tag, unsigned long auth_tag_len);
 
-static void aesni_gcm_enc_avx(void *ctx,
-			struct gcm_context_data *data, u8 *out,
-			const u8 *in, unsigned long plaintext_len, u8 *iv,
-			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
-			u8 *auth_tag, unsigned long auth_tag_len)
-{
-        struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
-	if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)){
-		aesni_gcm_enc(ctx, data, out, in,
-			plaintext_len, iv, hash_subkey, aad,
-			aad_len, auth_tag, auth_tag_len);
-	} else {
-		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
-		aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
-					aad_len, auth_tag, auth_tag_len);
-	}
-}
+struct aesni_gcm_tfm_s aesni_gcm_tfm_avx_gen2 = {
+	.init = &aesni_gcm_init_avx_gen2,
+	.enc_update = &aesni_gcm_enc_update_avx_gen2,
+	.dec_update = &aesni_gcm_dec_update_avx_gen2,
+	.finalize = &aesni_gcm_finalize_avx_gen2,
+};
 
-static void aesni_gcm_dec_avx(void *ctx,
-			struct gcm_context_data *data, u8 *out,
-			const u8 *in, unsigned long ciphertext_len, u8 *iv,
-			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
-			u8 *auth_tag, unsigned long auth_tag_len)
-{
-        struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
-	if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
-		aesni_gcm_dec(ctx, data, out, in,
-			ciphertext_len, iv, hash_subkey, aad,
-			aad_len, auth_tag, auth_tag_len);
-	} else {
-		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
-		aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
-					aad_len, auth_tag, auth_tag_len);
-	}
-}
 #endif
 
 #ifdef CONFIG_AS_AVX2
 /*
- * asmlinkage void aesni_gcm_precomp_avx_gen4()
+ * asmlinkage void aesni_gcm_init_avx_gen4()
  * gcm_data *my_ctx_data, context data
  * u8 *hash_subkey,  the Hash sub key input. Data starts on a 16-byte boundary.
  */
-asmlinkage void aesni_gcm_precomp_avx_gen4(void *my_ctx_data, u8 *hash_subkey);
+asmlinkage void aesni_gcm_init_avx_gen4(void *my_ctx_data,
+					struct gcm_context_data *gdata,
+					u8 *iv,
+					u8 *hash_subkey,
+					const u8 *aad,
+					unsigned long aad_len);
+
+asmlinkage void aesni_gcm_enc_update_avx_gen4(void *ctx,
+				     struct gcm_context_data *gdata, u8 *out,
+				     const u8 *in, unsigned long plaintext_len);
+asmlinkage void aesni_gcm_dec_update_avx_gen4(void *ctx,
+				     struct gcm_context_data *gdata, u8 *out,
+				     const u8 *in,
+				     unsigned long ciphertext_len);
+asmlinkage void aesni_gcm_finalize_avx_gen4(void *ctx,
+				   struct gcm_context_data *gdata,
+				   u8 *auth_tag, unsigned long auth_tag_len);
 
-asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx, u8 *out,
+asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx,
+				struct gcm_context_data *gdata, u8 *out,
 			const u8 *in, unsigned long plaintext_len, u8 *iv,
 			const u8 *aad, unsigned long aad_len,
 			u8 *auth_tag, unsigned long auth_tag_len);
 
-asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx, u8 *out,
+asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx,
+				struct gcm_context_data *gdata, u8 *out,
 			const u8 *in, unsigned long ciphertext_len, u8 *iv,
 			const u8 *aad, unsigned long aad_len,
 			u8 *auth_tag, unsigned long auth_tag_len);
 
-static void aesni_gcm_enc_avx2(void *ctx,
-			struct gcm_context_data *data, u8 *out,
-			const u8 *in, unsigned long plaintext_len, u8 *iv,
-			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
-			u8 *auth_tag, unsigned long auth_tag_len)
-{
-       struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
-	if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
-		aesni_gcm_enc(ctx, data, out, in,
-			      plaintext_len, iv, hash_subkey, aad,
-			      aad_len, auth_tag, auth_tag_len);
-	} else if (plaintext_len < AVX_GEN4_OPTSIZE) {
-		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
-		aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
-					aad_len, auth_tag, auth_tag_len);
-	} else {
-		aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
-		aesni_gcm_enc_avx_gen4(ctx, out, in, plaintext_len, iv, aad,
-					aad_len, auth_tag, auth_tag_len);
-	}
-}
+struct aesni_gcm_tfm_s aesni_gcm_tfm_avx_gen4 = {
+	.init = &aesni_gcm_init_avx_gen4,
+	.enc_update = &aesni_gcm_enc_update_avx_gen4,
+	.dec_update = &aesni_gcm_dec_update_avx_gen4,
+	.finalize = &aesni_gcm_finalize_avx_gen4,
+};
 
-static void aesni_gcm_dec_avx2(void *ctx,
-	struct gcm_context_data *data, u8 *out,
-			const u8 *in, unsigned long ciphertext_len, u8 *iv,
-			u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
-			u8 *auth_tag, unsigned long auth_tag_len)
-{
-       struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
-	if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
-		aesni_gcm_dec(ctx, data, out, in,
-			      ciphertext_len, iv, hash_subkey,
-			      aad, aad_len, auth_tag, auth_tag_len);
-	} else if (ciphertext_len < AVX_GEN4_OPTSIZE) {
-		aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
-		aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
-					aad_len, auth_tag, auth_tag_len);
-	} else {
-		aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
-		aesni_gcm_dec_avx_gen4(ctx, out, in, ciphertext_len, iv, aad,
-					aad_len, auth_tag, auth_tag_len);
-	}
-}
 #endif
 
-static void (*aesni_gcm_enc_tfm)(void *ctx,
-				 struct gcm_context_data *data, u8 *out,
-				 const u8 *in, unsigned long plaintext_len,
-				 u8 *iv, u8 *hash_subkey, const u8 *aad,
-				 unsigned long aad_len, u8 *auth_tag,
-				 unsigned long auth_tag_len);
-
-static void (*aesni_gcm_dec_tfm)(void *ctx,
-				 struct gcm_context_data *data, u8 *out,
-				 const u8 *in, unsigned long ciphertext_len,
-				 u8 *iv, u8 *hash_subkey, const u8 *aad,
-				 unsigned long aad_len, u8 *auth_tag,
-				 unsigned long auth_tag_len);
-
 static inline struct
 aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
 {
@@ -794,6 +778,7 @@ static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req,
 {
 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
 	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
+	struct aesni_gcm_tfm_s *gcm_tfm = aesni_gcm_tfm;
 	struct gcm_context_data data AESNI_ALIGN_ATTR;
 	struct scatter_walk dst_sg_walk = {};
 	unsigned long left = req->cryptlen;
@@ -811,6 +796,15 @@ static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req,
 	if (!enc)
 		left -= auth_tag_len;
 
+#ifdef CONFIG_AS_AVX2
+	if (left < AVX_GEN4_OPTSIZE && gcm_tfm == &aesni_gcm_tfm_avx_gen4)
+		gcm_tfm = &aesni_gcm_tfm_avx_gen2;
+#endif
+#ifdef CONFIG_AS_AVX
+	if (left < AVX_GEN2_OPTSIZE && gcm_tfm == &aesni_gcm_tfm_avx_gen2)
+		gcm_tfm = &aesni_gcm_tfm_sse;
+#endif
+
 	/* Linearize assoc, if not already linear */
 	if (req->src->length >= assoclen && req->src->length &&
 		(!PageHighMem(sg_page(req->src)) ||
@@ -835,7 +829,7 @@ static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req,
 	}
 
 	kernel_fpu_begin();
-	aesni_gcm_init(aes_ctx, &data, iv,
+	gcm_tfm->init(aes_ctx, &data, iv,
 		hash_subkey, assoc, assoclen);
 	if (req->src != req->dst) {
 		while (left) {
@@ -846,10 +840,10 @@ static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req,
 			len = min(srclen, dstlen);
 			if (len) {
 				if (enc)
-					aesni_gcm_enc_update(aes_ctx, &data,
+					gcm_tfm->enc_update(aes_ctx, &data,
 							     dst, src, len);
 				else
-					aesni_gcm_dec_update(aes_ctx, &data,
+					gcm_tfm->dec_update(aes_ctx, &data,
 							     dst, src, len);
 			}
 			left -= len;
@@ -867,10 +861,10 @@ static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req,
 			len = scatterwalk_clamp(&src_sg_walk, left);
 			if (len) {
 				if (enc)
-					aesni_gcm_enc_update(aes_ctx, &data,
+					gcm_tfm->enc_update(aes_ctx, &data,
 							     src, src, len);
 				else
-					aesni_gcm_dec_update(aes_ctx, &data,
+					gcm_tfm->dec_update(aes_ctx, &data,
 							     src, src, len);
 			}
 			left -= len;
@@ -879,7 +873,7 @@ static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req,
 			scatterwalk_done(&src_sg_walk, 1, left);
 		}
 	}
-	aesni_gcm_finalize(aes_ctx, &data, authTag, auth_tag_len);
+	gcm_tfm->finalize(aes_ctx, &data, authTag, auth_tag_len);
 	kernel_fpu_end();
 
 	if (!assocmem)
@@ -912,147 +906,15 @@ static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req,
 static int gcmaes_encrypt(struct aead_request *req, unsigned int assoclen,
 			  u8 *hash_subkey, u8 *iv, void *aes_ctx)
 {
-	u8 one_entry_in_sg = 0;
-	u8 *src, *dst, *assoc;
-	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
-	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
-	struct scatter_walk src_sg_walk;
-	struct scatter_walk dst_sg_walk = {};
-	struct gcm_context_data data AESNI_ALIGN_ATTR;
-
-	if (((struct crypto_aes_ctx *)aes_ctx)->key_length != AES_KEYSIZE_128 ||
-		aesni_gcm_enc_tfm == aesni_gcm_enc ||
-		req->cryptlen < AVX_GEN2_OPTSIZE) {
-		return gcmaes_crypt_by_sg(true, req, assoclen, hash_subkey, iv,
-					  aes_ctx);
-	}
-	if (sg_is_last(req->src) &&
-	    (!PageHighMem(sg_page(req->src)) ||
-	    req->src->offset + req->src->length <= PAGE_SIZE) &&
-	    sg_is_last(req->dst) &&
-	    (!PageHighMem(sg_page(req->dst)) ||
-	    req->dst->offset + req->dst->length <= PAGE_SIZE)) {
-		one_entry_in_sg = 1;
-		scatterwalk_start(&src_sg_walk, req->src);
-		assoc = scatterwalk_map(&src_sg_walk);
-		src = assoc + req->assoclen;
-		dst = src;
-		if (unlikely(req->src != req->dst)) {
-			scatterwalk_start(&dst_sg_walk, req->dst);
-			dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
-		}
-	} else {
-		/* Allocate memory for src, dst, assoc */
-		assoc = kmalloc(req->cryptlen + auth_tag_len + req->assoclen,
-			GFP_ATOMIC);
-		if (unlikely(!assoc))
-			return -ENOMEM;
-		scatterwalk_map_and_copy(assoc, req->src, 0,
-					 req->assoclen + req->cryptlen, 0);
-		src = assoc + req->assoclen;
-		dst = src;
-	}
-
-	kernel_fpu_begin();
-	aesni_gcm_enc_tfm(aes_ctx, &data, dst, src, req->cryptlen, iv,
-			  hash_subkey, assoc, assoclen,
-			  dst + req->cryptlen, auth_tag_len);
-	kernel_fpu_end();
-
-	/* The authTag (aka the Integrity Check Value) needs to be written
-	 * back to the packet. */
-	if (one_entry_in_sg) {
-		if (unlikely(req->src != req->dst)) {
-			scatterwalk_unmap(dst - req->assoclen);
-			scatterwalk_advance(&dst_sg_walk, req->dst->length);
-			scatterwalk_done(&dst_sg_walk, 1, 0);
-		}
-		scatterwalk_unmap(assoc);
-		scatterwalk_advance(&src_sg_walk, req->src->length);
-		scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
-	} else {
-		scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
-					 req->cryptlen + auth_tag_len, 1);
-		kfree(assoc);
-	}
-	return 0;
+	return gcmaes_crypt_by_sg(true, req, assoclen, hash_subkey, iv,
+				aes_ctx);
 }
 
 static int gcmaes_decrypt(struct aead_request *req, unsigned int assoclen,
 			  u8 *hash_subkey, u8 *iv, void *aes_ctx)
 {
-	u8 one_entry_in_sg = 0;
-	u8 *src, *dst, *assoc;
-	unsigned long tempCipherLen = 0;
-	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
-	unsigned long auth_tag_len = crypto_aead_authsize(tfm);
-	u8 authTag[16];
-	struct scatter_walk src_sg_walk;
-	struct scatter_walk dst_sg_walk = {};
-	struct gcm_context_data data AESNI_ALIGN_ATTR;
-	int retval = 0;
-
-	if (((struct crypto_aes_ctx *)aes_ctx)->key_length != AES_KEYSIZE_128 ||
-		aesni_gcm_enc_tfm == aesni_gcm_enc ||
-		req->cryptlen < AVX_GEN2_OPTSIZE) {
-		return gcmaes_crypt_by_sg(false, req, assoclen, hash_subkey, iv,
-					  aes_ctx);
-	}
-	tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len);
-
-	if (sg_is_last(req->src) &&
-	    (!PageHighMem(sg_page(req->src)) ||
-	    req->src->offset + req->src->length <= PAGE_SIZE) &&
-	    sg_is_last(req->dst) && req->dst->length &&
-	    (!PageHighMem(sg_page(req->dst)) ||
-	    req->dst->offset + req->dst->length <= PAGE_SIZE)) {
-		one_entry_in_sg = 1;
-		scatterwalk_start(&src_sg_walk, req->src);
-		assoc = scatterwalk_map(&src_sg_walk);
-		src = assoc + req->assoclen;
-		dst = src;
-		if (unlikely(req->src != req->dst)) {
-			scatterwalk_start(&dst_sg_walk, req->dst);
-			dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
-		}
-	} else {
-		/* Allocate memory for src, dst, assoc */
-		assoc = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC);
-		if (!assoc)
-			return -ENOMEM;
-		scatterwalk_map_and_copy(assoc, req->src, 0,
-					 req->assoclen + req->cryptlen, 0);
-		src = assoc + req->assoclen;
-		dst = src;
-	}
-
-
-	kernel_fpu_begin();
-	aesni_gcm_dec_tfm(aes_ctx, &data, dst, src, tempCipherLen, iv,
-			  hash_subkey, assoc, assoclen,
-			  authTag, auth_tag_len);
-	kernel_fpu_end();
-
-	/* Compare generated tag with passed in tag. */
-	retval = crypto_memneq(src + tempCipherLen, authTag, auth_tag_len) ?
-		-EBADMSG : 0;
-
-	if (one_entry_in_sg) {
-		if (unlikely(req->src != req->dst)) {
-			scatterwalk_unmap(dst - req->assoclen);
-			scatterwalk_advance(&dst_sg_walk, req->dst->length);
-			scatterwalk_done(&dst_sg_walk, 1, 0);
-		}
-		scatterwalk_unmap(assoc);
-		scatterwalk_advance(&src_sg_walk, req->src->length);
-		scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
-	} else {
-		scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
-					 tempCipherLen, 1);
-		kfree(assoc);
-	}
-	return retval;
-
+	return gcmaes_crypt_by_sg(false, req, assoclen, hash_subkey, iv,
+				aes_ctx);
 }
 
 static int helper_rfc4106_encrypt(struct aead_request *req)
@@ -1420,21 +1282,18 @@ static int __init aesni_init(void)
 #ifdef CONFIG_AS_AVX2
 	if (boot_cpu_has(X86_FEATURE_AVX2)) {
 		pr_info("AVX2 version of gcm_enc/dec engaged.\n");
-		aesni_gcm_enc_tfm = aesni_gcm_enc_avx2;
-		aesni_gcm_dec_tfm = aesni_gcm_dec_avx2;
+		aesni_gcm_tfm = &aesni_gcm_tfm_avx_gen4;
 	} else
 #endif
 #ifdef CONFIG_AS_AVX
 	if (boot_cpu_has(X86_FEATURE_AVX)) {
 		pr_info("AVX version of gcm_enc/dec engaged.\n");
-		aesni_gcm_enc_tfm = aesni_gcm_enc_avx;
-		aesni_gcm_dec_tfm = aesni_gcm_dec_avx;
+		aesni_gcm_tfm = &aesni_gcm_tfm_avx_gen2;
 	} else
 #endif
 	{
 		pr_info("SSE version of gcm_enc/dec engaged.\n");
-		aesni_gcm_enc_tfm = aesni_gcm_enc;
-		aesni_gcm_dec_tfm = aesni_gcm_dec;
+		aesni_gcm_tfm = &aesni_gcm_tfm_sse;
 	}
 	aesni_ctr_enc_tfm = aesni_ctr_enc;
 #ifdef CONFIG_AS_AVX
diff --git a/arch/x86/crypto/cast5_avx_glue.c b/arch/x86/crypto/cast5_avx_glue.c
index 41034745d6a2..d1ce49119da8 100644
--- a/arch/x86/crypto/cast5_avx_glue.c
+++ b/arch/x86/crypto/cast5_avx_glue.c
@@ -1,5 +1,5 @@
 /*
- * Glue Code for the AVX assembler implemention of the Cast5 Cipher
+ * Glue Code for the AVX assembler implementation of the Cast5 Cipher
  *
  * Copyright (C) 2012 Johannes Goetzfried
  *     <Johannes.Goetzfried@informatik.stud.uni-erlangen.de>
diff --git a/arch/x86/crypto/cast6_avx_glue.c b/arch/x86/crypto/cast6_avx_glue.c
index 9fb66b5e94b2..18965c39305e 100644
--- a/arch/x86/crypto/cast6_avx_glue.c
+++ b/arch/x86/crypto/cast6_avx_glue.c
@@ -1,5 +1,5 @@
 /*
- * Glue Code for the AVX assembler implemention of the Cast6 Cipher
+ * Glue Code for the AVX assembler implementation of the Cast6 Cipher
  *
  * Copyright (C) 2012 Johannes Goetzfried
  *     <Johannes.Goetzfried@informatik.stud.uni-erlangen.de>
diff --git a/arch/x86/crypto/chacha-avx2-x86_64.S b/arch/x86/crypto/chacha-avx2-x86_64.S
new file mode 100644
index 000000000000..32903fd450af
--- /dev/null
+++ b/arch/x86/crypto/chacha-avx2-x86_64.S
@@ -0,0 +1,1025 @@
+/*
+ * ChaCha 256-bit cipher algorithm, x64 AVX2 functions
+ *
+ * Copyright (C) 2015 Martin Willi
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ */
+
+#include <linux/linkage.h>
+
+.section	.rodata.cst32.ROT8, "aM", @progbits, 32
+.align 32
+ROT8:	.octa 0x0e0d0c0f0a09080b0605040702010003
+	.octa 0x0e0d0c0f0a09080b0605040702010003
+
+.section	.rodata.cst32.ROT16, "aM", @progbits, 32
+.align 32
+ROT16:	.octa 0x0d0c0f0e09080b0a0504070601000302
+	.octa 0x0d0c0f0e09080b0a0504070601000302
+
+.section	.rodata.cst32.CTRINC, "aM", @progbits, 32
+.align 32
+CTRINC:	.octa 0x00000003000000020000000100000000
+	.octa 0x00000007000000060000000500000004
+
+.section	.rodata.cst32.CTR2BL, "aM", @progbits, 32
+.align 32
+CTR2BL:	.octa 0x00000000000000000000000000000000
+	.octa 0x00000000000000000000000000000001
+
+.section	.rodata.cst32.CTR4BL, "aM", @progbits, 32
+.align 32
+CTR4BL:	.octa 0x00000000000000000000000000000002
+	.octa 0x00000000000000000000000000000003
+
+.text
+
+ENTRY(chacha_2block_xor_avx2)
+	# %rdi: Input state matrix, s
+	# %rsi: up to 2 data blocks output, o
+	# %rdx: up to 2 data blocks input, i
+	# %rcx: input/output length in bytes
+	# %r8d: nrounds
+
+	# This function encrypts two ChaCha blocks by loading the state
+	# matrix twice across four AVX registers. It performs matrix operations
+	# on four words in each matrix in parallel, but requires shuffling to
+	# rearrange the words after each round.
+
+	vzeroupper
+
+	# x0..3[0-2] = s0..3
+	vbroadcasti128	0x00(%rdi),%ymm0
+	vbroadcasti128	0x10(%rdi),%ymm1
+	vbroadcasti128	0x20(%rdi),%ymm2
+	vbroadcasti128	0x30(%rdi),%ymm3
+
+	vpaddd		CTR2BL(%rip),%ymm3,%ymm3
+
+	vmovdqa		%ymm0,%ymm8
+	vmovdqa		%ymm1,%ymm9
+	vmovdqa		%ymm2,%ymm10
+	vmovdqa		%ymm3,%ymm11
+
+	vmovdqa		ROT8(%rip),%ymm4
+	vmovdqa		ROT16(%rip),%ymm5
+
+	mov		%rcx,%rax
+
+.Ldoubleround:
+
+	# x0 += x1, x3 = rotl32(x3 ^ x0, 16)
+	vpaddd		%ymm1,%ymm0,%ymm0
+	vpxor		%ymm0,%ymm3,%ymm3
+	vpshufb		%ymm5,%ymm3,%ymm3
+
+	# x2 += x3, x1 = rotl32(x1 ^ x2, 12)
+	vpaddd		%ymm3,%ymm2,%ymm2
+	vpxor		%ymm2,%ymm1,%ymm1
+	vmovdqa		%ymm1,%ymm6
+	vpslld		$12,%ymm6,%ymm6
+	vpsrld		$20,%ymm1,%ymm1
+	vpor		%ymm6,%ymm1,%ymm1
+
+	# x0 += x1, x3 = rotl32(x3 ^ x0, 8)
+	vpaddd		%ymm1,%ymm0,%ymm0
+	vpxor		%ymm0,%ymm3,%ymm3
+	vpshufb		%ymm4,%ymm3,%ymm3
+
+	# x2 += x3, x1 = rotl32(x1 ^ x2, 7)
+	vpaddd		%ymm3,%ymm2,%ymm2
+	vpxor		%ymm2,%ymm1,%ymm1
+	vmovdqa		%ymm1,%ymm7
+	vpslld		$7,%ymm7,%ymm7
+	vpsrld		$25,%ymm1,%ymm1
+	vpor		%ymm7,%ymm1,%ymm1
+
+	# x1 = shuffle32(x1, MASK(0, 3, 2, 1))
+	vpshufd		$0x39,%ymm1,%ymm1
+	# x2 = shuffle32(x2, MASK(1, 0, 3, 2))
+	vpshufd		$0x4e,%ymm2,%ymm2
+	# x3 = shuffle32(x3, MASK(2, 1, 0, 3))
+	vpshufd		$0x93,%ymm3,%ymm3
+
+	# x0 += x1, x3 = rotl32(x3 ^ x0, 16)
+	vpaddd		%ymm1,%ymm0,%ymm0
+	vpxor		%ymm0,%ymm3,%ymm3
+	vpshufb		%ymm5,%ymm3,%ymm3
+
+	# x2 += x3, x1 = rotl32(x1 ^ x2, 12)
+	vpaddd		%ymm3,%ymm2,%ymm2
+	vpxor		%ymm2,%ymm1,%ymm1
+	vmovdqa		%ymm1,%ymm6
+	vpslld		$12,%ymm6,%ymm6
+	vpsrld		$20,%ymm1,%ymm1
+	vpor		%ymm6,%ymm1,%ymm1
+
+	# x0 += x1, x3 = rotl32(x3 ^ x0, 8)
+	vpaddd		%ymm1,%ymm0,%ymm0
+	vpxor		%ymm0,%ymm3,%ymm3
+	vpshufb		%ymm4,%ymm3,%ymm3
+
+	# x2 += x3, x1 = rotl32(x1 ^ x2, 7)
+	vpaddd		%ymm3,%ymm2,%ymm2
+	vpxor		%ymm2,%ymm1,%ymm1
+	vmovdqa		%ymm1,%ymm7
+	vpslld		$7,%ymm7,%ymm7
+	vpsrld		$25,%ymm1,%ymm1
+	vpor		%ymm7,%ymm1,%ymm1
+
+	# x1 = shuffle32(x1, MASK(2, 1, 0, 3))
+	vpshufd		$0x93,%ymm1,%ymm1
+	# x2 = shuffle32(x2, MASK(1, 0, 3, 2))
+	vpshufd		$0x4e,%ymm2,%ymm2
+	# x3 = shuffle32(x3, MASK(0, 3, 2, 1))
+	vpshufd		$0x39,%ymm3,%ymm3
+
+	sub		$2,%r8d
+	jnz		.Ldoubleround
+
+	# o0 = i0 ^ (x0 + s0)
+	vpaddd		%ymm8,%ymm0,%ymm7
+	cmp		$0x10,%rax
+	jl		.Lxorpart2
+	vpxor		0x00(%rdx),%xmm7,%xmm6
+	vmovdqu		%xmm6,0x00(%rsi)
+	vextracti128	$1,%ymm7,%xmm0
+	# o1 = i1 ^ (x1 + s1)
+	vpaddd		%ymm9,%ymm1,%ymm7
+	cmp		$0x20,%rax
+	jl		.Lxorpart2
+	vpxor		0x10(%rdx),%xmm7,%xmm6
+	vmovdqu		%xmm6,0x10(%rsi)
+	vextracti128	$1,%ymm7,%xmm1
+	# o2 = i2 ^ (x2 + s2)
+	vpaddd		%ymm10,%ymm2,%ymm7
+	cmp		$0x30,%rax
+	jl		.Lxorpart2
+	vpxor		0x20(%rdx),%xmm7,%xmm6
+	vmovdqu		%xmm6,0x20(%rsi)
+	vextracti128	$1,%ymm7,%xmm2
+	# o3 = i3 ^ (x3 + s3)
+	vpaddd		%ymm11,%ymm3,%ymm7
+	cmp		$0x40,%rax
+	jl		.Lxorpart2
+	vpxor		0x30(%rdx),%xmm7,%xmm6
+	vmovdqu		%xmm6,0x30(%rsi)
+	vextracti128	$1,%ymm7,%xmm3
+
+	# xor and write second block
+	vmovdqa		%xmm0,%xmm7
+	cmp		$0x50,%rax
+	jl		.Lxorpart2
+	vpxor		0x40(%rdx),%xmm7,%xmm6
+	vmovdqu		%xmm6,0x40(%rsi)
+
+	vmovdqa		%xmm1,%xmm7
+	cmp		$0x60,%rax
+	jl		.Lxorpart2
+	vpxor		0x50(%rdx),%xmm7,%xmm6
+	vmovdqu		%xmm6,0x50(%rsi)
+
+	vmovdqa		%xmm2,%xmm7
+	cmp		$0x70,%rax
+	jl		.Lxorpart2
+	vpxor		0x60(%rdx),%xmm7,%xmm6
+	vmovdqu		%xmm6,0x60(%rsi)
+
+	vmovdqa		%xmm3,%xmm7
+	cmp		$0x80,%rax
+	jl		.Lxorpart2
+	vpxor		0x70(%rdx),%xmm7,%xmm6
+	vmovdqu		%xmm6,0x70(%rsi)
+
+.Ldone2:
+	vzeroupper
+	ret
+
+.Lxorpart2:
+	# xor remaining bytes from partial register into output
+	mov		%rax,%r9
+	and		$0x0f,%r9
+	jz		.Ldone2
+	and		$~0x0f,%rax
+
+	mov		%rsi,%r11
+
+	lea		8(%rsp),%r10
+	sub		$0x10,%rsp
+	and		$~31,%rsp
+
+	lea		(%rdx,%rax),%rsi
+	mov		%rsp,%rdi
+	mov		%r9,%rcx
+	rep movsb
+
+	vpxor		0x00(%rsp),%xmm7,%xmm7
+	vmovdqa		%xmm7,0x00(%rsp)
+
+	mov		%rsp,%rsi
+	lea		(%r11,%rax),%rdi
+	mov		%r9,%rcx
+	rep movsb
+
+	lea		-8(%r10),%rsp
+	jmp		.Ldone2
+
+ENDPROC(chacha_2block_xor_avx2)
+
+ENTRY(chacha_4block_xor_avx2)
+	# %rdi: Input state matrix, s
+	# %rsi: up to 4 data blocks output, o
+	# %rdx: up to 4 data blocks input, i
+	# %rcx: input/output length in bytes
+	# %r8d: nrounds
+
+	# This function encrypts four ChaCha blocks by loading the state
+	# matrix four times across eight AVX registers. It performs matrix
+	# operations on four words in two matrices in parallel, sequentially
+	# to the operations on the four words of the other two matrices. The
+	# required word shuffling has a rather high latency, we can do the
+	# arithmetic on two matrix-pairs without much slowdown.
+
+	vzeroupper
+
+	# x0..3[0-4] = s0..3
+	vbroadcasti128	0x00(%rdi),%ymm0
+	vbroadcasti128	0x10(%rdi),%ymm1
+	vbroadcasti128	0x20(%rdi),%ymm2
+	vbroadcasti128	0x30(%rdi),%ymm3
+
+	vmovdqa		%ymm0,%ymm4
+	vmovdqa		%ymm1,%ymm5
+	vmovdqa		%ymm2,%ymm6
+	vmovdqa		%ymm3,%ymm7
+
+	vpaddd		CTR2BL(%rip),%ymm3,%ymm3
+	vpaddd		CTR4BL(%rip),%ymm7,%ymm7
+
+	vmovdqa		%ymm0,%ymm11
+	vmovdqa		%ymm1,%ymm12
+	vmovdqa		%ymm2,%ymm13
+	vmovdqa		%ymm3,%ymm14
+	vmovdqa		%ymm7,%ymm15
+
+	vmovdqa		ROT8(%rip),%ymm8
+	vmovdqa		ROT16(%rip),%ymm9
+
+	mov		%rcx,%rax
+
+.Ldoubleround4:
+
+	# x0 += x1, x3 = rotl32(x3 ^ x0, 16)
+	vpaddd		%ymm1,%ymm0,%ymm0
+	vpxor		%ymm0,%ymm3,%ymm3
+	vpshufb		%ymm9,%ymm3,%ymm3
+
+	vpaddd		%ymm5,%ymm4,%ymm4
+	vpxor		%ymm4,%ymm7,%ymm7
+	vpshufb		%ymm9,%ymm7,%ymm7
+
+	# x2 += x3, x1 = rotl32(x1 ^ x2, 12)
+	vpaddd		%ymm3,%ymm2,%ymm2
+	vpxor		%ymm2,%ymm1,%ymm1
+	vmovdqa		%ymm1,%ymm10
+	vpslld		$12,%ymm10,%ymm10
+	vpsrld		$20,%ymm1,%ymm1
+	vpor		%ymm10,%ymm1,%ymm1
+
+	vpaddd		%ymm7,%ymm6,%ymm6
+	vpxor		%ymm6,%ymm5,%ymm5
+	vmovdqa		%ymm5,%ymm10
+	vpslld		$12,%ymm10,%ymm10
+	vpsrld		$20,%ymm5,%ymm5
+	vpor		%ymm10,%ymm5,%ymm5
+
+	# x0 += x1, x3 = rotl32(x3 ^ x0, 8)
+	vpaddd		%ymm1,%ymm0,%ymm0
+	vpxor		%ymm0,%ymm3,%ymm3
+	vpshufb		%ymm8,%ymm3,%ymm3
+
+	vpaddd		%ymm5,%ymm4,%ymm4
+	vpxor		%ymm4,%ymm7,%ymm7
+	vpshufb		%ymm8,%ymm7,%ymm7
+
+	# x2 += x3, x1 = rotl32(x1 ^ x2, 7)
+	vpaddd		%ymm3,%ymm2,%ymm2
+	vpxor		%ymm2,%ymm1,%ymm1
+	vmovdqa		%ymm1,%ymm10
+	vpslld		$7,%ymm10,%ymm10
+	vpsrld		$25,%ymm1,%ymm1
+	vpor		%ymm10,%ymm1,%ymm1
+
+	vpaddd		%ymm7,%ymm6,%ymm6
+	vpxor		%ymm6,%ymm5,%ymm5
+	vmovdqa		%ymm5,%ymm10
+	vpslld		$7,%ymm10,%ymm10
+	vpsrld		$25,%ymm5,%ymm5
+	vpor		%ymm10,%ymm5,%ymm5
+
+	# x1 = shuffle32(x1, MASK(0, 3, 2, 1))
+	vpshufd		$0x39,%ymm1,%ymm1
+	vpshufd		$0x39,%ymm5,%ymm5
+	# x2 = shuffle32(x2, MASK(1, 0, 3, 2))
+	vpshufd		$0x4e,%ymm2,%ymm2
+	vpshufd		$0x4e,%ymm6,%ymm6
+	# x3 = shuffle32(x3, MASK(2, 1, 0, 3))
+	vpshufd		$0x93,%ymm3,%ymm3
+	vpshufd		$0x93,%ymm7,%ymm7
+
+	# x0 += x1, x3 = rotl32(x3 ^ x0, 16)
+	vpaddd		%ymm1,%ymm0,%ymm0
+	vpxor		%ymm0,%ymm3,%ymm3
+	vpshufb		%ymm9,%ymm3,%ymm3
+
+	vpaddd		%ymm5,%ymm4,%ymm4
+	vpxor		%ymm4,%ymm7,%ymm7
+	vpshufb		%ymm9,%ymm7,%ymm7
+
+	# x2 += x3, x1 = rotl32(x1 ^ x2, 12)
+	vpaddd		%ymm3,%ymm2,%ymm2
+	vpxor		%ymm2,%ymm1,%ymm1
+	vmovdqa		%ymm1,%ymm10
+	vpslld		$12,%ymm10,%ymm10
+	vpsrld		$20,%ymm1,%ymm1
+	vpor		%ymm10,%ymm1,%ymm1
+
+	vpaddd		%ymm7,%ymm6,%ymm6
+	vpxor		%ymm6,%ymm5,%ymm5
+	vmovdqa		%ymm5,%ymm10
+	vpslld		$12,%ymm10,%ymm10
+	vpsrld		$20,%ymm5,%ymm5
+	vpor		%ymm10,%ymm5,%ymm5
+
+	# x0 += x1, x3 = rotl32(x3 ^ x0, 8)
+	vpaddd		%ymm1,%ymm0,%ymm0
+	vpxor		%ymm0,%ymm3,%ymm3
+	vpshufb		%ymm8,%ymm3,%ymm3
+
+	vpaddd		%ymm5,%ymm4,%ymm4
+	vpxor		%ymm4,%ymm7,%ymm7
+	vpshufb		%ymm8,%ymm7,%ymm7
+
+	# x2 += x3, x1 = rotl32(x1 ^ x2, 7)
+	vpaddd		%ymm3,%ymm2,%ymm2
+	vpxor		%ymm2,%ymm1,%ymm1
+	vmovdqa		%ymm1,%ymm10
+	vpslld		$7,%ymm10,%ymm10
+	vpsrld		$25,%ymm1,%ymm1
+	vpor		%ymm10,%ymm1,%ymm1
+
+	vpaddd		%ymm7,%ymm6,%ymm6
+	vpxor		%ymm6,%ymm5,%ymm5
+	vmovdqa		%ymm5,%ymm10
+	vpslld		$7,%ymm10,%ymm10
+	vpsrld		$25,%ymm5,%ymm5
+	vpor		%ymm10,%ymm5,%ymm5
+
+	# x1 = shuffle32(x1, MASK(2, 1, 0, 3))
+	vpshufd		$0x93,%ymm1,%ymm1
+	vpshufd		$0x93,%ymm5,%ymm5
+	# x2 = shuffle32(x2, MASK(1, 0, 3, 2))
+	vpshufd		$0x4e,%ymm2,%ymm2
+	vpshufd		$0x4e,%ymm6,%ymm6
+	# x3 = shuffle32(x3, MASK(0, 3, 2, 1))
+	vpshufd		$0x39,%ymm3,%ymm3
+	vpshufd		$0x39,%ymm7,%ymm7
+
+	sub		$2,%r8d
+	jnz		.Ldoubleround4
+
+	# o0 = i0 ^ (x0 + s0), first block
+	vpaddd		%ymm11,%ymm0,%ymm10
+	cmp		$0x10,%rax
+	jl		.Lxorpart4
+	vpxor		0x00(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0x00(%rsi)
+	vextracti128	$1,%ymm10,%xmm0
+	# o1 = i1 ^ (x1 + s1), first block
+	vpaddd		%ymm12,%ymm1,%ymm10
+	cmp		$0x20,%rax
+	jl		.Lxorpart4
+	vpxor		0x10(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0x10(%rsi)
+	vextracti128	$1,%ymm10,%xmm1
+	# o2 = i2 ^ (x2 + s2), first block
+	vpaddd		%ymm13,%ymm2,%ymm10
+	cmp		$0x30,%rax
+	jl		.Lxorpart4
+	vpxor		0x20(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0x20(%rsi)
+	vextracti128	$1,%ymm10,%xmm2
+	# o3 = i3 ^ (x3 + s3), first block
+	vpaddd		%ymm14,%ymm3,%ymm10
+	cmp		$0x40,%rax
+	jl		.Lxorpart4
+	vpxor		0x30(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0x30(%rsi)
+	vextracti128	$1,%ymm10,%xmm3
+
+	# xor and write second block
+	vmovdqa		%xmm0,%xmm10
+	cmp		$0x50,%rax
+	jl		.Lxorpart4
+	vpxor		0x40(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0x40(%rsi)
+
+	vmovdqa		%xmm1,%xmm10
+	cmp		$0x60,%rax
+	jl		.Lxorpart4
+	vpxor		0x50(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0x50(%rsi)
+
+	vmovdqa		%xmm2,%xmm10
+	cmp		$0x70,%rax
+	jl		.Lxorpart4
+	vpxor		0x60(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0x60(%rsi)
+
+	vmovdqa		%xmm3,%xmm10
+	cmp		$0x80,%rax
+	jl		.Lxorpart4
+	vpxor		0x70(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0x70(%rsi)
+
+	# o0 = i0 ^ (x0 + s0), third block
+	vpaddd		%ymm11,%ymm4,%ymm10
+	cmp		$0x90,%rax
+	jl		.Lxorpart4
+	vpxor		0x80(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0x80(%rsi)
+	vextracti128	$1,%ymm10,%xmm4
+	# o1 = i1 ^ (x1 + s1), third block
+	vpaddd		%ymm12,%ymm5,%ymm10
+	cmp		$0xa0,%rax
+	jl		.Lxorpart4
+	vpxor		0x90(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0x90(%rsi)
+	vextracti128	$1,%ymm10,%xmm5
+	# o2 = i2 ^ (x2 + s2), third block
+	vpaddd		%ymm13,%ymm6,%ymm10
+	cmp		$0xb0,%rax
+	jl		.Lxorpart4
+	vpxor		0xa0(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0xa0(%rsi)
+	vextracti128	$1,%ymm10,%xmm6
+	# o3 = i3 ^ (x3 + s3), third block
+	vpaddd		%ymm15,%ymm7,%ymm10
+	cmp		$0xc0,%rax
+	jl		.Lxorpart4
+	vpxor		0xb0(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0xb0(%rsi)
+	vextracti128	$1,%ymm10,%xmm7
+
+	# xor and write fourth block
+	vmovdqa		%xmm4,%xmm10
+	cmp		$0xd0,%rax
+	jl		.Lxorpart4
+	vpxor		0xc0(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0xc0(%rsi)
+
+	vmovdqa		%xmm5,%xmm10
+	cmp		$0xe0,%rax
+	jl		.Lxorpart4
+	vpxor		0xd0(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0xd0(%rsi)
+
+	vmovdqa		%xmm6,%xmm10
+	cmp		$0xf0,%rax
+	jl		.Lxorpart4
+	vpxor		0xe0(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0xe0(%rsi)
+
+	vmovdqa		%xmm7,%xmm10
+	cmp		$0x100,%rax
+	jl		.Lxorpart4
+	vpxor		0xf0(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0xf0(%rsi)
+
+.Ldone4:
+	vzeroupper
+	ret
+
+.Lxorpart4:
+	# xor remaining bytes from partial register into output
+	mov		%rax,%r9
+	and		$0x0f,%r9
+	jz		.Ldone4
+	and		$~0x0f,%rax
+
+	mov		%rsi,%r11
+
+	lea		8(%rsp),%r10
+	sub		$0x10,%rsp
+	and		$~31,%rsp
+
+	lea		(%rdx,%rax),%rsi
+	mov		%rsp,%rdi
+	mov		%r9,%rcx
+	rep movsb
+
+	vpxor		0x00(%rsp),%xmm10,%xmm10
+	vmovdqa		%xmm10,0x00(%rsp)
+
+	mov		%rsp,%rsi
+	lea		(%r11,%rax),%rdi
+	mov		%r9,%rcx
+	rep movsb
+
+	lea		-8(%r10),%rsp
+	jmp		.Ldone4
+
+ENDPROC(chacha_4block_xor_avx2)
+
+ENTRY(chacha_8block_xor_avx2)
+	# %rdi: Input state matrix, s
+	# %rsi: up to 8 data blocks output, o
+	# %rdx: up to 8 data blocks input, i
+	# %rcx: input/output length in bytes
+	# %r8d: nrounds
+
+	# This function encrypts eight consecutive ChaCha blocks by loading
+	# the state matrix in AVX registers eight times. As we need some
+	# scratch registers, we save the first four registers on the stack. The
+	# algorithm performs each operation on the corresponding word of each
+	# state matrix, hence requires no word shuffling. For final XORing step
+	# we transpose the matrix by interleaving 32-, 64- and then 128-bit
+	# words, which allows us to do XOR in AVX registers. 8/16-bit word
+	# rotation is done with the slightly better performing byte shuffling,
+	# 7/12-bit word rotation uses traditional shift+OR.
+
+	vzeroupper
+	# 4 * 32 byte stack, 32-byte aligned
+	lea		8(%rsp),%r10
+	and		$~31, %rsp
+	sub		$0x80, %rsp
+	mov		%rcx,%rax
+
+	# x0..15[0-7] = s[0..15]
+	vpbroadcastd	0x00(%rdi),%ymm0
+	vpbroadcastd	0x04(%rdi),%ymm1
+	vpbroadcastd	0x08(%rdi),%ymm2
+	vpbroadcastd	0x0c(%rdi),%ymm3
+	vpbroadcastd	0x10(%rdi),%ymm4
+	vpbroadcastd	0x14(%rdi),%ymm5
+	vpbroadcastd	0x18(%rdi),%ymm6
+	vpbroadcastd	0x1c(%rdi),%ymm7
+	vpbroadcastd	0x20(%rdi),%ymm8
+	vpbroadcastd	0x24(%rdi),%ymm9
+	vpbroadcastd	0x28(%rdi),%ymm10
+	vpbroadcastd	0x2c(%rdi),%ymm11
+	vpbroadcastd	0x30(%rdi),%ymm12
+	vpbroadcastd	0x34(%rdi),%ymm13
+	vpbroadcastd	0x38(%rdi),%ymm14
+	vpbroadcastd	0x3c(%rdi),%ymm15
+	# x0..3 on stack
+	vmovdqa		%ymm0,0x00(%rsp)
+	vmovdqa		%ymm1,0x20(%rsp)
+	vmovdqa		%ymm2,0x40(%rsp)
+	vmovdqa		%ymm3,0x60(%rsp)
+
+	vmovdqa		CTRINC(%rip),%ymm1
+	vmovdqa		ROT8(%rip),%ymm2
+	vmovdqa		ROT16(%rip),%ymm3
+
+	# x12 += counter values 0-3
+	vpaddd		%ymm1,%ymm12,%ymm12
+
+.Ldoubleround8:
+	# x0 += x4, x12 = rotl32(x12 ^ x0, 16)
+	vpaddd		0x00(%rsp),%ymm4,%ymm0
+	vmovdqa		%ymm0,0x00(%rsp)
+	vpxor		%ymm0,%ymm12,%ymm12
+	vpshufb		%ymm3,%ymm12,%ymm12
+	# x1 += x5, x13 = rotl32(x13 ^ x1, 16)
+	vpaddd		0x20(%rsp),%ymm5,%ymm0
+	vmovdqa		%ymm0,0x20(%rsp)
+	vpxor		%ymm0,%ymm13,%ymm13
+	vpshufb		%ymm3,%ymm13,%ymm13
+	# x2 += x6, x14 = rotl32(x14 ^ x2, 16)
+	vpaddd		0x40(%rsp),%ymm6,%ymm0
+	vmovdqa		%ymm0,0x40(%rsp)
+	vpxor		%ymm0,%ymm14,%ymm14
+	vpshufb		%ymm3,%ymm14,%ymm14
+	# x3 += x7, x15 = rotl32(x15 ^ x3, 16)
+	vpaddd		0x60(%rsp),%ymm7,%ymm0
+	vmovdqa		%ymm0,0x60(%rsp)
+	vpxor		%ymm0,%ymm15,%ymm15
+	vpshufb		%ymm3,%ymm15,%ymm15
+
+	# x8 += x12, x4 = rotl32(x4 ^ x8, 12)
+	vpaddd		%ymm12,%ymm8,%ymm8
+	vpxor		%ymm8,%ymm4,%ymm4
+	vpslld		$12,%ymm4,%ymm0
+	vpsrld		$20,%ymm4,%ymm4
+	vpor		%ymm0,%ymm4,%ymm4
+	# x9 += x13, x5 = rotl32(x5 ^ x9, 12)
+	vpaddd		%ymm13,%ymm9,%ymm9
+	vpxor		%ymm9,%ymm5,%ymm5
+	vpslld		$12,%ymm5,%ymm0
+	vpsrld		$20,%ymm5,%ymm5
+	vpor		%ymm0,%ymm5,%ymm5
+	# x10 += x14, x6 = rotl32(x6 ^ x10, 12)
+	vpaddd		%ymm14,%ymm10,%ymm10
+	vpxor		%ymm10,%ymm6,%ymm6
+	vpslld		$12,%ymm6,%ymm0
+	vpsrld		$20,%ymm6,%ymm6
+	vpor		%ymm0,%ymm6,%ymm6
+	# x11 += x15, x7 = rotl32(x7 ^ x11, 12)
+	vpaddd		%ymm15,%ymm11,%ymm11
+	vpxor		%ymm11,%ymm7,%ymm7
+	vpslld		$12,%ymm7,%ymm0
+	vpsrld		$20,%ymm7,%ymm7
+	vpor		%ymm0,%ymm7,%ymm7
+
+	# x0 += x4, x12 = rotl32(x12 ^ x0, 8)
+	vpaddd		0x00(%rsp),%ymm4,%ymm0
+	vmovdqa		%ymm0,0x00(%rsp)
+	vpxor		%ymm0,%ymm12,%ymm12
+	vpshufb		%ymm2,%ymm12,%ymm12
+	# x1 += x5, x13 = rotl32(x13 ^ x1, 8)
+	vpaddd		0x20(%rsp),%ymm5,%ymm0
+	vmovdqa		%ymm0,0x20(%rsp)
+	vpxor		%ymm0,%ymm13,%ymm13
+	vpshufb		%ymm2,%ymm13,%ymm13
+	# x2 += x6, x14 = rotl32(x14 ^ x2, 8)
+	vpaddd		0x40(%rsp),%ymm6,%ymm0
+	vmovdqa		%ymm0,0x40(%rsp)
+	vpxor		%ymm0,%ymm14,%ymm14
+	vpshufb		%ymm2,%ymm14,%ymm14
+	# x3 += x7, x15 = rotl32(x15 ^ x3, 8)
+	vpaddd		0x60(%rsp),%ymm7,%ymm0
+	vmovdqa		%ymm0,0x60(%rsp)
+	vpxor		%ymm0,%ymm15,%ymm15
+	vpshufb		%ymm2,%ymm15,%ymm15
+
+	# x8 += x12, x4 = rotl32(x4 ^ x8, 7)
+	vpaddd		%ymm12,%ymm8,%ymm8
+	vpxor		%ymm8,%ymm4,%ymm4
+	vpslld		$7,%ymm4,%ymm0
+	vpsrld		$25,%ymm4,%ymm4
+	vpor		%ymm0,%ymm4,%ymm4
+	# x9 += x13, x5 = rotl32(x5 ^ x9, 7)
+	vpaddd		%ymm13,%ymm9,%ymm9
+	vpxor		%ymm9,%ymm5,%ymm5
+	vpslld		$7,%ymm5,%ymm0
+	vpsrld		$25,%ymm5,%ymm5
+	vpor		%ymm0,%ymm5,%ymm5
+	# x10 += x14, x6 = rotl32(x6 ^ x10, 7)
+	vpaddd		%ymm14,%ymm10,%ymm10
+	vpxor		%ymm10,%ymm6,%ymm6
+	vpslld		$7,%ymm6,%ymm0
+	vpsrld		$25,%ymm6,%ymm6
+	vpor		%ymm0,%ymm6,%ymm6
+	# x11 += x15, x7 = rotl32(x7 ^ x11, 7)
+	vpaddd		%ymm15,%ymm11,%ymm11
+	vpxor		%ymm11,%ymm7,%ymm7
+	vpslld		$7,%ymm7,%ymm0
+	vpsrld		$25,%ymm7,%ymm7
+	vpor		%ymm0,%ymm7,%ymm7
+
+	# x0 += x5, x15 = rotl32(x15 ^ x0, 16)
+	vpaddd		0x00(%rsp),%ymm5,%ymm0
+	vmovdqa		%ymm0,0x00(%rsp)
+	vpxor		%ymm0,%ymm15,%ymm15
+	vpshufb		%ymm3,%ymm15,%ymm15
+	# x1 += x6, x12 = rotl32(x12 ^ x1, 16)%ymm0
+	vpaddd		0x20(%rsp),%ymm6,%ymm0
+	vmovdqa		%ymm0,0x20(%rsp)
+	vpxor		%ymm0,%ymm12,%ymm12
+	vpshufb		%ymm3,%ymm12,%ymm12
+	# x2 += x7, x13 = rotl32(x13 ^ x2, 16)
+	vpaddd		0x40(%rsp),%ymm7,%ymm0
+	vmovdqa		%ymm0,0x40(%rsp)
+	vpxor		%ymm0,%ymm13,%ymm13
+	vpshufb		%ymm3,%ymm13,%ymm13
+	# x3 += x4, x14 = rotl32(x14 ^ x3, 16)
+	vpaddd		0x60(%rsp),%ymm4,%ymm0
+	vmovdqa		%ymm0,0x60(%rsp)
+	vpxor		%ymm0,%ymm14,%ymm14
+	vpshufb		%ymm3,%ymm14,%ymm14
+
+	# x10 += x15, x5 = rotl32(x5 ^ x10, 12)
+	vpaddd		%ymm15,%ymm10,%ymm10
+	vpxor		%ymm10,%ymm5,%ymm5
+	vpslld		$12,%ymm5,%ymm0
+	vpsrld		$20,%ymm5,%ymm5
+	vpor		%ymm0,%ymm5,%ymm5
+	# x11 += x12, x6 = rotl32(x6 ^ x11, 12)
+	vpaddd		%ymm12,%ymm11,%ymm11
+	vpxor		%ymm11,%ymm6,%ymm6
+	vpslld		$12,%ymm6,%ymm0
+	vpsrld		$20,%ymm6,%ymm6
+	vpor		%ymm0,%ymm6,%ymm6
+	# x8 += x13, x7 = rotl32(x7 ^ x8, 12)
+	vpaddd		%ymm13,%ymm8,%ymm8
+	vpxor		%ymm8,%ymm7,%ymm7
+	vpslld		$12,%ymm7,%ymm0
+	vpsrld		$20,%ymm7,%ymm7
+	vpor		%ymm0,%ymm7,%ymm7
+	# x9 += x14, x4 = rotl32(x4 ^ x9, 12)
+	vpaddd		%ymm14,%ymm9,%ymm9
+	vpxor		%ymm9,%ymm4,%ymm4
+	vpslld		$12,%ymm4,%ymm0
+	vpsrld		$20,%ymm4,%ymm4
+	vpor		%ymm0,%ymm4,%ymm4
+
+	# x0 += x5, x15 = rotl32(x15 ^ x0, 8)
+	vpaddd		0x00(%rsp),%ymm5,%ymm0
+	vmovdqa		%ymm0,0x00(%rsp)
+	vpxor		%ymm0,%ymm15,%ymm15
+	vpshufb		%ymm2,%ymm15,%ymm15
+	# x1 += x6, x12 = rotl32(x12 ^ x1, 8)
+	vpaddd		0x20(%rsp),%ymm6,%ymm0
+	vmovdqa		%ymm0,0x20(%rsp)
+	vpxor		%ymm0,%ymm12,%ymm12
+	vpshufb		%ymm2,%ymm12,%ymm12
+	# x2 += x7, x13 = rotl32(x13 ^ x2, 8)
+	vpaddd		0x40(%rsp),%ymm7,%ymm0
+	vmovdqa		%ymm0,0x40(%rsp)
+	vpxor		%ymm0,%ymm13,%ymm13
+	vpshufb		%ymm2,%ymm13,%ymm13
+	# x3 += x4, x14 = rotl32(x14 ^ x3, 8)
+	vpaddd		0x60(%rsp),%ymm4,%ymm0
+	vmovdqa		%ymm0,0x60(%rsp)
+	vpxor		%ymm0,%ymm14,%ymm14
+	vpshufb		%ymm2,%ymm14,%ymm14
+
+	# x10 += x15, x5 = rotl32(x5 ^ x10, 7)
+	vpaddd		%ymm15,%ymm10,%ymm10
+	vpxor		%ymm10,%ymm5,%ymm5
+	vpslld		$7,%ymm5,%ymm0
+	vpsrld		$25,%ymm5,%ymm5
+	vpor		%ymm0,%ymm5,%ymm5
+	# x11 += x12, x6 = rotl32(x6 ^ x11, 7)
+	vpaddd		%ymm12,%ymm11,%ymm11
+	vpxor		%ymm11,%ymm6,%ymm6
+	vpslld		$7,%ymm6,%ymm0
+	vpsrld		$25,%ymm6,%ymm6
+	vpor		%ymm0,%ymm6,%ymm6
+	# x8 += x13, x7 = rotl32(x7 ^ x8, 7)
+	vpaddd		%ymm13,%ymm8,%ymm8
+	vpxor		%ymm8,%ymm7,%ymm7
+	vpslld		$7,%ymm7,%ymm0
+	vpsrld		$25,%ymm7,%ymm7
+	vpor		%ymm0,%ymm7,%ymm7
+	# x9 += x14, x4 = rotl32(x4 ^ x9, 7)
+	vpaddd		%ymm14,%ymm9,%ymm9
+	vpxor		%ymm9,%ymm4,%ymm4
+	vpslld		$7,%ymm4,%ymm0
+	vpsrld		$25,%ymm4,%ymm4
+	vpor		%ymm0,%ymm4,%ymm4
+
+	sub		$2,%r8d
+	jnz		.Ldoubleround8
+
+	# x0..15[0-3] += s[0..15]
+	vpbroadcastd	0x00(%rdi),%ymm0
+	vpaddd		0x00(%rsp),%ymm0,%ymm0
+	vmovdqa		%ymm0,0x00(%rsp)
+	vpbroadcastd	0x04(%rdi),%ymm0
+	vpaddd		0x20(%rsp),%ymm0,%ymm0
+	vmovdqa		%ymm0,0x20(%rsp)
+	vpbroadcastd	0x08(%rdi),%ymm0
+	vpaddd		0x40(%rsp),%ymm0,%ymm0
+	vmovdqa		%ymm0,0x40(%rsp)
+	vpbroadcastd	0x0c(%rdi),%ymm0
+	vpaddd		0x60(%rsp),%ymm0,%ymm0
+	vmovdqa		%ymm0,0x60(%rsp)
+	vpbroadcastd	0x10(%rdi),%ymm0
+	vpaddd		%ymm0,%ymm4,%ymm4
+	vpbroadcastd	0x14(%rdi),%ymm0
+	vpaddd		%ymm0,%ymm5,%ymm5
+	vpbroadcastd	0x18(%rdi),%ymm0
+	vpaddd		%ymm0,%ymm6,%ymm6
+	vpbroadcastd	0x1c(%rdi),%ymm0
+	vpaddd		%ymm0,%ymm7,%ymm7
+	vpbroadcastd	0x20(%rdi),%ymm0
+	vpaddd		%ymm0,%ymm8,%ymm8
+	vpbroadcastd	0x24(%rdi),%ymm0
+	vpaddd		%ymm0,%ymm9,%ymm9
+	vpbroadcastd	0x28(%rdi),%ymm0
+	vpaddd		%ymm0,%ymm10,%ymm10
+	vpbroadcastd	0x2c(%rdi),%ymm0
+	vpaddd		%ymm0,%ymm11,%ymm11
+	vpbroadcastd	0x30(%rdi),%ymm0
+	vpaddd		%ymm0,%ymm12,%ymm12
+	vpbroadcastd	0x34(%rdi),%ymm0
+	vpaddd		%ymm0,%ymm13,%ymm13
+	vpbroadcastd	0x38(%rdi),%ymm0
+	vpaddd		%ymm0,%ymm14,%ymm14
+	vpbroadcastd	0x3c(%rdi),%ymm0
+	vpaddd		%ymm0,%ymm15,%ymm15
+
+	# x12 += counter values 0-3
+	vpaddd		%ymm1,%ymm12,%ymm12
+
+	# interleave 32-bit words in state n, n+1
+	vmovdqa		0x00(%rsp),%ymm0
+	vmovdqa		0x20(%rsp),%ymm1
+	vpunpckldq	%ymm1,%ymm0,%ymm2
+	vpunpckhdq	%ymm1,%ymm0,%ymm1
+	vmovdqa		%ymm2,0x00(%rsp)
+	vmovdqa		%ymm1,0x20(%rsp)
+	vmovdqa		0x40(%rsp),%ymm0
+	vmovdqa		0x60(%rsp),%ymm1
+	vpunpckldq	%ymm1,%ymm0,%ymm2
+	vpunpckhdq	%ymm1,%ymm0,%ymm1
+	vmovdqa		%ymm2,0x40(%rsp)
+	vmovdqa		%ymm1,0x60(%rsp)
+	vmovdqa		%ymm4,%ymm0
+	vpunpckldq	%ymm5,%ymm0,%ymm4
+	vpunpckhdq	%ymm5,%ymm0,%ymm5
+	vmovdqa		%ymm6,%ymm0
+	vpunpckldq	%ymm7,%ymm0,%ymm6
+	vpunpckhdq	%ymm7,%ymm0,%ymm7
+	vmovdqa		%ymm8,%ymm0
+	vpunpckldq	%ymm9,%ymm0,%ymm8
+	vpunpckhdq	%ymm9,%ymm0,%ymm9
+	vmovdqa		%ymm10,%ymm0
+	vpunpckldq	%ymm11,%ymm0,%ymm10
+	vpunpckhdq	%ymm11,%ymm0,%ymm11
+	vmovdqa		%ymm12,%ymm0
+	vpunpckldq	%ymm13,%ymm0,%ymm12
+	vpunpckhdq	%ymm13,%ymm0,%ymm13
+	vmovdqa		%ymm14,%ymm0
+	vpunpckldq	%ymm15,%ymm0,%ymm14
+	vpunpckhdq	%ymm15,%ymm0,%ymm15
+
+	# interleave 64-bit words in state n, n+2
+	vmovdqa		0x00(%rsp),%ymm0
+	vmovdqa		0x40(%rsp),%ymm2
+	vpunpcklqdq	%ymm2,%ymm0,%ymm1
+	vpunpckhqdq	%ymm2,%ymm0,%ymm2
+	vmovdqa		%ymm1,0x00(%rsp)
+	vmovdqa		%ymm2,0x40(%rsp)
+	vmovdqa		0x20(%rsp),%ymm0
+	vmovdqa		0x60(%rsp),%ymm2
+	vpunpcklqdq	%ymm2,%ymm0,%ymm1
+	vpunpckhqdq	%ymm2,%ymm0,%ymm2
+	vmovdqa		%ymm1,0x20(%rsp)
+	vmovdqa		%ymm2,0x60(%rsp)
+	vmovdqa		%ymm4,%ymm0
+	vpunpcklqdq	%ymm6,%ymm0,%ymm4
+	vpunpckhqdq	%ymm6,%ymm0,%ymm6
+	vmovdqa		%ymm5,%ymm0
+	vpunpcklqdq	%ymm7,%ymm0,%ymm5
+	vpunpckhqdq	%ymm7,%ymm0,%ymm7
+	vmovdqa		%ymm8,%ymm0
+	vpunpcklqdq	%ymm10,%ymm0,%ymm8
+	vpunpckhqdq	%ymm10,%ymm0,%ymm10
+	vmovdqa		%ymm9,%ymm0
+	vpunpcklqdq	%ymm11,%ymm0,%ymm9
+	vpunpckhqdq	%ymm11,%ymm0,%ymm11
+	vmovdqa		%ymm12,%ymm0
+	vpunpcklqdq	%ymm14,%ymm0,%ymm12
+	vpunpckhqdq	%ymm14,%ymm0,%ymm14
+	vmovdqa		%ymm13,%ymm0
+	vpunpcklqdq	%ymm15,%ymm0,%ymm13
+	vpunpckhqdq	%ymm15,%ymm0,%ymm15
+
+	# interleave 128-bit words in state n, n+4
+	# xor/write first four blocks
+	vmovdqa		0x00(%rsp),%ymm1
+	vperm2i128	$0x20,%ymm4,%ymm1,%ymm0
+	cmp		$0x0020,%rax
+	jl		.Lxorpart8
+	vpxor		0x0000(%rdx),%ymm0,%ymm0
+	vmovdqu		%ymm0,0x0000(%rsi)
+	vperm2i128	$0x31,%ymm4,%ymm1,%ymm4
+
+	vperm2i128	$0x20,%ymm12,%ymm8,%ymm0
+	cmp		$0x0040,%rax
+	jl		.Lxorpart8
+	vpxor		0x0020(%rdx),%ymm0,%ymm0
+	vmovdqu		%ymm0,0x0020(%rsi)
+	vperm2i128	$0x31,%ymm12,%ymm8,%ymm12
+
+	vmovdqa		0x40(%rsp),%ymm1
+	vperm2i128	$0x20,%ymm6,%ymm1,%ymm0
+	cmp		$0x0060,%rax
+	jl		.Lxorpart8
+	vpxor		0x0040(%rdx),%ymm0,%ymm0
+	vmovdqu		%ymm0,0x0040(%rsi)
+	vperm2i128	$0x31,%ymm6,%ymm1,%ymm6
+
+	vperm2i128	$0x20,%ymm14,%ymm10,%ymm0
+	cmp		$0x0080,%rax
+	jl		.Lxorpart8
+	vpxor		0x0060(%rdx),%ymm0,%ymm0
+	vmovdqu		%ymm0,0x0060(%rsi)
+	vperm2i128	$0x31,%ymm14,%ymm10,%ymm14
+
+	vmovdqa		0x20(%rsp),%ymm1
+	vperm2i128	$0x20,%ymm5,%ymm1,%ymm0
+	cmp		$0x00a0,%rax
+	jl		.Lxorpart8
+	vpxor		0x0080(%rdx),%ymm0,%ymm0
+	vmovdqu		%ymm0,0x0080(%rsi)
+	vperm2i128	$0x31,%ymm5,%ymm1,%ymm5
+
+	vperm2i128	$0x20,%ymm13,%ymm9,%ymm0
+	cmp		$0x00c0,%rax
+	jl		.Lxorpart8
+	vpxor		0x00a0(%rdx),%ymm0,%ymm0
+	vmovdqu		%ymm0,0x00a0(%rsi)
+	vperm2i128	$0x31,%ymm13,%ymm9,%ymm13
+
+	vmovdqa		0x60(%rsp),%ymm1
+	vperm2i128	$0x20,%ymm7,%ymm1,%ymm0
+	cmp		$0x00e0,%rax
+	jl		.Lxorpart8
+	vpxor		0x00c0(%rdx),%ymm0,%ymm0
+	vmovdqu		%ymm0,0x00c0(%rsi)
+	vperm2i128	$0x31,%ymm7,%ymm1,%ymm7
+
+	vperm2i128	$0x20,%ymm15,%ymm11,%ymm0
+	cmp		$0x0100,%rax
+	jl		.Lxorpart8
+	vpxor		0x00e0(%rdx),%ymm0,%ymm0
+	vmovdqu		%ymm0,0x00e0(%rsi)
+	vperm2i128	$0x31,%ymm15,%ymm11,%ymm15
+
+	# xor remaining blocks, write to output
+	vmovdqa		%ymm4,%ymm0
+	cmp		$0x0120,%rax
+	jl		.Lxorpart8
+	vpxor		0x0100(%rdx),%ymm0,%ymm0
+	vmovdqu		%ymm0,0x0100(%rsi)
+
+	vmovdqa		%ymm12,%ymm0
+	cmp		$0x0140,%rax
+	jl		.Lxorpart8
+	vpxor		0x0120(%rdx),%ymm0,%ymm0
+	vmovdqu		%ymm0,0x0120(%rsi)
+
+	vmovdqa		%ymm6,%ymm0
+	cmp		$0x0160,%rax
+	jl		.Lxorpart8
+	vpxor		0x0140(%rdx),%ymm0,%ymm0
+	vmovdqu		%ymm0,0x0140(%rsi)
+
+	vmovdqa		%ymm14,%ymm0
+	cmp		$0x0180,%rax
+	jl		.Lxorpart8
+	vpxor		0x0160(%rdx),%ymm0,%ymm0
+	vmovdqu		%ymm0,0x0160(%rsi)
+
+	vmovdqa		%ymm5,%ymm0
+	cmp		$0x01a0,%rax
+	jl		.Lxorpart8
+	vpxor		0x0180(%rdx),%ymm0,%ymm0
+	vmovdqu		%ymm0,0x0180(%rsi)
+
+	vmovdqa		%ymm13,%ymm0
+	cmp		$0x01c0,%rax
+	jl		.Lxorpart8
+	vpxor		0x01a0(%rdx),%ymm0,%ymm0
+	vmovdqu		%ymm0,0x01a0(%rsi)
+
+	vmovdqa		%ymm7,%ymm0
+	cmp		$0x01e0,%rax
+	jl		.Lxorpart8
+	vpxor		0x01c0(%rdx),%ymm0,%ymm0
+	vmovdqu		%ymm0,0x01c0(%rsi)
+
+	vmovdqa		%ymm15,%ymm0
+	cmp		$0x0200,%rax
+	jl		.Lxorpart8
+	vpxor		0x01e0(%rdx),%ymm0,%ymm0
+	vmovdqu		%ymm0,0x01e0(%rsi)
+
+.Ldone8:
+	vzeroupper
+	lea		-8(%r10),%rsp
+	ret
+
+.Lxorpart8:
+	# xor remaining bytes from partial register into output
+	mov		%rax,%r9
+	and		$0x1f,%r9
+	jz		.Ldone8
+	and		$~0x1f,%rax
+
+	mov		%rsi,%r11
+
+	lea		(%rdx,%rax),%rsi
+	mov		%rsp,%rdi
+	mov		%r9,%rcx
+	rep movsb
+
+	vpxor		0x00(%rsp),%ymm0,%ymm0
+	vmovdqa		%ymm0,0x00(%rsp)
+
+	mov		%rsp,%rsi
+	lea		(%r11,%rax),%rdi
+	mov		%r9,%rcx
+	rep movsb
+
+	jmp		.Ldone8
+
+ENDPROC(chacha_8block_xor_avx2)
diff --git a/arch/x86/crypto/chacha-avx512vl-x86_64.S b/arch/x86/crypto/chacha-avx512vl-x86_64.S
new file mode 100644
index 000000000000..848f9c75fd4f
--- /dev/null
+++ b/arch/x86/crypto/chacha-avx512vl-x86_64.S
@@ -0,0 +1,836 @@
+/* SPDX-License-Identifier: GPL-2.0+ */
+/*
+ * ChaCha 256-bit cipher algorithm, x64 AVX-512VL functions
+ *
+ * Copyright (C) 2018 Martin Willi
+ */
+
+#include <linux/linkage.h>
+
+.section	.rodata.cst32.CTR2BL, "aM", @progbits, 32
+.align 32
+CTR2BL:	.octa 0x00000000000000000000000000000000
+	.octa 0x00000000000000000000000000000001
+
+.section	.rodata.cst32.CTR4BL, "aM", @progbits, 32
+.align 32
+CTR4BL:	.octa 0x00000000000000000000000000000002
+	.octa 0x00000000000000000000000000000003
+
+.section	.rodata.cst32.CTR8BL, "aM", @progbits, 32
+.align 32
+CTR8BL:	.octa 0x00000003000000020000000100000000
+	.octa 0x00000007000000060000000500000004
+
+.text
+
+ENTRY(chacha_2block_xor_avx512vl)
+	# %rdi: Input state matrix, s
+	# %rsi: up to 2 data blocks output, o
+	# %rdx: up to 2 data blocks input, i
+	# %rcx: input/output length in bytes
+	# %r8d: nrounds
+
+	# This function encrypts two ChaCha blocks by loading the state
+	# matrix twice across four AVX registers. It performs matrix operations
+	# on four words in each matrix in parallel, but requires shuffling to
+	# rearrange the words after each round.
+
+	vzeroupper
+
+	# x0..3[0-2] = s0..3
+	vbroadcasti128	0x00(%rdi),%ymm0
+	vbroadcasti128	0x10(%rdi),%ymm1
+	vbroadcasti128	0x20(%rdi),%ymm2
+	vbroadcasti128	0x30(%rdi),%ymm3
+
+	vpaddd		CTR2BL(%rip),%ymm3,%ymm3
+
+	vmovdqa		%ymm0,%ymm8
+	vmovdqa		%ymm1,%ymm9
+	vmovdqa		%ymm2,%ymm10
+	vmovdqa		%ymm3,%ymm11
+
+.Ldoubleround:
+
+	# x0 += x1, x3 = rotl32(x3 ^ x0, 16)
+	vpaddd		%ymm1,%ymm0,%ymm0
+	vpxord		%ymm0,%ymm3,%ymm3
+	vprold		$16,%ymm3,%ymm3
+
+	# x2 += x3, x1 = rotl32(x1 ^ x2, 12)
+	vpaddd		%ymm3,%ymm2,%ymm2
+	vpxord		%ymm2,%ymm1,%ymm1
+	vprold		$12,%ymm1,%ymm1
+
+	# x0 += x1, x3 = rotl32(x3 ^ x0, 8)
+	vpaddd		%ymm1,%ymm0,%ymm0
+	vpxord		%ymm0,%ymm3,%ymm3
+	vprold		$8,%ymm3,%ymm3
+
+	# x2 += x3, x1 = rotl32(x1 ^ x2, 7)
+	vpaddd		%ymm3,%ymm2,%ymm2
+	vpxord		%ymm2,%ymm1,%ymm1
+	vprold		$7,%ymm1,%ymm1
+
+	# x1 = shuffle32(x1, MASK(0, 3, 2, 1))
+	vpshufd		$0x39,%ymm1,%ymm1
+	# x2 = shuffle32(x2, MASK(1, 0, 3, 2))
+	vpshufd		$0x4e,%ymm2,%ymm2
+	# x3 = shuffle32(x3, MASK(2, 1, 0, 3))
+	vpshufd		$0x93,%ymm3,%ymm3
+
+	# x0 += x1, x3 = rotl32(x3 ^ x0, 16)
+	vpaddd		%ymm1,%ymm0,%ymm0
+	vpxord		%ymm0,%ymm3,%ymm3
+	vprold		$16,%ymm3,%ymm3
+
+	# x2 += x3, x1 = rotl32(x1 ^ x2, 12)
+	vpaddd		%ymm3,%ymm2,%ymm2
+	vpxord		%ymm2,%ymm1,%ymm1
+	vprold		$12,%ymm1,%ymm1
+
+	# x0 += x1, x3 = rotl32(x3 ^ x0, 8)
+	vpaddd		%ymm1,%ymm0,%ymm0
+	vpxord		%ymm0,%ymm3,%ymm3
+	vprold		$8,%ymm3,%ymm3
+
+	# x2 += x3, x1 = rotl32(x1 ^ x2, 7)
+	vpaddd		%ymm3,%ymm2,%ymm2
+	vpxord		%ymm2,%ymm1,%ymm1
+	vprold		$7,%ymm1,%ymm1
+
+	# x1 = shuffle32(x1, MASK(2, 1, 0, 3))
+	vpshufd		$0x93,%ymm1,%ymm1
+	# x2 = shuffle32(x2, MASK(1, 0, 3, 2))
+	vpshufd		$0x4e,%ymm2,%ymm2
+	# x3 = shuffle32(x3, MASK(0, 3, 2, 1))
+	vpshufd		$0x39,%ymm3,%ymm3
+
+	sub		$2,%r8d
+	jnz		.Ldoubleround
+
+	# o0 = i0 ^ (x0 + s0)
+	vpaddd		%ymm8,%ymm0,%ymm7
+	cmp		$0x10,%rcx
+	jl		.Lxorpart2
+	vpxord		0x00(%rdx),%xmm7,%xmm6
+	vmovdqu		%xmm6,0x00(%rsi)
+	vextracti128	$1,%ymm7,%xmm0
+	# o1 = i1 ^ (x1 + s1)
+	vpaddd		%ymm9,%ymm1,%ymm7
+	cmp		$0x20,%rcx
+	jl		.Lxorpart2
+	vpxord		0x10(%rdx),%xmm7,%xmm6
+	vmovdqu		%xmm6,0x10(%rsi)
+	vextracti128	$1,%ymm7,%xmm1
+	# o2 = i2 ^ (x2 + s2)
+	vpaddd		%ymm10,%ymm2,%ymm7
+	cmp		$0x30,%rcx
+	jl		.Lxorpart2
+	vpxord		0x20(%rdx),%xmm7,%xmm6
+	vmovdqu		%xmm6,0x20(%rsi)
+	vextracti128	$1,%ymm7,%xmm2
+	# o3 = i3 ^ (x3 + s3)
+	vpaddd		%ymm11,%ymm3,%ymm7
+	cmp		$0x40,%rcx
+	jl		.Lxorpart2
+	vpxord		0x30(%rdx),%xmm7,%xmm6
+	vmovdqu		%xmm6,0x30(%rsi)
+	vextracti128	$1,%ymm7,%xmm3
+
+	# xor and write second block
+	vmovdqa		%xmm0,%xmm7
+	cmp		$0x50,%rcx
+	jl		.Lxorpart2
+	vpxord		0x40(%rdx),%xmm7,%xmm6
+	vmovdqu		%xmm6,0x40(%rsi)
+
+	vmovdqa		%xmm1,%xmm7
+	cmp		$0x60,%rcx
+	jl		.Lxorpart2
+	vpxord		0x50(%rdx),%xmm7,%xmm6
+	vmovdqu		%xmm6,0x50(%rsi)
+
+	vmovdqa		%xmm2,%xmm7
+	cmp		$0x70,%rcx
+	jl		.Lxorpart2
+	vpxord		0x60(%rdx),%xmm7,%xmm6
+	vmovdqu		%xmm6,0x60(%rsi)
+
+	vmovdqa		%xmm3,%xmm7
+	cmp		$0x80,%rcx
+	jl		.Lxorpart2
+	vpxord		0x70(%rdx),%xmm7,%xmm6
+	vmovdqu		%xmm6,0x70(%rsi)
+
+.Ldone2:
+	vzeroupper
+	ret
+
+.Lxorpart2:
+	# xor remaining bytes from partial register into output
+	mov		%rcx,%rax
+	and		$0xf,%rcx
+	jz		.Ldone8
+	mov		%rax,%r9
+	and		$~0xf,%r9
+
+	mov		$1,%rax
+	shld		%cl,%rax,%rax
+	sub		$1,%rax
+	kmovq		%rax,%k1
+
+	vmovdqu8	(%rdx,%r9),%xmm1{%k1}{z}
+	vpxord		%xmm7,%xmm1,%xmm1
+	vmovdqu8	%xmm1,(%rsi,%r9){%k1}
+
+	jmp		.Ldone2
+
+ENDPROC(chacha_2block_xor_avx512vl)
+
+ENTRY(chacha_4block_xor_avx512vl)
+	# %rdi: Input state matrix, s
+	# %rsi: up to 4 data blocks output, o
+	# %rdx: up to 4 data blocks input, i
+	# %rcx: input/output length in bytes
+	# %r8d: nrounds
+
+	# This function encrypts four ChaCha blocks by loading the state
+	# matrix four times across eight AVX registers. It performs matrix
+	# operations on four words in two matrices in parallel, sequentially
+	# to the operations on the four words of the other two matrices. The
+	# required word shuffling has a rather high latency, we can do the
+	# arithmetic on two matrix-pairs without much slowdown.
+
+	vzeroupper
+
+	# x0..3[0-4] = s0..3
+	vbroadcasti128	0x00(%rdi),%ymm0
+	vbroadcasti128	0x10(%rdi),%ymm1
+	vbroadcasti128	0x20(%rdi),%ymm2
+	vbroadcasti128	0x30(%rdi),%ymm3
+
+	vmovdqa		%ymm0,%ymm4
+	vmovdqa		%ymm1,%ymm5
+	vmovdqa		%ymm2,%ymm6
+	vmovdqa		%ymm3,%ymm7
+
+	vpaddd		CTR2BL(%rip),%ymm3,%ymm3
+	vpaddd		CTR4BL(%rip),%ymm7,%ymm7
+
+	vmovdqa		%ymm0,%ymm11
+	vmovdqa		%ymm1,%ymm12
+	vmovdqa		%ymm2,%ymm13
+	vmovdqa		%ymm3,%ymm14
+	vmovdqa		%ymm7,%ymm15
+
+.Ldoubleround4:
+
+	# x0 += x1, x3 = rotl32(x3 ^ x0, 16)
+	vpaddd		%ymm1,%ymm0,%ymm0
+	vpxord		%ymm0,%ymm3,%ymm3
+	vprold		$16,%ymm3,%ymm3
+
+	vpaddd		%ymm5,%ymm4,%ymm4
+	vpxord		%ymm4,%ymm7,%ymm7
+	vprold		$16,%ymm7,%ymm7
+
+	# x2 += x3, x1 = rotl32(x1 ^ x2, 12)
+	vpaddd		%ymm3,%ymm2,%ymm2
+	vpxord		%ymm2,%ymm1,%ymm1
+	vprold		$12,%ymm1,%ymm1
+
+	vpaddd		%ymm7,%ymm6,%ymm6
+	vpxord		%ymm6,%ymm5,%ymm5
+	vprold		$12,%ymm5,%ymm5
+
+	# x0 += x1, x3 = rotl32(x3 ^ x0, 8)
+	vpaddd		%ymm1,%ymm0,%ymm0
+	vpxord		%ymm0,%ymm3,%ymm3
+	vprold		$8,%ymm3,%ymm3
+
+	vpaddd		%ymm5,%ymm4,%ymm4
+	vpxord		%ymm4,%ymm7,%ymm7
+	vprold		$8,%ymm7,%ymm7
+
+	# x2 += x3, x1 = rotl32(x1 ^ x2, 7)
+	vpaddd		%ymm3,%ymm2,%ymm2
+	vpxord		%ymm2,%ymm1,%ymm1
+	vprold		$7,%ymm1,%ymm1
+
+	vpaddd		%ymm7,%ymm6,%ymm6
+	vpxord		%ymm6,%ymm5,%ymm5
+	vprold		$7,%ymm5,%ymm5
+
+	# x1 = shuffle32(x1, MASK(0, 3, 2, 1))
+	vpshufd		$0x39,%ymm1,%ymm1
+	vpshufd		$0x39,%ymm5,%ymm5
+	# x2 = shuffle32(x2, MASK(1, 0, 3, 2))
+	vpshufd		$0x4e,%ymm2,%ymm2
+	vpshufd		$0x4e,%ymm6,%ymm6
+	# x3 = shuffle32(x3, MASK(2, 1, 0, 3))
+	vpshufd		$0x93,%ymm3,%ymm3
+	vpshufd		$0x93,%ymm7,%ymm7
+
+	# x0 += x1, x3 = rotl32(x3 ^ x0, 16)
+	vpaddd		%ymm1,%ymm0,%ymm0
+	vpxord		%ymm0,%ymm3,%ymm3
+	vprold		$16,%ymm3,%ymm3
+
+	vpaddd		%ymm5,%ymm4,%ymm4
+	vpxord		%ymm4,%ymm7,%ymm7
+	vprold		$16,%ymm7,%ymm7
+
+	# x2 += x3, x1 = rotl32(x1 ^ x2, 12)
+	vpaddd		%ymm3,%ymm2,%ymm2
+	vpxord		%ymm2,%ymm1,%ymm1
+	vprold		$12,%ymm1,%ymm1
+
+	vpaddd		%ymm7,%ymm6,%ymm6
+	vpxord		%ymm6,%ymm5,%ymm5
+	vprold		$12,%ymm5,%ymm5
+
+	# x0 += x1, x3 = rotl32(x3 ^ x0, 8)
+	vpaddd		%ymm1,%ymm0,%ymm0
+	vpxord		%ymm0,%ymm3,%ymm3
+	vprold		$8,%ymm3,%ymm3
+
+	vpaddd		%ymm5,%ymm4,%ymm4
+	vpxord		%ymm4,%ymm7,%ymm7
+	vprold		$8,%ymm7,%ymm7
+
+	# x2 += x3, x1 = rotl32(x1 ^ x2, 7)
+	vpaddd		%ymm3,%ymm2,%ymm2
+	vpxord		%ymm2,%ymm1,%ymm1
+	vprold		$7,%ymm1,%ymm1
+
+	vpaddd		%ymm7,%ymm6,%ymm6
+	vpxord		%ymm6,%ymm5,%ymm5
+	vprold		$7,%ymm5,%ymm5
+
+	# x1 = shuffle32(x1, MASK(2, 1, 0, 3))
+	vpshufd		$0x93,%ymm1,%ymm1
+	vpshufd		$0x93,%ymm5,%ymm5
+	# x2 = shuffle32(x2, MASK(1, 0, 3, 2))
+	vpshufd		$0x4e,%ymm2,%ymm2
+	vpshufd		$0x4e,%ymm6,%ymm6
+	# x3 = shuffle32(x3, MASK(0, 3, 2, 1))
+	vpshufd		$0x39,%ymm3,%ymm3
+	vpshufd		$0x39,%ymm7,%ymm7
+
+	sub		$2,%r8d
+	jnz		.Ldoubleround4
+
+	# o0 = i0 ^ (x0 + s0), first block
+	vpaddd		%ymm11,%ymm0,%ymm10
+	cmp		$0x10,%rcx
+	jl		.Lxorpart4
+	vpxord		0x00(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0x00(%rsi)
+	vextracti128	$1,%ymm10,%xmm0
+	# o1 = i1 ^ (x1 + s1), first block
+	vpaddd		%ymm12,%ymm1,%ymm10
+	cmp		$0x20,%rcx
+	jl		.Lxorpart4
+	vpxord		0x10(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0x10(%rsi)
+	vextracti128	$1,%ymm10,%xmm1
+	# o2 = i2 ^ (x2 + s2), first block
+	vpaddd		%ymm13,%ymm2,%ymm10
+	cmp		$0x30,%rcx
+	jl		.Lxorpart4
+	vpxord		0x20(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0x20(%rsi)
+	vextracti128	$1,%ymm10,%xmm2
+	# o3 = i3 ^ (x3 + s3), first block
+	vpaddd		%ymm14,%ymm3,%ymm10
+	cmp		$0x40,%rcx
+	jl		.Lxorpart4
+	vpxord		0x30(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0x30(%rsi)
+	vextracti128	$1,%ymm10,%xmm3
+
+	# xor and write second block
+	vmovdqa		%xmm0,%xmm10
+	cmp		$0x50,%rcx
+	jl		.Lxorpart4
+	vpxord		0x40(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0x40(%rsi)
+
+	vmovdqa		%xmm1,%xmm10
+	cmp		$0x60,%rcx
+	jl		.Lxorpart4
+	vpxord		0x50(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0x50(%rsi)
+
+	vmovdqa		%xmm2,%xmm10
+	cmp		$0x70,%rcx
+	jl		.Lxorpart4
+	vpxord		0x60(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0x60(%rsi)
+
+	vmovdqa		%xmm3,%xmm10
+	cmp		$0x80,%rcx
+	jl		.Lxorpart4
+	vpxord		0x70(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0x70(%rsi)
+
+	# o0 = i0 ^ (x0 + s0), third block
+	vpaddd		%ymm11,%ymm4,%ymm10
+	cmp		$0x90,%rcx
+	jl		.Lxorpart4
+	vpxord		0x80(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0x80(%rsi)
+	vextracti128	$1,%ymm10,%xmm4
+	# o1 = i1 ^ (x1 + s1), third block
+	vpaddd		%ymm12,%ymm5,%ymm10
+	cmp		$0xa0,%rcx
+	jl		.Lxorpart4
+	vpxord		0x90(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0x90(%rsi)
+	vextracti128	$1,%ymm10,%xmm5
+	# o2 = i2 ^ (x2 + s2), third block
+	vpaddd		%ymm13,%ymm6,%ymm10
+	cmp		$0xb0,%rcx
+	jl		.Lxorpart4
+	vpxord		0xa0(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0xa0(%rsi)
+	vextracti128	$1,%ymm10,%xmm6
+	# o3 = i3 ^ (x3 + s3), third block
+	vpaddd		%ymm15,%ymm7,%ymm10
+	cmp		$0xc0,%rcx
+	jl		.Lxorpart4
+	vpxord		0xb0(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0xb0(%rsi)
+	vextracti128	$1,%ymm10,%xmm7
+
+	# xor and write fourth block
+	vmovdqa		%xmm4,%xmm10
+	cmp		$0xd0,%rcx
+	jl		.Lxorpart4
+	vpxord		0xc0(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0xc0(%rsi)
+
+	vmovdqa		%xmm5,%xmm10
+	cmp		$0xe0,%rcx
+	jl		.Lxorpart4
+	vpxord		0xd0(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0xd0(%rsi)
+
+	vmovdqa		%xmm6,%xmm10
+	cmp		$0xf0,%rcx
+	jl		.Lxorpart4
+	vpxord		0xe0(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0xe0(%rsi)
+
+	vmovdqa		%xmm7,%xmm10
+	cmp		$0x100,%rcx
+	jl		.Lxorpart4
+	vpxord		0xf0(%rdx),%xmm10,%xmm9
+	vmovdqu		%xmm9,0xf0(%rsi)
+
+.Ldone4:
+	vzeroupper
+	ret
+
+.Lxorpart4:
+	# xor remaining bytes from partial register into output
+	mov		%rcx,%rax
+	and		$0xf,%rcx
+	jz		.Ldone8
+	mov		%rax,%r9
+	and		$~0xf,%r9
+
+	mov		$1,%rax
+	shld		%cl,%rax,%rax
+	sub		$1,%rax
+	kmovq		%rax,%k1
+
+	vmovdqu8	(%rdx,%r9),%xmm1{%k1}{z}
+	vpxord		%xmm10,%xmm1,%xmm1
+	vmovdqu8	%xmm1,(%rsi,%r9){%k1}
+
+	jmp		.Ldone4
+
+ENDPROC(chacha_4block_xor_avx512vl)
+
+ENTRY(chacha_8block_xor_avx512vl)
+	# %rdi: Input state matrix, s
+	# %rsi: up to 8 data blocks output, o
+	# %rdx: up to 8 data blocks input, i
+	# %rcx: input/output length in bytes
+	# %r8d: nrounds
+
+	# This function encrypts eight consecutive ChaCha blocks by loading
+	# the state matrix in AVX registers eight times. Compared to AVX2, this
+	# mostly benefits from the new rotate instructions in VL and the
+	# additional registers.
+
+	vzeroupper
+
+	# x0..15[0-7] = s[0..15]
+	vpbroadcastd	0x00(%rdi),%ymm0
+	vpbroadcastd	0x04(%rdi),%ymm1
+	vpbroadcastd	0x08(%rdi),%ymm2
+	vpbroadcastd	0x0c(%rdi),%ymm3
+	vpbroadcastd	0x10(%rdi),%ymm4
+	vpbroadcastd	0x14(%rdi),%ymm5
+	vpbroadcastd	0x18(%rdi),%ymm6
+	vpbroadcastd	0x1c(%rdi),%ymm7
+	vpbroadcastd	0x20(%rdi),%ymm8
+	vpbroadcastd	0x24(%rdi),%ymm9
+	vpbroadcastd	0x28(%rdi),%ymm10
+	vpbroadcastd	0x2c(%rdi),%ymm11
+	vpbroadcastd	0x30(%rdi),%ymm12
+	vpbroadcastd	0x34(%rdi),%ymm13
+	vpbroadcastd	0x38(%rdi),%ymm14
+	vpbroadcastd	0x3c(%rdi),%ymm15
+
+	# x12 += counter values 0-3
+	vpaddd		CTR8BL(%rip),%ymm12,%ymm12
+
+	vmovdqa64	%ymm0,%ymm16
+	vmovdqa64	%ymm1,%ymm17
+	vmovdqa64	%ymm2,%ymm18
+	vmovdqa64	%ymm3,%ymm19
+	vmovdqa64	%ymm4,%ymm20
+	vmovdqa64	%ymm5,%ymm21
+	vmovdqa64	%ymm6,%ymm22
+	vmovdqa64	%ymm7,%ymm23
+	vmovdqa64	%ymm8,%ymm24
+	vmovdqa64	%ymm9,%ymm25
+	vmovdqa64	%ymm10,%ymm26
+	vmovdqa64	%ymm11,%ymm27
+	vmovdqa64	%ymm12,%ymm28
+	vmovdqa64	%ymm13,%ymm29
+	vmovdqa64	%ymm14,%ymm30
+	vmovdqa64	%ymm15,%ymm31
+
+.Ldoubleround8:
+	# x0 += x4, x12 = rotl32(x12 ^ x0, 16)
+	vpaddd		%ymm0,%ymm4,%ymm0
+	vpxord		%ymm0,%ymm12,%ymm12
+	vprold		$16,%ymm12,%ymm12
+	# x1 += x5, x13 = rotl32(x13 ^ x1, 16)
+	vpaddd		%ymm1,%ymm5,%ymm1
+	vpxord		%ymm1,%ymm13,%ymm13
+	vprold		$16,%ymm13,%ymm13
+	# x2 += x6, x14 = rotl32(x14 ^ x2, 16)
+	vpaddd		%ymm2,%ymm6,%ymm2
+	vpxord		%ymm2,%ymm14,%ymm14
+	vprold		$16,%ymm14,%ymm14
+	# x3 += x7, x15 = rotl32(x15 ^ x3, 16)
+	vpaddd		%ymm3,%ymm7,%ymm3
+	vpxord		%ymm3,%ymm15,%ymm15
+	vprold		$16,%ymm15,%ymm15
+
+	# x8 += x12, x4 = rotl32(x4 ^ x8, 12)
+	vpaddd		%ymm12,%ymm8,%ymm8
+	vpxord		%ymm8,%ymm4,%ymm4
+	vprold		$12,%ymm4,%ymm4
+	# x9 += x13, x5 = rotl32(x5 ^ x9, 12)
+	vpaddd		%ymm13,%ymm9,%ymm9
+	vpxord		%ymm9,%ymm5,%ymm5
+	vprold		$12,%ymm5,%ymm5
+	# x10 += x14, x6 = rotl32(x6 ^ x10, 12)
+	vpaddd		%ymm14,%ymm10,%ymm10
+	vpxord		%ymm10,%ymm6,%ymm6
+	vprold		$12,%ymm6,%ymm6
+	# x11 += x15, x7 = rotl32(x7 ^ x11, 12)
+	vpaddd		%ymm15,%ymm11,%ymm11
+	vpxord		%ymm11,%ymm7,%ymm7
+	vprold		$12,%ymm7,%ymm7
+
+	# x0 += x4, x12 = rotl32(x12 ^ x0, 8)
+	vpaddd		%ymm0,%ymm4,%ymm0
+	vpxord		%ymm0,%ymm12,%ymm12
+	vprold		$8,%ymm12,%ymm12
+	# x1 += x5, x13 = rotl32(x13 ^ x1, 8)
+	vpaddd		%ymm1,%ymm5,%ymm1
+	vpxord		%ymm1,%ymm13,%ymm13
+	vprold		$8,%ymm13,%ymm13
+	# x2 += x6, x14 = rotl32(x14 ^ x2, 8)
+	vpaddd		%ymm2,%ymm6,%ymm2
+	vpxord		%ymm2,%ymm14,%ymm14
+	vprold		$8,%ymm14,%ymm14
+	# x3 += x7, x15 = rotl32(x15 ^ x3, 8)
+	vpaddd		%ymm3,%ymm7,%ymm3
+	vpxord		%ymm3,%ymm15,%ymm15
+	vprold		$8,%ymm15,%ymm15
+
+	# x8 += x12, x4 = rotl32(x4 ^ x8, 7)
+	vpaddd		%ymm12,%ymm8,%ymm8
+	vpxord		%ymm8,%ymm4,%ymm4
+	vprold		$7,%ymm4,%ymm4
+	# x9 += x13, x5 = rotl32(x5 ^ x9, 7)
+	vpaddd		%ymm13,%ymm9,%ymm9
+	vpxord		%ymm9,%ymm5,%ymm5
+	vprold		$7,%ymm5,%ymm5
+	# x10 += x14, x6 = rotl32(x6 ^ x10, 7)
+	vpaddd		%ymm14,%ymm10,%ymm10
+	vpxord		%ymm10,%ymm6,%ymm6
+	vprold		$7,%ymm6,%ymm6
+	# x11 += x15, x7 = rotl32(x7 ^ x11, 7)
+	vpaddd		%ymm15,%ymm11,%ymm11
+	vpxord		%ymm11,%ymm7,%ymm7
+	vprold		$7,%ymm7,%ymm7
+
+	# x0 += x5, x15 = rotl32(x15 ^ x0, 16)
+	vpaddd		%ymm0,%ymm5,%ymm0
+	vpxord		%ymm0,%ymm15,%ymm15
+	vprold		$16,%ymm15,%ymm15
+	# x1 += x6, x12 = rotl32(x12 ^ x1, 16)
+	vpaddd		%ymm1,%ymm6,%ymm1
+	vpxord		%ymm1,%ymm12,%ymm12
+	vprold		$16,%ymm12,%ymm12
+	# x2 += x7, x13 = rotl32(x13 ^ x2, 16)
+	vpaddd		%ymm2,%ymm7,%ymm2
+	vpxord		%ymm2,%ymm13,%ymm13
+	vprold		$16,%ymm13,%ymm13
+	# x3 += x4, x14 = rotl32(x14 ^ x3, 16)
+	vpaddd		%ymm3,%ymm4,%ymm3
+	vpxord		%ymm3,%ymm14,%ymm14
+	vprold		$16,%ymm14,%ymm14
+
+	# x10 += x15, x5 = rotl32(x5 ^ x10, 12)
+	vpaddd		%ymm15,%ymm10,%ymm10
+	vpxord		%ymm10,%ymm5,%ymm5
+	vprold		$12,%ymm5,%ymm5
+	# x11 += x12, x6 = rotl32(x6 ^ x11, 12)
+	vpaddd		%ymm12,%ymm11,%ymm11
+	vpxord		%ymm11,%ymm6,%ymm6
+	vprold		$12,%ymm6,%ymm6
+	# x8 += x13, x7 = rotl32(x7 ^ x8, 12)
+	vpaddd		%ymm13,%ymm8,%ymm8
+	vpxord		%ymm8,%ymm7,%ymm7
+	vprold		$12,%ymm7,%ymm7
+	# x9 += x14, x4 = rotl32(x4 ^ x9, 12)
+	vpaddd		%ymm14,%ymm9,%ymm9
+	vpxord		%ymm9,%ymm4,%ymm4
+	vprold		$12,%ymm4,%ymm4
+
+	# x0 += x5, x15 = rotl32(x15 ^ x0, 8)
+	vpaddd		%ymm0,%ymm5,%ymm0
+	vpxord		%ymm0,%ymm15,%ymm15
+	vprold		$8,%ymm15,%ymm15
+	# x1 += x6, x12 = rotl32(x12 ^ x1, 8)
+	vpaddd		%ymm1,%ymm6,%ymm1
+	vpxord		%ymm1,%ymm12,%ymm12
+	vprold		$8,%ymm12,%ymm12
+	# x2 += x7, x13 = rotl32(x13 ^ x2, 8)
+	vpaddd		%ymm2,%ymm7,%ymm2
+	vpxord		%ymm2,%ymm13,%ymm13
+	vprold		$8,%ymm13,%ymm13
+	# x3 += x4, x14 = rotl32(x14 ^ x3, 8)
+	vpaddd		%ymm3,%ymm4,%ymm3
+	vpxord		%ymm3,%ymm14,%ymm14
+	vprold		$8,%ymm14,%ymm14
+
+	# x10 += x15, x5 = rotl32(x5 ^ x10, 7)
+	vpaddd		%ymm15,%ymm10,%ymm10
+	vpxord		%ymm10,%ymm5,%ymm5
+	vprold		$7,%ymm5,%ymm5
+	# x11 += x12, x6 = rotl32(x6 ^ x11, 7)
+	vpaddd		%ymm12,%ymm11,%ymm11
+	vpxord		%ymm11,%ymm6,%ymm6
+	vprold		$7,%ymm6,%ymm6
+	# x8 += x13, x7 = rotl32(x7 ^ x8, 7)
+	vpaddd		%ymm13,%ymm8,%ymm8
+	vpxord		%ymm8,%ymm7,%ymm7
+	vprold		$7,%ymm7,%ymm7
+	# x9 += x14, x4 = rotl32(x4 ^ x9, 7)
+	vpaddd		%ymm14,%ymm9,%ymm9
+	vpxord		%ymm9,%ymm4,%ymm4
+	vprold		$7,%ymm4,%ymm4
+
+	sub		$2,%r8d
+	jnz		.Ldoubleround8
+
+	# x0..15[0-3] += s[0..15]
+	vpaddd		%ymm16,%ymm0,%ymm0
+	vpaddd		%ymm17,%ymm1,%ymm1
+	vpaddd		%ymm18,%ymm2,%ymm2
+	vpaddd		%ymm19,%ymm3,%ymm3
+	vpaddd		%ymm20,%ymm4,%ymm4
+	vpaddd		%ymm21,%ymm5,%ymm5
+	vpaddd		%ymm22,%ymm6,%ymm6
+	vpaddd		%ymm23,%ymm7,%ymm7
+	vpaddd		%ymm24,%ymm8,%ymm8
+	vpaddd		%ymm25,%ymm9,%ymm9
+	vpaddd		%ymm26,%ymm10,%ymm10
+	vpaddd		%ymm27,%ymm11,%ymm11
+	vpaddd		%ymm28,%ymm12,%ymm12
+	vpaddd		%ymm29,%ymm13,%ymm13
+	vpaddd		%ymm30,%ymm14,%ymm14
+	vpaddd		%ymm31,%ymm15,%ymm15
+
+	# interleave 32-bit words in state n, n+1
+	vpunpckldq	%ymm1,%ymm0,%ymm16
+	vpunpckhdq	%ymm1,%ymm0,%ymm17
+	vpunpckldq	%ymm3,%ymm2,%ymm18
+	vpunpckhdq	%ymm3,%ymm2,%ymm19
+	vpunpckldq	%ymm5,%ymm4,%ymm20
+	vpunpckhdq	%ymm5,%ymm4,%ymm21
+	vpunpckldq	%ymm7,%ymm6,%ymm22
+	vpunpckhdq	%ymm7,%ymm6,%ymm23
+	vpunpckldq	%ymm9,%ymm8,%ymm24
+	vpunpckhdq	%ymm9,%ymm8,%ymm25
+	vpunpckldq	%ymm11,%ymm10,%ymm26
+	vpunpckhdq	%ymm11,%ymm10,%ymm27
+	vpunpckldq	%ymm13,%ymm12,%ymm28
+	vpunpckhdq	%ymm13,%ymm12,%ymm29
+	vpunpckldq	%ymm15,%ymm14,%ymm30
+	vpunpckhdq	%ymm15,%ymm14,%ymm31
+
+	# interleave 64-bit words in state n, n+2
+	vpunpcklqdq	%ymm18,%ymm16,%ymm0
+	vpunpcklqdq	%ymm19,%ymm17,%ymm1
+	vpunpckhqdq	%ymm18,%ymm16,%ymm2
+	vpunpckhqdq	%ymm19,%ymm17,%ymm3
+	vpunpcklqdq	%ymm22,%ymm20,%ymm4
+	vpunpcklqdq	%ymm23,%ymm21,%ymm5
+	vpunpckhqdq	%ymm22,%ymm20,%ymm6
+	vpunpckhqdq	%ymm23,%ymm21,%ymm7
+	vpunpcklqdq	%ymm26,%ymm24,%ymm8
+	vpunpcklqdq	%ymm27,%ymm25,%ymm9
+	vpunpckhqdq	%ymm26,%ymm24,%ymm10
+	vpunpckhqdq	%ymm27,%ymm25,%ymm11
+	vpunpcklqdq	%ymm30,%ymm28,%ymm12
+	vpunpcklqdq	%ymm31,%ymm29,%ymm13
+	vpunpckhqdq	%ymm30,%ymm28,%ymm14
+	vpunpckhqdq	%ymm31,%ymm29,%ymm15
+
+	# interleave 128-bit words in state n, n+4
+	# xor/write first four blocks
+	vmovdqa64	%ymm0,%ymm16
+	vperm2i128	$0x20,%ymm4,%ymm0,%ymm0
+	cmp		$0x0020,%rcx
+	jl		.Lxorpart8
+	vpxord		0x0000(%rdx),%ymm0,%ymm0
+	vmovdqu64	%ymm0,0x0000(%rsi)
+	vmovdqa64	%ymm16,%ymm0
+	vperm2i128	$0x31,%ymm4,%ymm0,%ymm4
+
+	vperm2i128	$0x20,%ymm12,%ymm8,%ymm0
+	cmp		$0x0040,%rcx
+	jl		.Lxorpart8
+	vpxord		0x0020(%rdx),%ymm0,%ymm0
+	vmovdqu64	%ymm0,0x0020(%rsi)
+	vperm2i128	$0x31,%ymm12,%ymm8,%ymm12
+
+	vperm2i128	$0x20,%ymm6,%ymm2,%ymm0
+	cmp		$0x0060,%rcx
+	jl		.Lxorpart8
+	vpxord		0x0040(%rdx),%ymm0,%ymm0
+	vmovdqu64	%ymm0,0x0040(%rsi)
+	vperm2i128	$0x31,%ymm6,%ymm2,%ymm6
+
+	vperm2i128	$0x20,%ymm14,%ymm10,%ymm0
+	cmp		$0x0080,%rcx
+	jl		.Lxorpart8
+	vpxord		0x0060(%rdx),%ymm0,%ymm0
+	vmovdqu64	%ymm0,0x0060(%rsi)
+	vperm2i128	$0x31,%ymm14,%ymm10,%ymm14
+
+	vperm2i128	$0x20,%ymm5,%ymm1,%ymm0
+	cmp		$0x00a0,%rcx
+	jl		.Lxorpart8
+	vpxord		0x0080(%rdx),%ymm0,%ymm0
+	vmovdqu64	%ymm0,0x0080(%rsi)
+	vperm2i128	$0x31,%ymm5,%ymm1,%ymm5
+
+	vperm2i128	$0x20,%ymm13,%ymm9,%ymm0
+	cmp		$0x00c0,%rcx
+	jl		.Lxorpart8
+	vpxord		0x00a0(%rdx),%ymm0,%ymm0
+	vmovdqu64	%ymm0,0x00a0(%rsi)
+	vperm2i128	$0x31,%ymm13,%ymm9,%ymm13
+
+	vperm2i128	$0x20,%ymm7,%ymm3,%ymm0
+	cmp		$0x00e0,%rcx
+	jl		.Lxorpart8
+	vpxord		0x00c0(%rdx),%ymm0,%ymm0
+	vmovdqu64	%ymm0,0x00c0(%rsi)
+	vperm2i128	$0x31,%ymm7,%ymm3,%ymm7
+
+	vperm2i128	$0x20,%ymm15,%ymm11,%ymm0
+	cmp		$0x0100,%rcx
+	jl		.Lxorpart8
+	vpxord		0x00e0(%rdx),%ymm0,%ymm0
+	vmovdqu64	%ymm0,0x00e0(%rsi)
+	vperm2i128	$0x31,%ymm15,%ymm11,%ymm15
+
+	# xor remaining blocks, write to output
+	vmovdqa64	%ymm4,%ymm0
+	cmp		$0x0120,%rcx
+	jl		.Lxorpart8
+	vpxord		0x0100(%rdx),%ymm0,%ymm0
+	vmovdqu64	%ymm0,0x0100(%rsi)
+
+	vmovdqa64	%ymm12,%ymm0
+	cmp		$0x0140,%rcx
+	jl		.Lxorpart8
+	vpxord		0x0120(%rdx),%ymm0,%ymm0
+	vmovdqu64	%ymm0,0x0120(%rsi)
+
+	vmovdqa64	%ymm6,%ymm0
+	cmp		$0x0160,%rcx
+	jl		.Lxorpart8
+	vpxord		0x0140(%rdx),%ymm0,%ymm0
+	vmovdqu64	%ymm0,0x0140(%rsi)
+
+	vmovdqa64	%ymm14,%ymm0
+	cmp		$0x0180,%rcx
+	jl		.Lxorpart8
+	vpxord		0x0160(%rdx),%ymm0,%ymm0
+	vmovdqu64	%ymm0,0x0160(%rsi)
+
+	vmovdqa64	%ymm5,%ymm0
+	cmp		$0x01a0,%rcx
+	jl		.Lxorpart8
+	vpxord		0x0180(%rdx),%ymm0,%ymm0
+	vmovdqu64	%ymm0,0x0180(%rsi)
+
+	vmovdqa64	%ymm13,%ymm0
+	cmp		$0x01c0,%rcx
+	jl		.Lxorpart8
+	vpxord		0x01a0(%rdx),%ymm0,%ymm0
+	vmovdqu64	%ymm0,0x01a0(%rsi)
+
+	vmovdqa64	%ymm7,%ymm0
+	cmp		$0x01e0,%rcx
+	jl		.Lxorpart8
+	vpxord		0x01c0(%rdx),%ymm0,%ymm0
+	vmovdqu64	%ymm0,0x01c0(%rsi)
+
+	vmovdqa64	%ymm15,%ymm0
+	cmp		$0x0200,%rcx
+	jl		.Lxorpart8
+	vpxord		0x01e0(%rdx),%ymm0,%ymm0
+	vmovdqu64	%ymm0,0x01e0(%rsi)
+
+.Ldone8:
+	vzeroupper
+	ret
+
+.Lxorpart8:
+	# xor remaining bytes from partial register into output
+	mov		%rcx,%rax
+	and		$0x1f,%rcx
+	jz		.Ldone8
+	mov		%rax,%r9
+	and		$~0x1f,%r9
+
+	mov		$1,%rax
+	shld		%cl,%rax,%rax
+	sub		$1,%rax
+	kmovq		%rax,%k1
+
+	vmovdqu8	(%rdx,%r9),%ymm1{%k1}{z}
+	vpxord		%ymm0,%ymm1,%ymm1
+	vmovdqu8	%ymm1,(%rsi,%r9){%k1}
+
+	jmp		.Ldone8
+
+ENDPROC(chacha_8block_xor_avx512vl)
diff --git a/arch/x86/crypto/chacha20-ssse3-x86_64.S b/arch/x86/crypto/chacha-ssse3-x86_64.S
index 512a2b500fd1..c05a7a963dc3 100644
--- a/arch/x86/crypto/chacha20-ssse3-x86_64.S
+++ b/arch/x86/crypto/chacha-ssse3-x86_64.S
@@ -1,5 +1,5 @@
 /*
- * ChaCha20 256-bit cipher algorithm, RFC7539, x64 SSSE3 functions
+ * ChaCha 256-bit cipher algorithm, x64 SSSE3 functions
  *
  * Copyright (C) 2015 Martin Willi
  *
@@ -10,6 +10,7 @@
  */
 
 #include <linux/linkage.h>
+#include <asm/frame.h>
 
 .section	.rodata.cst16.ROT8, "aM", @progbits, 16
 .align 16
@@ -23,35 +24,25 @@ CTRINC:	.octa 0x00000003000000020000000100000000
 
 .text
 
-ENTRY(chacha20_block_xor_ssse3)
-	# %rdi: Input state matrix, s
-	# %rsi: 1 data block output, o
-	# %rdx: 1 data block input, i
-
-	# This function encrypts one ChaCha20 block by loading the state matrix
-	# in four SSE registers. It performs matrix operation on four words in
-	# parallel, but requireds shuffling to rearrange the words after each
-	# round. 8/16-bit word rotation is done with the slightly better
-	# performing SSSE3 byte shuffling, 7/12-bit word rotation uses
-	# traditional shift+OR.
-
-	# x0..3 = s0..3
-	movdqa		0x00(%rdi),%xmm0
-	movdqa		0x10(%rdi),%xmm1
-	movdqa		0x20(%rdi),%xmm2
-	movdqa		0x30(%rdi),%xmm3
-	movdqa		%xmm0,%xmm8
-	movdqa		%xmm1,%xmm9
-	movdqa		%xmm2,%xmm10
-	movdqa		%xmm3,%xmm11
+/*
+ * chacha_permute - permute one block
+ *
+ * Permute one 64-byte block where the state matrix is in %xmm0-%xmm3.  This
+ * function performs matrix operations on four words in parallel, but requires
+ * shuffling to rearrange the words after each round.  8/16-bit word rotation is
+ * done with the slightly better performing SSSE3 byte shuffling, 7/12-bit word
+ * rotation uses traditional shift+OR.
+ *
+ * The round count is given in %r8d.
+ *
+ * Clobbers: %r8d, %xmm4-%xmm7
+ */
+chacha_permute:
 
 	movdqa		ROT8(%rip),%xmm4
 	movdqa		ROT16(%rip),%xmm5
 
-	mov	$10,%ecx
-
 .Ldoubleround:
-
 	# x0 += x1, x3 = rotl32(x3 ^ x0, 16)
 	paddd		%xmm1,%xmm0
 	pxor		%xmm0,%xmm3
@@ -118,39 +109,129 @@ ENTRY(chacha20_block_xor_ssse3)
 	# x3 = shuffle32(x3, MASK(0, 3, 2, 1))
 	pshufd		$0x39,%xmm3,%xmm3
 
-	dec		%ecx
+	sub		$2,%r8d
 	jnz		.Ldoubleround
 
+	ret
+ENDPROC(chacha_permute)
+
+ENTRY(chacha_block_xor_ssse3)
+	# %rdi: Input state matrix, s
+	# %rsi: up to 1 data block output, o
+	# %rdx: up to 1 data block input, i
+	# %rcx: input/output length in bytes
+	# %r8d: nrounds
+	FRAME_BEGIN
+
+	# x0..3 = s0..3
+	movdqa		0x00(%rdi),%xmm0
+	movdqa		0x10(%rdi),%xmm1
+	movdqa		0x20(%rdi),%xmm2
+	movdqa		0x30(%rdi),%xmm3
+	movdqa		%xmm0,%xmm8
+	movdqa		%xmm1,%xmm9
+	movdqa		%xmm2,%xmm10
+	movdqa		%xmm3,%xmm11
+
+	mov		%rcx,%rax
+	call		chacha_permute
+
 	# o0 = i0 ^ (x0 + s0)
-	movdqu		0x00(%rdx),%xmm4
 	paddd		%xmm8,%xmm0
+	cmp		$0x10,%rax
+	jl		.Lxorpart
+	movdqu		0x00(%rdx),%xmm4
 	pxor		%xmm4,%xmm0
 	movdqu		%xmm0,0x00(%rsi)
 	# o1 = i1 ^ (x1 + s1)
-	movdqu		0x10(%rdx),%xmm5
 	paddd		%xmm9,%xmm1
-	pxor		%xmm5,%xmm1
-	movdqu		%xmm1,0x10(%rsi)
+	movdqa		%xmm1,%xmm0
+	cmp		$0x20,%rax
+	jl		.Lxorpart
+	movdqu		0x10(%rdx),%xmm0
+	pxor		%xmm1,%xmm0
+	movdqu		%xmm0,0x10(%rsi)
 	# o2 = i2 ^ (x2 + s2)
-	movdqu		0x20(%rdx),%xmm6
 	paddd		%xmm10,%xmm2
-	pxor		%xmm6,%xmm2
-	movdqu		%xmm2,0x20(%rsi)
+	movdqa		%xmm2,%xmm0
+	cmp		$0x30,%rax
+	jl		.Lxorpart
+	movdqu		0x20(%rdx),%xmm0
+	pxor		%xmm2,%xmm0
+	movdqu		%xmm0,0x20(%rsi)
 	# o3 = i3 ^ (x3 + s3)
-	movdqu		0x30(%rdx),%xmm7
 	paddd		%xmm11,%xmm3
-	pxor		%xmm7,%xmm3
-	movdqu		%xmm3,0x30(%rsi)
+	movdqa		%xmm3,%xmm0
+	cmp		$0x40,%rax
+	jl		.Lxorpart
+	movdqu		0x30(%rdx),%xmm0
+	pxor		%xmm3,%xmm0
+	movdqu		%xmm0,0x30(%rsi)
+
+.Ldone:
+	FRAME_END
+	ret
+
+.Lxorpart:
+	# xor remaining bytes from partial register into output
+	mov		%rax,%r9
+	and		$0x0f,%r9
+	jz		.Ldone
+	and		$~0x0f,%rax
+
+	mov		%rsi,%r11
+
+	lea		8(%rsp),%r10
+	sub		$0x10,%rsp
+	and		$~31,%rsp
+
+	lea		(%rdx,%rax),%rsi
+	mov		%rsp,%rdi
+	mov		%r9,%rcx
+	rep movsb
+
+	pxor		0x00(%rsp),%xmm0
+	movdqa		%xmm0,0x00(%rsp)
 
+	mov		%rsp,%rsi
+	lea		(%r11,%rax),%rdi
+	mov		%r9,%rcx
+	rep movsb
+
+	lea		-8(%r10),%rsp
+	jmp		.Ldone
+
+ENDPROC(chacha_block_xor_ssse3)
+
+ENTRY(hchacha_block_ssse3)
+	# %rdi: Input state matrix, s
+	# %rsi: output (8 32-bit words)
+	# %edx: nrounds
+	FRAME_BEGIN
+
+	movdqa		0x00(%rdi),%xmm0
+	movdqa		0x10(%rdi),%xmm1
+	movdqa		0x20(%rdi),%xmm2
+	movdqa		0x30(%rdi),%xmm3
+
+	mov		%edx,%r8d
+	call		chacha_permute
+
+	movdqu		%xmm0,0x00(%rsi)
+	movdqu		%xmm3,0x10(%rsi)
+
+	FRAME_END
 	ret
-ENDPROC(chacha20_block_xor_ssse3)
+ENDPROC(hchacha_block_ssse3)
 
-ENTRY(chacha20_4block_xor_ssse3)
+ENTRY(chacha_4block_xor_ssse3)
 	# %rdi: Input state matrix, s
-	# %rsi: 4 data blocks output, o
-	# %rdx: 4 data blocks input, i
+	# %rsi: up to 4 data blocks output, o
+	# %rdx: up to 4 data blocks input, i
+	# %rcx: input/output length in bytes
+	# %r8d: nrounds
 
-	# This function encrypts four consecutive ChaCha20 blocks by loading the
+	# This function encrypts four consecutive ChaCha blocks by loading the
 	# the state matrix in SSE registers four times. As we need some scratch
 	# registers, we save the first four registers on the stack. The
 	# algorithm performs each operation on the corresponding word of each
@@ -163,6 +244,7 @@ ENTRY(chacha20_4block_xor_ssse3)
 	lea		8(%rsp),%r10
 	sub		$0x80,%rsp
 	and		$~63,%rsp
+	mov		%rcx,%rax
 
 	# x0..15[0-3] = s0..3[0..3]
 	movq		0x00(%rdi),%xmm1
@@ -202,8 +284,6 @@ ENTRY(chacha20_4block_xor_ssse3)
 	# x12 += counter values 0-3
 	paddd		%xmm1,%xmm12
 
-	mov		$10,%ecx
-
 .Ldoubleround4:
 	# x0 += x4, x12 = rotl32(x12 ^ x0, 16)
 	movdqa		0x00(%rsp),%xmm0
@@ -421,7 +501,7 @@ ENTRY(chacha20_4block_xor_ssse3)
 	psrld		$25,%xmm4
 	por		%xmm0,%xmm4
 
-	dec		%ecx
+	sub		$2,%r8d
 	jnz		.Ldoubleround4
 
 	# x0[0-3] += s0[0]
@@ -573,58 +653,143 @@ ENTRY(chacha20_4block_xor_ssse3)
 
 	# xor with corresponding input, write to output
 	movdqa		0x00(%rsp),%xmm0
+	cmp		$0x10,%rax
+	jl		.Lxorpart4
 	movdqu		0x00(%rdx),%xmm1
 	pxor		%xmm1,%xmm0
 	movdqu		%xmm0,0x00(%rsi)
-	movdqa		0x10(%rsp),%xmm0
-	movdqu		0x80(%rdx),%xmm1
+
+	movdqu		%xmm4,%xmm0
+	cmp		$0x20,%rax
+	jl		.Lxorpart4
+	movdqu		0x10(%rdx),%xmm1
 	pxor		%xmm1,%xmm0
-	movdqu		%xmm0,0x80(%rsi)
+	movdqu		%xmm0,0x10(%rsi)
+
+	movdqu		%xmm8,%xmm0
+	cmp		$0x30,%rax
+	jl		.Lxorpart4
+	movdqu		0x20(%rdx),%xmm1
+	pxor		%xmm1,%xmm0
+	movdqu		%xmm0,0x20(%rsi)
+
+	movdqu		%xmm12,%xmm0
+	cmp		$0x40,%rax
+	jl		.Lxorpart4
+	movdqu		0x30(%rdx),%xmm1
+	pxor		%xmm1,%xmm0
+	movdqu		%xmm0,0x30(%rsi)
+
 	movdqa		0x20(%rsp),%xmm0
+	cmp		$0x50,%rax
+	jl		.Lxorpart4
 	movdqu		0x40(%rdx),%xmm1
 	pxor		%xmm1,%xmm0
 	movdqu		%xmm0,0x40(%rsi)
+
+	movdqu		%xmm6,%xmm0
+	cmp		$0x60,%rax
+	jl		.Lxorpart4
+	movdqu		0x50(%rdx),%xmm1
+	pxor		%xmm1,%xmm0
+	movdqu		%xmm0,0x50(%rsi)
+
+	movdqu		%xmm10,%xmm0
+	cmp		$0x70,%rax
+	jl		.Lxorpart4
+	movdqu		0x60(%rdx),%xmm1
+	pxor		%xmm1,%xmm0
+	movdqu		%xmm0,0x60(%rsi)
+
+	movdqu		%xmm14,%xmm0
+	cmp		$0x80,%rax
+	jl		.Lxorpart4
+	movdqu		0x70(%rdx),%xmm1
+	pxor		%xmm1,%xmm0
+	movdqu		%xmm0,0x70(%rsi)
+
+	movdqa		0x10(%rsp),%xmm0
+	cmp		$0x90,%rax
+	jl		.Lxorpart4
+	movdqu		0x80(%rdx),%xmm1
+	pxor		%xmm1,%xmm0
+	movdqu		%xmm0,0x80(%rsi)
+
+	movdqu		%xmm5,%xmm0
+	cmp		$0xa0,%rax
+	jl		.Lxorpart4
+	movdqu		0x90(%rdx),%xmm1
+	pxor		%xmm1,%xmm0
+	movdqu		%xmm0,0x90(%rsi)
+
+	movdqu		%xmm9,%xmm0
+	cmp		$0xb0,%rax
+	jl		.Lxorpart4
+	movdqu		0xa0(%rdx),%xmm1
+	pxor		%xmm1,%xmm0
+	movdqu		%xmm0,0xa0(%rsi)
+
+	movdqu		%xmm13,%xmm0
+	cmp		$0xc0,%rax
+	jl		.Lxorpart4
+	movdqu		0xb0(%rdx),%xmm1
+	pxor		%xmm1,%xmm0
+	movdqu		%xmm0,0xb0(%rsi)
+
 	movdqa		0x30(%rsp),%xmm0
+	cmp		$0xd0,%rax
+	jl		.Lxorpart4
 	movdqu		0xc0(%rdx),%xmm1
 	pxor		%xmm1,%xmm0
 	movdqu		%xmm0,0xc0(%rsi)
-	movdqu		0x10(%rdx),%xmm1
-	pxor		%xmm1,%xmm4
-	movdqu		%xmm4,0x10(%rsi)
-	movdqu		0x90(%rdx),%xmm1
-	pxor		%xmm1,%xmm5
-	movdqu		%xmm5,0x90(%rsi)
-	movdqu		0x50(%rdx),%xmm1
-	pxor		%xmm1,%xmm6
-	movdqu		%xmm6,0x50(%rsi)
+
+	movdqu		%xmm7,%xmm0
+	cmp		$0xe0,%rax
+	jl		.Lxorpart4
 	movdqu		0xd0(%rdx),%xmm1
-	pxor		%xmm1,%xmm7
-	movdqu		%xmm7,0xd0(%rsi)
-	movdqu		0x20(%rdx),%xmm1
-	pxor		%xmm1,%xmm8
-	movdqu		%xmm8,0x20(%rsi)
-	movdqu		0xa0(%rdx),%xmm1
-	pxor		%xmm1,%xmm9
-	movdqu		%xmm9,0xa0(%rsi)
-	movdqu		0x60(%rdx),%xmm1
-	pxor		%xmm1,%xmm10
-	movdqu		%xmm10,0x60(%rsi)
+	pxor		%xmm1,%xmm0
+	movdqu		%xmm0,0xd0(%rsi)
+
+	movdqu		%xmm11,%xmm0
+	cmp		$0xf0,%rax
+	jl		.Lxorpart4
 	movdqu		0xe0(%rdx),%xmm1
-	pxor		%xmm1,%xmm11
-	movdqu		%xmm11,0xe0(%rsi)
-	movdqu		0x30(%rdx),%xmm1
-	pxor		%xmm1,%xmm12
-	movdqu		%xmm12,0x30(%rsi)
-	movdqu		0xb0(%rdx),%xmm1
-	pxor		%xmm1,%xmm13
-	movdqu		%xmm13,0xb0(%rsi)
-	movdqu		0x70(%rdx),%xmm1
-	pxor		%xmm1,%xmm14
-	movdqu		%xmm14,0x70(%rsi)
+	pxor		%xmm1,%xmm0
+	movdqu		%xmm0,0xe0(%rsi)
+
+	movdqu		%xmm15,%xmm0
+	cmp		$0x100,%rax
+	jl		.Lxorpart4
 	movdqu		0xf0(%rdx),%xmm1
-	pxor		%xmm1,%xmm15
-	movdqu		%xmm15,0xf0(%rsi)
+	pxor		%xmm1,%xmm0
+	movdqu		%xmm0,0xf0(%rsi)
 
+.Ldone4:
 	lea		-8(%r10),%rsp
 	ret
-ENDPROC(chacha20_4block_xor_ssse3)
+
+.Lxorpart4:
+	# xor remaining bytes from partial register into output
+	mov		%rax,%r9
+	and		$0x0f,%r9
+	jz		.Ldone4
+	and		$~0x0f,%rax
+
+	mov		%rsi,%r11
+
+	lea		(%rdx,%rax),%rsi
+	mov		%rsp,%rdi
+	mov		%r9,%rcx
+	rep movsb
+
+	pxor		0x00(%rsp),%xmm0
+	movdqa		%xmm0,0x00(%rsp)
+
+	mov		%rsp,%rsi
+	lea		(%r11,%rax),%rdi
+	mov		%r9,%rcx
+	rep movsb
+
+	jmp		.Ldone4
+
+ENDPROC(chacha_4block_xor_ssse3)
diff --git a/arch/x86/crypto/chacha20-avx2-x86_64.S b/arch/x86/crypto/chacha20-avx2-x86_64.S
deleted file mode 100644
index f3cd26f48332..000000000000
--- a/arch/x86/crypto/chacha20-avx2-x86_64.S
+++ /dev/null
@@ -1,448 +0,0 @@
-/*
- * ChaCha20 256-bit cipher algorithm, RFC7539, x64 AVX2 functions
- *
- * Copyright (C) 2015 Martin Willi
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- */
-
-#include <linux/linkage.h>
-
-.section	.rodata.cst32.ROT8, "aM", @progbits, 32
-.align 32
-ROT8:	.octa 0x0e0d0c0f0a09080b0605040702010003
-	.octa 0x0e0d0c0f0a09080b0605040702010003
-
-.section	.rodata.cst32.ROT16, "aM", @progbits, 32
-.align 32
-ROT16:	.octa 0x0d0c0f0e09080b0a0504070601000302
-	.octa 0x0d0c0f0e09080b0a0504070601000302
-
-.section	.rodata.cst32.CTRINC, "aM", @progbits, 32
-.align 32
-CTRINC:	.octa 0x00000003000000020000000100000000
-	.octa 0x00000007000000060000000500000004
-
-.text
-
-ENTRY(chacha20_8block_xor_avx2)
-	# %rdi: Input state matrix, s
-	# %rsi: 8 data blocks output, o
-	# %rdx: 8 data blocks input, i
-
-	# This function encrypts eight consecutive ChaCha20 blocks by loading
-	# the state matrix in AVX registers eight times. As we need some
-	# scratch registers, we save the first four registers on the stack. The
-	# algorithm performs each operation on the corresponding word of each
-	# state matrix, hence requires no word shuffling. For final XORing step
-	# we transpose the matrix by interleaving 32-, 64- and then 128-bit
-	# words, which allows us to do XOR in AVX registers. 8/16-bit word
-	# rotation is done with the slightly better performing byte shuffling,
-	# 7/12-bit word rotation uses traditional shift+OR.
-
-	vzeroupper
-	# 4 * 32 byte stack, 32-byte aligned
-	lea		8(%rsp),%r10
-	and		$~31, %rsp
-	sub		$0x80, %rsp
-
-	# x0..15[0-7] = s[0..15]
-	vpbroadcastd	0x00(%rdi),%ymm0
-	vpbroadcastd	0x04(%rdi),%ymm1
-	vpbroadcastd	0x08(%rdi),%ymm2
-	vpbroadcastd	0x0c(%rdi),%ymm3
-	vpbroadcastd	0x10(%rdi),%ymm4
-	vpbroadcastd	0x14(%rdi),%ymm5
-	vpbroadcastd	0x18(%rdi),%ymm6
-	vpbroadcastd	0x1c(%rdi),%ymm7
-	vpbroadcastd	0x20(%rdi),%ymm8
-	vpbroadcastd	0x24(%rdi),%ymm9
-	vpbroadcastd	0x28(%rdi),%ymm10
-	vpbroadcastd	0x2c(%rdi),%ymm11
-	vpbroadcastd	0x30(%rdi),%ymm12
-	vpbroadcastd	0x34(%rdi),%ymm13
-	vpbroadcastd	0x38(%rdi),%ymm14
-	vpbroadcastd	0x3c(%rdi),%ymm15
-	# x0..3 on stack
-	vmovdqa		%ymm0,0x00(%rsp)
-	vmovdqa		%ymm1,0x20(%rsp)
-	vmovdqa		%ymm2,0x40(%rsp)
-	vmovdqa		%ymm3,0x60(%rsp)
-
-	vmovdqa		CTRINC(%rip),%ymm1
-	vmovdqa		ROT8(%rip),%ymm2
-	vmovdqa		ROT16(%rip),%ymm3
-
-	# x12 += counter values 0-3
-	vpaddd		%ymm1,%ymm12,%ymm12
-
-	mov		$10,%ecx
-
-.Ldoubleround8:
-	# x0 += x4, x12 = rotl32(x12 ^ x0, 16)
-	vpaddd		0x00(%rsp),%ymm4,%ymm0
-	vmovdqa		%ymm0,0x00(%rsp)
-	vpxor		%ymm0,%ymm12,%ymm12
-	vpshufb		%ymm3,%ymm12,%ymm12
-	# x1 += x5, x13 = rotl32(x13 ^ x1, 16)
-	vpaddd		0x20(%rsp),%ymm5,%ymm0
-	vmovdqa		%ymm0,0x20(%rsp)
-	vpxor		%ymm0,%ymm13,%ymm13
-	vpshufb		%ymm3,%ymm13,%ymm13
-	# x2 += x6, x14 = rotl32(x14 ^ x2, 16)
-	vpaddd		0x40(%rsp),%ymm6,%ymm0
-	vmovdqa		%ymm0,0x40(%rsp)
-	vpxor		%ymm0,%ymm14,%ymm14
-	vpshufb		%ymm3,%ymm14,%ymm14
-	# x3 += x7, x15 = rotl32(x15 ^ x3, 16)
-	vpaddd		0x60(%rsp),%ymm7,%ymm0
-	vmovdqa		%ymm0,0x60(%rsp)
-	vpxor		%ymm0,%ymm15,%ymm15
-	vpshufb		%ymm3,%ymm15,%ymm15
-
-	# x8 += x12, x4 = rotl32(x4 ^ x8, 12)
-	vpaddd		%ymm12,%ymm8,%ymm8
-	vpxor		%ymm8,%ymm4,%ymm4
-	vpslld		$12,%ymm4,%ymm0
-	vpsrld		$20,%ymm4,%ymm4
-	vpor		%ymm0,%ymm4,%ymm4
-	# x9 += x13, x5 = rotl32(x5 ^ x9, 12)
-	vpaddd		%ymm13,%ymm9,%ymm9
-	vpxor		%ymm9,%ymm5,%ymm5
-	vpslld		$12,%ymm5,%ymm0
-	vpsrld		$20,%ymm5,%ymm5
-	vpor		%ymm0,%ymm5,%ymm5
-	# x10 += x14, x6 = rotl32(x6 ^ x10, 12)
-	vpaddd		%ymm14,%ymm10,%ymm10
-	vpxor		%ymm10,%ymm6,%ymm6
-	vpslld		$12,%ymm6,%ymm0
-	vpsrld		$20,%ymm6,%ymm6
-	vpor		%ymm0,%ymm6,%ymm6
-	# x11 += x15, x7 = rotl32(x7 ^ x11, 12)
-	vpaddd		%ymm15,%ymm11,%ymm11
-	vpxor		%ymm11,%ymm7,%ymm7
-	vpslld		$12,%ymm7,%ymm0
-	vpsrld		$20,%ymm7,%ymm7
-	vpor		%ymm0,%ymm7,%ymm7
-
-	# x0 += x4, x12 = rotl32(x12 ^ x0, 8)
-	vpaddd		0x00(%rsp),%ymm4,%ymm0
-	vmovdqa		%ymm0,0x00(%rsp)
-	vpxor		%ymm0,%ymm12,%ymm12
-	vpshufb		%ymm2,%ymm12,%ymm12
-	# x1 += x5, x13 = rotl32(x13 ^ x1, 8)
-	vpaddd		0x20(%rsp),%ymm5,%ymm0
-	vmovdqa		%ymm0,0x20(%rsp)
-	vpxor		%ymm0,%ymm13,%ymm13
-	vpshufb		%ymm2,%ymm13,%ymm13
-	# x2 += x6, x14 = rotl32(x14 ^ x2, 8)
-	vpaddd		0x40(%rsp),%ymm6,%ymm0
-	vmovdqa		%ymm0,0x40(%rsp)
-	vpxor		%ymm0,%ymm14,%ymm14
-	vpshufb		%ymm2,%ymm14,%ymm14
-	# x3 += x7, x15 = rotl32(x15 ^ x3, 8)
-	vpaddd		0x60(%rsp),%ymm7,%ymm0
-	vmovdqa		%ymm0,0x60(%rsp)
-	vpxor		%ymm0,%ymm15,%ymm15
-	vpshufb		%ymm2,%ymm15,%ymm15
-
-	# x8 += x12, x4 = rotl32(x4 ^ x8, 7)
-	vpaddd		%ymm12,%ymm8,%ymm8
-	vpxor		%ymm8,%ymm4,%ymm4
-	vpslld		$7,%ymm4,%ymm0
-	vpsrld		$25,%ymm4,%ymm4
-	vpor		%ymm0,%ymm4,%ymm4
-	# x9 += x13, x5 = rotl32(x5 ^ x9, 7)
-	vpaddd		%ymm13,%ymm9,%ymm9
-	vpxor		%ymm9,%ymm5,%ymm5
-	vpslld		$7,%ymm5,%ymm0
-	vpsrld		$25,%ymm5,%ymm5
-	vpor		%ymm0,%ymm5,%ymm5
-	# x10 += x14, x6 = rotl32(x6 ^ x10, 7)
-	vpaddd		%ymm14,%ymm10,%ymm10
-	vpxor		%ymm10,%ymm6,%ymm6
-	vpslld		$7,%ymm6,%ymm0
-	vpsrld		$25,%ymm6,%ymm6
-	vpor		%ymm0,%ymm6,%ymm6
-	# x11 += x15, x7 = rotl32(x7 ^ x11, 7)
-	vpaddd		%ymm15,%ymm11,%ymm11
-	vpxor		%ymm11,%ymm7,%ymm7
-	vpslld		$7,%ymm7,%ymm0
-	vpsrld		$25,%ymm7,%ymm7
-	vpor		%ymm0,%ymm7,%ymm7
-
-	# x0 += x5, x15 = rotl32(x15 ^ x0, 16)
-	vpaddd		0x00(%rsp),%ymm5,%ymm0
-	vmovdqa		%ymm0,0x00(%rsp)
-	vpxor		%ymm0,%ymm15,%ymm15
-	vpshufb		%ymm3,%ymm15,%ymm15
-	# x1 += x6, x12 = rotl32(x12 ^ x1, 16)%ymm0
-	vpaddd		0x20(%rsp),%ymm6,%ymm0
-	vmovdqa		%ymm0,0x20(%rsp)
-	vpxor		%ymm0,%ymm12,%ymm12
-	vpshufb		%ymm3,%ymm12,%ymm12
-	# x2 += x7, x13 = rotl32(x13 ^ x2, 16)
-	vpaddd		0x40(%rsp),%ymm7,%ymm0
-	vmovdqa		%ymm0,0x40(%rsp)
-	vpxor		%ymm0,%ymm13,%ymm13
-	vpshufb		%ymm3,%ymm13,%ymm13
-	# x3 += x4, x14 = rotl32(x14 ^ x3, 16)
-	vpaddd		0x60(%rsp),%ymm4,%ymm0
-	vmovdqa		%ymm0,0x60(%rsp)
-	vpxor		%ymm0,%ymm14,%ymm14
-	vpshufb		%ymm3,%ymm14,%ymm14
-
-	# x10 += x15, x5 = rotl32(x5 ^ x10, 12)
-	vpaddd		%ymm15,%ymm10,%ymm10
-	vpxor		%ymm10,%ymm5,%ymm5
-	vpslld		$12,%ymm5,%ymm0
-	vpsrld		$20,%ymm5,%ymm5
-	vpor		%ymm0,%ymm5,%ymm5
-	# x11 += x12, x6 = rotl32(x6 ^ x11, 12)
-	vpaddd		%ymm12,%ymm11,%ymm11
-	vpxor		%ymm11,%ymm6,%ymm6
-	vpslld		$12,%ymm6,%ymm0
-	vpsrld		$20,%ymm6,%ymm6
-	vpor		%ymm0,%ymm6,%ymm6
-	# x8 += x13, x7 = rotl32(x7 ^ x8, 12)
-	vpaddd		%ymm13,%ymm8,%ymm8
-	vpxor		%ymm8,%ymm7,%ymm7
-	vpslld		$12,%ymm7,%ymm0
-	vpsrld		$20,%ymm7,%ymm7
-	vpor		%ymm0,%ymm7,%ymm7
-	# x9 += x14, x4 = rotl32(x4 ^ x9, 12)
-	vpaddd		%ymm14,%ymm9,%ymm9
-	vpxor		%ymm9,%ymm4,%ymm4
-	vpslld		$12,%ymm4,%ymm0
-	vpsrld		$20,%ymm4,%ymm4
-	vpor		%ymm0,%ymm4,%ymm4
-
-	# x0 += x5, x15 = rotl32(x15 ^ x0, 8)
-	vpaddd		0x00(%rsp),%ymm5,%ymm0
-	vmovdqa		%ymm0,0x00(%rsp)
-	vpxor		%ymm0,%ymm15,%ymm15
-	vpshufb		%ymm2,%ymm15,%ymm15
-	# x1 += x6, x12 = rotl32(x12 ^ x1, 8)
-	vpaddd		0x20(%rsp),%ymm6,%ymm0
-	vmovdqa		%ymm0,0x20(%rsp)
-	vpxor		%ymm0,%ymm12,%ymm12
-	vpshufb		%ymm2,%ymm12,%ymm12
-	# x2 += x7, x13 = rotl32(x13 ^ x2, 8)
-	vpaddd		0x40(%rsp),%ymm7,%ymm0
-	vmovdqa		%ymm0,0x40(%rsp)
-	vpxor		%ymm0,%ymm13,%ymm13
-	vpshufb		%ymm2,%ymm13,%ymm13
-	# x3 += x4, x14 = rotl32(x14 ^ x3, 8)
-	vpaddd		0x60(%rsp),%ymm4,%ymm0
-	vmovdqa		%ymm0,0x60(%rsp)
-	vpxor		%ymm0,%ymm14,%ymm14
-	vpshufb		%ymm2,%ymm14,%ymm14
-
-	# x10 += x15, x5 = rotl32(x5 ^ x10, 7)
-	vpaddd		%ymm15,%ymm10,%ymm10
-	vpxor		%ymm10,%ymm5,%ymm5
-	vpslld		$7,%ymm5,%ymm0
-	vpsrld		$25,%ymm5,%ymm5
-	vpor		%ymm0,%ymm5,%ymm5
-	# x11 += x12, x6 = rotl32(x6 ^ x11, 7)
-	vpaddd		%ymm12,%ymm11,%ymm11
-	vpxor		%ymm11,%ymm6,%ymm6
-	vpslld		$7,%ymm6,%ymm0
-	vpsrld		$25,%ymm6,%ymm6
-	vpor		%ymm0,%ymm6,%ymm6
-	# x8 += x13, x7 = rotl32(x7 ^ x8, 7)
-	vpaddd		%ymm13,%ymm8,%ymm8
-	vpxor		%ymm8,%ymm7,%ymm7
-	vpslld		$7,%ymm7,%ymm0
-	vpsrld		$25,%ymm7,%ymm7
-	vpor		%ymm0,%ymm7,%ymm7
-	# x9 += x14, x4 = rotl32(x4 ^ x9, 7)
-	vpaddd		%ymm14,%ymm9,%ymm9
-	vpxor		%ymm9,%ymm4,%ymm4
-	vpslld		$7,%ymm4,%ymm0
-	vpsrld		$25,%ymm4,%ymm4
-	vpor		%ymm0,%ymm4,%ymm4
-
-	dec		%ecx
-	jnz		.Ldoubleround8
-
-	# x0..15[0-3] += s[0..15]
-	vpbroadcastd	0x00(%rdi),%ymm0
-	vpaddd		0x00(%rsp),%ymm0,%ymm0
-	vmovdqa		%ymm0,0x00(%rsp)
-	vpbroadcastd	0x04(%rdi),%ymm0
-	vpaddd		0x20(%rsp),%ymm0,%ymm0
-	vmovdqa		%ymm0,0x20(%rsp)
-	vpbroadcastd	0x08(%rdi),%ymm0
-	vpaddd		0x40(%rsp),%ymm0,%ymm0
-	vmovdqa		%ymm0,0x40(%rsp)
-	vpbroadcastd	0x0c(%rdi),%ymm0
-	vpaddd		0x60(%rsp),%ymm0,%ymm0
-	vmovdqa		%ymm0,0x60(%rsp)
-	vpbroadcastd	0x10(%rdi),%ymm0
-	vpaddd		%ymm0,%ymm4,%ymm4
-	vpbroadcastd	0x14(%rdi),%ymm0
-	vpaddd		%ymm0,%ymm5,%ymm5
-	vpbroadcastd	0x18(%rdi),%ymm0
-	vpaddd		%ymm0,%ymm6,%ymm6
-	vpbroadcastd	0x1c(%rdi),%ymm0
-	vpaddd		%ymm0,%ymm7,%ymm7
-	vpbroadcastd	0x20(%rdi),%ymm0
-	vpaddd		%ymm0,%ymm8,%ymm8
-	vpbroadcastd	0x24(%rdi),%ymm0
-	vpaddd		%ymm0,%ymm9,%ymm9
-	vpbroadcastd	0x28(%rdi),%ymm0
-	vpaddd		%ymm0,%ymm10,%ymm10
-	vpbroadcastd	0x2c(%rdi),%ymm0
-	vpaddd		%ymm0,%ymm11,%ymm11
-	vpbroadcastd	0x30(%rdi),%ymm0
-	vpaddd		%ymm0,%ymm12,%ymm12
-	vpbroadcastd	0x34(%rdi),%ymm0
-	vpaddd		%ymm0,%ymm13,%ymm13
-	vpbroadcastd	0x38(%rdi),%ymm0
-	vpaddd		%ymm0,%ymm14,%ymm14
-	vpbroadcastd	0x3c(%rdi),%ymm0
-	vpaddd		%ymm0,%ymm15,%ymm15
-
-	# x12 += counter values 0-3
-	vpaddd		%ymm1,%ymm12,%ymm12
-
-	# interleave 32-bit words in state n, n+1
-	vmovdqa		0x00(%rsp),%ymm0
-	vmovdqa		0x20(%rsp),%ymm1
-	vpunpckldq	%ymm1,%ymm0,%ymm2
-	vpunpckhdq	%ymm1,%ymm0,%ymm1
-	vmovdqa		%ymm2,0x00(%rsp)
-	vmovdqa		%ymm1,0x20(%rsp)
-	vmovdqa		0x40(%rsp),%ymm0
-	vmovdqa		0x60(%rsp),%ymm1
-	vpunpckldq	%ymm1,%ymm0,%ymm2
-	vpunpckhdq	%ymm1,%ymm0,%ymm1
-	vmovdqa		%ymm2,0x40(%rsp)
-	vmovdqa		%ymm1,0x60(%rsp)
-	vmovdqa		%ymm4,%ymm0
-	vpunpckldq	%ymm5,%ymm0,%ymm4
-	vpunpckhdq	%ymm5,%ymm0,%ymm5
-	vmovdqa		%ymm6,%ymm0
-	vpunpckldq	%ymm7,%ymm0,%ymm6
-	vpunpckhdq	%ymm7,%ymm0,%ymm7
-	vmovdqa		%ymm8,%ymm0
-	vpunpckldq	%ymm9,%ymm0,%ymm8
-	vpunpckhdq	%ymm9,%ymm0,%ymm9
-	vmovdqa		%ymm10,%ymm0
-	vpunpckldq	%ymm11,%ymm0,%ymm10
-	vpunpckhdq	%ymm11,%ymm0,%ymm11
-	vmovdqa		%ymm12,%ymm0
-	vpunpckldq	%ymm13,%ymm0,%ymm12
-	vpunpckhdq	%ymm13,%ymm0,%ymm13
-	vmovdqa		%ymm14,%ymm0
-	vpunpckldq	%ymm15,%ymm0,%ymm14
-	vpunpckhdq	%ymm15,%ymm0,%ymm15
-
-	# interleave 64-bit words in state n, n+2
-	vmovdqa		0x00(%rsp),%ymm0
-	vmovdqa		0x40(%rsp),%ymm2
-	vpunpcklqdq	%ymm2,%ymm0,%ymm1
-	vpunpckhqdq	%ymm2,%ymm0,%ymm2
-	vmovdqa		%ymm1,0x00(%rsp)
-	vmovdqa		%ymm2,0x40(%rsp)
-	vmovdqa		0x20(%rsp),%ymm0
-	vmovdqa		0x60(%rsp),%ymm2
-	vpunpcklqdq	%ymm2,%ymm0,%ymm1
-	vpunpckhqdq	%ymm2,%ymm0,%ymm2
-	vmovdqa		%ymm1,0x20(%rsp)
-	vmovdqa		%ymm2,0x60(%rsp)
-	vmovdqa		%ymm4,%ymm0
-	vpunpcklqdq	%ymm6,%ymm0,%ymm4
-	vpunpckhqdq	%ymm6,%ymm0,%ymm6
-	vmovdqa		%ymm5,%ymm0
-	vpunpcklqdq	%ymm7,%ymm0,%ymm5
-	vpunpckhqdq	%ymm7,%ymm0,%ymm7
-	vmovdqa		%ymm8,%ymm0
-	vpunpcklqdq	%ymm10,%ymm0,%ymm8
-	vpunpckhqdq	%ymm10,%ymm0,%ymm10
-	vmovdqa		%ymm9,%ymm0
-	vpunpcklqdq	%ymm11,%ymm0,%ymm9
-	vpunpckhqdq	%ymm11,%ymm0,%ymm11
-	vmovdqa		%ymm12,%ymm0
-	vpunpcklqdq	%ymm14,%ymm0,%ymm12
-	vpunpckhqdq	%ymm14,%ymm0,%ymm14
-	vmovdqa		%ymm13,%ymm0
-	vpunpcklqdq	%ymm15,%ymm0,%ymm13
-	vpunpckhqdq	%ymm15,%ymm0,%ymm15
-
-	# interleave 128-bit words in state n, n+4
-	vmovdqa		0x00(%rsp),%ymm0
-	vperm2i128	$0x20,%ymm4,%ymm0,%ymm1
-	vperm2i128	$0x31,%ymm4,%ymm0,%ymm4
-	vmovdqa		%ymm1,0x00(%rsp)
-	vmovdqa		0x20(%rsp),%ymm0
-	vperm2i128	$0x20,%ymm5,%ymm0,%ymm1
-	vperm2i128	$0x31,%ymm5,%ymm0,%ymm5
-	vmovdqa		%ymm1,0x20(%rsp)
-	vmovdqa		0x40(%rsp),%ymm0
-	vperm2i128	$0x20,%ymm6,%ymm0,%ymm1
-	vperm2i128	$0x31,%ymm6,%ymm0,%ymm6
-	vmovdqa		%ymm1,0x40(%rsp)
-	vmovdqa		0x60(%rsp),%ymm0
-	vperm2i128	$0x20,%ymm7,%ymm0,%ymm1
-	vperm2i128	$0x31,%ymm7,%ymm0,%ymm7
-	vmovdqa		%ymm1,0x60(%rsp)
-	vperm2i128	$0x20,%ymm12,%ymm8,%ymm0
-	vperm2i128	$0x31,%ymm12,%ymm8,%ymm12
-	vmovdqa		%ymm0,%ymm8
-	vperm2i128	$0x20,%ymm13,%ymm9,%ymm0
-	vperm2i128	$0x31,%ymm13,%ymm9,%ymm13
-	vmovdqa		%ymm0,%ymm9
-	vperm2i128	$0x20,%ymm14,%ymm10,%ymm0
-	vperm2i128	$0x31,%ymm14,%ymm10,%ymm14
-	vmovdqa		%ymm0,%ymm10
-	vperm2i128	$0x20,%ymm15,%ymm11,%ymm0
-	vperm2i128	$0x31,%ymm15,%ymm11,%ymm15
-	vmovdqa		%ymm0,%ymm11
-
-	# xor with corresponding input, write to output
-	vmovdqa		0x00(%rsp),%ymm0
-	vpxor		0x0000(%rdx),%ymm0,%ymm0
-	vmovdqu		%ymm0,0x0000(%rsi)
-	vmovdqa		0x20(%rsp),%ymm0
-	vpxor		0x0080(%rdx),%ymm0,%ymm0
-	vmovdqu		%ymm0,0x0080(%rsi)
-	vmovdqa		0x40(%rsp),%ymm0
-	vpxor		0x0040(%rdx),%ymm0,%ymm0
-	vmovdqu		%ymm0,0x0040(%rsi)
-	vmovdqa		0x60(%rsp),%ymm0
-	vpxor		0x00c0(%rdx),%ymm0,%ymm0
-	vmovdqu		%ymm0,0x00c0(%rsi)
-	vpxor		0x0100(%rdx),%ymm4,%ymm4
-	vmovdqu		%ymm4,0x0100(%rsi)
-	vpxor		0x0180(%rdx),%ymm5,%ymm5
-	vmovdqu		%ymm5,0x00180(%rsi)
-	vpxor		0x0140(%rdx),%ymm6,%ymm6
-	vmovdqu		%ymm6,0x0140(%rsi)
-	vpxor		0x01c0(%rdx),%ymm7,%ymm7
-	vmovdqu		%ymm7,0x01c0(%rsi)
-	vpxor		0x0020(%rdx),%ymm8,%ymm8
-	vmovdqu		%ymm8,0x0020(%rsi)
-	vpxor		0x00a0(%rdx),%ymm9,%ymm9
-	vmovdqu		%ymm9,0x00a0(%rsi)
-	vpxor		0x0060(%rdx),%ymm10,%ymm10
-	vmovdqu		%ymm10,0x0060(%rsi)
-	vpxor		0x00e0(%rdx),%ymm11,%ymm11
-	vmovdqu		%ymm11,0x00e0(%rsi)
-	vpxor		0x0120(%rdx),%ymm12,%ymm12
-	vmovdqu		%ymm12,0x0120(%rsi)
-	vpxor		0x01a0(%rdx),%ymm13,%ymm13
-	vmovdqu		%ymm13,0x01a0(%rsi)
-	vpxor		0x0160(%rdx),%ymm14,%ymm14
-	vmovdqu		%ymm14,0x0160(%rsi)
-	vpxor		0x01e0(%rdx),%ymm15,%ymm15
-	vmovdqu		%ymm15,0x01e0(%rsi)
-
-	vzeroupper
-	lea		-8(%r10),%rsp
-	ret
-ENDPROC(chacha20_8block_xor_avx2)
diff --git a/arch/x86/crypto/chacha20_glue.c b/arch/x86/crypto/chacha20_glue.c
deleted file mode 100644
index dce7c5d39c2f..000000000000
--- a/arch/x86/crypto/chacha20_glue.c
+++ /dev/null
@@ -1,146 +0,0 @@
-/*
- * ChaCha20 256-bit cipher algorithm, RFC7539, SIMD glue code
- *
- * Copyright (C) 2015 Martin Willi
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- */
-
-#include <crypto/algapi.h>
-#include <crypto/chacha20.h>
-#include <crypto/internal/skcipher.h>
-#include <linux/kernel.h>
-#include <linux/module.h>
-#include <asm/fpu/api.h>
-#include <asm/simd.h>
-
-#define CHACHA20_STATE_ALIGN 16
-
-asmlinkage void chacha20_block_xor_ssse3(u32 *state, u8 *dst, const u8 *src);
-asmlinkage void chacha20_4block_xor_ssse3(u32 *state, u8 *dst, const u8 *src);
-#ifdef CONFIG_AS_AVX2
-asmlinkage void chacha20_8block_xor_avx2(u32 *state, u8 *dst, const u8 *src);
-static bool chacha20_use_avx2;
-#endif
-
-static void chacha20_dosimd(u32 *state, u8 *dst, const u8 *src,
-			    unsigned int bytes)
-{
-	u8 buf[CHACHA20_BLOCK_SIZE];
-
-#ifdef CONFIG_AS_AVX2
-	if (chacha20_use_avx2) {
-		while (bytes >= CHACHA20_BLOCK_SIZE * 8) {
-			chacha20_8block_xor_avx2(state, dst, src);
-			bytes -= CHACHA20_BLOCK_SIZE * 8;
-			src += CHACHA20_BLOCK_SIZE * 8;
-			dst += CHACHA20_BLOCK_SIZE * 8;
-			state[12] += 8;
-		}
-	}
-#endif
-	while (bytes >= CHACHA20_BLOCK_SIZE * 4) {
-		chacha20_4block_xor_ssse3(state, dst, src);
-		bytes -= CHACHA20_BLOCK_SIZE * 4;
-		src += CHACHA20_BLOCK_SIZE * 4;
-		dst += CHACHA20_BLOCK_SIZE * 4;
-		state[12] += 4;
-	}
-	while (bytes >= CHACHA20_BLOCK_SIZE) {
-		chacha20_block_xor_ssse3(state, dst, src);
-		bytes -= CHACHA20_BLOCK_SIZE;
-		src += CHACHA20_BLOCK_SIZE;
-		dst += CHACHA20_BLOCK_SIZE;
-		state[12]++;
-	}
-	if (bytes) {
-		memcpy(buf, src, bytes);
-		chacha20_block_xor_ssse3(state, buf, buf);
-		memcpy(dst, buf, bytes);
-	}
-}
-
-static int chacha20_simd(struct skcipher_request *req)
-{
-	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
-	struct chacha20_ctx *ctx = crypto_skcipher_ctx(tfm);
-	u32 *state, state_buf[16 + 2] __aligned(8);
-	struct skcipher_walk walk;
-	int err;
-
-	BUILD_BUG_ON(CHACHA20_STATE_ALIGN != 16);
-	state = PTR_ALIGN(state_buf + 0, CHACHA20_STATE_ALIGN);
-
-	if (req->cryptlen <= CHACHA20_BLOCK_SIZE || !may_use_simd())
-		return crypto_chacha20_crypt(req);
-
-	err = skcipher_walk_virt(&walk, req, true);
-
-	crypto_chacha20_init(state, ctx, walk.iv);
-
-	kernel_fpu_begin();
-
-	while (walk.nbytes >= CHACHA20_BLOCK_SIZE) {
-		chacha20_dosimd(state, walk.dst.virt.addr, walk.src.virt.addr,
-				rounddown(walk.nbytes, CHACHA20_BLOCK_SIZE));
-		err = skcipher_walk_done(&walk,
-					 walk.nbytes % CHACHA20_BLOCK_SIZE);
-	}
-
-	if (walk.nbytes) {
-		chacha20_dosimd(state, walk.dst.virt.addr, walk.src.virt.addr,
-				walk.nbytes);
-		err = skcipher_walk_done(&walk, 0);
-	}
-
-	kernel_fpu_end();
-
-	return err;
-}
-
-static struct skcipher_alg alg = {
-	.base.cra_name		= "chacha20",
-	.base.cra_driver_name	= "chacha20-simd",
-	.base.cra_priority	= 300,
-	.base.cra_blocksize	= 1,
-	.base.cra_ctxsize	= sizeof(struct chacha20_ctx),
-	.base.cra_module	= THIS_MODULE,
-
-	.min_keysize		= CHACHA20_KEY_SIZE,
-	.max_keysize		= CHACHA20_KEY_SIZE,
-	.ivsize			= CHACHA20_IV_SIZE,
-	.chunksize		= CHACHA20_BLOCK_SIZE,
-	.setkey			= crypto_chacha20_setkey,
-	.encrypt		= chacha20_simd,
-	.decrypt		= chacha20_simd,
-};
-
-static int __init chacha20_simd_mod_init(void)
-{
-	if (!boot_cpu_has(X86_FEATURE_SSSE3))
-		return -ENODEV;
-
-#ifdef CONFIG_AS_AVX2
-	chacha20_use_avx2 = boot_cpu_has(X86_FEATURE_AVX) &&
-			    boot_cpu_has(X86_FEATURE_AVX2) &&
-			    cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL);
-#endif
-	return crypto_register_skcipher(&alg);
-}
-
-static void __exit chacha20_simd_mod_fini(void)
-{
-	crypto_unregister_skcipher(&alg);
-}
-
-module_init(chacha20_simd_mod_init);
-module_exit(chacha20_simd_mod_fini);
-
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR("Martin Willi <martin@strongswan.org>");
-MODULE_DESCRIPTION("chacha20 cipher algorithm, SIMD accelerated");
-MODULE_ALIAS_CRYPTO("chacha20");
-MODULE_ALIAS_CRYPTO("chacha20-simd");
diff --git a/arch/x86/crypto/chacha_glue.c b/arch/x86/crypto/chacha_glue.c
new file mode 100644
index 000000000000..45c1c4143176
--- /dev/null
+++ b/arch/x86/crypto/chacha_glue.c
@@ -0,0 +1,304 @@
+/*
+ * x64 SIMD accelerated ChaCha and XChaCha stream ciphers,
+ * including ChaCha20 (RFC7539)
+ *
+ * Copyright (C) 2015 Martin Willi
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ */
+
+#include <crypto/algapi.h>
+#include <crypto/chacha.h>
+#include <crypto/internal/skcipher.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <asm/fpu/api.h>
+#include <asm/simd.h>
+
+#define CHACHA_STATE_ALIGN 16
+
+asmlinkage void chacha_block_xor_ssse3(u32 *state, u8 *dst, const u8 *src,
+				       unsigned int len, int nrounds);
+asmlinkage void chacha_4block_xor_ssse3(u32 *state, u8 *dst, const u8 *src,
+					unsigned int len, int nrounds);
+asmlinkage void hchacha_block_ssse3(const u32 *state, u32 *out, int nrounds);
+#ifdef CONFIG_AS_AVX2
+asmlinkage void chacha_2block_xor_avx2(u32 *state, u8 *dst, const u8 *src,
+				       unsigned int len, int nrounds);
+asmlinkage void chacha_4block_xor_avx2(u32 *state, u8 *dst, const u8 *src,
+				       unsigned int len, int nrounds);
+asmlinkage void chacha_8block_xor_avx2(u32 *state, u8 *dst, const u8 *src,
+				       unsigned int len, int nrounds);
+static bool chacha_use_avx2;
+#ifdef CONFIG_AS_AVX512
+asmlinkage void chacha_2block_xor_avx512vl(u32 *state, u8 *dst, const u8 *src,
+					   unsigned int len, int nrounds);
+asmlinkage void chacha_4block_xor_avx512vl(u32 *state, u8 *dst, const u8 *src,
+					   unsigned int len, int nrounds);
+asmlinkage void chacha_8block_xor_avx512vl(u32 *state, u8 *dst, const u8 *src,
+					   unsigned int len, int nrounds);
+static bool chacha_use_avx512vl;
+#endif
+#endif
+
+static unsigned int chacha_advance(unsigned int len, unsigned int maxblocks)
+{
+	len = min(len, maxblocks * CHACHA_BLOCK_SIZE);
+	return round_up(len, CHACHA_BLOCK_SIZE) / CHACHA_BLOCK_SIZE;
+}
+
+static void chacha_dosimd(u32 *state, u8 *dst, const u8 *src,
+			  unsigned int bytes, int nrounds)
+{
+#ifdef CONFIG_AS_AVX2
+#ifdef CONFIG_AS_AVX512
+	if (chacha_use_avx512vl) {
+		while (bytes >= CHACHA_BLOCK_SIZE * 8) {
+			chacha_8block_xor_avx512vl(state, dst, src, bytes,
+						   nrounds);
+			bytes -= CHACHA_BLOCK_SIZE * 8;
+			src += CHACHA_BLOCK_SIZE * 8;
+			dst += CHACHA_BLOCK_SIZE * 8;
+			state[12] += 8;
+		}
+		if (bytes > CHACHA_BLOCK_SIZE * 4) {
+			chacha_8block_xor_avx512vl(state, dst, src, bytes,
+						   nrounds);
+			state[12] += chacha_advance(bytes, 8);
+			return;
+		}
+		if (bytes > CHACHA_BLOCK_SIZE * 2) {
+			chacha_4block_xor_avx512vl(state, dst, src, bytes,
+						   nrounds);
+			state[12] += chacha_advance(bytes, 4);
+			return;
+		}
+		if (bytes) {
+			chacha_2block_xor_avx512vl(state, dst, src, bytes,
+						   nrounds);
+			state[12] += chacha_advance(bytes, 2);
+			return;
+		}
+	}
+#endif
+	if (chacha_use_avx2) {
+		while (bytes >= CHACHA_BLOCK_SIZE * 8) {
+			chacha_8block_xor_avx2(state, dst, src, bytes, nrounds);
+			bytes -= CHACHA_BLOCK_SIZE * 8;
+			src += CHACHA_BLOCK_SIZE * 8;
+			dst += CHACHA_BLOCK_SIZE * 8;
+			state[12] += 8;
+		}
+		if (bytes > CHACHA_BLOCK_SIZE * 4) {
+			chacha_8block_xor_avx2(state, dst, src, bytes, nrounds);
+			state[12] += chacha_advance(bytes, 8);
+			return;
+		}
+		if (bytes > CHACHA_BLOCK_SIZE * 2) {
+			chacha_4block_xor_avx2(state, dst, src, bytes, nrounds);
+			state[12] += chacha_advance(bytes, 4);
+			return;
+		}
+		if (bytes > CHACHA_BLOCK_SIZE) {
+			chacha_2block_xor_avx2(state, dst, src, bytes, nrounds);
+			state[12] += chacha_advance(bytes, 2);
+			return;
+		}
+	}
+#endif
+	while (bytes >= CHACHA_BLOCK_SIZE * 4) {
+		chacha_4block_xor_ssse3(state, dst, src, bytes, nrounds);
+		bytes -= CHACHA_BLOCK_SIZE * 4;
+		src += CHACHA_BLOCK_SIZE * 4;
+		dst += CHACHA_BLOCK_SIZE * 4;
+		state[12] += 4;
+	}
+	if (bytes > CHACHA_BLOCK_SIZE) {
+		chacha_4block_xor_ssse3(state, dst, src, bytes, nrounds);
+		state[12] += chacha_advance(bytes, 4);
+		return;
+	}
+	if (bytes) {
+		chacha_block_xor_ssse3(state, dst, src, bytes, nrounds);
+		state[12]++;
+	}
+}
+
+static int chacha_simd_stream_xor(struct skcipher_walk *walk,
+				  struct chacha_ctx *ctx, u8 *iv)
+{
+	u32 *state, state_buf[16 + 2] __aligned(8);
+	int next_yield = 4096; /* bytes until next FPU yield */
+	int err = 0;
+
+	BUILD_BUG_ON(CHACHA_STATE_ALIGN != 16);
+	state = PTR_ALIGN(state_buf + 0, CHACHA_STATE_ALIGN);
+
+	crypto_chacha_init(state, ctx, iv);
+
+	while (walk->nbytes > 0) {
+		unsigned int nbytes = walk->nbytes;
+
+		if (nbytes < walk->total) {
+			nbytes = round_down(nbytes, walk->stride);
+			next_yield -= nbytes;
+		}
+
+		chacha_dosimd(state, walk->dst.virt.addr, walk->src.virt.addr,
+			      nbytes, ctx->nrounds);
+
+		if (next_yield <= 0) {
+			/* temporarily allow preemption */
+			kernel_fpu_end();
+			kernel_fpu_begin();
+			next_yield = 4096;
+		}
+
+		err = skcipher_walk_done(walk, walk->nbytes - nbytes);
+	}
+
+	return err;
+}
+
+static int chacha_simd(struct skcipher_request *req)
+{
+	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
+	struct chacha_ctx *ctx = crypto_skcipher_ctx(tfm);
+	struct skcipher_walk walk;
+	int err;
+
+	if (req->cryptlen <= CHACHA_BLOCK_SIZE || !irq_fpu_usable())
+		return crypto_chacha_crypt(req);
+
+	err = skcipher_walk_virt(&walk, req, true);
+	if (err)
+		return err;
+
+	kernel_fpu_begin();
+	err = chacha_simd_stream_xor(&walk, ctx, req->iv);
+	kernel_fpu_end();
+	return err;
+}
+
+static int xchacha_simd(struct skcipher_request *req)
+{
+	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
+	struct chacha_ctx *ctx = crypto_skcipher_ctx(tfm);
+	struct skcipher_walk walk;
+	struct chacha_ctx subctx;
+	u32 *state, state_buf[16 + 2] __aligned(8);
+	u8 real_iv[16];
+	int err;
+
+	if (req->cryptlen <= CHACHA_BLOCK_SIZE || !irq_fpu_usable())
+		return crypto_xchacha_crypt(req);
+
+	err = skcipher_walk_virt(&walk, req, true);
+	if (err)
+		return err;
+
+	BUILD_BUG_ON(CHACHA_STATE_ALIGN != 16);
+	state = PTR_ALIGN(state_buf + 0, CHACHA_STATE_ALIGN);
+	crypto_chacha_init(state, ctx, req->iv);
+
+	kernel_fpu_begin();
+
+	hchacha_block_ssse3(state, subctx.key, ctx->nrounds);
+	subctx.nrounds = ctx->nrounds;
+
+	memcpy(&real_iv[0], req->iv + 24, 8);
+	memcpy(&real_iv[8], req->iv + 16, 8);
+	err = chacha_simd_stream_xor(&walk, &subctx, real_iv);
+
+	kernel_fpu_end();
+
+	return err;
+}
+
+static struct skcipher_alg algs[] = {
+	{
+		.base.cra_name		= "chacha20",
+		.base.cra_driver_name	= "chacha20-simd",
+		.base.cra_priority	= 300,
+		.base.cra_blocksize	= 1,
+		.base.cra_ctxsize	= sizeof(struct chacha_ctx),
+		.base.cra_module	= THIS_MODULE,
+
+		.min_keysize		= CHACHA_KEY_SIZE,
+		.max_keysize		= CHACHA_KEY_SIZE,
+		.ivsize			= CHACHA_IV_SIZE,
+		.chunksize		= CHACHA_BLOCK_SIZE,
+		.setkey			= crypto_chacha20_setkey,
+		.encrypt		= chacha_simd,
+		.decrypt		= chacha_simd,
+	}, {
+		.base.cra_name		= "xchacha20",
+		.base.cra_driver_name	= "xchacha20-simd",
+		.base.cra_priority	= 300,
+		.base.cra_blocksize	= 1,
+		.base.cra_ctxsize	= sizeof(struct chacha_ctx),
+		.base.cra_module	= THIS_MODULE,
+
+		.min_keysize		= CHACHA_KEY_SIZE,
+		.max_keysize		= CHACHA_KEY_SIZE,
+		.ivsize			= XCHACHA_IV_SIZE,
+		.chunksize		= CHACHA_BLOCK_SIZE,
+		.setkey			= crypto_chacha20_setkey,
+		.encrypt		= xchacha_simd,
+		.decrypt		= xchacha_simd,
+	}, {
+		.base.cra_name		= "xchacha12",
+		.base.cra_driver_name	= "xchacha12-simd",
+		.base.cra_priority	= 300,
+		.base.cra_blocksize	= 1,
+		.base.cra_ctxsize	= sizeof(struct chacha_ctx),
+		.base.cra_module	= THIS_MODULE,
+
+		.min_keysize		= CHACHA_KEY_SIZE,
+		.max_keysize		= CHACHA_KEY_SIZE,
+		.ivsize			= XCHACHA_IV_SIZE,
+		.chunksize		= CHACHA_BLOCK_SIZE,
+		.setkey			= crypto_chacha12_setkey,
+		.encrypt		= xchacha_simd,
+		.decrypt		= xchacha_simd,
+	},
+};
+
+static int __init chacha_simd_mod_init(void)
+{
+	if (!boot_cpu_has(X86_FEATURE_SSSE3))
+		return -ENODEV;
+
+#ifdef CONFIG_AS_AVX2
+	chacha_use_avx2 = boot_cpu_has(X86_FEATURE_AVX) &&
+			  boot_cpu_has(X86_FEATURE_AVX2) &&
+			  cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL);
+#ifdef CONFIG_AS_AVX512
+	chacha_use_avx512vl = chacha_use_avx2 &&
+			      boot_cpu_has(X86_FEATURE_AVX512VL) &&
+			      boot_cpu_has(X86_FEATURE_AVX512BW); /* kmovq */
+#endif
+#endif
+	return crypto_register_skciphers(algs, ARRAY_SIZE(algs));
+}
+
+static void __exit chacha_simd_mod_fini(void)
+{
+	crypto_unregister_skciphers(algs, ARRAY_SIZE(algs));
+}
+
+module_init(chacha_simd_mod_init);
+module_exit(chacha_simd_mod_fini);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Martin Willi <martin@strongswan.org>");
+MODULE_DESCRIPTION("ChaCha and XChaCha stream ciphers (x64 SIMD accelerated)");
+MODULE_ALIAS_CRYPTO("chacha20");
+MODULE_ALIAS_CRYPTO("chacha20-simd");
+MODULE_ALIAS_CRYPTO("xchacha20");
+MODULE_ALIAS_CRYPTO("xchacha20-simd");
+MODULE_ALIAS_CRYPTO("xchacha12");
+MODULE_ALIAS_CRYPTO("xchacha12-simd");
diff --git a/arch/x86/crypto/nh-avx2-x86_64.S b/arch/x86/crypto/nh-avx2-x86_64.S
new file mode 100644
index 000000000000..f7946ea1b704
--- /dev/null
+++ b/arch/x86/crypto/nh-avx2-x86_64.S
@@ -0,0 +1,157 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * NH - ε-almost-universal hash function, x86_64 AVX2 accelerated
+ *
+ * Copyright 2018 Google LLC
+ *
+ * Author: Eric Biggers <ebiggers@google.com>
+ */
+
+#include <linux/linkage.h>
+
+#define		PASS0_SUMS	%ymm0
+#define		PASS1_SUMS	%ymm1
+#define		PASS2_SUMS	%ymm2
+#define		PASS3_SUMS	%ymm3
+#define		K0		%ymm4
+#define		K0_XMM		%xmm4
+#define		K1		%ymm5
+#define		K1_XMM		%xmm5
+#define		K2		%ymm6
+#define		K2_XMM		%xmm6
+#define		K3		%ymm7
+#define		K3_XMM		%xmm7
+#define		T0		%ymm8
+#define		T1		%ymm9
+#define		T2		%ymm10
+#define		T2_XMM		%xmm10
+#define		T3		%ymm11
+#define		T3_XMM		%xmm11
+#define		T4		%ymm12
+#define		T5		%ymm13
+#define		T6		%ymm14
+#define		T7		%ymm15
+#define		KEY		%rdi
+#define		MESSAGE		%rsi
+#define		MESSAGE_LEN	%rdx
+#define		HASH		%rcx
+
+.macro _nh_2xstride	k0, k1, k2, k3
+
+	// Add message words to key words
+	vpaddd		\k0, T3, T0
+	vpaddd		\k1, T3, T1
+	vpaddd		\k2, T3, T2
+	vpaddd		\k3, T3, T3
+
+	// Multiply 32x32 => 64 and accumulate
+	vpshufd		$0x10, T0, T4
+	vpshufd		$0x32, T0, T0
+	vpshufd		$0x10, T1, T5
+	vpshufd		$0x32, T1, T1
+	vpshufd		$0x10, T2, T6
+	vpshufd		$0x32, T2, T2
+	vpshufd		$0x10, T3, T7
+	vpshufd		$0x32, T3, T3
+	vpmuludq	T4, T0, T0
+	vpmuludq	T5, T1, T1
+	vpmuludq	T6, T2, T2
+	vpmuludq	T7, T3, T3
+	vpaddq		T0, PASS0_SUMS, PASS0_SUMS
+	vpaddq		T1, PASS1_SUMS, PASS1_SUMS
+	vpaddq		T2, PASS2_SUMS, PASS2_SUMS
+	vpaddq		T3, PASS3_SUMS, PASS3_SUMS
+.endm
+
+/*
+ * void nh_avx2(const u32 *key, const u8 *message, size_t message_len,
+ *		u8 hash[NH_HASH_BYTES])
+ *
+ * It's guaranteed that message_len % 16 == 0.
+ */
+ENTRY(nh_avx2)
+
+	vmovdqu		0x00(KEY), K0
+	vmovdqu		0x10(KEY), K1
+	add		$0x20, KEY
+	vpxor		PASS0_SUMS, PASS0_SUMS, PASS0_SUMS
+	vpxor		PASS1_SUMS, PASS1_SUMS, PASS1_SUMS
+	vpxor		PASS2_SUMS, PASS2_SUMS, PASS2_SUMS
+	vpxor		PASS3_SUMS, PASS3_SUMS, PASS3_SUMS
+
+	sub		$0x40, MESSAGE_LEN
+	jl		.Lloop4_done
+.Lloop4:
+	vmovdqu		(MESSAGE), T3
+	vmovdqu		0x00(KEY), K2
+	vmovdqu		0x10(KEY), K3
+	_nh_2xstride	K0, K1, K2, K3
+
+	vmovdqu		0x20(MESSAGE), T3
+	vmovdqu		0x20(KEY), K0
+	vmovdqu		0x30(KEY), K1
+	_nh_2xstride	K2, K3, K0, K1
+
+	add		$0x40, MESSAGE
+	add		$0x40, KEY
+	sub		$0x40, MESSAGE_LEN
+	jge		.Lloop4
+
+.Lloop4_done:
+	and		$0x3f, MESSAGE_LEN
+	jz		.Ldone
+
+	cmp		$0x20, MESSAGE_LEN
+	jl		.Llast
+
+	// 2 or 3 strides remain; do 2 more.
+	vmovdqu		(MESSAGE), T3
+	vmovdqu		0x00(KEY), K2
+	vmovdqu		0x10(KEY), K3
+	_nh_2xstride	K0, K1, K2, K3
+	add		$0x20, MESSAGE
+	add		$0x20, KEY
+	sub		$0x20, MESSAGE_LEN
+	jz		.Ldone
+	vmovdqa		K2, K0
+	vmovdqa		K3, K1
+.Llast:
+	// Last stride.  Zero the high 128 bits of the message and keys so they
+	// don't affect the result when processing them like 2 strides.
+	vmovdqu		(MESSAGE), T3_XMM
+	vmovdqa		K0_XMM, K0_XMM
+	vmovdqa		K1_XMM, K1_XMM
+	vmovdqu		0x00(KEY), K2_XMM
+	vmovdqu		0x10(KEY), K3_XMM
+	_nh_2xstride	K0, K1, K2, K3
+
+.Ldone:
+	// Sum the accumulators for each pass, then store the sums to 'hash'
+
+	// PASS0_SUMS is (0A 0B 0C 0D)
+	// PASS1_SUMS is (1A 1B 1C 1D)
+	// PASS2_SUMS is (2A 2B 2C 2D)
+	// PASS3_SUMS is (3A 3B 3C 3D)
+	// We need the horizontal sums:
+	//     (0A + 0B + 0C + 0D,
+	//	1A + 1B + 1C + 1D,
+	//	2A + 2B + 2C + 2D,
+	//	3A + 3B + 3C + 3D)
+	//
+
+	vpunpcklqdq	PASS1_SUMS, PASS0_SUMS, T0	// T0 = (0A 1A 0C 1C)
+	vpunpckhqdq	PASS1_SUMS, PASS0_SUMS, T1	// T1 = (0B 1B 0D 1D)
+	vpunpcklqdq	PASS3_SUMS, PASS2_SUMS, T2	// T2 = (2A 3A 2C 3C)
+	vpunpckhqdq	PASS3_SUMS, PASS2_SUMS, T3	// T3 = (2B 3B 2D 3D)
+
+	vinserti128	$0x1, T2_XMM, T0, T4		// T4 = (0A 1A 2A 3A)
+	vinserti128	$0x1, T3_XMM, T1, T5		// T5 = (0B 1B 2B 3B)
+	vperm2i128	$0x31, T2, T0, T0		// T0 = (0C 1C 2C 3C)
+	vperm2i128	$0x31, T3, T1, T1		// T1 = (0D 1D 2D 3D)
+
+	vpaddq		T5, T4, T4
+	vpaddq		T1, T0, T0
+	vpaddq		T4, T0, T0
+	vmovdqu		T0, (HASH)
+	ret
+ENDPROC(nh_avx2)
diff --git a/arch/x86/crypto/nh-sse2-x86_64.S b/arch/x86/crypto/nh-sse2-x86_64.S
new file mode 100644
index 000000000000..51f52d4ab4bb
--- /dev/null
+++ b/arch/x86/crypto/nh-sse2-x86_64.S
@@ -0,0 +1,123 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * NH - ε-almost-universal hash function, x86_64 SSE2 accelerated
+ *
+ * Copyright 2018 Google LLC
+ *
+ * Author: Eric Biggers <ebiggers@google.com>
+ */
+
+#include <linux/linkage.h>
+
+#define		PASS0_SUMS	%xmm0
+#define		PASS1_SUMS	%xmm1
+#define		PASS2_SUMS	%xmm2
+#define		PASS3_SUMS	%xmm3
+#define		K0		%xmm4
+#define		K1		%xmm5
+#define		K2		%xmm6
+#define		K3		%xmm7
+#define		T0		%xmm8
+#define		T1		%xmm9
+#define		T2		%xmm10
+#define		T3		%xmm11
+#define		T4		%xmm12
+#define		T5		%xmm13
+#define		T6		%xmm14
+#define		T7		%xmm15
+#define		KEY		%rdi
+#define		MESSAGE		%rsi
+#define		MESSAGE_LEN	%rdx
+#define		HASH		%rcx
+
+.macro _nh_stride	k0, k1, k2, k3, offset
+
+	// Load next message stride
+	movdqu		\offset(MESSAGE), T1
+
+	// Load next key stride
+	movdqu		\offset(KEY), \k3
+
+	// Add message words to key words
+	movdqa		T1, T2
+	movdqa		T1, T3
+	paddd		T1, \k0    // reuse k0 to avoid a move
+	paddd		\k1, T1
+	paddd		\k2, T2
+	paddd		\k3, T3
+
+	// Multiply 32x32 => 64 and accumulate
+	pshufd		$0x10, \k0, T4
+	pshufd		$0x32, \k0, \k0
+	pshufd		$0x10, T1, T5
+	pshufd		$0x32, T1, T1
+	pshufd		$0x10, T2, T6
+	pshufd		$0x32, T2, T2
+	pshufd		$0x10, T3, T7
+	pshufd		$0x32, T3, T3
+	pmuludq		T4, \k0
+	pmuludq		T5, T1
+	pmuludq		T6, T2
+	pmuludq		T7, T3
+	paddq		\k0, PASS0_SUMS
+	paddq		T1, PASS1_SUMS
+	paddq		T2, PASS2_SUMS
+	paddq		T3, PASS3_SUMS
+.endm
+
+/*
+ * void nh_sse2(const u32 *key, const u8 *message, size_t message_len,
+ *		u8 hash[NH_HASH_BYTES])
+ *
+ * It's guaranteed that message_len % 16 == 0.
+ */
+ENTRY(nh_sse2)
+
+	movdqu		0x00(KEY), K0
+	movdqu		0x10(KEY), K1
+	movdqu		0x20(KEY), K2
+	add		$0x30, KEY
+	pxor		PASS0_SUMS, PASS0_SUMS
+	pxor		PASS1_SUMS, PASS1_SUMS
+	pxor		PASS2_SUMS, PASS2_SUMS
+	pxor		PASS3_SUMS, PASS3_SUMS
+
+	sub		$0x40, MESSAGE_LEN
+	jl		.Lloop4_done
+.Lloop4:
+	_nh_stride	K0, K1, K2, K3, 0x00
+	_nh_stride	K1, K2, K3, K0, 0x10
+	_nh_stride	K2, K3, K0, K1, 0x20
+	_nh_stride	K3, K0, K1, K2, 0x30
+	add		$0x40, KEY
+	add		$0x40, MESSAGE
+	sub		$0x40, MESSAGE_LEN
+	jge		.Lloop4
+
+.Lloop4_done:
+	and		$0x3f, MESSAGE_LEN
+	jz		.Ldone
+	_nh_stride	K0, K1, K2, K3, 0x00
+
+	sub		$0x10, MESSAGE_LEN
+	jz		.Ldone
+	_nh_stride	K1, K2, K3, K0, 0x10
+
+	sub		$0x10, MESSAGE_LEN
+	jz		.Ldone
+	_nh_stride	K2, K3, K0, K1, 0x20
+
+.Ldone:
+	// Sum the accumulators for each pass, then store the sums to 'hash'
+	movdqa		PASS0_SUMS, T0
+	movdqa		PASS2_SUMS, T1
+	punpcklqdq	PASS1_SUMS, T0		// => (PASS0_SUM_A PASS1_SUM_A)
+	punpcklqdq	PASS3_SUMS, T1		// => (PASS2_SUM_A PASS3_SUM_A)
+	punpckhqdq	PASS1_SUMS, PASS0_SUMS	// => (PASS0_SUM_B PASS1_SUM_B)
+	punpckhqdq	PASS3_SUMS, PASS2_SUMS	// => (PASS2_SUM_B PASS3_SUM_B)
+	paddq		PASS0_SUMS, T0
+	paddq		PASS2_SUMS, T1
+	movdqu		T0, 0x00(HASH)
+	movdqu		T1, 0x10(HASH)
+	ret
+ENDPROC(nh_sse2)
diff --git a/arch/x86/crypto/nhpoly1305-avx2-glue.c b/arch/x86/crypto/nhpoly1305-avx2-glue.c
new file mode 100644
index 000000000000..20d815ea4b6a
--- /dev/null
+++ b/arch/x86/crypto/nhpoly1305-avx2-glue.c
@@ -0,0 +1,77 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * NHPoly1305 - ε-almost-∆-universal hash function for Adiantum
+ * (AVX2 accelerated version)
+ *
+ * Copyright 2018 Google LLC
+ */
+
+#include <crypto/internal/hash.h>
+#include <crypto/nhpoly1305.h>
+#include <linux/module.h>
+#include <asm/fpu/api.h>
+
+asmlinkage void nh_avx2(const u32 *key, const u8 *message, size_t message_len,
+			u8 hash[NH_HASH_BYTES]);
+
+/* wrapper to avoid indirect call to assembly, which doesn't work with CFI */
+static void _nh_avx2(const u32 *key, const u8 *message, size_t message_len,
+		     __le64 hash[NH_NUM_PASSES])
+{
+	nh_avx2(key, message, message_len, (u8 *)hash);
+}
+
+static int nhpoly1305_avx2_update(struct shash_desc *desc,
+				  const u8 *src, unsigned int srclen)
+{
+	if (srclen < 64 || !irq_fpu_usable())
+		return crypto_nhpoly1305_update(desc, src, srclen);
+
+	do {
+		unsigned int n = min_t(unsigned int, srclen, PAGE_SIZE);
+
+		kernel_fpu_begin();
+		crypto_nhpoly1305_update_helper(desc, src, n, _nh_avx2);
+		kernel_fpu_end();
+		src += n;
+		srclen -= n;
+	} while (srclen);
+	return 0;
+}
+
+static struct shash_alg nhpoly1305_alg = {
+	.base.cra_name		= "nhpoly1305",
+	.base.cra_driver_name	= "nhpoly1305-avx2",
+	.base.cra_priority	= 300,
+	.base.cra_ctxsize	= sizeof(struct nhpoly1305_key),
+	.base.cra_module	= THIS_MODULE,
+	.digestsize		= POLY1305_DIGEST_SIZE,
+	.init			= crypto_nhpoly1305_init,
+	.update			= nhpoly1305_avx2_update,
+	.final			= crypto_nhpoly1305_final,
+	.setkey			= crypto_nhpoly1305_setkey,
+	.descsize		= sizeof(struct nhpoly1305_state),
+};
+
+static int __init nhpoly1305_mod_init(void)
+{
+	if (!boot_cpu_has(X86_FEATURE_AVX2) ||
+	    !boot_cpu_has(X86_FEATURE_OSXSAVE))
+		return -ENODEV;
+
+	return crypto_register_shash(&nhpoly1305_alg);
+}
+
+static void __exit nhpoly1305_mod_exit(void)
+{
+	crypto_unregister_shash(&nhpoly1305_alg);
+}
+
+module_init(nhpoly1305_mod_init);
+module_exit(nhpoly1305_mod_exit);
+
+MODULE_DESCRIPTION("NHPoly1305 ε-almost-∆-universal hash function (AVX2-accelerated)");
+MODULE_LICENSE("GPL v2");
+MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>");
+MODULE_ALIAS_CRYPTO("nhpoly1305");
+MODULE_ALIAS_CRYPTO("nhpoly1305-avx2");
diff --git a/arch/x86/crypto/nhpoly1305-sse2-glue.c b/arch/x86/crypto/nhpoly1305-sse2-glue.c
new file mode 100644
index 000000000000..ed68d164ce14
--- /dev/null
+++ b/arch/x86/crypto/nhpoly1305-sse2-glue.c
@@ -0,0 +1,76 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * NHPoly1305 - ε-almost-∆-universal hash function for Adiantum
+ * (SSE2 accelerated version)
+ *
+ * Copyright 2018 Google LLC
+ */
+
+#include <crypto/internal/hash.h>
+#include <crypto/nhpoly1305.h>
+#include <linux/module.h>
+#include <asm/fpu/api.h>
+
+asmlinkage void nh_sse2(const u32 *key, const u8 *message, size_t message_len,
+			u8 hash[NH_HASH_BYTES]);
+
+/* wrapper to avoid indirect call to assembly, which doesn't work with CFI */
+static void _nh_sse2(const u32 *key, const u8 *message, size_t message_len,
+		     __le64 hash[NH_NUM_PASSES])
+{
+	nh_sse2(key, message, message_len, (u8 *)hash);
+}
+
+static int nhpoly1305_sse2_update(struct shash_desc *desc,
+				  const u8 *src, unsigned int srclen)
+{
+	if (srclen < 64 || !irq_fpu_usable())
+		return crypto_nhpoly1305_update(desc, src, srclen);
+
+	do {
+		unsigned int n = min_t(unsigned int, srclen, PAGE_SIZE);
+
+		kernel_fpu_begin();
+		crypto_nhpoly1305_update_helper(desc, src, n, _nh_sse2);
+		kernel_fpu_end();
+		src += n;
+		srclen -= n;
+	} while (srclen);
+	return 0;
+}
+
+static struct shash_alg nhpoly1305_alg = {
+	.base.cra_name		= "nhpoly1305",
+	.base.cra_driver_name	= "nhpoly1305-sse2",
+	.base.cra_priority	= 200,
+	.base.cra_ctxsize	= sizeof(struct nhpoly1305_key),
+	.base.cra_module	= THIS_MODULE,
+	.digestsize		= POLY1305_DIGEST_SIZE,
+	.init			= crypto_nhpoly1305_init,
+	.update			= nhpoly1305_sse2_update,
+	.final			= crypto_nhpoly1305_final,
+	.setkey			= crypto_nhpoly1305_setkey,
+	.descsize		= sizeof(struct nhpoly1305_state),
+};
+
+static int __init nhpoly1305_mod_init(void)
+{
+	if (!boot_cpu_has(X86_FEATURE_XMM2))
+		return -ENODEV;
+
+	return crypto_register_shash(&nhpoly1305_alg);
+}
+
+static void __exit nhpoly1305_mod_exit(void)
+{
+	crypto_unregister_shash(&nhpoly1305_alg);
+}
+
+module_init(nhpoly1305_mod_init);
+module_exit(nhpoly1305_mod_exit);
+
+MODULE_DESCRIPTION("NHPoly1305 ε-almost-∆-universal hash function (SSE2-accelerated)");
+MODULE_LICENSE("GPL v2");
+MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>");
+MODULE_ALIAS_CRYPTO("nhpoly1305");
+MODULE_ALIAS_CRYPTO("nhpoly1305-sse2");
diff --git a/arch/x86/crypto/poly1305_glue.c b/arch/x86/crypto/poly1305_glue.c
index f012b7e28ad1..88cc01506c84 100644
--- a/arch/x86/crypto/poly1305_glue.c
+++ b/arch/x86/crypto/poly1305_glue.c
@@ -83,35 +83,37 @@ static unsigned int poly1305_simd_blocks(struct poly1305_desc_ctx *dctx,
 	if (poly1305_use_avx2 && srclen >= POLY1305_BLOCK_SIZE * 4) {
 		if (unlikely(!sctx->wset)) {
 			if (!sctx->uset) {
-				memcpy(sctx->u, dctx->r, sizeof(sctx->u));
-				poly1305_simd_mult(sctx->u, dctx->r);
+				memcpy(sctx->u, dctx->r.r, sizeof(sctx->u));
+				poly1305_simd_mult(sctx->u, dctx->r.r);
 				sctx->uset = true;
 			}
 			memcpy(sctx->u + 5, sctx->u, sizeof(sctx->u));
-			poly1305_simd_mult(sctx->u + 5, dctx->r);
+			poly1305_simd_mult(sctx->u + 5, dctx->r.r);
 			memcpy(sctx->u + 10, sctx->u + 5, sizeof(sctx->u));
-			poly1305_simd_mult(sctx->u + 10, dctx->r);
+			poly1305_simd_mult(sctx->u + 10, dctx->r.r);
 			sctx->wset = true;
 		}
 		blocks = srclen / (POLY1305_BLOCK_SIZE * 4);
-		poly1305_4block_avx2(dctx->h, src, dctx->r, blocks, sctx->u);
+		poly1305_4block_avx2(dctx->h.h, src, dctx->r.r, blocks,
+				     sctx->u);
 		src += POLY1305_BLOCK_SIZE * 4 * blocks;
 		srclen -= POLY1305_BLOCK_SIZE * 4 * blocks;
 	}
 #endif
 	if (likely(srclen >= POLY1305_BLOCK_SIZE * 2)) {
 		if (unlikely(!sctx->uset)) {
-			memcpy(sctx->u, dctx->r, sizeof(sctx->u));
-			poly1305_simd_mult(sctx->u, dctx->r);
+			memcpy(sctx->u, dctx->r.r, sizeof(sctx->u));
+			poly1305_simd_mult(sctx->u, dctx->r.r);
 			sctx->uset = true;
 		}
 		blocks = srclen / (POLY1305_BLOCK_SIZE * 2);
-		poly1305_2block_sse2(dctx->h, src, dctx->r, blocks, sctx->u);
+		poly1305_2block_sse2(dctx->h.h, src, dctx->r.r, blocks,
+				     sctx->u);
 		src += POLY1305_BLOCK_SIZE * 2 * blocks;
 		srclen -= POLY1305_BLOCK_SIZE * 2 * blocks;
 	}
 	if (srclen >= POLY1305_BLOCK_SIZE) {
-		poly1305_block_sse2(dctx->h, src, dctx->r, 1);
+		poly1305_block_sse2(dctx->h.h, src, dctx->r.r, 1);
 		srclen -= POLY1305_BLOCK_SIZE;
 	}
 	return srclen;
diff --git a/arch/x86/entry/calling.h b/arch/x86/entry/calling.h
index 25e5a6bda8c3..20d0885b00fb 100644
--- a/arch/x86/entry/calling.h
+++ b/arch/x86/entry/calling.h
@@ -352,7 +352,7 @@ For 32-bit we have the following conventions - kernel is built with
 .macro CALL_enter_from_user_mode
 #ifdef CONFIG_CONTEXT_TRACKING
 #ifdef HAVE_JUMP_LABEL
-	STATIC_BRANCH_JMP l_yes=.Lafter_call_\@, key=context_tracking_enabled, branch=1
+	STATIC_JUMP_IF_FALSE .Lafter_call_\@, context_tracking_enabled, def=0
 #endif
 	call enter_from_user_mode
 .Lafter_call_\@:
diff --git a/arch/x86/entry/common.c b/arch/x86/entry/common.c
index 3b2490b81918..7bc105f47d21 100644
--- a/arch/x86/entry/common.c
+++ b/arch/x86/entry/common.c
@@ -140,7 +140,7 @@ static void exit_to_usermode_loop(struct pt_regs *regs, u32 cached_flags)
 	/*
 	 * In order to return to user mode, we need to have IRQs off with
 	 * none of EXIT_TO_USERMODE_LOOP_FLAGS set.  Several of these flags
-	 * can be set at any time on preemptable kernels if we have IRQs on,
+	 * can be set at any time on preemptible kernels if we have IRQs on,
 	 * so we need to loop.  Disabling preemption wouldn't help: doing the
 	 * work to clear some of the flags can sleep.
 	 */
diff --git a/arch/x86/entry/entry_64.S b/arch/x86/entry/entry_64.S
index ce25d84023c0..1f0efdb7b629 100644
--- a/arch/x86/entry/entry_64.S
+++ b/arch/x86/entry/entry_64.S
@@ -566,6 +566,7 @@ ENTRY(interrupt_entry)
 
 	ret
 END(interrupt_entry)
+_ASM_NOKPROBE(interrupt_entry)
 
 
 /* Interrupt entry/exit. */
@@ -766,6 +767,7 @@ native_irq_return_ldt:
 	jmp	native_irq_return_iret
 #endif
 END(common_interrupt)
+_ASM_NOKPROBE(common_interrupt)
 
 /*
  * APIC interrupts.
@@ -780,6 +782,7 @@ ENTRY(\sym)
 	call	\do_sym	/* rdi points to pt_regs */
 	jmp	ret_from_intr
 END(\sym)
+_ASM_NOKPROBE(\sym)
 .endm
 
 /* Make sure APIC interrupt handlers end up in the irqentry section: */
@@ -960,6 +963,7 @@ ENTRY(\sym)
 
 	jmp	error_exit
 	.endif
+_ASM_NOKPROBE(\sym)
 END(\sym)
 .endm
 
diff --git a/arch/x86/entry/vdso/Makefile b/arch/x86/entry/vdso/Makefile
index 141d415a8c80..5bfe2243a08f 100644
--- a/arch/x86/entry/vdso/Makefile
+++ b/arch/x86/entry/vdso/Makefile
@@ -47,7 +47,7 @@ targets += $(vdso_img_sodbg) $(vdso_img-y:%=vdso%.so)
 CPPFLAGS_vdso.lds += -P -C
 
 VDSO_LDFLAGS_vdso.lds = -m elf_x86_64 -soname linux-vdso.so.1 --no-undefined \
-			-z max-page-size=4096 -z common-page-size=4096
+			-z max-page-size=4096
 
 $(obj)/vdso64.so.dbg: $(obj)/vdso.lds $(vobjs) FORCE
 	$(call if_changed,vdso)
@@ -98,7 +98,7 @@ CFLAGS_REMOVE_vvar.o = -pg
 
 CPPFLAGS_vdsox32.lds = $(CPPFLAGS_vdso.lds)
 VDSO_LDFLAGS_vdsox32.lds = -m elf32_x86_64 -soname linux-vdso.so.1 \
-			   -z max-page-size=4096 -z common-page-size=4096
+			   -z max-page-size=4096
 
 # x32-rebranded versions
 vobjx32s-y := $(vobjs-y:.o=-x32.o)
@@ -171,7 +171,8 @@ quiet_cmd_vdso = VDSO    $@
 		 sh $(srctree)/$(src)/checkundef.sh '$(NM)' '$@'
 
 VDSO_LDFLAGS = -shared $(call ld-option, --hash-style=both) \
-	$(call ld-option, --build-id) -Bsymbolic
+	$(call ld-option, --build-id) $(call ld-option, --eh-frame-hdr) \
+	-Bsymbolic
 GCOV_PROFILE := n
 
 #
diff --git a/arch/x86/entry/vdso/vdso-layout.lds.S b/arch/x86/entry/vdso/vdso-layout.lds.S
index acfd5ba7d943..93c6dc7812d0 100644
--- a/arch/x86/entry/vdso/vdso-layout.lds.S
+++ b/arch/x86/entry/vdso/vdso-layout.lds.S
@@ -7,16 +7,6 @@
  * This script controls its layout.
  */
 
-#if defined(BUILD_VDSO64)
-# define SHDR_SIZE 64
-#elif defined(BUILD_VDSO32) || defined(BUILD_VDSOX32)
-# define SHDR_SIZE 40
-#else
-# error unknown VDSO target
-#endif
-
-#define NUM_FAKE_SHDRS 13
-
 SECTIONS
 {
 	/*
@@ -60,20 +50,8 @@ SECTIONS
 		*(.bss*)
 		*(.dynbss*)
 		*(.gnu.linkonce.b.*)
-
-		/*
-		 * Ideally this would live in a C file, but that won't
-		 * work cleanly for x32 until we start building the x32
-		 * C code using an x32 toolchain.
-		 */
-		VDSO_FAKE_SECTION_TABLE_START = .;
-		. = . + NUM_FAKE_SHDRS * SHDR_SIZE;
-		VDSO_FAKE_SECTION_TABLE_END = .;
 	}						:text
 
-	.fake_shstrtab	: { *(.fake_shstrtab) }		:text
-
-
 	.note		: { *(.note.*) }		:text	:note
 
 	.eh_frame_hdr	: { *(.eh_frame_hdr) }		:text	:eh_frame_hdr
@@ -87,11 +65,6 @@ SECTIONS
 
 	.text		: { *(.text*) }			:text	=0x90909090,
 
-	/*
-	 * At the end so that eu-elflint stays happy when vdso2c strips
-	 * these.  A better implementation would avoid allocating space
-	 * for these.
-	 */
 	.altinstructions	: { *(.altinstructions) }	:text
 	.altinstr_replacement	: { *(.altinstr_replacement) }	:text
 
diff --git a/arch/x86/entry/vdso/vdso2c.c b/arch/x86/entry/vdso/vdso2c.c
index 4674f58581a1..8e470b018512 100644
--- a/arch/x86/entry/vdso/vdso2c.c
+++ b/arch/x86/entry/vdso/vdso2c.c
@@ -76,8 +76,6 @@ enum {
 	sym_hpet_page,
 	sym_pvclock_page,
 	sym_hvclock_page,
-	sym_VDSO_FAKE_SECTION_TABLE_START,
-	sym_VDSO_FAKE_SECTION_TABLE_END,
 };
 
 const int special_pages[] = {
@@ -98,12 +96,6 @@ struct vdso_sym required_syms[] = {
 	[sym_hpet_page] = {"hpet_page", true},
 	[sym_pvclock_page] = {"pvclock_page", true},
 	[sym_hvclock_page] = {"hvclock_page", true},
-	[sym_VDSO_FAKE_SECTION_TABLE_START] = {
-		"VDSO_FAKE_SECTION_TABLE_START", false
-	},
-	[sym_VDSO_FAKE_SECTION_TABLE_END] = {
-		"VDSO_FAKE_SECTION_TABLE_END", false
-	},
 	{"VDSO32_NOTE_MASK", true},
 	{"__kernel_vsyscall", true},
 	{"__kernel_sigreturn", true},
diff --git a/arch/x86/entry/vdso/vma.c b/arch/x86/entry/vdso/vma.c
index 7eb878561910..babc4e7a519c 100644
--- a/arch/x86/entry/vdso/vma.c
+++ b/arch/x86/entry/vdso/vma.c
@@ -261,7 +261,7 @@ int map_vdso_once(const struct vdso_image *image, unsigned long addr)
 	 * abusing from userspace install_speciall_mapping, which may
 	 * not do accounting and rlimit right.
 	 * We could search vma near context.vdso, but it's a slowpath,
-	 * so let's explicitely check all VMAs to be completely sure.
+	 * so let's explicitly check all VMAs to be completely sure.
 	 */
 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 		if (vma_is_special_mapping(vma, &vdso_mapping) ||
diff --git a/arch/x86/entry/vsyscall/vsyscall_64.c b/arch/x86/entry/vsyscall/vsyscall_64.c
index 85fd85d52ffd..d9d81ad7a400 100644
--- a/arch/x86/entry/vsyscall/vsyscall_64.c
+++ b/arch/x86/entry/vsyscall/vsyscall_64.c
@@ -99,10 +99,10 @@ static bool write_ok_or_segv(unsigned long ptr, size_t size)
 	 * sig_on_uaccess_err, this could go away.
 	 */
 
-	if (!access_ok(VERIFY_WRITE, (void __user *)ptr, size)) {
+	if (!access_ok((void __user *)ptr, size)) {
 		struct thread_struct *thread = &current->thread;
 
-		thread->error_code	= 6;  /* user fault, no page, write */
+		thread->error_code	= X86_PF_USER | X86_PF_WRITE;
 		thread->cr2		= ptr;
 		thread->trap_nr		= X86_TRAP_PF;
 
diff --git a/arch/x86/events/core.c b/arch/x86/events/core.c
index 106911b603bd..374a19712e20 100644
--- a/arch/x86/events/core.c
+++ b/arch/x86/events/core.c
@@ -438,26 +438,6 @@ int x86_setup_perfctr(struct perf_event *event)
 	if (config == -1LL)
 		return -EINVAL;
 
-	/*
-	 * Branch tracing:
-	 */
-	if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
-	    !attr->freq && hwc->sample_period == 1) {
-		/* BTS is not supported by this architecture. */
-		if (!x86_pmu.bts_active)
-			return -EOPNOTSUPP;
-
-		/* BTS is currently only allowed for user-mode. */
-		if (!attr->exclude_kernel)
-			return -EOPNOTSUPP;
-
-		/* disallow bts if conflicting events are present */
-		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
-			return -EBUSY;
-
-		event->destroy = hw_perf_lbr_event_destroy;
-	}
-
 	hwc->config |= config;
 
 	return 0;
diff --git a/arch/x86/events/intel/bts.c b/arch/x86/events/intel/bts.c
index 24ffa1e88cf9..a01ef1b0f883 100644
--- a/arch/x86/events/intel/bts.c
+++ b/arch/x86/events/intel/bts.c
@@ -589,7 +589,7 @@ static __init int bts_init(void)
 		 * the AUX buffer.
 		 *
 		 * However, since this driver supports per-CPU and per-task inherit
-		 * we cannot use the user mapping since it will not be availble
+		 * we cannot use the user mapping since it will not be available
 		 * if we're not running the owning process.
 		 *
 		 * With PTI we can't use the kernal map either, because its not
diff --git a/arch/x86/events/intel/core.c b/arch/x86/events/intel/core.c
index 273c62e81546..40e12cfc87f6 100644
--- a/arch/x86/events/intel/core.c
+++ b/arch/x86/events/intel/core.c
@@ -1930,7 +1930,7 @@ static void intel_pmu_enable_all(int added)
  *   in sequence on the same PMC or on different PMCs.
  *
  * In practise it appears some of these events do in fact count, and
- * we need to programm all 4 events.
+ * we need to program all 4 events.
  */
 static void intel_pmu_nhm_workaround(void)
 {
@@ -2306,14 +2306,18 @@ static int handle_pmi_common(struct pt_regs *regs, u64 status)
 	return handled;
 }
 
-static bool disable_counter_freezing;
+static bool disable_counter_freezing = true;
 static int __init intel_perf_counter_freezing_setup(char *s)
 {
-	disable_counter_freezing = true;
-	pr_info("Intel PMU Counter freezing feature disabled\n");
+	bool res;
+
+	if (kstrtobool(s, &res))
+		return -EINVAL;
+
+	disable_counter_freezing = !res;
 	return 1;
 }
-__setup("disable_counter_freezing", intel_perf_counter_freezing_setup);
+__setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
 
 /*
  * Simplified handler for Arch Perfmon v4:
@@ -2470,16 +2474,7 @@ done:
 static struct event_constraint *
 intel_bts_constraints(struct perf_event *event)
 {
-	struct hw_perf_event *hwc = &event->hw;
-	unsigned int hw_event, bts_event;
-
-	if (event->attr.freq)
-		return NULL;
-
-	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
-	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
-
-	if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
+	if (unlikely(intel_pmu_has_bts(event)))
 		return &bts_constraint;
 
 	return NULL;
@@ -3098,6 +3093,43 @@ static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
 	return flags;
 }
 
+static int intel_pmu_bts_config(struct perf_event *event)
+{
+	struct perf_event_attr *attr = &event->attr;
+
+	if (unlikely(intel_pmu_has_bts(event))) {
+		/* BTS is not supported by this architecture. */
+		if (!x86_pmu.bts_active)
+			return -EOPNOTSUPP;
+
+		/* BTS is currently only allowed for user-mode. */
+		if (!attr->exclude_kernel)
+			return -EOPNOTSUPP;
+
+		/* BTS is not allowed for precise events. */
+		if (attr->precise_ip)
+			return -EOPNOTSUPP;
+
+		/* disallow bts if conflicting events are present */
+		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
+			return -EBUSY;
+
+		event->destroy = hw_perf_lbr_event_destroy;
+	}
+
+	return 0;
+}
+
+static int core_pmu_hw_config(struct perf_event *event)
+{
+	int ret = x86_pmu_hw_config(event);
+
+	if (ret)
+		return ret;
+
+	return intel_pmu_bts_config(event);
+}
+
 static int intel_pmu_hw_config(struct perf_event *event)
 {
 	int ret = x86_pmu_hw_config(event);
@@ -3105,6 +3137,10 @@ static int intel_pmu_hw_config(struct perf_event *event)
 	if (ret)
 		return ret;
 
+	ret = intel_pmu_bts_config(event);
+	if (ret)
+		return ret;
+
 	if (event->attr.precise_ip) {
 		if (!event->attr.freq) {
 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
@@ -3127,7 +3163,7 @@ static int intel_pmu_hw_config(struct perf_event *event)
 		/*
 		 * BTS is set up earlier in this path, so don't account twice
 		 */
-		if (!intel_pmu_has_bts(event)) {
+		if (!unlikely(intel_pmu_has_bts(event))) {
 			/* disallow lbr if conflicting events are present */
 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
 				return -EBUSY;
@@ -3596,7 +3632,7 @@ static __initconst const struct x86_pmu core_pmu = {
 	.enable_all		= core_pmu_enable_all,
 	.enable			= core_pmu_enable_event,
 	.disable		= x86_pmu_disable_event,
-	.hw_config		= x86_pmu_hw_config,
+	.hw_config		= core_pmu_hw_config,
 	.schedule_events	= x86_schedule_events,
 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
diff --git a/arch/x86/events/intel/ds.c b/arch/x86/events/intel/ds.c
index b7b01d762d32..e9acf1d2e7b2 100644
--- a/arch/x86/events/intel/ds.c
+++ b/arch/x86/events/intel/ds.c
@@ -1199,7 +1199,7 @@ static void setup_pebs_sample_data(struct perf_event *event,
 	/*
 	 * We must however always use iregs for the unwinder to stay sane; the
 	 * record BP,SP,IP can point into thin air when the record is from a
-	 * previous PMI context or an (I)RET happend between the record and
+	 * previous PMI context or an (I)RET happened between the record and
 	 * PMI.
 	 */
 	if (sample_type & PERF_SAMPLE_CALLCHAIN)
diff --git a/arch/x86/events/intel/p4.c b/arch/x86/events/intel/p4.c
index d32c0eed38ca..dee579efb2b2 100644
--- a/arch/x86/events/intel/p4.c
+++ b/arch/x86/events/intel/p4.c
@@ -1259,7 +1259,7 @@ again:
 		}
 		/*
 		 * Perf does test runs to see if a whole group can be assigned
-		 * together succesfully.  There can be multiple rounds of this.
+		 * together successfully.  There can be multiple rounds of this.
 		 * Unfortunately, p4_pmu_swap_config_ts touches the hwc->config
 		 * bits, such that the next round of group assignments will
 		 * cause the above p4_should_swap_ts to pass instead of fail.
diff --git a/arch/x86/events/intel/pt.c b/arch/x86/events/intel/pt.c
index 3a0aa83cbd07..9494ca68fd9d 100644
--- a/arch/x86/events/intel/pt.c
+++ b/arch/x86/events/intel/pt.c
@@ -68,6 +68,7 @@ static struct pt_cap_desc {
 	PT_CAP(topa_output,		0, CPUID_ECX, BIT(0)),
 	PT_CAP(topa_multiple_entries,	0, CPUID_ECX, BIT(1)),
 	PT_CAP(single_range_output,	0, CPUID_ECX, BIT(2)),
+	PT_CAP(output_subsys,		0, CPUID_ECX, BIT(3)),
 	PT_CAP(payloads_lip,		0, CPUID_ECX, BIT(31)),
 	PT_CAP(num_address_ranges,	1, CPUID_EAX, 0x3),
 	PT_CAP(mtc_periods,		1, CPUID_EAX, 0xffff0000),
@@ -75,14 +76,21 @@ static struct pt_cap_desc {
 	PT_CAP(psb_periods,		1, CPUID_EBX, 0xffff0000),
 };
 
-static u32 pt_cap_get(enum pt_capabilities cap)
+u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability)
 {
-	struct pt_cap_desc *cd = &pt_caps[cap];
-	u32 c = pt_pmu.caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
+	struct pt_cap_desc *cd = &pt_caps[capability];
+	u32 c = caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
 	unsigned int shift = __ffs(cd->mask);
 
 	return (c & cd->mask) >> shift;
 }
+EXPORT_SYMBOL_GPL(intel_pt_validate_cap);
+
+u32 intel_pt_validate_hw_cap(enum pt_capabilities cap)
+{
+	return intel_pt_validate_cap(pt_pmu.caps, cap);
+}
+EXPORT_SYMBOL_GPL(intel_pt_validate_hw_cap);
 
 static ssize_t pt_cap_show(struct device *cdev,
 			   struct device_attribute *attr,
@@ -92,7 +100,7 @@ static ssize_t pt_cap_show(struct device *cdev,
 		container_of(attr, struct dev_ext_attribute, attr);
 	enum pt_capabilities cap = (long)ea->var;
 
-	return snprintf(buf, PAGE_SIZE, "%x\n", pt_cap_get(cap));
+	return snprintf(buf, PAGE_SIZE, "%x\n", intel_pt_validate_hw_cap(cap));
 }
 
 static struct attribute_group pt_cap_group __ro_after_init = {
@@ -310,16 +318,16 @@ static bool pt_event_valid(struct perf_event *event)
 		return false;
 
 	if (config & RTIT_CTL_CYC_PSB) {
-		if (!pt_cap_get(PT_CAP_psb_cyc))
+		if (!intel_pt_validate_hw_cap(PT_CAP_psb_cyc))
 			return false;
 
-		allowed = pt_cap_get(PT_CAP_psb_periods);
+		allowed = intel_pt_validate_hw_cap(PT_CAP_psb_periods);
 		requested = (config & RTIT_CTL_PSB_FREQ) >>
 			RTIT_CTL_PSB_FREQ_OFFSET;
 		if (requested && (!(allowed & BIT(requested))))
 			return false;
 
-		allowed = pt_cap_get(PT_CAP_cycle_thresholds);
+		allowed = intel_pt_validate_hw_cap(PT_CAP_cycle_thresholds);
 		requested = (config & RTIT_CTL_CYC_THRESH) >>
 			RTIT_CTL_CYC_THRESH_OFFSET;
 		if (requested && (!(allowed & BIT(requested))))
@@ -334,10 +342,10 @@ static bool pt_event_valid(struct perf_event *event)
 		 * Spec says that setting mtc period bits while mtc bit in
 		 * CPUID is 0 will #GP, so better safe than sorry.
 		 */
-		if (!pt_cap_get(PT_CAP_mtc))
+		if (!intel_pt_validate_hw_cap(PT_CAP_mtc))
 			return false;
 
-		allowed = pt_cap_get(PT_CAP_mtc_periods);
+		allowed = intel_pt_validate_hw_cap(PT_CAP_mtc_periods);
 		if (!allowed)
 			return false;
 
@@ -349,11 +357,11 @@ static bool pt_event_valid(struct perf_event *event)
 	}
 
 	if (config & RTIT_CTL_PWR_EVT_EN &&
-	    !pt_cap_get(PT_CAP_power_event_trace))
+	    !intel_pt_validate_hw_cap(PT_CAP_power_event_trace))
 		return false;
 
 	if (config & RTIT_CTL_PTW) {
-		if (!pt_cap_get(PT_CAP_ptwrite))
+		if (!intel_pt_validate_hw_cap(PT_CAP_ptwrite))
 			return false;
 
 		/* FUPonPTW without PTW doesn't make sense */
@@ -598,7 +606,7 @@ static struct topa *topa_alloc(int cpu, gfp_t gfp)
 	 * In case of singe-entry ToPA, always put the self-referencing END
 	 * link as the 2nd entry in the table
 	 */
-	if (!pt_cap_get(PT_CAP_topa_multiple_entries)) {
+	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
 		TOPA_ENTRY(topa, 1)->base = topa->phys >> TOPA_SHIFT;
 		TOPA_ENTRY(topa, 1)->end = 1;
 	}
@@ -638,7 +646,7 @@ static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
 	topa->offset = last->offset + last->size;
 	buf->last = topa;
 
-	if (!pt_cap_get(PT_CAP_topa_multiple_entries))
+	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
 		return;
 
 	BUG_ON(last->last != TENTS_PER_PAGE - 1);
@@ -654,7 +662,7 @@ static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
 static bool topa_table_full(struct topa *topa)
 {
 	/* single-entry ToPA is a special case */
-	if (!pt_cap_get(PT_CAP_topa_multiple_entries))
+	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
 		return !!topa->last;
 
 	return topa->last == TENTS_PER_PAGE - 1;
@@ -690,7 +698,8 @@ static int topa_insert_pages(struct pt_buffer *buf, gfp_t gfp)
 
 	TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT;
 	TOPA_ENTRY(topa, -1)->size = order;
-	if (!buf->snapshot && !pt_cap_get(PT_CAP_topa_multiple_entries)) {
+	if (!buf->snapshot &&
+	    !intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
 		TOPA_ENTRY(topa, -1)->intr = 1;
 		TOPA_ENTRY(topa, -1)->stop = 1;
 	}
@@ -725,7 +734,7 @@ static void pt_topa_dump(struct pt_buffer *buf)
 				 topa->table[i].intr ? 'I' : ' ',
 				 topa->table[i].stop ? 'S' : ' ',
 				 *(u64 *)&topa->table[i]);
-			if ((pt_cap_get(PT_CAP_topa_multiple_entries) &&
+			if ((intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
 			     topa->table[i].stop) ||
 			    topa->table[i].end)
 				break;
@@ -828,7 +837,7 @@ static void pt_handle_status(struct pt *pt)
 		 * means we are already losing data; need to let the decoder
 		 * know.
 		 */
-		if (!pt_cap_get(PT_CAP_topa_multiple_entries) ||
+		if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) ||
 		    buf->output_off == sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size)) {
 			perf_aux_output_flag(&pt->handle,
 			                     PERF_AUX_FLAG_TRUNCATED);
@@ -840,7 +849,8 @@ static void pt_handle_status(struct pt *pt)
 	 * Also on single-entry ToPA implementations, interrupt will come
 	 * before the output reaches its output region's boundary.
 	 */
-	if (!pt_cap_get(PT_CAP_topa_multiple_entries) && !buf->snapshot &&
+	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
+	    !buf->snapshot &&
 	    pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) {
 		void *head = pt_buffer_region(buf);
 
@@ -931,7 +941,7 @@ static int pt_buffer_reset_markers(struct pt_buffer *buf,
 
 
 	/* single entry ToPA is handled by marking all regions STOP=1 INT=1 */
-	if (!pt_cap_get(PT_CAP_topa_multiple_entries))
+	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
 		return 0;
 
 	/* clear STOP and INT from current entry */
@@ -1082,7 +1092,7 @@ static int pt_buffer_init_topa(struct pt_buffer *buf, unsigned long nr_pages,
 	pt_buffer_setup_topa_index(buf);
 
 	/* link last table to the first one, unless we're double buffering */
-	if (pt_cap_get(PT_CAP_topa_multiple_entries)) {
+	if (intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
 		TOPA_ENTRY(buf->last, -1)->base = buf->first->phys >> TOPA_SHIFT;
 		TOPA_ENTRY(buf->last, -1)->end = 1;
 	}
@@ -1153,7 +1163,7 @@ static int pt_addr_filters_init(struct perf_event *event)
 	struct pt_filters *filters;
 	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
 
-	if (!pt_cap_get(PT_CAP_num_address_ranges))
+	if (!intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
 		return 0;
 
 	filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node);
@@ -1202,7 +1212,7 @@ static int pt_event_addr_filters_validate(struct list_head *filters)
 				return -EINVAL;
 		}
 
-		if (++range > pt_cap_get(PT_CAP_num_address_ranges))
+		if (++range > intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
 			return -EOPNOTSUPP;
 	}
 
@@ -1507,12 +1517,12 @@ static __init int pt_init(void)
 	if (ret)
 		return ret;
 
-	if (!pt_cap_get(PT_CAP_topa_output)) {
+	if (!intel_pt_validate_hw_cap(PT_CAP_topa_output)) {
 		pr_warn("ToPA output is not supported on this CPU\n");
 		return -ENODEV;
 	}
 
-	if (!pt_cap_get(PT_CAP_topa_multiple_entries))
+	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
 		pt_pmu.pmu.capabilities =
 			PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_AUX_SW_DOUBLEBUF;
 
@@ -1530,7 +1540,7 @@ static __init int pt_init(void)
 	pt_pmu.pmu.addr_filters_sync     = pt_event_addr_filters_sync;
 	pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate;
 	pt_pmu.pmu.nr_addr_filters       =
-		pt_cap_get(PT_CAP_num_address_ranges);
+		intel_pt_validate_hw_cap(PT_CAP_num_address_ranges);
 
 	ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
 
diff --git a/arch/x86/events/intel/pt.h b/arch/x86/events/intel/pt.h
index 0eb41d07b79a..269e15a9086c 100644
--- a/arch/x86/events/intel/pt.h
+++ b/arch/x86/events/intel/pt.h
@@ -20,43 +20,6 @@
 #define __INTEL_PT_H__
 
 /*
- * PT MSR bit definitions
- */
-#define RTIT_CTL_TRACEEN		BIT(0)
-#define RTIT_CTL_CYCLEACC		BIT(1)
-#define RTIT_CTL_OS			BIT(2)
-#define RTIT_CTL_USR			BIT(3)
-#define RTIT_CTL_PWR_EVT_EN		BIT(4)
-#define RTIT_CTL_FUP_ON_PTW		BIT(5)
-#define RTIT_CTL_CR3EN			BIT(7)
-#define RTIT_CTL_TOPA			BIT(8)
-#define RTIT_CTL_MTC_EN			BIT(9)
-#define RTIT_CTL_TSC_EN			BIT(10)
-#define RTIT_CTL_DISRETC		BIT(11)
-#define RTIT_CTL_PTW_EN			BIT(12)
-#define RTIT_CTL_BRANCH_EN		BIT(13)
-#define RTIT_CTL_MTC_RANGE_OFFSET	14
-#define RTIT_CTL_MTC_RANGE		(0x0full << RTIT_CTL_MTC_RANGE_OFFSET)
-#define RTIT_CTL_CYC_THRESH_OFFSET	19
-#define RTIT_CTL_CYC_THRESH		(0x0full << RTIT_CTL_CYC_THRESH_OFFSET)
-#define RTIT_CTL_PSB_FREQ_OFFSET	24
-#define RTIT_CTL_PSB_FREQ      		(0x0full << RTIT_CTL_PSB_FREQ_OFFSET)
-#define RTIT_CTL_ADDR0_OFFSET		32
-#define RTIT_CTL_ADDR0      		(0x0full << RTIT_CTL_ADDR0_OFFSET)
-#define RTIT_CTL_ADDR1_OFFSET		36
-#define RTIT_CTL_ADDR1      		(0x0full << RTIT_CTL_ADDR1_OFFSET)
-#define RTIT_CTL_ADDR2_OFFSET		40
-#define RTIT_CTL_ADDR2      		(0x0full << RTIT_CTL_ADDR2_OFFSET)
-#define RTIT_CTL_ADDR3_OFFSET		44
-#define RTIT_CTL_ADDR3      		(0x0full << RTIT_CTL_ADDR3_OFFSET)
-#define RTIT_STATUS_FILTEREN		BIT(0)
-#define RTIT_STATUS_CONTEXTEN		BIT(1)
-#define RTIT_STATUS_TRIGGEREN		BIT(2)
-#define RTIT_STATUS_BUFFOVF		BIT(3)
-#define RTIT_STATUS_ERROR		BIT(4)
-#define RTIT_STATUS_STOPPED		BIT(5)
-
-/*
  * Single-entry ToPA: when this close to region boundary, switch
  * buffers to avoid losing data.
  */
@@ -82,30 +45,9 @@ struct topa_entry {
 	u64	rsvd4	: 16;
 };
 
-#define PT_CPUID_LEAVES		2
-#define PT_CPUID_REGS_NUM	4 /* number of regsters (eax, ebx, ecx, edx) */
-
 /* TSC to Core Crystal Clock Ratio */
 #define CPUID_TSC_LEAF		0x15
 
-enum pt_capabilities {
-	PT_CAP_max_subleaf = 0,
-	PT_CAP_cr3_filtering,
-	PT_CAP_psb_cyc,
-	PT_CAP_ip_filtering,
-	PT_CAP_mtc,
-	PT_CAP_ptwrite,
-	PT_CAP_power_event_trace,
-	PT_CAP_topa_output,
-	PT_CAP_topa_multiple_entries,
-	PT_CAP_single_range_output,
-	PT_CAP_payloads_lip,
-	PT_CAP_num_address_ranges,
-	PT_CAP_mtc_periods,
-	PT_CAP_cycle_thresholds,
-	PT_CAP_psb_periods,
-};
-
 struct pt_pmu {
 	struct pmu		pmu;
 	u32			caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
diff --git a/arch/x86/events/intel/uncore.h b/arch/x86/events/intel/uncore.h
index e17ab885b1e9..cb46d602a6b8 100644
--- a/arch/x86/events/intel/uncore.h
+++ b/arch/x86/events/intel/uncore.h
@@ -129,8 +129,15 @@ struct intel_uncore_box {
 	struct intel_uncore_extra_reg shared_regs[0];
 };
 
-#define UNCORE_BOX_FLAG_INITIATED	0
-#define UNCORE_BOX_FLAG_CTL_OFFS8	1 /* event config registers are 8-byte apart */
+/* CFL uncore 8th cbox MSRs */
+#define CFL_UNC_CBO_7_PERFEVTSEL0		0xf70
+#define CFL_UNC_CBO_7_PER_CTR0			0xf76
+
+#define UNCORE_BOX_FLAG_INITIATED		0
+/* event config registers are 8-byte apart */
+#define UNCORE_BOX_FLAG_CTL_OFFS8		1
+/* CFL 8th CBOX has different MSR space */
+#define UNCORE_BOX_FLAG_CFL8_CBOX_MSR_OFFS	2
 
 struct uncore_event_desc {
 	struct kobj_attribute attr;
@@ -297,17 +304,27 @@ unsigned int uncore_freerunning_counter(struct intel_uncore_box *box,
 static inline
 unsigned uncore_msr_event_ctl(struct intel_uncore_box *box, int idx)
 {
-	return box->pmu->type->event_ctl +
-		(box->pmu->type->pair_ctr_ctl ? 2 * idx : idx) +
-		uncore_msr_box_offset(box);
+	if (test_bit(UNCORE_BOX_FLAG_CFL8_CBOX_MSR_OFFS, &box->flags)) {
+		return CFL_UNC_CBO_7_PERFEVTSEL0 +
+		       (box->pmu->type->pair_ctr_ctl ? 2 * idx : idx);
+	} else {
+		return box->pmu->type->event_ctl +
+		       (box->pmu->type->pair_ctr_ctl ? 2 * idx : idx) +
+		       uncore_msr_box_offset(box);
+	}
 }
 
 static inline
 unsigned uncore_msr_perf_ctr(struct intel_uncore_box *box, int idx)
 {
-	return box->pmu->type->perf_ctr +
-		(box->pmu->type->pair_ctr_ctl ? 2 * idx : idx) +
-		uncore_msr_box_offset(box);
+	if (test_bit(UNCORE_BOX_FLAG_CFL8_CBOX_MSR_OFFS, &box->flags)) {
+		return CFL_UNC_CBO_7_PER_CTR0 +
+		       (box->pmu->type->pair_ctr_ctl ? 2 * idx : idx);
+	} else {
+		return box->pmu->type->perf_ctr +
+		       (box->pmu->type->pair_ctr_ctl ? 2 * idx : idx) +
+		       uncore_msr_box_offset(box);
+	}
 }
 
 static inline
diff --git a/arch/x86/events/intel/uncore_snb.c b/arch/x86/events/intel/uncore_snb.c
index 8527c3e1038b..2593b0d7aeee 100644
--- a/arch/x86/events/intel/uncore_snb.c
+++ b/arch/x86/events/intel/uncore_snb.c
@@ -15,6 +15,25 @@
 #define PCI_DEVICE_ID_INTEL_SKL_HQ_IMC	0x1910
 #define PCI_DEVICE_ID_INTEL_SKL_SD_IMC	0x190f
 #define PCI_DEVICE_ID_INTEL_SKL_SQ_IMC	0x191f
+#define PCI_DEVICE_ID_INTEL_KBL_Y_IMC	0x590c
+#define PCI_DEVICE_ID_INTEL_KBL_U_IMC	0x5904
+#define PCI_DEVICE_ID_INTEL_KBL_UQ_IMC	0x5914
+#define PCI_DEVICE_ID_INTEL_KBL_SD_IMC	0x590f
+#define PCI_DEVICE_ID_INTEL_KBL_SQ_IMC	0x591f
+#define PCI_DEVICE_ID_INTEL_CFL_2U_IMC	0x3ecc
+#define PCI_DEVICE_ID_INTEL_CFL_4U_IMC	0x3ed0
+#define PCI_DEVICE_ID_INTEL_CFL_4H_IMC	0x3e10
+#define PCI_DEVICE_ID_INTEL_CFL_6H_IMC	0x3ec4
+#define PCI_DEVICE_ID_INTEL_CFL_2S_D_IMC	0x3e0f
+#define PCI_DEVICE_ID_INTEL_CFL_4S_D_IMC	0x3e1f
+#define PCI_DEVICE_ID_INTEL_CFL_6S_D_IMC	0x3ec2
+#define PCI_DEVICE_ID_INTEL_CFL_8S_D_IMC	0x3e30
+#define PCI_DEVICE_ID_INTEL_CFL_4S_W_IMC	0x3e18
+#define PCI_DEVICE_ID_INTEL_CFL_6S_W_IMC	0x3ec6
+#define PCI_DEVICE_ID_INTEL_CFL_8S_W_IMC	0x3e31
+#define PCI_DEVICE_ID_INTEL_CFL_4S_S_IMC	0x3e33
+#define PCI_DEVICE_ID_INTEL_CFL_6S_S_IMC	0x3eca
+#define PCI_DEVICE_ID_INTEL_CFL_8S_S_IMC	0x3e32
 
 /* SNB event control */
 #define SNB_UNC_CTL_EV_SEL_MASK			0x000000ff
@@ -202,6 +221,10 @@ static void skl_uncore_msr_init_box(struct intel_uncore_box *box)
 		wrmsrl(SKL_UNC_PERF_GLOBAL_CTL,
 			SNB_UNC_GLOBAL_CTL_EN | SKL_UNC_GLOBAL_CTL_CORE_ALL);
 	}
+
+	/* The 8th CBOX has different MSR space */
+	if (box->pmu->pmu_idx == 7)
+		__set_bit(UNCORE_BOX_FLAG_CFL8_CBOX_MSR_OFFS, &box->flags);
 }
 
 static void skl_uncore_msr_enable_box(struct intel_uncore_box *box)
@@ -228,7 +251,7 @@ static struct intel_uncore_ops skl_uncore_msr_ops = {
 static struct intel_uncore_type skl_uncore_cbox = {
 	.name		= "cbox",
 	.num_counters   = 4,
-	.num_boxes	= 5,
+	.num_boxes	= 8,
 	.perf_ctr_bits	= 44,
 	.fixed_ctr_bits	= 48,
 	.perf_ctr	= SNB_UNC_CBO_0_PER_CTR0,
@@ -569,7 +592,82 @@ static const struct pci_device_id skl_uncore_pci_ids[] = {
 		PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SKL_SQ_IMC),
 		.driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0),
 	},
-
+	{ /* IMC */
+		PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_KBL_Y_IMC),
+		.driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0),
+	},
+	{ /* IMC */
+		PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_KBL_U_IMC),
+		.driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0),
+	},
+	{ /* IMC */
+		PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_KBL_UQ_IMC),
+		.driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0),
+	},
+	{ /* IMC */
+		PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_KBL_SD_IMC),
+		.driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0),
+	},
+	{ /* IMC */
+		PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_KBL_SQ_IMC),
+		.driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0),
+	},
+	{ /* IMC */
+		PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_2U_IMC),
+		.driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0),
+	},
+	{ /* IMC */
+		PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_4U_IMC),
+		.driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0),
+	},
+	{ /* IMC */
+		PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_4H_IMC),
+		.driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0),
+	},
+	{ /* IMC */
+		PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_6H_IMC),
+		.driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0),
+	},
+	{ /* IMC */
+		PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_2S_D_IMC),
+		.driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0),
+	},
+	{ /* IMC */
+		PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_4S_D_IMC),
+		.driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0),
+	},
+	{ /* IMC */
+		PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_6S_D_IMC),
+		.driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0),
+	},
+	{ /* IMC */
+		PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_8S_D_IMC),
+		.driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0),
+	},
+	{ /* IMC */
+		PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_4S_W_IMC),
+		.driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0),
+	},
+	{ /* IMC */
+		PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_6S_W_IMC),
+		.driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0),
+	},
+	{ /* IMC */
+		PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_8S_W_IMC),
+		.driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0),
+	},
+	{ /* IMC */
+		PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_4S_S_IMC),
+		.driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0),
+	},
+	{ /* IMC */
+		PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_6S_S_IMC),
+		.driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0),
+	},
+	{ /* IMC */
+		PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CFL_8S_S_IMC),
+		.driver_data = UNCORE_PCI_DEV_DATA(SNB_PCI_UNCORE_IMC, 0),
+	},
 	{ /* end: all zeroes */ },
 };
 
@@ -618,6 +716,25 @@ static const struct imc_uncore_pci_dev desktop_imc_pci_ids[] = {
 	IMC_DEV(SKL_HQ_IMC, &skl_uncore_pci_driver),  /* 6th Gen Core H Quad Core */
 	IMC_DEV(SKL_SD_IMC, &skl_uncore_pci_driver),  /* 6th Gen Core S Dual Core */
 	IMC_DEV(SKL_SQ_IMC, &skl_uncore_pci_driver),  /* 6th Gen Core S Quad Core */
+	IMC_DEV(KBL_Y_IMC, &skl_uncore_pci_driver),  /* 7th Gen Core Y */
+	IMC_DEV(KBL_U_IMC, &skl_uncore_pci_driver),  /* 7th Gen Core U */
+	IMC_DEV(KBL_UQ_IMC, &skl_uncore_pci_driver),  /* 7th Gen Core U Quad Core */
+	IMC_DEV(KBL_SD_IMC, &skl_uncore_pci_driver),  /* 7th Gen Core S Dual Core */
+	IMC_DEV(KBL_SQ_IMC, &skl_uncore_pci_driver),  /* 7th Gen Core S Quad Core */
+	IMC_DEV(CFL_2U_IMC, &skl_uncore_pci_driver),  /* 8th Gen Core U 2 Cores */
+	IMC_DEV(CFL_4U_IMC, &skl_uncore_pci_driver),  /* 8th Gen Core U 4 Cores */
+	IMC_DEV(CFL_4H_IMC, &skl_uncore_pci_driver),  /* 8th Gen Core H 4 Cores */
+	IMC_DEV(CFL_6H_IMC, &skl_uncore_pci_driver),  /* 8th Gen Core H 6 Cores */
+	IMC_DEV(CFL_2S_D_IMC, &skl_uncore_pci_driver),  /* 8th Gen Core S 2 Cores Desktop */
+	IMC_DEV(CFL_4S_D_IMC, &skl_uncore_pci_driver),  /* 8th Gen Core S 4 Cores Desktop */
+	IMC_DEV(CFL_6S_D_IMC, &skl_uncore_pci_driver),  /* 8th Gen Core S 6 Cores Desktop */
+	IMC_DEV(CFL_8S_D_IMC, &skl_uncore_pci_driver),  /* 8th Gen Core S 8 Cores Desktop */
+	IMC_DEV(CFL_4S_W_IMC, &skl_uncore_pci_driver),  /* 8th Gen Core S 4 Cores Work Station */
+	IMC_DEV(CFL_6S_W_IMC, &skl_uncore_pci_driver),  /* 8th Gen Core S 6 Cores Work Station */
+	IMC_DEV(CFL_8S_W_IMC, &skl_uncore_pci_driver),  /* 8th Gen Core S 8 Cores Work Station */
+	IMC_DEV(CFL_4S_S_IMC, &skl_uncore_pci_driver),  /* 8th Gen Core S 4 Cores Server */
+	IMC_DEV(CFL_6S_S_IMC, &skl_uncore_pci_driver),  /* 8th Gen Core S 6 Cores Server */
+	IMC_DEV(CFL_8S_S_IMC, &skl_uncore_pci_driver),  /* 8th Gen Core S 8 Cores Server */
 	{  /* end marker */ }
 };
 
diff --git a/arch/x86/events/perf_event.h b/arch/x86/events/perf_event.h
index adae087cecdd..78d7b7031bfc 100644
--- a/arch/x86/events/perf_event.h
+++ b/arch/x86/events/perf_event.h
@@ -859,11 +859,16 @@ static inline int amd_pmu_init(void)
 
 static inline bool intel_pmu_has_bts(struct perf_event *event)
 {
-	if (event->attr.config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
-	    !event->attr.freq && event->hw.sample_period == 1)
-		return true;
+	struct hw_perf_event *hwc = &event->hw;
+	unsigned int hw_event, bts_event;
+
+	if (event->attr.freq)
+		return false;
+
+	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
+	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
 
-	return false;
+	return hw_event == bts_event && hwc->sample_period == 1;
 }
 
 int intel_pmu_save_and_restart(struct perf_event *event);
diff --git a/arch/x86/hyperv/nested.c b/arch/x86/hyperv/nested.c
index b8e60cc50461..dd0a843f766d 100644
--- a/arch/x86/hyperv/nested.c
+++ b/arch/x86/hyperv/nested.c
@@ -7,6 +7,7 @@
  *
  * Author : Lan Tianyu <Tianyu.Lan@microsoft.com>
  */
+#define pr_fmt(fmt)  "Hyper-V: " fmt
 
 
 #include <linux/types.h>
@@ -54,3 +55,82 @@ fault:
 	return ret;
 }
 EXPORT_SYMBOL_GPL(hyperv_flush_guest_mapping);
+
+int hyperv_fill_flush_guest_mapping_list(
+		struct hv_guest_mapping_flush_list *flush,
+		u64 start_gfn, u64 pages)
+{
+	u64 cur = start_gfn;
+	u64 additional_pages;
+	int gpa_n = 0;
+
+	do {
+		/*
+		 * If flush requests exceed max flush count, go back to
+		 * flush tlbs without range.
+		 */
+		if (gpa_n >= HV_MAX_FLUSH_REP_COUNT)
+			return -ENOSPC;
+
+		additional_pages = min_t(u64, pages, HV_MAX_FLUSH_PAGES) - 1;
+
+		flush->gpa_list[gpa_n].page.additional_pages = additional_pages;
+		flush->gpa_list[gpa_n].page.largepage = false;
+		flush->gpa_list[gpa_n].page.basepfn = cur;
+
+		pages -= additional_pages + 1;
+		cur += additional_pages + 1;
+		gpa_n++;
+	} while (pages > 0);
+
+	return gpa_n;
+}
+EXPORT_SYMBOL_GPL(hyperv_fill_flush_guest_mapping_list);
+
+int hyperv_flush_guest_mapping_range(u64 as,
+		hyperv_fill_flush_list_func fill_flush_list_func, void *data)
+{
+	struct hv_guest_mapping_flush_list **flush_pcpu;
+	struct hv_guest_mapping_flush_list *flush;
+	u64 status = 0;
+	unsigned long flags;
+	int ret = -ENOTSUPP;
+	int gpa_n = 0;
+
+	if (!hv_hypercall_pg || !fill_flush_list_func)
+		goto fault;
+
+	local_irq_save(flags);
+
+	flush_pcpu = (struct hv_guest_mapping_flush_list **)
+		this_cpu_ptr(hyperv_pcpu_input_arg);
+
+	flush = *flush_pcpu;
+	if (unlikely(!flush)) {
+		local_irq_restore(flags);
+		goto fault;
+	}
+
+	flush->address_space = as;
+	flush->flags = 0;
+
+	gpa_n = fill_flush_list_func(flush, data);
+	if (gpa_n < 0) {
+		local_irq_restore(flags);
+		goto fault;
+	}
+
+	status = hv_do_rep_hypercall(HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_LIST,
+				     gpa_n, 0, flush, NULL);
+
+	local_irq_restore(flags);
+
+	if (!(status & HV_HYPERCALL_RESULT_MASK))
+		ret = 0;
+	else
+		ret = status;
+fault:
+	trace_hyperv_nested_flush_guest_mapping_range(as, ret);
+	return ret;
+}
+EXPORT_SYMBOL_GPL(hyperv_flush_guest_mapping_range);
diff --git a/arch/x86/ia32/ia32_aout.c b/arch/x86/ia32/ia32_aout.c
index 8e02b30cf08e..f65b78d32f5e 100644
--- a/arch/x86/ia32/ia32_aout.c
+++ b/arch/x86/ia32/ia32_aout.c
@@ -176,10 +176,10 @@ static int aout_core_dump(struct coredump_params *cprm)
 
 	/* make sure we actually have a data and stack area to dump */
 	set_fs(USER_DS);
-	if (!access_ok(VERIFY_READ, (void *) (unsigned long)START_DATA(dump),
+	if (!access_ok((void *) (unsigned long)START_DATA(dump),
 		       dump.u_dsize << PAGE_SHIFT))
 		dump.u_dsize = 0;
-	if (!access_ok(VERIFY_READ, (void *) (unsigned long)START_STACK(dump),
+	if (!access_ok((void *) (unsigned long)START_STACK(dump),
 		       dump.u_ssize << PAGE_SHIFT))
 		dump.u_ssize = 0;
 
diff --git a/arch/x86/ia32/ia32_signal.c b/arch/x86/ia32/ia32_signal.c
index 86b1341cba9a..321fe5f5d0e9 100644
--- a/arch/x86/ia32/ia32_signal.c
+++ b/arch/x86/ia32/ia32_signal.c
@@ -119,7 +119,7 @@ asmlinkage long sys32_sigreturn(void)
 	struct sigframe_ia32 __user *frame = (struct sigframe_ia32 __user *)(regs->sp-8);
 	sigset_t set;
 
-	if (!access_ok(VERIFY_READ, frame, sizeof(*frame)))
+	if (!access_ok(frame, sizeof(*frame)))
 		goto badframe;
 	if (__get_user(set.sig[0], &frame->sc.oldmask)
 	    || (_COMPAT_NSIG_WORDS > 1
@@ -147,7 +147,7 @@ asmlinkage long sys32_rt_sigreturn(void)
 
 	frame = (struct rt_sigframe_ia32 __user *)(regs->sp - 4);
 
-	if (!access_ok(VERIFY_READ, frame, sizeof(*frame)))
+	if (!access_ok(frame, sizeof(*frame)))
 		goto badframe;
 	if (__copy_from_user(&set, &frame->uc.uc_sigmask, sizeof(set)))
 		goto badframe;
@@ -269,7 +269,7 @@ int ia32_setup_frame(int sig, struct ksignal *ksig,
 
 	frame = get_sigframe(ksig, regs, sizeof(*frame), &fpstate);
 
-	if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
+	if (!access_ok(frame, sizeof(*frame)))
 		return -EFAULT;
 
 	if (__put_user(sig, &frame->sig))
@@ -349,7 +349,7 @@ int ia32_setup_rt_frame(int sig, struct ksignal *ksig,
 
 	frame = get_sigframe(ksig, regs, sizeof(*frame), &fpstate);
 
-	if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
+	if (!access_ok(frame, sizeof(*frame)))
 		return -EFAULT;
 
 	put_user_try {
diff --git a/arch/x86/ia32/sys_ia32.c b/arch/x86/ia32/sys_ia32.c
index 11ef7b7c9cc8..a43212036257 100644
--- a/arch/x86/ia32/sys_ia32.c
+++ b/arch/x86/ia32/sys_ia32.c
@@ -75,7 +75,7 @@ static int cp_stat64(struct stat64 __user *ubuf, struct kstat *stat)
 	typeof(ubuf->st_gid) gid = 0;
 	SET_UID(uid, from_kuid_munged(current_user_ns(), stat->uid));
 	SET_GID(gid, from_kgid_munged(current_user_ns(), stat->gid));
-	if (!access_ok(VERIFY_WRITE, ubuf, sizeof(struct stat64)) ||
+	if (!access_ok(ubuf, sizeof(struct stat64)) ||
 	    __put_user(huge_encode_dev(stat->dev), &ubuf->st_dev) ||
 	    __put_user(stat->ino, &ubuf->__st_ino) ||
 	    __put_user(stat->ino, &ubuf->st_ino) ||
diff --git a/arch/x86/include/asm/alternative-asm.h b/arch/x86/include/asm/alternative-asm.h
index 8e4ea39e55d0..31b627b43a8e 100644
--- a/arch/x86/include/asm/alternative-asm.h
+++ b/arch/x86/include/asm/alternative-asm.h
@@ -7,24 +7,16 @@
 #include <asm/asm.h>
 
 #ifdef CONFIG_SMP
-.macro LOCK_PREFIX_HERE
+	.macro LOCK_PREFIX
+672:	lock
 	.pushsection .smp_locks,"a"
 	.balign 4
-	.long 671f - .		# offset
+	.long 672b - .
 	.popsection
-671:
-.endm
-
-.macro LOCK_PREFIX insn:vararg
-	LOCK_PREFIX_HERE
-	lock \insn
-.endm
+	.endm
 #else
-.macro LOCK_PREFIX_HERE
-.endm
-
-.macro LOCK_PREFIX insn:vararg
-.endm
+	.macro LOCK_PREFIX
+	.endm
 #endif
 
 /*
diff --git a/arch/x86/include/asm/alternative.h b/arch/x86/include/asm/alternative.h
index d7faa16622d8..0660e14690c8 100644
--- a/arch/x86/include/asm/alternative.h
+++ b/arch/x86/include/asm/alternative.h
@@ -31,8 +31,15 @@
  */
 
 #ifdef CONFIG_SMP
-#define LOCK_PREFIX_HERE "LOCK_PREFIX_HERE\n\t"
-#define LOCK_PREFIX "LOCK_PREFIX "
+#define LOCK_PREFIX_HERE \
+		".pushsection .smp_locks,\"a\"\n"	\
+		".balign 4\n"				\
+		".long 671f - .\n" /* offset */		\
+		".popsection\n"				\
+		"671:"
+
+#define LOCK_PREFIX LOCK_PREFIX_HERE "\n\tlock; "
+
 #else /* ! CONFIG_SMP */
 #define LOCK_PREFIX_HERE ""
 #define LOCK_PREFIX ""
@@ -167,7 +174,7 @@ static inline int alternatives_text_reserved(void *start, void *end)
 /*
  * Alternative inline assembly with input.
  *
- * Pecularities:
+ * Peculiarities:
  * No memory clobber here.
  * Argument numbers start with 1.
  * Best is to use constraints that are fixed size (like (%1) ... "r")
diff --git a/arch/x86/include/asm/arch_hweight.h b/arch/x86/include/asm/arch_hweight.h
index 34a10b2d5b73..fc0693569f7a 100644
--- a/arch/x86/include/asm/arch_hweight.h
+++ b/arch/x86/include/asm/arch_hweight.h
@@ -5,15 +5,9 @@
 #include <asm/cpufeatures.h>
 
 #ifdef CONFIG_64BIT
-/* popcnt %edi, %eax */
-#define POPCNT32 ".byte 0xf3,0x0f,0xb8,0xc7"
-/* popcnt %rdi, %rax */
-#define POPCNT64 ".byte 0xf3,0x48,0x0f,0xb8,0xc7"
 #define REG_IN "D"
 #define REG_OUT "a"
 #else
-/* popcnt %eax, %eax */
-#define POPCNT32 ".byte 0xf3,0x0f,0xb8,0xc0"
 #define REG_IN "a"
 #define REG_OUT "a"
 #endif
@@ -24,7 +18,7 @@ static __always_inline unsigned int __arch_hweight32(unsigned int w)
 {
 	unsigned int res;
 
-	asm (ALTERNATIVE("call __sw_hweight32", POPCNT32, X86_FEATURE_POPCNT)
+	asm (ALTERNATIVE("call __sw_hweight32", "popcntl %1, %0", X86_FEATURE_POPCNT)
 			 : "="REG_OUT (res)
 			 : REG_IN (w));
 
@@ -52,7 +46,7 @@ static __always_inline unsigned long __arch_hweight64(__u64 w)
 {
 	unsigned long res;
 
-	asm (ALTERNATIVE("call __sw_hweight64", POPCNT64, X86_FEATURE_POPCNT)
+	asm (ALTERNATIVE("call __sw_hweight64", "popcntq %1, %0", X86_FEATURE_POPCNT)
 			 : "="REG_OUT (res)
 			 : REG_IN (w));
 
diff --git a/arch/x86/include/asm/asm.h b/arch/x86/include/asm/asm.h
index 21b086786404..6467757bb39f 100644
--- a/arch/x86/include/asm/asm.h
+++ b/arch/x86/include/asm/asm.h
@@ -120,25 +120,12 @@
 /* Exception table entry */
 #ifdef __ASSEMBLY__
 # define _ASM_EXTABLE_HANDLE(from, to, handler)			\
-	ASM_EXTABLE_HANDLE from to handler
-
-.macro ASM_EXTABLE_HANDLE from:req to:req handler:req
-	.pushsection "__ex_table","a"
-	.balign 4
-	.long (\from) - .
-	.long (\to) - .
-	.long (\handler) - .
+	.pushsection "__ex_table","a" ;				\
+	.balign 4 ;						\
+	.long (from) - . ;					\
+	.long (to) - . ;					\
+	.long (handler) - . ;					\
 	.popsection
-.endm
-#else /* __ASSEMBLY__ */
-
-# define _ASM_EXTABLE_HANDLE(from, to, handler)			\
-	"ASM_EXTABLE_HANDLE from=" #from " to=" #to		\
-	" handler=\"" #handler "\"\n\t"
-
-/* For C file, we already have NOKPROBE_SYMBOL macro */
-
-#endif /* __ASSEMBLY__ */
 
 # define _ASM_EXTABLE(from, to)					\
 	_ASM_EXTABLE_HANDLE(from, to, ex_handler_default)
@@ -161,7 +148,6 @@
 	_ASM_PTR (entry);					\
 	.popsection
 
-#ifdef __ASSEMBLY__
 .macro ALIGN_DESTINATION
 	/* check for bad alignment of destination */
 	movl %edi,%ecx
@@ -185,7 +171,34 @@
 	_ASM_EXTABLE_UA(100b, 103b)
 	_ASM_EXTABLE_UA(101b, 103b)
 	.endm
-#endif /* __ASSEMBLY__ */
+
+#else
+# define _EXPAND_EXTABLE_HANDLE(x) #x
+# define _ASM_EXTABLE_HANDLE(from, to, handler)			\
+	" .pushsection \"__ex_table\",\"a\"\n"			\
+	" .balign 4\n"						\
+	" .long (" #from ") - .\n"				\
+	" .long (" #to ") - .\n"				\
+	" .long (" _EXPAND_EXTABLE_HANDLE(handler) ") - .\n"	\
+	" .popsection\n"
+
+# define _ASM_EXTABLE(from, to)					\
+	_ASM_EXTABLE_HANDLE(from, to, ex_handler_default)
+
+# define _ASM_EXTABLE_UA(from, to)				\
+	_ASM_EXTABLE_HANDLE(from, to, ex_handler_uaccess)
+
+# define _ASM_EXTABLE_FAULT(from, to)				\
+	_ASM_EXTABLE_HANDLE(from, to, ex_handler_fault)
+
+# define _ASM_EXTABLE_EX(from, to)				\
+	_ASM_EXTABLE_HANDLE(from, to, ex_handler_ext)
+
+# define _ASM_EXTABLE_REFCOUNT(from, to)			\
+	_ASM_EXTABLE_HANDLE(from, to, ex_handler_refcount)
+
+/* For C file, we already have NOKPROBE_SYMBOL macro */
+#endif
 
 #ifndef __ASSEMBLY__
 /*
diff --git a/arch/x86/include/asm/bitops.h b/arch/x86/include/asm/bitops.h
index 124f9195eb3e..ad7b210aa3f6 100644
--- a/arch/x86/include/asm/bitops.h
+++ b/arch/x86/include/asm/bitops.h
@@ -448,7 +448,7 @@ static __always_inline int ffs(int x)
  * set bit if value is nonzero. The last (most significant) bit is
  * at position 32.
  */
-static __always_inline int fls(int x)
+static __always_inline int fls(unsigned int x)
 {
 	int r;
 
diff --git a/arch/x86/include/asm/bootparam_utils.h b/arch/x86/include/asm/bootparam_utils.h
index a07ffd23e4dd..f6f6ef436599 100644
--- a/arch/x86/include/asm/bootparam_utils.h
+++ b/arch/x86/include/asm/bootparam_utils.h
@@ -36,6 +36,7 @@ static void sanitize_boot_params(struct boot_params *boot_params)
 	 */
 	if (boot_params->sentinel) {
 		/* fields in boot_params are left uninitialized, clear them */
+		boot_params->acpi_rsdp_addr = 0;
 		memset(&boot_params->ext_ramdisk_image, 0,
 		       (char *)&boot_params->efi_info -
 			(char *)&boot_params->ext_ramdisk_image);
diff --git a/arch/x86/include/asm/bug.h b/arch/x86/include/asm/bug.h
index 5090035e6d16..6804d6642767 100644
--- a/arch/x86/include/asm/bug.h
+++ b/arch/x86/include/asm/bug.h
@@ -4,8 +4,6 @@
 
 #include <linux/stringify.h>
 
-#ifndef __ASSEMBLY__
-
 /*
  * Despite that some emulators terminate on UD2, we use it for WARN().
  *
@@ -22,15 +20,53 @@
 
 #define LEN_UD2		2
 
+#ifdef CONFIG_GENERIC_BUG
+
+#ifdef CONFIG_X86_32
+# define __BUG_REL(val)	".long " __stringify(val)
+#else
+# define __BUG_REL(val)	".long " __stringify(val) " - 2b"
+#endif
+
+#ifdef CONFIG_DEBUG_BUGVERBOSE
+
+#define _BUG_FLAGS(ins, flags)						\
+do {									\
+	asm volatile("1:\t" ins "\n"					\
+		     ".pushsection __bug_table,\"aw\"\n"		\
+		     "2:\t" __BUG_REL(1b) "\t# bug_entry::bug_addr\n"	\
+		     "\t"  __BUG_REL(%c0) "\t# bug_entry::file\n"	\
+		     "\t.word %c1"        "\t# bug_entry::line\n"	\
+		     "\t.word %c2"        "\t# bug_entry::flags\n"	\
+		     "\t.org 2b+%c3\n"					\
+		     ".popsection"					\
+		     : : "i" (__FILE__), "i" (__LINE__),		\
+			 "i" (flags),					\
+			 "i" (sizeof(struct bug_entry)));		\
+} while (0)
+
+#else /* !CONFIG_DEBUG_BUGVERBOSE */
+
 #define _BUG_FLAGS(ins, flags)						\
 do {									\
-	asm volatile("ASM_BUG ins=\"" ins "\" file=%c0 line=%c1 "	\
-		     "flags=%c2 size=%c3"				\
-		     : : "i" (__FILE__), "i" (__LINE__),                \
-			 "i" (flags),                                   \
+	asm volatile("1:\t" ins "\n"					\
+		     ".pushsection __bug_table,\"aw\"\n"		\
+		     "2:\t" __BUG_REL(1b) "\t# bug_entry::bug_addr\n"	\
+		     "\t.word %c0"        "\t# bug_entry::flags\n"	\
+		     "\t.org 2b+%c1\n"					\
+		     ".popsection"					\
+		     : : "i" (flags),					\
 			 "i" (sizeof(struct bug_entry)));		\
 } while (0)
 
+#endif /* CONFIG_DEBUG_BUGVERBOSE */
+
+#else
+
+#define _BUG_FLAGS(ins, flags)  asm volatile(ins)
+
+#endif /* CONFIG_GENERIC_BUG */
+
 #define HAVE_ARCH_BUG
 #define BUG()							\
 do {								\
@@ -46,54 +82,4 @@ do {								\
 
 #include <asm-generic/bug.h>
 
-#else /* __ASSEMBLY__ */
-
-#ifdef CONFIG_GENERIC_BUG
-
-#ifdef CONFIG_X86_32
-.macro __BUG_REL val:req
-	.long \val
-.endm
-#else
-.macro __BUG_REL val:req
-	.long \val - 2b
-.endm
-#endif
-
-#ifdef CONFIG_DEBUG_BUGVERBOSE
-
-.macro ASM_BUG ins:req file:req line:req flags:req size:req
-1:	\ins
-	.pushsection __bug_table,"aw"
-2:	__BUG_REL val=1b	# bug_entry::bug_addr
-	__BUG_REL val=\file	# bug_entry::file
-	.word \line		# bug_entry::line
-	.word \flags		# bug_entry::flags
-	.org 2b+\size
-	.popsection
-.endm
-
-#else /* !CONFIG_DEBUG_BUGVERBOSE */
-
-.macro ASM_BUG ins:req file:req line:req flags:req size:req
-1:	\ins
-	.pushsection __bug_table,"aw"
-2:	__BUG_REL val=1b	# bug_entry::bug_addr
-	.word \flags		# bug_entry::flags
-	.org 2b+\size
-	.popsection
-.endm
-
-#endif /* CONFIG_DEBUG_BUGVERBOSE */
-
-#else /* CONFIG_GENERIC_BUG */
-
-.macro ASM_BUG ins:req file:req line:req flags:req size:req
-	\ins
-.endm
-
-#endif /* CONFIG_GENERIC_BUG */
-
-#endif /* __ASSEMBLY__ */
-
 #endif /* _ASM_X86_BUG_H */
diff --git a/arch/x86/include/asm/checksum_32.h b/arch/x86/include/asm/checksum_32.h
index 7a659c74cd03..f57b94e02c57 100644
--- a/arch/x86/include/asm/checksum_32.h
+++ b/arch/x86/include/asm/checksum_32.h
@@ -182,7 +182,7 @@ static inline __wsum csum_and_copy_to_user(const void *src,
 	__wsum ret;
 
 	might_sleep();
-	if (access_ok(VERIFY_WRITE, dst, len)) {
+	if (access_ok(dst, len)) {
 		stac();
 		ret = csum_partial_copy_generic(src, (__force void *)dst,
 						len, sum, NULL, err_ptr);
diff --git a/arch/x86/include/asm/cmpxchg.h b/arch/x86/include/asm/cmpxchg.h
index bfb85e5844ab..a8bfac131256 100644
--- a/arch/x86/include/asm/cmpxchg.h
+++ b/arch/x86/include/asm/cmpxchg.h
@@ -7,7 +7,7 @@
 #include <asm/alternative.h> /* Provides LOCK_PREFIX */
 
 /*
- * Non-existant functions to indicate usage errors at link time
+ * Non-existent functions to indicate usage errors at link time
  * (or compile-time if the compiler implements __compiletime_error().
  */
 extern void __xchg_wrong_size(void)
diff --git a/arch/x86/include/asm/cpufeature.h b/arch/x86/include/asm/cpufeature.h
index 7d442722ef24..aced6c9290d6 100644
--- a/arch/x86/include/asm/cpufeature.h
+++ b/arch/x86/include/asm/cpufeature.h
@@ -2,10 +2,10 @@
 #ifndef _ASM_X86_CPUFEATURE_H
 #define _ASM_X86_CPUFEATURE_H
 
-#ifdef __KERNEL__
-#ifndef __ASSEMBLY__
-
 #include <asm/processor.h>
+
+#if defined(__KERNEL__) && !defined(__ASSEMBLY__)
+
 #include <asm/asm.h>
 #include <linux/bitops.h>
 
@@ -161,10 +161,37 @@ extern void clear_cpu_cap(struct cpuinfo_x86 *c, unsigned int bit);
  */
 static __always_inline __pure bool _static_cpu_has(u16 bit)
 {
-	asm_volatile_goto("STATIC_CPU_HAS bitnum=%[bitnum] "
-			  "cap_byte=\"%[cap_byte]\" "
-			  "feature=%P[feature] t_yes=%l[t_yes] "
-			  "t_no=%l[t_no] always=%P[always]"
+	asm_volatile_goto("1: jmp 6f\n"
+		 "2:\n"
+		 ".skip -(((5f-4f) - (2b-1b)) > 0) * "
+			 "((5f-4f) - (2b-1b)),0x90\n"
+		 "3:\n"
+		 ".section .altinstructions,\"a\"\n"
+		 " .long 1b - .\n"		/* src offset */
+		 " .long 4f - .\n"		/* repl offset */
+		 " .word %P[always]\n"		/* always replace */
+		 " .byte 3b - 1b\n"		/* src len */
+		 " .byte 5f - 4f\n"		/* repl len */
+		 " .byte 3b - 2b\n"		/* pad len */
+		 ".previous\n"
+		 ".section .altinstr_replacement,\"ax\"\n"
+		 "4: jmp %l[t_no]\n"
+		 "5:\n"
+		 ".previous\n"
+		 ".section .altinstructions,\"a\"\n"
+		 " .long 1b - .\n"		/* src offset */
+		 " .long 0\n"			/* no replacement */
+		 " .word %P[feature]\n"		/* feature bit */
+		 " .byte 3b - 1b\n"		/* src len */
+		 " .byte 0\n"			/* repl len */
+		 " .byte 0\n"			/* pad len */
+		 ".previous\n"
+		 ".section .altinstr_aux,\"ax\"\n"
+		 "6:\n"
+		 " testb %[bitnum],%[cap_byte]\n"
+		 " jnz %l[t_yes]\n"
+		 " jmp %l[t_no]\n"
+		 ".previous\n"
 		 : : [feature]  "i" (bit),
 		     [always]   "i" (X86_FEATURE_ALWAYS),
 		     [bitnum]   "i" (1 << (bit & 7)),
@@ -199,44 +226,5 @@ t_no:
 #define CPU_FEATURE_TYPEVAL		boot_cpu_data.x86_vendor, boot_cpu_data.x86, \
 					boot_cpu_data.x86_model
 
-#else /* __ASSEMBLY__ */
-
-.macro STATIC_CPU_HAS bitnum:req cap_byte:req feature:req t_yes:req t_no:req always:req
-1:
-	jmp 6f
-2:
-	.skip -(((5f-4f) - (2b-1b)) > 0) * ((5f-4f) - (2b-1b)),0x90
-3:
-	.section .altinstructions,"a"
-	.long 1b - .		/* src offset */
-	.long 4f - .		/* repl offset */
-	.word \always		/* always replace */
-	.byte 3b - 1b		/* src len */
-	.byte 5f - 4f		/* repl len */
-	.byte 3b - 2b		/* pad len */
-	.previous
-	.section .altinstr_replacement,"ax"
-4:
-	jmp \t_no
-5:
-	.previous
-	.section .altinstructions,"a"
-	.long 1b - .		/* src offset */
-	.long 0			/* no replacement */
-	.word \feature		/* feature bit */
-	.byte 3b - 1b		/* src len */
-	.byte 0			/* repl len */
-	.byte 0			/* pad len */
-	.previous
-	.section .altinstr_aux,"ax"
-6:
-	testb \bitnum,\cap_byte
-	jnz \t_yes
-	jmp \t_no
-	.previous
-.endm
-
-#endif /* __ASSEMBLY__ */
-
-#endif /* __KERNEL__ */
+#endif /* defined(__KERNEL__) && !defined(__ASSEMBLY__) */
 #endif /* _ASM_X86_CPUFEATURE_H */
diff --git a/arch/x86/include/asm/cpufeatures.h b/arch/x86/include/asm/cpufeatures.h
index 28c4a502b419..6d6122524711 100644
--- a/arch/x86/include/asm/cpufeatures.h
+++ b/arch/x86/include/asm/cpufeatures.h
@@ -281,9 +281,11 @@
 #define X86_FEATURE_CLZERO		(13*32+ 0) /* CLZERO instruction */
 #define X86_FEATURE_IRPERF		(13*32+ 1) /* Instructions Retired Count */
 #define X86_FEATURE_XSAVEERPTR		(13*32+ 2) /* Always save/restore FP error pointers */
+#define X86_FEATURE_WBNOINVD		(13*32+ 9) /* WBNOINVD instruction */
 #define X86_FEATURE_AMD_IBPB		(13*32+12) /* "" Indirect Branch Prediction Barrier */
 #define X86_FEATURE_AMD_IBRS		(13*32+14) /* "" Indirect Branch Restricted Speculation */
 #define X86_FEATURE_AMD_STIBP		(13*32+15) /* "" Single Thread Indirect Branch Predictors */
+#define X86_FEATURE_AMD_STIBP_ALWAYS_ON	(13*32+17) /* "" Single Thread Indirect Branch Predictors always-on preferred */
 #define X86_FEATURE_AMD_SSBD		(13*32+24) /* "" Speculative Store Bypass Disable */
 #define X86_FEATURE_VIRT_SSBD		(13*32+25) /* Virtualized Speculative Store Bypass Disable */
 #define X86_FEATURE_AMD_SSB_NO		(13*32+26) /* "" Speculative Store Bypass is fixed in hardware. */
diff --git a/arch/x86/include/asm/crash.h b/arch/x86/include/asm/crash.h
index a7adb2bfbf0b..0acf5ee45a21 100644
--- a/arch/x86/include/asm/crash.h
+++ b/arch/x86/include/asm/crash.h
@@ -6,5 +6,6 @@ int crash_load_segments(struct kimage *image);
 int crash_copy_backup_region(struct kimage *image);
 int crash_setup_memmap_entries(struct kimage *image,
 		struct boot_params *params);
+void crash_smp_send_stop(void);
 
 #endif /* _ASM_X86_CRASH_H */
diff --git a/arch/x86/include/asm/disabled-features.h b/arch/x86/include/asm/disabled-features.h
index 33833d1909af..a5ea841cc6d2 100644
--- a/arch/x86/include/asm/disabled-features.h
+++ b/arch/x86/include/asm/disabled-features.h
@@ -16,6 +16,12 @@
 # define DISABLE_MPX	(1<<(X86_FEATURE_MPX & 31))
 #endif
 
+#ifdef CONFIG_X86_SMAP
+# define DISABLE_SMAP	0
+#else
+# define DISABLE_SMAP	(1<<(X86_FEATURE_SMAP & 31))
+#endif
+
 #ifdef CONFIG_X86_INTEL_UMIP
 # define DISABLE_UMIP	0
 #else
@@ -68,7 +74,7 @@
 #define DISABLED_MASK6	0
 #define DISABLED_MASK7	(DISABLE_PTI)
 #define DISABLED_MASK8	0
-#define DISABLED_MASK9	(DISABLE_MPX)
+#define DISABLED_MASK9	(DISABLE_MPX|DISABLE_SMAP)
 #define DISABLED_MASK10	0
 #define DISABLED_MASK11	0
 #define DISABLED_MASK12	0
diff --git a/arch/x86/include/asm/efi.h b/arch/x86/include/asm/efi.h
index eea40d52ca78..107283b1eb1e 100644
--- a/arch/x86/include/asm/efi.h
+++ b/arch/x86/include/asm/efi.h
@@ -19,7 +19,7 @@
  * This is the main reason why we're doing stable VA mappings for RT
  * services.
  *
- * This flag is used in conjuction with a chicken bit called
+ * This flag is used in conjunction with a chicken bit called
  * "efi=old_map" which can be used as a fallback to the old runtime
  * services mapping method in case there's some b0rkage with a
  * particular EFI implementation (haha, it is hard to hold up the
@@ -82,8 +82,7 @@ struct efi_scratch {
 #define arch_efi_call_virt_setup()					\
 ({									\
 	efi_sync_low_kernel_mappings();					\
-	preempt_disable();						\
-	__kernel_fpu_begin();						\
+	kernel_fpu_begin();						\
 	firmware_restrict_branch_speculation_start();			\
 									\
 	if (!efi_enabled(EFI_OLD_MEMMAP))				\
@@ -99,8 +98,7 @@ struct efi_scratch {
 		efi_switch_mm(efi_scratch.prev_mm);			\
 									\
 	firmware_restrict_branch_speculation_end();			\
-	__kernel_fpu_end();						\
-	preempt_enable();						\
+	kernel_fpu_end();						\
 })
 
 extern void __iomem *__init efi_ioremap(unsigned long addr, unsigned long size,
@@ -141,6 +139,8 @@ extern int __init efi_reuse_config(u64 tables, int nr_tables);
 extern void efi_delete_dummy_variable(void);
 extern void efi_switch_mm(struct mm_struct *mm);
 extern void efi_recover_from_page_fault(unsigned long phys_addr);
+extern void efi_free_boot_services(void);
+extern void efi_reserve_boot_services(void);
 
 struct efi_setup_data {
 	u64 fw_vendor;
diff --git a/arch/x86/include/asm/fpu/api.h b/arch/x86/include/asm/fpu/api.h
index a9caac9d4a72..b56d504af654 100644
--- a/arch/x86/include/asm/fpu/api.h
+++ b/arch/x86/include/asm/fpu/api.h
@@ -12,17 +12,12 @@
 #define _ASM_X86_FPU_API_H
 
 /*
- * Careful: __kernel_fpu_begin/end() must be called with preempt disabled
- * and they don't touch the preempt state on their own.
- * If you enable preemption after __kernel_fpu_begin(), preempt notifier
- * should call the __kernel_fpu_end() to prevent the kernel/user FPU
- * state from getting corrupted. KVM for example uses this model.
- *
- * All other cases use kernel_fpu_begin/end() which disable preemption
- * during kernel FPU usage.
+ * Use kernel_fpu_begin/end() if you intend to use FPU in kernel context. It
+ * disables preemption so be careful if you intend to use it for long periods
+ * of time.
+ * If you intend to use the FPU in softirq you need to check first with
+ * irq_fpu_usable() if it is possible.
  */
-extern void __kernel_fpu_begin(void);
-extern void __kernel_fpu_end(void);
 extern void kernel_fpu_begin(void);
 extern void kernel_fpu_end(void);
 extern bool irq_fpu_usable(void);
diff --git a/arch/x86/include/asm/fpu/internal.h b/arch/x86/include/asm/fpu/internal.h
index 5f7290e6e954..fa2c93cb42a2 100644
--- a/arch/x86/include/asm/fpu/internal.h
+++ b/arch/x86/include/asm/fpu/internal.h
@@ -106,6 +106,9 @@ extern void fpstate_sanitize_xstate(struct fpu *fpu);
 #define user_insn(insn, output, input...)				\
 ({									\
 	int err;							\
+									\
+	might_fault();							\
+									\
 	asm volatile(ASM_STAC "\n"					\
 		     "1:" #insn "\n\t"					\
 		     "2: " ASM_CLAC "\n"				\
@@ -226,7 +229,7 @@ static inline void copy_fxregs_to_kernel(struct fpu *fpu)
 		     "3: movl $-2,%[err]\n\t"				\
 		     "jmp 2b\n\t"					\
 		     ".popsection\n\t"					\
-		     _ASM_EXTABLE_UA(1b, 3b)				\
+		     _ASM_EXTABLE(1b, 3b)				\
 		     : [err] "=r" (err)					\
 		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
 		     : "memory")
diff --git a/arch/x86/include/asm/fsgsbase.h b/arch/x86/include/asm/fsgsbase.h
index eb377b6e9eed..bca4c743de77 100644
--- a/arch/x86/include/asm/fsgsbase.h
+++ b/arch/x86/include/asm/fsgsbase.h
@@ -16,8 +16,8 @@
  */
 extern unsigned long x86_fsbase_read_task(struct task_struct *task);
 extern unsigned long x86_gsbase_read_task(struct task_struct *task);
-extern int x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase);
-extern int x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase);
+extern void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase);
+extern void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase);
 
 /* Helper functions for reading/writing FS/GS base */
 
@@ -39,8 +39,15 @@ static inline unsigned long x86_gsbase_read_cpu_inactive(void)
 	return gsbase;
 }
 
-extern void x86_fsbase_write_cpu(unsigned long fsbase);
-extern void x86_gsbase_write_cpu_inactive(unsigned long gsbase);
+static inline void x86_fsbase_write_cpu(unsigned long fsbase)
+{
+	wrmsrl(MSR_FS_BASE, fsbase);
+}
+
+static inline void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
+{
+	wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
+}
 
 #endif /* CONFIG_X86_64 */
 
diff --git a/arch/x86/include/asm/hyperv-tlfs.h b/arch/x86/include/asm/hyperv-tlfs.h
index 4139f7650fe5..705dafc2d11a 100644
--- a/arch/x86/include/asm/hyperv-tlfs.h
+++ b/arch/x86/include/asm/hyperv-tlfs.h
@@ -10,6 +10,7 @@
 #define _ASM_X86_HYPERV_TLFS_H
 
 #include <linux/types.h>
+#include <asm/page.h>
 
 /*
  * The below CPUID leaves are present if VersionAndFeatures.HypervisorPresent
@@ -30,158 +31,150 @@
 /*
  * Feature identification. EAX indicates which features are available
  * to the partition based upon the current partition privileges.
+ * These are HYPERV_CPUID_FEATURES.EAX bits.
  */
 
 /* VP Runtime (HV_X64_MSR_VP_RUNTIME) available */
-#define HV_X64_MSR_VP_RUNTIME_AVAILABLE		(1 << 0)
+#define HV_X64_MSR_VP_RUNTIME_AVAILABLE		BIT(0)
 /* Partition Reference Counter (HV_X64_MSR_TIME_REF_COUNT) available*/
-#define HV_MSR_TIME_REF_COUNT_AVAILABLE		(1 << 1)
-/* Partition reference TSC MSR is available */
-#define HV_MSR_REFERENCE_TSC_AVAILABLE		(1 << 9)
-/* Partition Guest IDLE MSR is available */
-#define HV_X64_MSR_GUEST_IDLE_AVAILABLE		(1 << 10)
-
-/* A partition's reference time stamp counter (TSC) page */
-#define HV_X64_MSR_REFERENCE_TSC		0x40000021
-
-/*
- * There is a single feature flag that signifies if the partition has access
- * to MSRs with local APIC and TSC frequencies.
- */
-#define HV_X64_ACCESS_FREQUENCY_MSRS		(1 << 11)
-
-/* AccessReenlightenmentControls privilege */
-#define HV_X64_ACCESS_REENLIGHTENMENT		BIT(13)
-
+#define HV_MSR_TIME_REF_COUNT_AVAILABLE		BIT(1)
 /*
  * Basic SynIC MSRs (HV_X64_MSR_SCONTROL through HV_X64_MSR_EOM
  * and HV_X64_MSR_SINT0 through HV_X64_MSR_SINT15) available
  */
-#define HV_X64_MSR_SYNIC_AVAILABLE		(1 << 2)
+#define HV_X64_MSR_SYNIC_AVAILABLE		BIT(2)
 /*
  * Synthetic Timer MSRs (HV_X64_MSR_STIMER0_CONFIG through
  * HV_X64_MSR_STIMER3_COUNT) available
  */
-#define HV_MSR_SYNTIMER_AVAILABLE		(1 << 3)
+#define HV_MSR_SYNTIMER_AVAILABLE		BIT(3)
 /*
  * APIC access MSRs (HV_X64_MSR_EOI, HV_X64_MSR_ICR and HV_X64_MSR_TPR)
  * are available
  */
-#define HV_X64_MSR_APIC_ACCESS_AVAILABLE	(1 << 4)
+#define HV_X64_MSR_APIC_ACCESS_AVAILABLE	BIT(4)
 /* Hypercall MSRs (HV_X64_MSR_GUEST_OS_ID and HV_X64_MSR_HYPERCALL) available*/
-#define HV_X64_MSR_HYPERCALL_AVAILABLE		(1 << 5)
+#define HV_X64_MSR_HYPERCALL_AVAILABLE		BIT(5)
 /* Access virtual processor index MSR (HV_X64_MSR_VP_INDEX) available*/
-#define HV_X64_MSR_VP_INDEX_AVAILABLE		(1 << 6)
+#define HV_X64_MSR_VP_INDEX_AVAILABLE		BIT(6)
 /* Virtual system reset MSR (HV_X64_MSR_RESET) is available*/
-#define HV_X64_MSR_RESET_AVAILABLE		(1 << 7)
- /*
-  * Access statistics pages MSRs (HV_X64_MSR_STATS_PARTITION_RETAIL_PAGE,
-  * HV_X64_MSR_STATS_PARTITION_INTERNAL_PAGE, HV_X64_MSR_STATS_VP_RETAIL_PAGE,
-  * HV_X64_MSR_STATS_VP_INTERNAL_PAGE) available
-  */
-#define HV_X64_MSR_STAT_PAGES_AVAILABLE		(1 << 8)
-
-/* Frequency MSRs available */
-#define HV_FEATURE_FREQUENCY_MSRS_AVAILABLE	(1 << 8)
-
-/* Crash MSR available */
-#define HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE (1 << 10)
-
-/* stimer Direct Mode is available */
-#define HV_STIMER_DIRECT_MODE_AVAILABLE		(1 << 19)
+#define HV_X64_MSR_RESET_AVAILABLE		BIT(7)
+/*
+ * Access statistics pages MSRs (HV_X64_MSR_STATS_PARTITION_RETAIL_PAGE,
+ * HV_X64_MSR_STATS_PARTITION_INTERNAL_PAGE, HV_X64_MSR_STATS_VP_RETAIL_PAGE,
+ * HV_X64_MSR_STATS_VP_INTERNAL_PAGE) available
+ */
+#define HV_X64_MSR_STAT_PAGES_AVAILABLE		BIT(8)
+/* Partition reference TSC MSR is available */
+#define HV_MSR_REFERENCE_TSC_AVAILABLE		BIT(9)
+/* Partition Guest IDLE MSR is available */
+#define HV_X64_MSR_GUEST_IDLE_AVAILABLE		BIT(10)
+/*
+ * There is a single feature flag that signifies if the partition has access
+ * to MSRs with local APIC and TSC frequencies.
+ */
+#define HV_X64_ACCESS_FREQUENCY_MSRS		BIT(11)
+/* AccessReenlightenmentControls privilege */
+#define HV_X64_ACCESS_REENLIGHTENMENT		BIT(13)
 
 /*
- * Feature identification: EBX indicates which flags were specified at
- * partition creation. The format is the same as the partition creation
- * flag structure defined in section Partition Creation Flags.
+ * Feature identification: indicates which flags were specified at partition
+ * creation. The format is the same as the partition creation flag structure
+ * defined in section Partition Creation Flags.
+ * These are HYPERV_CPUID_FEATURES.EBX bits.
  */
-#define HV_X64_CREATE_PARTITIONS		(1 << 0)
-#define HV_X64_ACCESS_PARTITION_ID		(1 << 1)
-#define HV_X64_ACCESS_MEMORY_POOL		(1 << 2)
-#define HV_X64_ADJUST_MESSAGE_BUFFERS		(1 << 3)
-#define HV_X64_POST_MESSAGES			(1 << 4)
-#define HV_X64_SIGNAL_EVENTS			(1 << 5)
-#define HV_X64_CREATE_PORT			(1 << 6)
-#define HV_X64_CONNECT_PORT			(1 << 7)
-#define HV_X64_ACCESS_STATS			(1 << 8)
-#define HV_X64_DEBUGGING			(1 << 11)
-#define HV_X64_CPU_POWER_MANAGEMENT		(1 << 12)
-#define HV_X64_CONFIGURE_PROFILER		(1 << 13)
+#define HV_X64_CREATE_PARTITIONS		BIT(0)
+#define HV_X64_ACCESS_PARTITION_ID		BIT(1)
+#define HV_X64_ACCESS_MEMORY_POOL		BIT(2)
+#define HV_X64_ADJUST_MESSAGE_BUFFERS		BIT(3)
+#define HV_X64_POST_MESSAGES			BIT(4)
+#define HV_X64_SIGNAL_EVENTS			BIT(5)
+#define HV_X64_CREATE_PORT			BIT(6)
+#define HV_X64_CONNECT_PORT			BIT(7)
+#define HV_X64_ACCESS_STATS			BIT(8)
+#define HV_X64_DEBUGGING			BIT(11)
+#define HV_X64_CPU_POWER_MANAGEMENT		BIT(12)
 
 /*
  * Feature identification. EDX indicates which miscellaneous features
  * are available to the partition.
+ * These are HYPERV_CPUID_FEATURES.EDX bits.
  */
 /* The MWAIT instruction is available (per section MONITOR / MWAIT) */
-#define HV_X64_MWAIT_AVAILABLE				(1 << 0)
+#define HV_X64_MWAIT_AVAILABLE				BIT(0)
 /* Guest debugging support is available */
-#define HV_X64_GUEST_DEBUGGING_AVAILABLE		(1 << 1)
+#define HV_X64_GUEST_DEBUGGING_AVAILABLE		BIT(1)
 /* Performance Monitor support is available*/
-#define HV_X64_PERF_MONITOR_AVAILABLE			(1 << 2)
+#define HV_X64_PERF_MONITOR_AVAILABLE			BIT(2)
 /* Support for physical CPU dynamic partitioning events is available*/
-#define HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE	(1 << 3)
+#define HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE	BIT(3)
 /*
  * Support for passing hypercall input parameter block via XMM
  * registers is available
  */
-#define HV_X64_HYPERCALL_PARAMS_XMM_AVAILABLE		(1 << 4)
+#define HV_X64_HYPERCALL_PARAMS_XMM_AVAILABLE		BIT(4)
 /* Support for a virtual guest idle state is available */
-#define HV_X64_GUEST_IDLE_STATE_AVAILABLE		(1 << 5)
-/* Guest crash data handler available */
-#define HV_X64_GUEST_CRASH_MSR_AVAILABLE		(1 << 10)
+#define HV_X64_GUEST_IDLE_STATE_AVAILABLE		BIT(5)
+/* Frequency MSRs available */
+#define HV_FEATURE_FREQUENCY_MSRS_AVAILABLE		BIT(8)
+/* Crash MSR available */
+#define HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE		BIT(10)
+/* stimer Direct Mode is available */
+#define HV_STIMER_DIRECT_MODE_AVAILABLE			BIT(19)
 
 /*
  * Implementation recommendations. Indicates which behaviors the hypervisor
  * recommends the OS implement for optimal performance.
+ * These are HYPERV_CPUID_ENLIGHTMENT_INFO.EAX bits.
+ */
+/*
+ * Recommend using hypercall for address space switches rather
+ * than MOV to CR3 instruction
  */
- /*
-  * Recommend using hypercall for address space switches rather
-  * than MOV to CR3 instruction
-  */
-#define HV_X64_AS_SWITCH_RECOMMENDED		(1 << 0)
+#define HV_X64_AS_SWITCH_RECOMMENDED			BIT(0)
 /* Recommend using hypercall for local TLB flushes rather
  * than INVLPG or MOV to CR3 instructions */
-#define HV_X64_LOCAL_TLB_FLUSH_RECOMMENDED	(1 << 1)
+#define HV_X64_LOCAL_TLB_FLUSH_RECOMMENDED		BIT(1)
 /*
  * Recommend using hypercall for remote TLB flushes rather
  * than inter-processor interrupts
  */
-#define HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED	(1 << 2)
+#define HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED		BIT(2)
 /*
  * Recommend using MSRs for accessing APIC registers
  * EOI, ICR and TPR rather than their memory-mapped counterparts
  */
-#define HV_X64_APIC_ACCESS_RECOMMENDED		(1 << 3)
+#define HV_X64_APIC_ACCESS_RECOMMENDED			BIT(3)
 /* Recommend using the hypervisor-provided MSR to initiate a system RESET */
-#define HV_X64_SYSTEM_RESET_RECOMMENDED		(1 << 4)
+#define HV_X64_SYSTEM_RESET_RECOMMENDED			BIT(4)
 /*
  * Recommend using relaxed timing for this partition. If used,
  * the VM should disable any watchdog timeouts that rely on the
  * timely delivery of external interrupts
  */
-#define HV_X64_RELAXED_TIMING_RECOMMENDED	(1 << 5)
+#define HV_X64_RELAXED_TIMING_RECOMMENDED		BIT(5)
 
 /*
  * Recommend not using Auto End-Of-Interrupt feature
  */
-#define HV_DEPRECATING_AEOI_RECOMMENDED		(1 << 9)
+#define HV_DEPRECATING_AEOI_RECOMMENDED			BIT(9)
 
 /*
  * Recommend using cluster IPI hypercalls.
  */
-#define HV_X64_CLUSTER_IPI_RECOMMENDED         (1 << 10)
+#define HV_X64_CLUSTER_IPI_RECOMMENDED			BIT(10)
 
 /* Recommend using the newer ExProcessorMasks interface */
-#define HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED	(1 << 11)
+#define HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED		BIT(11)
 
 /* Recommend using enlightened VMCS */
-#define HV_X64_ENLIGHTENED_VMCS_RECOMMENDED    (1 << 14)
+#define HV_X64_ENLIGHTENED_VMCS_RECOMMENDED		BIT(14)
 
-/*
- * Crash notification flags.
- */
-#define HV_CRASH_CTL_CRASH_NOTIFY_MSG	BIT_ULL(62)
-#define HV_CRASH_CTL_CRASH_NOTIFY	BIT_ULL(63)
+/* Nested features. These are HYPERV_CPUID_NESTED_FEATURES.EAX bits. */
+#define HV_X64_NESTED_GUEST_MAPPING_FLUSH		BIT(18)
+#define HV_X64_NESTED_MSR_BITMAP			BIT(19)
+
+/* Hyper-V specific model specific registers (MSRs) */
 
 /* MSR used to identify the guest OS. */
 #define HV_X64_MSR_GUEST_OS_ID			0x40000000
@@ -201,6 +194,9 @@
 /* MSR used to read the per-partition time reference counter */
 #define HV_X64_MSR_TIME_REF_COUNT		0x40000020
 
+/* A partition's reference time stamp counter (TSC) page */
+#define HV_X64_MSR_REFERENCE_TSC		0x40000021
+
 /* MSR used to retrieve the TSC frequency */
 #define HV_X64_MSR_TSC_FREQUENCY		0x40000022
 
@@ -258,9 +254,11 @@
 #define HV_X64_MSR_CRASH_P3			0x40000103
 #define HV_X64_MSR_CRASH_P4			0x40000104
 #define HV_X64_MSR_CRASH_CTL			0x40000105
-#define HV_X64_MSR_CRASH_CTL_NOTIFY		(1ULL << 63)
-#define HV_X64_MSR_CRASH_PARAMS		\
-		(1 + (HV_X64_MSR_CRASH_P4 - HV_X64_MSR_CRASH_P0))
+
+/* TSC emulation after migration */
+#define HV_X64_MSR_REENLIGHTENMENT_CONTROL	0x40000106
+#define HV_X64_MSR_TSC_EMULATION_CONTROL	0x40000107
+#define HV_X64_MSR_TSC_EMULATION_STATUS		0x40000108
 
 /*
  * Declare the MSR used to setup pages used to communicate with the hypervisor.
@@ -271,7 +269,7 @@ union hv_x64_msr_hypercall_contents {
 		u64 enable:1;
 		u64 reserved:11;
 		u64 guest_physical_address:52;
-	};
+	} __packed;
 };
 
 /*
@@ -283,7 +281,7 @@ struct ms_hyperv_tsc_page {
 	volatile u64 tsc_scale;
 	volatile s64 tsc_offset;
 	u64 reserved2[509];
-};
+}  __packed;
 
 /*
  * The guest OS needs to register the guest ID with the hypervisor.
@@ -311,39 +309,37 @@ struct ms_hyperv_tsc_page {
 
 #define HV_LINUX_VENDOR_ID              0x8100
 
-/* TSC emulation after migration */
-#define HV_X64_MSR_REENLIGHTENMENT_CONTROL	0x40000106
-
-/* Nested features (CPUID 0x4000000A) EAX */
-#define HV_X64_NESTED_GUEST_MAPPING_FLUSH	BIT(18)
-#define HV_X64_NESTED_MSR_BITMAP		BIT(19)
-
 struct hv_reenlightenment_control {
 	__u64 vector:8;
 	__u64 reserved1:8;
 	__u64 enabled:1;
 	__u64 reserved2:15;
 	__u64 target_vp:32;
-};
-
-#define HV_X64_MSR_TSC_EMULATION_CONTROL	0x40000107
-#define HV_X64_MSR_TSC_EMULATION_STATUS		0x40000108
+}  __packed;
 
 struct hv_tsc_emulation_control {
 	__u64 enabled:1;
 	__u64 reserved:63;
-};
+} __packed;
 
 struct hv_tsc_emulation_status {
 	__u64 inprogress:1;
 	__u64 reserved:63;
-};
+} __packed;
 
 #define HV_X64_MSR_HYPERCALL_ENABLE		0x00000001
 #define HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT	12
 #define HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK	\
 		(~((1ull << HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT) - 1))
 
+/*
+ * Crash notification (HV_X64_MSR_CRASH_CTL) flags.
+ */
+#define HV_CRASH_CTL_CRASH_NOTIFY_MSG		BIT_ULL(62)
+#define HV_CRASH_CTL_CRASH_NOTIFY		BIT_ULL(63)
+#define HV_X64_MSR_CRASH_PARAMS		\
+		(1 + (HV_X64_MSR_CRASH_P4 - HV_X64_MSR_CRASH_P0))
+
 #define HV_IPI_LOW_VECTOR	0x10
 #define HV_IPI_HIGH_VECTOR	0xff
 
@@ -358,6 +354,7 @@ struct hv_tsc_emulation_status {
 #define HVCALL_POST_MESSAGE			0x005c
 #define HVCALL_SIGNAL_EVENT			0x005d
 #define HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE 0x00af
+#define HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_LIST 0x00b0
 
 #define HV_X64_MSR_VP_ASSIST_PAGE_ENABLE	0x00000001
 #define HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT	12
@@ -409,7 +406,7 @@ typedef struct _HV_REFERENCE_TSC_PAGE {
 	__u32 res1;
 	__u64 tsc_scale;
 	__s64 tsc_offset;
-} HV_REFERENCE_TSC_PAGE, *PHV_REFERENCE_TSC_PAGE;
+}  __packed HV_REFERENCE_TSC_PAGE, *PHV_REFERENCE_TSC_PAGE;
 
 /* Define the number of synthetic interrupt sources. */
 #define HV_SYNIC_SINT_COUNT		(16)
@@ -466,7 +463,7 @@ union hv_message_flags {
 	struct {
 		__u8 msg_pending:1;
 		__u8 reserved:7;
-	};
+	} __packed;
 };
 
 /* Define port identifier type. */
@@ -475,7 +472,7 @@ union hv_port_id {
 	struct {
 		__u32 id:24;
 		__u32 reserved:8;
-	} u;
+	} __packed u;
 };
 
 /* Define synthetic interrupt controller message header. */
@@ -488,7 +485,7 @@ struct hv_message_header {
 		__u64 sender;
 		union hv_port_id port;
 	};
-};
+} __packed;
 
 /* Define synthetic interrupt controller message format. */
 struct hv_message {
@@ -496,12 +493,12 @@ struct hv_message {
 	union {
 		__u64 payload[HV_MESSAGE_PAYLOAD_QWORD_COUNT];
 	} u;
-};
+} __packed;
 
 /* Define the synthetic interrupt message page layout. */
 struct hv_message_page {
 	struct hv_message sint_message[HV_SYNIC_SINT_COUNT];
-};
+} __packed;
 
 /* Define timer message payload structure. */
 struct hv_timer_message_payload {
@@ -509,7 +506,7 @@ struct hv_timer_message_payload {
 	__u32 reserved;
 	__u64 expiration_time;	/* When the timer expired */
 	__u64 delivery_time;	/* When the message was delivered */
-};
+} __packed;
 
 /* Define virtual processor assist page structure. */
 struct hv_vp_assist_page {
@@ -518,8 +515,9 @@ struct hv_vp_assist_page {
 	__u64 vtl_control[2];
 	__u64 nested_enlightenments_control[2];
 	__u32 enlighten_vmentry;
+	__u32 padding;
 	__u64 current_nested_vmcs;
-};
+} __packed;
 
 struct hv_enlightened_vmcs {
 	u32 revision_id;
@@ -533,6 +531,8 @@ struct hv_enlightened_vmcs {
 	u16 host_gs_selector;
 	u16 host_tr_selector;
 
+	u16 padding16_1;
+
 	u64 host_ia32_pat;
 	u64 host_ia32_efer;
 
@@ -651,7 +651,7 @@ struct hv_enlightened_vmcs {
 	u64 ept_pointer;
 
 	u16 virtual_processor_id;
-	u16 padding16[3];
+	u16 padding16_2[3];
 
 	u64 padding64_2[5];
 	u64 guest_physical_address;
@@ -693,7 +693,7 @@ struct hv_enlightened_vmcs {
 		u32 nested_flush_hypercall:1;
 		u32 msr_bitmap:1;
 		u32 reserved:30;
-	} hv_enlightenments_control;
+	}  __packed hv_enlightenments_control;
 	u32 hv_vp_id;
 
 	u64 hv_vm_id;
@@ -703,7 +703,7 @@ struct hv_enlightened_vmcs {
 	u64 padding64_5[7];
 	u64 xss_exit_bitmap;
 	u64 padding64_6[7];
-};
+} __packed;
 
 #define HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE			0
 #define HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP		BIT(0)
@@ -725,36 +725,129 @@ struct hv_enlightened_vmcs {
 
 #define HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL			0xFFFF
 
-#define HV_STIMER_ENABLE		(1ULL << 0)
-#define HV_STIMER_PERIODIC		(1ULL << 1)
-#define HV_STIMER_LAZY			(1ULL << 2)
-#define HV_STIMER_AUTOENABLE		(1ULL << 3)
-#define HV_STIMER_SINT(config)		(__u8)(((config) >> 16) & 0x0F)
+/* Define synthetic interrupt controller flag constants. */
+#define HV_EVENT_FLAGS_COUNT		(256 * 8)
+#define HV_EVENT_FLAGS_LONG_COUNT	(256 / sizeof(unsigned long))
+
+/*
+ * Synthetic timer configuration.
+ */
+union hv_stimer_config {
+	u64 as_uint64;
+	struct {
+		u64 enable:1;
+		u64 periodic:1;
+		u64 lazy:1;
+		u64 auto_enable:1;
+		u64 apic_vector:8;
+		u64 direct_mode:1;
+		u64 reserved_z0:3;
+		u64 sintx:4;
+		u64 reserved_z1:44;
+	} __packed;
+};
+
+
+/* Define the synthetic interrupt controller event flags format. */
+union hv_synic_event_flags {
+	unsigned long flags[HV_EVENT_FLAGS_LONG_COUNT];
+};
+
+/* Define SynIC control register. */
+union hv_synic_scontrol {
+	u64 as_uint64;
+	struct {
+		u64 enable:1;
+		u64 reserved:63;
+	} __packed;
+};
+
+/* Define synthetic interrupt source. */
+union hv_synic_sint {
+	u64 as_uint64;
+	struct {
+		u64 vector:8;
+		u64 reserved1:8;
+		u64 masked:1;
+		u64 auto_eoi:1;
+		u64 reserved2:46;
+	} __packed;
+};
+
+/* Define the format of the SIMP register */
+union hv_synic_simp {
+	u64 as_uint64;
+	struct {
+		u64 simp_enabled:1;
+		u64 preserved:11;
+		u64 base_simp_gpa:52;
+	} __packed;
+};
+
+/* Define the format of the SIEFP register */
+union hv_synic_siefp {
+	u64 as_uint64;
+	struct {
+		u64 siefp_enabled:1;
+		u64 preserved:11;
+		u64 base_siefp_gpa:52;
+	} __packed;
+};
 
 struct hv_vpset {
 	u64 format;
 	u64 valid_bank_mask;
 	u64 bank_contents[];
-};
+} __packed;
 
 /* HvCallSendSyntheticClusterIpi hypercall */
 struct hv_send_ipi {
 	u32 vector;
 	u32 reserved;
 	u64 cpu_mask;
-};
+} __packed;
 
 /* HvCallSendSyntheticClusterIpiEx hypercall */
 struct hv_send_ipi_ex {
 	u32 vector;
 	u32 reserved;
 	struct hv_vpset vp_set;
-};
+} __packed;
 
 /* HvFlushGuestPhysicalAddressSpace hypercalls */
 struct hv_guest_mapping_flush {
 	u64 address_space;
 	u64 flags;
+} __packed;
+
+/*
+ *  HV_MAX_FLUSH_PAGES = "additional_pages" + 1. It's limited
+ *  by the bitwidth of "additional_pages" in union hv_gpa_page_range.
+ */
+#define HV_MAX_FLUSH_PAGES (2048)
+
+/* HvFlushGuestPhysicalAddressList hypercall */
+union hv_gpa_page_range {
+	u64 address_space;
+	struct {
+		u64 additional_pages:11;
+		u64 largepage:1;
+		u64 basepfn:52;
+	} page;
+};
+
+/*
+ * All input flush parameters should be in single page. The max flush
+ * count is equal with how many entries of union hv_gpa_page_range can
+ * be populated into the input parameter page.
+ */
+#define HV_MAX_FLUSH_REP_COUNT (PAGE_SIZE - 2 * sizeof(u64) /	\
+				sizeof(union hv_gpa_page_range))
+
+struct hv_guest_mapping_flush_list {
+	u64 address_space;
+	u64 flags;
+	union hv_gpa_page_range gpa_list[HV_MAX_FLUSH_REP_COUNT];
 };
 
 /* HvFlushVirtualAddressSpace, HvFlushVirtualAddressList hypercalls */
@@ -763,7 +856,7 @@ struct hv_tlb_flush {
 	u64 flags;
 	u64 processor_mask;
 	u64 gva_list[];
-};
+} __packed;
 
 /* HvFlushVirtualAddressSpaceEx, HvFlushVirtualAddressListEx hypercalls */
 struct hv_tlb_flush_ex {
@@ -771,6 +864,6 @@ struct hv_tlb_flush_ex {
 	u64 flags;
 	struct hv_vpset hv_vp_set;
 	u64 gva_list[];
-};
+} __packed;
 
 #endif
diff --git a/arch/x86/include/asm/intel_pt.h b/arch/x86/include/asm/intel_pt.h
index b523f51c5400..634f99b1dc22 100644
--- a/arch/x86/include/asm/intel_pt.h
+++ b/arch/x86/include/asm/intel_pt.h
@@ -2,10 +2,36 @@
 #ifndef _ASM_X86_INTEL_PT_H
 #define _ASM_X86_INTEL_PT_H
 
+#define PT_CPUID_LEAVES		2
+#define PT_CPUID_REGS_NUM	4 /* number of regsters (eax, ebx, ecx, edx) */
+
+enum pt_capabilities {
+	PT_CAP_max_subleaf = 0,
+	PT_CAP_cr3_filtering,
+	PT_CAP_psb_cyc,
+	PT_CAP_ip_filtering,
+	PT_CAP_mtc,
+	PT_CAP_ptwrite,
+	PT_CAP_power_event_trace,
+	PT_CAP_topa_output,
+	PT_CAP_topa_multiple_entries,
+	PT_CAP_single_range_output,
+	PT_CAP_output_subsys,
+	PT_CAP_payloads_lip,
+	PT_CAP_num_address_ranges,
+	PT_CAP_mtc_periods,
+	PT_CAP_cycle_thresholds,
+	PT_CAP_psb_periods,
+};
+
 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
 void cpu_emergency_stop_pt(void);
+extern u32 intel_pt_validate_hw_cap(enum pt_capabilities cap);
+extern u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities cap);
 #else
 static inline void cpu_emergency_stop_pt(void) {}
+static inline u32 intel_pt_validate_hw_cap(enum pt_capabilities cap) { return 0; }
+static inline u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability) { return 0; }
 #endif
 
 #endif /* _ASM_X86_INTEL_PT_H */
diff --git a/arch/x86/include/asm/io.h b/arch/x86/include/asm/io.h
index 832da8229cc7..686247db3106 100644
--- a/arch/x86/include/asm/io.h
+++ b/arch/x86/include/asm/io.h
@@ -221,6 +221,14 @@ extern void set_iounmap_nonlazy(void);
 
 #ifdef __KERNEL__
 
+void memcpy_fromio(void *, const volatile void __iomem *, size_t);
+void memcpy_toio(volatile void __iomem *, const void *, size_t);
+void memset_io(volatile void __iomem *, int, size_t);
+
+#define memcpy_fromio memcpy_fromio
+#define memcpy_toio memcpy_toio
+#define memset_io memset_io
+
 #include <asm-generic/iomap.h>
 
 /*
diff --git a/arch/x86/include/asm/irq.h b/arch/x86/include/asm/irq.h
index 2395bb794c7b..fbb16e6b6c18 100644
--- a/arch/x86/include/asm/irq.h
+++ b/arch/x86/include/asm/irq.h
@@ -30,6 +30,9 @@ extern void fixup_irqs(void);
 
 #ifdef CONFIG_HAVE_KVM
 extern void kvm_set_posted_intr_wakeup_handler(void (*handler)(void));
+extern __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs);
+extern __visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs);
+extern __visible void smp_kvm_posted_intr_nested_ipi(struct pt_regs *regs);
 #endif
 
 extern void (*x86_platform_ipi_callback)(void);
@@ -41,9 +44,13 @@ extern __visible unsigned int do_IRQ(struct pt_regs *regs);
 
 extern void init_ISA_irqs(void);
 
+extern void __init init_IRQ(void);
+
 #ifdef CONFIG_X86_LOCAL_APIC
 void arch_trigger_cpumask_backtrace(const struct cpumask *mask,
 				    bool exclude_self);
+
+extern __visible void smp_x86_platform_ipi(struct pt_regs *regs);
 #define arch_trigger_cpumask_backtrace arch_trigger_cpumask_backtrace
 #endif
 
diff --git a/arch/x86/include/asm/irq_work.h b/arch/x86/include/asm/irq_work.h
index 800ffce0db29..80b35e3adf03 100644
--- a/arch/x86/include/asm/irq_work.h
+++ b/arch/x86/include/asm/irq_work.h
@@ -10,6 +10,7 @@ static inline bool arch_irq_work_has_interrupt(void)
 	return boot_cpu_has(X86_FEATURE_APIC);
 }
 extern void arch_irq_work_raise(void);
+extern __visible void smp_irq_work_interrupt(struct pt_regs *regs);
 #else
 static inline bool arch_irq_work_has_interrupt(void)
 {
diff --git a/arch/x86/include/asm/jump_label.h b/arch/x86/include/asm/jump_label.h
index a5fb34fe56a4..21efc9d07ed9 100644
--- a/arch/x86/include/asm/jump_label.h
+++ b/arch/x86/include/asm/jump_label.h
@@ -2,6 +2,19 @@
 #ifndef _ASM_X86_JUMP_LABEL_H
 #define _ASM_X86_JUMP_LABEL_H
 
+#ifndef HAVE_JUMP_LABEL
+/*
+ * For better or for worse, if jump labels (the gcc extension) are missing,
+ * then the entire static branch patching infrastructure is compiled out.
+ * If that happens, the code in here will malfunction.  Raise a compiler
+ * error instead.
+ *
+ * In theory, jump labels and the static branch patching infrastructure
+ * could be decoupled to fix this.
+ */
+#error asm/jump_label.h included on a non-jump-label kernel
+#endif
+
 #define JUMP_LABEL_NOP_SIZE 5
 
 #ifdef CONFIG_X86_64
@@ -20,9 +33,15 @@
 
 static __always_inline bool arch_static_branch(struct static_key *key, bool branch)
 {
-	asm_volatile_goto("STATIC_BRANCH_NOP l_yes=\"%l[l_yes]\" key=\"%c0\" "
-			  "branch=\"%c1\""
-			: :  "i" (key), "i" (branch) : : l_yes);
+	asm_volatile_goto("1:"
+		".byte " __stringify(STATIC_KEY_INIT_NOP) "\n\t"
+		".pushsection __jump_table,  \"aw\" \n\t"
+		_ASM_ALIGN "\n\t"
+		".long 1b - ., %l[l_yes] - . \n\t"
+		_ASM_PTR "%c0 + %c1 - .\n\t"
+		".popsection \n\t"
+		: :  "i" (key), "i" (branch) : : l_yes);
+
 	return false;
 l_yes:
 	return true;
@@ -30,8 +49,14 @@ l_yes:
 
 static __always_inline bool arch_static_branch_jump(struct static_key *key, bool branch)
 {
-	asm_volatile_goto("STATIC_BRANCH_JMP l_yes=\"%l[l_yes]\" key=\"%c0\" "
-			  "branch=\"%c1\""
+	asm_volatile_goto("1:"
+		".byte 0xe9\n\t .long %l[l_yes] - 2f\n\t"
+		"2:\n\t"
+		".pushsection __jump_table,  \"aw\" \n\t"
+		_ASM_ALIGN "\n\t"
+		".long 1b - ., %l[l_yes] - . \n\t"
+		_ASM_PTR "%c0 + %c1 - .\n\t"
+		".popsection \n\t"
 		: :  "i" (key), "i" (branch) : : l_yes);
 
 	return false;
@@ -41,26 +66,37 @@ l_yes:
 
 #else	/* __ASSEMBLY__ */
 
-.macro STATIC_BRANCH_NOP l_yes:req key:req branch:req
-.Lstatic_branch_nop_\@:
-	.byte STATIC_KEY_INIT_NOP
-.Lstatic_branch_no_after_\@:
+.macro STATIC_JUMP_IF_TRUE target, key, def
+.Lstatic_jump_\@:
+	.if \def
+	/* Equivalent to "jmp.d32 \target" */
+	.byte		0xe9
+	.long		\target - .Lstatic_jump_after_\@
+.Lstatic_jump_after_\@:
+	.else
+	.byte		STATIC_KEY_INIT_NOP
+	.endif
 	.pushsection __jump_table, "aw"
 	_ASM_ALIGN
-	.long		.Lstatic_branch_nop_\@ - ., \l_yes - .
-	_ASM_PTR        \key + \branch - .
+	.long		.Lstatic_jump_\@ - ., \target - .
+	_ASM_PTR	\key - .
 	.popsection
 .endm
 
-.macro STATIC_BRANCH_JMP l_yes:req key:req branch:req
-.Lstatic_branch_jmp_\@:
-	.byte 0xe9
-	.long \l_yes - .Lstatic_branch_jmp_after_\@
-.Lstatic_branch_jmp_after_\@:
+.macro STATIC_JUMP_IF_FALSE target, key, def
+.Lstatic_jump_\@:
+	.if \def
+	.byte		STATIC_KEY_INIT_NOP
+	.else
+	/* Equivalent to "jmp.d32 \target" */
+	.byte		0xe9
+	.long		\target - .Lstatic_jump_after_\@
+.Lstatic_jump_after_\@:
+	.endif
 	.pushsection __jump_table, "aw"
 	_ASM_ALIGN
-	.long		.Lstatic_branch_jmp_\@ - ., \l_yes - .
-	_ASM_PTR	\key + \branch - .
+	.long		.Lstatic_jump_\@ - ., \target - .
+	_ASM_PTR	\key + 1 - .
 	.popsection
 .endm
 
diff --git a/arch/x86/include/asm/kvm_host.h b/arch/x86/include/asm/kvm_host.h
index 55e51ff7e421..4660ce90de7f 100644
--- a/arch/x86/include/asm/kvm_host.h
+++ b/arch/x86/include/asm/kvm_host.h
@@ -439,6 +439,11 @@ struct kvm_mmu {
 	u64 pdptrs[4]; /* pae */
 };
 
+struct kvm_tlb_range {
+	u64 start_gfn;
+	u64 pages;
+};
+
 enum pmc_type {
 	KVM_PMC_GP = 0,
 	KVM_PMC_FIXED,
@@ -497,7 +502,7 @@ struct kvm_mtrr {
 struct kvm_vcpu_hv_stimer {
 	struct hrtimer timer;
 	int index;
-	u64 config;
+	union hv_stimer_config config;
 	u64 count;
 	u64 exp_time;
 	struct hv_message msg;
@@ -601,17 +606,16 @@ struct kvm_vcpu_arch {
 
 	/*
 	 * QEMU userspace and the guest each have their own FPU state.
-	 * In vcpu_run, we switch between the user and guest FPU contexts.
-	 * While running a VCPU, the VCPU thread will have the guest FPU
-	 * context.
+	 * In vcpu_run, we switch between the user, maintained in the
+	 * task_struct struct, and guest FPU contexts. While running a VCPU,
+	 * the VCPU thread will have the guest FPU context.
 	 *
 	 * Note that while the PKRU state lives inside the fpu registers,
 	 * it is switched out separately at VMENTER and VMEXIT time. The
 	 * "guest_fpu" state here contains the guest FPU context, with the
 	 * host PRKU bits.
 	 */
-	struct fpu user_fpu;
-	struct fpu guest_fpu;
+	struct fpu *guest_fpu;
 
 	u64 xcr0;
 	u64 guest_supported_xcr0;
@@ -1042,6 +1046,8 @@ struct kvm_x86_ops {
 
 	void (*tlb_flush)(struct kvm_vcpu *vcpu, bool invalidate_gpa);
 	int  (*tlb_remote_flush)(struct kvm *kvm);
+	int  (*tlb_remote_flush_with_range)(struct kvm *kvm,
+			struct kvm_tlb_range *range);
 
 	/*
 	 * Flush any TLB entries associated with the given GVA.
@@ -1094,7 +1100,8 @@ struct kvm_x86_ops {
 	bool (*has_wbinvd_exit)(void);
 
 	u64 (*read_l1_tsc_offset)(struct kvm_vcpu *vcpu);
-	void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
+	/* Returns actual tsc_offset set in active VMCS */
+	u64 (*write_l1_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
 
 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2);
 
@@ -1105,6 +1112,7 @@ struct kvm_x86_ops {
 	bool (*mpx_supported)(void);
 	bool (*xsaves_supported)(void);
 	bool (*umip_emulated)(void);
+	bool (*pt_supported)(void);
 
 	int (*check_nested_events)(struct kvm_vcpu *vcpu, bool external_intr);
 	void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
@@ -1185,6 +1193,7 @@ struct kvm_x86_ops {
 
 	int (*nested_enable_evmcs)(struct kvm_vcpu *vcpu,
 				   uint16_t *vmcs_version);
+	uint16_t (*nested_get_evmcs_version)(struct kvm_vcpu *vcpu);
 };
 
 struct kvm_arch_async_pf {
@@ -1195,6 +1204,7 @@ struct kvm_arch_async_pf {
 };
 
 extern struct kvm_x86_ops *kvm_x86_ops;
+extern struct kmem_cache *x86_fpu_cache;
 
 #define __KVM_HAVE_ARCH_VM_ALLOC
 static inline struct kvm *kvm_arch_alloc_vm(void)
@@ -1491,7 +1501,7 @@ asmlinkage void kvm_spurious_fault(void);
 	"cmpb $0, kvm_rebooting \n\t"	      \
 	"jne 668b \n\t"      		      \
 	__ASM_SIZE(push) " $666b \n\t"	      \
-	"call kvm_spurious_fault \n\t"	      \
+	"jmp kvm_spurious_fault \n\t"	      \
 	".popsection \n\t" \
 	_ASM_EXTABLE(666b, 667b)
 
@@ -1502,7 +1512,7 @@ asmlinkage void kvm_spurious_fault(void);
 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end);
 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
-void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
+int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
diff --git a/arch/x86/include/asm/kvm_para.h b/arch/x86/include/asm/kvm_para.h
index 4c723632c036..5ed3cf1c3934 100644
--- a/arch/x86/include/asm/kvm_para.h
+++ b/arch/x86/include/asm/kvm_para.h
@@ -92,6 +92,7 @@ void kvm_async_pf_task_wait(u32 token, int interrupt_kernel);
 void kvm_async_pf_task_wake(u32 token);
 u32 kvm_read_and_reset_pf_reason(void);
 extern void kvm_disable_steal_time(void);
+void do_async_page_fault(struct pt_regs *regs, unsigned long error_code);
 
 #ifdef CONFIG_PARAVIRT_SPINLOCKS
 void __init kvm_spinlock_init(void);
diff --git a/arch/x86/include/asm/mce.h b/arch/x86/include/asm/mce.h
index 4da9b1c58d28..c1a812bd5a27 100644
--- a/arch/x86/include/asm/mce.h
+++ b/arch/x86/include/asm/mce.h
@@ -221,6 +221,8 @@ static inline void mce_hygon_feature_init(struct cpuinfo_x86 *c) { return mce_am
 
 int mce_available(struct cpuinfo_x86 *c);
 bool mce_is_memory_error(struct mce *m);
+bool mce_is_correctable(struct mce *m);
+int mce_usable_address(struct mce *m);
 
 DECLARE_PER_CPU(unsigned, mce_exception_count);
 DECLARE_PER_CPU(unsigned, mce_poll_count);
diff --git a/arch/x86/include/asm/mshyperv.h b/arch/x86/include/asm/mshyperv.h
index 0d6271cce198..cc60e617931c 100644
--- a/arch/x86/include/asm/mshyperv.h
+++ b/arch/x86/include/asm/mshyperv.h
@@ -22,6 +22,11 @@ struct ms_hyperv_info {
 
 extern struct ms_hyperv_info ms_hyperv;
 
+
+typedef int (*hyperv_fill_flush_list_func)(
+		struct hv_guest_mapping_flush_list *flush,
+		void *data);
+
 /*
  * Generate the guest ID.
  */
@@ -232,7 +237,7 @@ static inline u64 hv_do_fast_hypercall16(u16 code, u64 input1, u64 input2)
 				      : "cc");
 	}
 #endif
-		return hv_status;
+	return hv_status;
 }
 
 /*
@@ -348,6 +353,11 @@ void set_hv_tscchange_cb(void (*cb)(void));
 void clear_hv_tscchange_cb(void);
 void hyperv_stop_tsc_emulation(void);
 int hyperv_flush_guest_mapping(u64 as);
+int hyperv_flush_guest_mapping_range(u64 as,
+		hyperv_fill_flush_list_func fill_func, void *data);
+int hyperv_fill_flush_guest_mapping_list(
+		struct hv_guest_mapping_flush_list *flush,
+		u64 start_gfn, u64 end_gfn);
 
 #ifdef CONFIG_X86_64
 void hv_apic_init(void);
@@ -370,6 +380,11 @@ static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu)
 	return NULL;
 }
 static inline int hyperv_flush_guest_mapping(u64 as) { return -1; }
+static inline int hyperv_flush_guest_mapping_range(u64 as,
+		hyperv_fill_flush_list_func fill_func, void *data)
+{
+	return -1;
+}
 #endif /* CONFIG_HYPERV */
 
 #ifdef CONFIG_HYPERV_TSCPAGE
diff --git a/arch/x86/include/asm/msr-index.h b/arch/x86/include/asm/msr-index.h
index 80f4a4f38c79..8e40c2446fd1 100644
--- a/arch/x86/include/asm/msr-index.h
+++ b/arch/x86/include/asm/msr-index.h
@@ -41,9 +41,10 @@
 
 #define MSR_IA32_SPEC_CTRL		0x00000048 /* Speculation Control */
 #define SPEC_CTRL_IBRS			(1 << 0)   /* Indirect Branch Restricted Speculation */
-#define SPEC_CTRL_STIBP			(1 << 1)   /* Single Thread Indirect Branch Predictors */
+#define SPEC_CTRL_STIBP_SHIFT		1	   /* Single Thread Indirect Branch Predictor (STIBP) bit */
+#define SPEC_CTRL_STIBP			(1 << SPEC_CTRL_STIBP_SHIFT)	/* STIBP mask */
 #define SPEC_CTRL_SSBD_SHIFT		2	   /* Speculative Store Bypass Disable bit */
-#define SPEC_CTRL_SSBD			(1 << SPEC_CTRL_SSBD_SHIFT)   /* Speculative Store Bypass Disable */
+#define SPEC_CTRL_SSBD			(1 << SPEC_CTRL_SSBD_SHIFT)	/* Speculative Store Bypass Disable */
 
 #define MSR_IA32_PRED_CMD		0x00000049 /* Prediction Command */
 #define PRED_CMD_IBPB			(1 << 0)   /* Indirect Branch Prediction Barrier */
@@ -120,7 +121,43 @@
 #define MSR_PEBS_LD_LAT_THRESHOLD	0x000003f6
 
 #define MSR_IA32_RTIT_CTL		0x00000570
+#define RTIT_CTL_TRACEEN		BIT(0)
+#define RTIT_CTL_CYCLEACC		BIT(1)
+#define RTIT_CTL_OS			BIT(2)
+#define RTIT_CTL_USR			BIT(3)
+#define RTIT_CTL_PWR_EVT_EN		BIT(4)
+#define RTIT_CTL_FUP_ON_PTW		BIT(5)
+#define RTIT_CTL_FABRIC_EN		BIT(6)
+#define RTIT_CTL_CR3EN			BIT(7)
+#define RTIT_CTL_TOPA			BIT(8)
+#define RTIT_CTL_MTC_EN			BIT(9)
+#define RTIT_CTL_TSC_EN			BIT(10)
+#define RTIT_CTL_DISRETC		BIT(11)
+#define RTIT_CTL_PTW_EN			BIT(12)
+#define RTIT_CTL_BRANCH_EN		BIT(13)
+#define RTIT_CTL_MTC_RANGE_OFFSET	14
+#define RTIT_CTL_MTC_RANGE		(0x0full << RTIT_CTL_MTC_RANGE_OFFSET)
+#define RTIT_CTL_CYC_THRESH_OFFSET	19
+#define RTIT_CTL_CYC_THRESH		(0x0full << RTIT_CTL_CYC_THRESH_OFFSET)
+#define RTIT_CTL_PSB_FREQ_OFFSET	24
+#define RTIT_CTL_PSB_FREQ		(0x0full << RTIT_CTL_PSB_FREQ_OFFSET)
+#define RTIT_CTL_ADDR0_OFFSET		32
+#define RTIT_CTL_ADDR0			(0x0full << RTIT_CTL_ADDR0_OFFSET)
+#define RTIT_CTL_ADDR1_OFFSET		36
+#define RTIT_CTL_ADDR1			(0x0full << RTIT_CTL_ADDR1_OFFSET)
+#define RTIT_CTL_ADDR2_OFFSET		40
+#define RTIT_CTL_ADDR2			(0x0full << RTIT_CTL_ADDR2_OFFSET)
+#define RTIT_CTL_ADDR3_OFFSET		44
+#define RTIT_CTL_ADDR3			(0x0full << RTIT_CTL_ADDR3_OFFSET)
 #define MSR_IA32_RTIT_STATUS		0x00000571
+#define RTIT_STATUS_FILTEREN		BIT(0)
+#define RTIT_STATUS_CONTEXTEN		BIT(1)
+#define RTIT_STATUS_TRIGGEREN		BIT(2)
+#define RTIT_STATUS_BUFFOVF		BIT(3)
+#define RTIT_STATUS_ERROR		BIT(4)
+#define RTIT_STATUS_STOPPED		BIT(5)
+#define RTIT_STATUS_BYTECNT_OFFSET	32
+#define RTIT_STATUS_BYTECNT		(0x1ffffull << RTIT_STATUS_BYTECNT_OFFSET)
 #define MSR_IA32_RTIT_ADDR0_A		0x00000580
 #define MSR_IA32_RTIT_ADDR0_B		0x00000581
 #define MSR_IA32_RTIT_ADDR1_A		0x00000582
@@ -389,6 +426,7 @@
 #define MSR_F15H_NB_PERF_CTR		0xc0010241
 #define MSR_F15H_PTSC			0xc0010280
 #define MSR_F15H_IC_CFG			0xc0011021
+#define MSR_F15H_EX_CFG			0xc001102c
 
 /* Fam 10h MSRs */
 #define MSR_FAM10H_MMIO_CONF_BASE	0xc0010058
@@ -770,6 +808,7 @@
 #define VMX_BASIC_INOUT		0x0040000000000000LLU
 
 /* MSR_IA32_VMX_MISC bits */
+#define MSR_IA32_VMX_MISC_INTEL_PT                 (1ULL << 14)
 #define MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS (1ULL << 29)
 #define MSR_IA32_VMX_MISC_PREEMPTION_TIMER_SCALE   0x1F
 /* AMD-V MSRs */
diff --git a/arch/x86/include/asm/nospec-branch.h b/arch/x86/include/asm/nospec-branch.h
index 80dc14422495..dad12b767ba0 100644
--- a/arch/x86/include/asm/nospec-branch.h
+++ b/arch/x86/include/asm/nospec-branch.h
@@ -3,6 +3,8 @@
 #ifndef _ASM_X86_NOSPEC_BRANCH_H_
 #define _ASM_X86_NOSPEC_BRANCH_H_
 
+#include <linux/static_key.h>
+
 #include <asm/alternative.h>
 #include <asm/alternative-asm.h>
 #include <asm/cpufeatures.h>
@@ -162,11 +164,12 @@
 	_ASM_PTR " 999b\n\t"					\
 	".popsection\n\t"
 
-#if defined(CONFIG_X86_64) && defined(RETPOLINE)
+#ifdef CONFIG_RETPOLINE
+#ifdef CONFIG_X86_64
 
 /*
- * Since the inline asm uses the %V modifier which is only in newer GCC,
- * the 64-bit one is dependent on RETPOLINE not CONFIG_RETPOLINE.
+ * Inline asm uses the %V modifier which is only in newer GCC
+ * which is ensured when CONFIG_RETPOLINE is defined.
  */
 # define CALL_NOSPEC						\
 	ANNOTATE_NOSPEC_ALTERNATIVE				\
@@ -181,7 +184,7 @@
 	X86_FEATURE_RETPOLINE_AMD)
 # define THUNK_TARGET(addr) [thunk_target] "r" (addr)
 
-#elif defined(CONFIG_X86_32) && defined(CONFIG_RETPOLINE)
+#else /* CONFIG_X86_32 */
 /*
  * For i386 we use the original ret-equivalent retpoline, because
  * otherwise we'll run out of registers. We don't care about CET
@@ -211,6 +214,7 @@
 	X86_FEATURE_RETPOLINE_AMD)
 
 # define THUNK_TARGET(addr) [thunk_target] "rm" (addr)
+#endif
 #else /* No retpoline for C / inline asm */
 # define CALL_NOSPEC "call *%[thunk_target]\n"
 # define THUNK_TARGET(addr) [thunk_target] "rm" (addr)
@@ -219,13 +223,20 @@
 /* The Spectre V2 mitigation variants */
 enum spectre_v2_mitigation {
 	SPECTRE_V2_NONE,
-	SPECTRE_V2_RETPOLINE_MINIMAL,
-	SPECTRE_V2_RETPOLINE_MINIMAL_AMD,
 	SPECTRE_V2_RETPOLINE_GENERIC,
 	SPECTRE_V2_RETPOLINE_AMD,
 	SPECTRE_V2_IBRS_ENHANCED,
 };
 
+/* The indirect branch speculation control variants */
+enum spectre_v2_user_mitigation {
+	SPECTRE_V2_USER_NONE,
+	SPECTRE_V2_USER_STRICT,
+	SPECTRE_V2_USER_STRICT_PREFERRED,
+	SPECTRE_V2_USER_PRCTL,
+	SPECTRE_V2_USER_SECCOMP,
+};
+
 /* The Speculative Store Bypass disable variants */
 enum ssb_mitigation {
 	SPEC_STORE_BYPASS_NONE,
@@ -303,6 +314,10 @@ do {									\
 	preempt_enable();						\
 } while (0)
 
+DECLARE_STATIC_KEY_FALSE(switch_to_cond_stibp);
+DECLARE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
+DECLARE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
+
 #endif /* __ASSEMBLY__ */
 
 /*
diff --git a/arch/x86/include/asm/page_64_types.h b/arch/x86/include/asm/page_64_types.h
index cd0cf1c568b4..8f657286d599 100644
--- a/arch/x86/include/asm/page_64_types.h
+++ b/arch/x86/include/asm/page_64_types.h
@@ -33,12 +33,14 @@
 
 /*
  * Set __PAGE_OFFSET to the most negative possible address +
- * PGDIR_SIZE*16 (pgd slot 272).  The gap is to allow a space for a
- * hypervisor to fit.  Choosing 16 slots here is arbitrary, but it's
- * what Xen requires.
+ * PGDIR_SIZE*17 (pgd slot 273).
+ *
+ * The gap is to allow a space for LDT remap for PTI (1 pgd slot) and space for
+ * a hypervisor (16 slots). Choosing 16 slots for a hypervisor is arbitrary,
+ * but it's what Xen requires.
  */
-#define __PAGE_OFFSET_BASE_L5	_AC(0xff10000000000000, UL)
-#define __PAGE_OFFSET_BASE_L4	_AC(0xffff880000000000, UL)
+#define __PAGE_OFFSET_BASE_L5	_AC(0xff11000000000000, UL)
+#define __PAGE_OFFSET_BASE_L4	_AC(0xffff888000000000, UL)
 
 #ifdef CONFIG_DYNAMIC_MEMORY_LAYOUT
 #define __PAGE_OFFSET           page_offset_base
diff --git a/arch/x86/include/asm/paravirt.h b/arch/x86/include/asm/paravirt.h
index 4bf42f9e4eea..a97f28d914d5 100644
--- a/arch/x86/include/asm/paravirt.h
+++ b/arch/x86/include/asm/paravirt.h
@@ -26,6 +26,11 @@ struct static_key;
 extern struct static_key paravirt_steal_enabled;
 extern struct static_key paravirt_steal_rq_enabled;
 
+__visible void __native_queued_spin_unlock(struct qspinlock *lock);
+bool pv_is_native_spin_unlock(void);
+__visible bool __native_vcpu_is_preempted(long cpu);
+bool pv_is_native_vcpu_is_preempted(void);
+
 static inline u64 paravirt_steal_clock(int cpu)
 {
 	return PVOP_CALL1(u64, time.steal_clock, cpu);
diff --git a/arch/x86/include/asm/paravirt_types.h b/arch/x86/include/asm/paravirt_types.h
index 26942ad63830..488c59686a73 100644
--- a/arch/x86/include/asm/paravirt_types.h
+++ b/arch/x86/include/asm/paravirt_types.h
@@ -348,11 +348,23 @@ extern struct paravirt_patch_template pv_ops;
 #define paravirt_clobber(clobber)		\
 	[paravirt_clobber] "i" (clobber)
 
+/*
+ * Generate some code, and mark it as patchable by the
+ * apply_paravirt() alternate instruction patcher.
+ */
+#define _paravirt_alt(insn_string, type, clobber)	\
+	"771:\n\t" insn_string "\n" "772:\n"		\
+	".pushsection .parainstructions,\"a\"\n"	\
+	_ASM_ALIGN "\n"					\
+	_ASM_PTR " 771b\n"				\
+	"  .byte " type "\n"				\
+	"  .byte 772b-771b\n"				\
+	"  .short " clobber "\n"			\
+	".popsection\n"
+
 /* Generate patchable code, with the default asm parameters. */
-#define paravirt_call							\
-	"PARAVIRT_CALL type=\"%c[paravirt_typenum]\""			\
-	" clobber=\"%c[paravirt_clobber]\""				\
-	" pv_opptr=\"%c[paravirt_opptr]\";"
+#define paravirt_alt(insn_string)					\
+	_paravirt_alt(insn_string, "%c[paravirt_typenum]", "%c[paravirt_clobber]")
 
 /* Simple instruction patching code. */
 #define NATIVE_LABEL(a,x,b) "\n\t.globl " a #x "_" #b "\n" a #x "_" #b ":\n\t"
@@ -373,6 +385,16 @@ unsigned native_patch(u8 type, void *ibuf, unsigned long addr, unsigned len);
 int paravirt_disable_iospace(void);
 
 /*
+ * This generates an indirect call based on the operation type number.
+ * The type number, computed in PARAVIRT_PATCH, is derived from the
+ * offset into the paravirt_patch_template structure, and can therefore be
+ * freely converted back into a structure offset.
+ */
+#define PARAVIRT_CALL					\
+	ANNOTATE_RETPOLINE_SAFE				\
+	"call *%c[paravirt_opptr];"
+
+/*
  * These macros are intended to wrap calls through one of the paravirt
  * ops structs, so that they can be later identified and patched at
  * runtime.
@@ -509,7 +531,7 @@ int paravirt_disable_iospace(void);
 		/* since this condition will never hold */		\
 		if (sizeof(rettype) > sizeof(unsigned long)) {		\
 			asm volatile(pre				\
-				     paravirt_call			\
+				     paravirt_alt(PARAVIRT_CALL)	\
 				     post				\
 				     : call_clbr, ASM_CALL_CONSTRAINT	\
 				     : paravirt_type(op),		\
@@ -519,7 +541,7 @@ int paravirt_disable_iospace(void);
 			__ret = (rettype)((((u64)__edx) << 32) | __eax); \
 		} else {						\
 			asm volatile(pre				\
-				     paravirt_call			\
+				     paravirt_alt(PARAVIRT_CALL)	\
 				     post				\
 				     : call_clbr, ASM_CALL_CONSTRAINT	\
 				     : paravirt_type(op),		\
@@ -546,7 +568,7 @@ int paravirt_disable_iospace(void);
 		PVOP_VCALL_ARGS;					\
 		PVOP_TEST_NULL(op);					\
 		asm volatile(pre					\
-			     paravirt_call				\
+			     paravirt_alt(PARAVIRT_CALL)		\
 			     post					\
 			     : call_clbr, ASM_CALL_CONSTRAINT		\
 			     : paravirt_type(op),			\
@@ -664,26 +686,6 @@ struct paravirt_patch_site {
 extern struct paravirt_patch_site __parainstructions[],
 	__parainstructions_end[];
 
-#else	/* __ASSEMBLY__ */
-
-/*
- * This generates an indirect call based on the operation type number.
- * The type number, computed in PARAVIRT_PATCH, is derived from the
- * offset into the paravirt_patch_template structure, and can therefore be
- * freely converted back into a structure offset.
- */
-.macro PARAVIRT_CALL type:req clobber:req pv_opptr:req
-771:	ANNOTATE_RETPOLINE_SAFE
-	call *\pv_opptr
-772:	.pushsection .parainstructions,"a"
-	_ASM_ALIGN
-	_ASM_PTR 771b
-	.byte \type
-	.byte 772b-771b
-	.short \clobber
-	.popsection
-.endm
-
 #endif	/* __ASSEMBLY__ */
 
 #endif	/* _ASM_X86_PARAVIRT_TYPES_H */
diff --git a/arch/x86/include/asm/pci_x86.h b/arch/x86/include/asm/pci_x86.h
index 959d618dbb17..73bb404f4d2a 100644
--- a/arch/x86/include/asm/pci_x86.h
+++ b/arch/x86/include/asm/pci_x86.h
@@ -121,7 +121,14 @@ extern void __init dmi_check_pciprobe(void);
 extern void __init dmi_check_skip_isa_align(void);
 
 /* some common used subsys_initcalls */
+#ifdef CONFIG_PCI
 extern int __init pci_acpi_init(void);
+#else
+static inline int  __init pci_acpi_init(void)
+{
+	return -EINVAL;
+}
+#endif
 extern void __init pcibios_irq_init(void);
 extern int __init pcibios_init(void);
 extern int pci_legacy_init(void);
diff --git a/arch/x86/include/asm/pgalloc.h b/arch/x86/include/asm/pgalloc.h
index ec7f43327033..a281e61ec60c 100644
--- a/arch/x86/include/asm/pgalloc.h
+++ b/arch/x86/include/asm/pgalloc.h
@@ -47,8 +47,8 @@ extern gfp_t __userpte_alloc_gfp;
 extern pgd_t *pgd_alloc(struct mm_struct *);
 extern void pgd_free(struct mm_struct *mm, pgd_t *pgd);
 
-extern pte_t *pte_alloc_one_kernel(struct mm_struct *, unsigned long);
-extern pgtable_t pte_alloc_one(struct mm_struct *, unsigned long);
+extern pte_t *pte_alloc_one_kernel(struct mm_struct *);
+extern pgtable_t pte_alloc_one(struct mm_struct *);
 
 /* Should really implement gc for free page table pages. This could be
    done with a reference count in struct page. */
@@ -80,6 +80,13 @@ static inline void pmd_populate_kernel(struct mm_struct *mm,
 	set_pmd(pmd, __pmd(__pa(pte) | _PAGE_TABLE));
 }
 
+static inline void pmd_populate_kernel_safe(struct mm_struct *mm,
+				       pmd_t *pmd, pte_t *pte)
+{
+	paravirt_alloc_pte(mm, __pa(pte) >> PAGE_SHIFT);
+	set_pmd_safe(pmd, __pmd(__pa(pte) | _PAGE_TABLE));
+}
+
 static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd,
 				struct page *pte)
 {
@@ -132,6 +139,12 @@ static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd)
 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
 	set_pud(pud, __pud(_PAGE_TABLE | __pa(pmd)));
 }
+
+static inline void pud_populate_safe(struct mm_struct *mm, pud_t *pud, pmd_t *pmd)
+{
+	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
+	set_pud_safe(pud, __pud(_PAGE_TABLE | __pa(pmd)));
+}
 #endif	/* CONFIG_X86_PAE */
 
 #if CONFIG_PGTABLE_LEVELS > 3
@@ -141,6 +154,12 @@ static inline void p4d_populate(struct mm_struct *mm, p4d_t *p4d, pud_t *pud)
 	set_p4d(p4d, __p4d(_PAGE_TABLE | __pa(pud)));
 }
 
+static inline void p4d_populate_safe(struct mm_struct *mm, p4d_t *p4d, pud_t *pud)
+{
+	paravirt_alloc_pud(mm, __pa(pud) >> PAGE_SHIFT);
+	set_p4d_safe(p4d, __p4d(_PAGE_TABLE | __pa(pud)));
+}
+
 static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr)
 {
 	gfp_t gfp = GFP_KERNEL_ACCOUNT;
@@ -173,6 +192,14 @@ static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, p4d_t *p4d)
 	set_pgd(pgd, __pgd(_PAGE_TABLE | __pa(p4d)));
 }
 
+static inline void pgd_populate_safe(struct mm_struct *mm, pgd_t *pgd, p4d_t *p4d)
+{
+	if (!pgtable_l5_enabled())
+		return;
+	paravirt_alloc_p4d(mm, __pa(p4d) >> PAGE_SHIFT);
+	set_pgd_safe(pgd, __pgd(_PAGE_TABLE | __pa(p4d)));
+}
+
 static inline p4d_t *p4d_alloc_one(struct mm_struct *mm, unsigned long addr)
 {
 	gfp_t gfp = GFP_KERNEL_ACCOUNT;
diff --git a/arch/x86/include/asm/pgtable_32.h b/arch/x86/include/asm/pgtable_32.h
index b3ec519e3982..4fe9e7fc74d3 100644
--- a/arch/x86/include/asm/pgtable_32.h
+++ b/arch/x86/include/asm/pgtable_32.h
@@ -37,7 +37,7 @@ void sync_initial_page_table(void);
 /*
  * Define this if things work differently on an i386 and an i486:
  * it will (on an i486) warn about kernel memory accesses that are
- * done without a 'access_ok(VERIFY_WRITE,..)'
+ * done without a 'access_ok( ..)'
  */
 #undef TEST_ACCESS_OK
 
diff --git a/arch/x86/include/asm/pgtable_64_types.h b/arch/x86/include/asm/pgtable_64_types.h
index 04edd2d58211..88bca456da99 100644
--- a/arch/x86/include/asm/pgtable_64_types.h
+++ b/arch/x86/include/asm/pgtable_64_types.h
@@ -111,9 +111,12 @@ extern unsigned int ptrs_per_p4d;
  */
 #define MAXMEM			(1UL << MAX_PHYSMEM_BITS)
 
-#define LDT_PGD_ENTRY_L4	-3UL
-#define LDT_PGD_ENTRY_L5	-112UL
-#define LDT_PGD_ENTRY		(pgtable_l5_enabled() ? LDT_PGD_ENTRY_L5 : LDT_PGD_ENTRY_L4)
+#define GUARD_HOLE_PGD_ENTRY	-256UL
+#define GUARD_HOLE_SIZE		(16UL << PGDIR_SHIFT)
+#define GUARD_HOLE_BASE_ADDR	(GUARD_HOLE_PGD_ENTRY << PGDIR_SHIFT)
+#define GUARD_HOLE_END_ADDR	(GUARD_HOLE_BASE_ADDR + GUARD_HOLE_SIZE)
+
+#define LDT_PGD_ENTRY		-240UL
 #define LDT_BASE_ADDR		(LDT_PGD_ENTRY << PGDIR_SHIFT)
 #define LDT_END_ADDR		(LDT_BASE_ADDR + PGDIR_SIZE)
 
diff --git a/arch/x86/include/asm/pgtable_types.h b/arch/x86/include/asm/pgtable_types.h
index 106b7d0e2dae..d6ff0bbdb394 100644
--- a/arch/x86/include/asm/pgtable_types.h
+++ b/arch/x86/include/asm/pgtable_types.h
@@ -564,8 +564,12 @@ extern pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
 				    unsigned int *level);
 extern pmd_t *lookup_pmd_address(unsigned long address);
 extern phys_addr_t slow_virt_to_phys(void *__address);
-extern int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
-				   unsigned numpages, unsigned long page_flags);
+extern int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn,
+					  unsigned long address,
+					  unsigned numpages,
+					  unsigned long page_flags);
+extern int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
+					    unsigned long numpages);
 #endif	/* !__ASSEMBLY__ */
 
 #endif /* _ASM_X86_PGTABLE_DEFS_H */
diff --git a/arch/x86/include/asm/preempt.h b/arch/x86/include/asm/preempt.h
index 90cb2f36c042..99a7fa9ab0a3 100644
--- a/arch/x86/include/asm/preempt.h
+++ b/arch/x86/include/asm/preempt.h
@@ -8,6 +8,9 @@
 
 DECLARE_PER_CPU(int, __preempt_count);
 
+/* We use the MSB mostly because its available */
+#define PREEMPT_NEED_RESCHED	0x80000000
+
 /*
  * We use the PREEMPT_NEED_RESCHED bit as an inverted NEED_RESCHED such
  * that a decrement hitting 0 means we can and should reschedule.
diff --git a/arch/x86/include/asm/processor.h b/arch/x86/include/asm/processor.h
index 071b2a6fff85..33051436c864 100644
--- a/arch/x86/include/asm/processor.h
+++ b/arch/x86/include/asm/processor.h
@@ -967,7 +967,7 @@ static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
 }
 
 extern unsigned long arch_align_stack(unsigned long sp);
-extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
+void free_init_pages(const char *what, unsigned long begin, unsigned long end);
 extern void free_kernel_image_pages(void *begin, void *end);
 
 void default_idle(void);
diff --git a/arch/x86/include/asm/qspinlock.h b/arch/x86/include/asm/qspinlock.h
index 87623c6b13db..bd5ac6cc37db 100644
--- a/arch/x86/include/asm/qspinlock.h
+++ b/arch/x86/include/asm/qspinlock.h
@@ -13,12 +13,15 @@
 #define queued_fetch_set_pending_acquire queued_fetch_set_pending_acquire
 static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock)
 {
-	u32 val = 0;
-
-	if (GEN_BINARY_RMWcc(LOCK_PREFIX "btsl", lock->val.counter, c,
-			     "I", _Q_PENDING_OFFSET))
-		val |= _Q_PENDING_VAL;
+	u32 val;
 
+	/*
+	 * We can't use GEN_BINARY_RMWcc() inside an if() stmt because asm goto
+	 * and CONFIG_PROFILE_ALL_BRANCHES=y results in a label inside a
+	 * statement expression, which GCC doesn't like.
+	 */
+	val = GEN_BINARY_RMWcc(LOCK_PREFIX "btsl", lock->val.counter, c,
+			       "I", _Q_PENDING_OFFSET) * _Q_PENDING_VAL;
 	val |= atomic_read(&lock->val) & ~_Q_PENDING_MASK;
 
 	return val;
diff --git a/arch/x86/include/asm/reboot.h b/arch/x86/include/asm/reboot.h
index a671a1145906..04c17be9b5fd 100644
--- a/arch/x86/include/asm/reboot.h
+++ b/arch/x86/include/asm/reboot.h
@@ -26,6 +26,7 @@ void __noreturn machine_real_restart(unsigned int type);
 #define MRR_APM		1
 
 typedef void (*nmi_shootdown_cb)(int, struct pt_regs*);
+void nmi_panic_self_stop(struct pt_regs *regs);
 void nmi_shootdown_cpus(nmi_shootdown_cb callback);
 void run_crash_ipi_callback(struct pt_regs *regs);
 
diff --git a/arch/x86/include/asm/refcount.h b/arch/x86/include/asm/refcount.h
index a8b5e1e13319..dbaed55c1c24 100644
--- a/arch/x86/include/asm/refcount.h
+++ b/arch/x86/include/asm/refcount.h
@@ -4,41 +4,6 @@
  * x86-specific implementation of refcount_t. Based on PAX_REFCOUNT from
  * PaX/grsecurity.
  */
-
-#ifdef __ASSEMBLY__
-
-#include <asm/asm.h>
-#include <asm/bug.h>
-
-.macro REFCOUNT_EXCEPTION counter:req
-	.pushsection .text..refcount
-111:	lea \counter, %_ASM_CX
-112:	ud2
-	ASM_UNREACHABLE
-	.popsection
-113:	_ASM_EXTABLE_REFCOUNT(112b, 113b)
-.endm
-
-/* Trigger refcount exception if refcount result is negative. */
-.macro REFCOUNT_CHECK_LT_ZERO counter:req
-	js 111f
-	REFCOUNT_EXCEPTION counter="\counter"
-.endm
-
-/* Trigger refcount exception if refcount result is zero or negative. */
-.macro REFCOUNT_CHECK_LE_ZERO counter:req
-	jz 111f
-	REFCOUNT_CHECK_LT_ZERO counter="\counter"
-.endm
-
-/* Trigger refcount exception unconditionally. */
-.macro REFCOUNT_ERROR counter:req
-	jmp 111f
-	REFCOUNT_EXCEPTION counter="\counter"
-.endm
-
-#else /* __ASSEMBLY__ */
-
 #include <linux/refcount.h>
 #include <asm/bug.h>
 
@@ -50,12 +15,35 @@
  * central refcount exception. The fixup address for the exception points
  * back to the regular execution flow in .text.
  */
+#define _REFCOUNT_EXCEPTION				\
+	".pushsection .text..refcount\n"		\
+	"111:\tlea %[var], %%" _ASM_CX "\n"		\
+	"112:\t" ASM_UD2 "\n"				\
+	ASM_UNREACHABLE					\
+	".popsection\n"					\
+	"113:\n"					\
+	_ASM_EXTABLE_REFCOUNT(112b, 113b)
+
+/* Trigger refcount exception if refcount result is negative. */
+#define REFCOUNT_CHECK_LT_ZERO				\
+	"js 111f\n\t"					\
+	_REFCOUNT_EXCEPTION
+
+/* Trigger refcount exception if refcount result is zero or negative. */
+#define REFCOUNT_CHECK_LE_ZERO				\
+	"jz 111f\n\t"					\
+	REFCOUNT_CHECK_LT_ZERO
+
+/* Trigger refcount exception unconditionally. */
+#define REFCOUNT_ERROR					\
+	"jmp 111f\n\t"					\
+	_REFCOUNT_EXCEPTION
 
 static __always_inline void refcount_add(unsigned int i, refcount_t *r)
 {
 	asm volatile(LOCK_PREFIX "addl %1,%0\n\t"
-		"REFCOUNT_CHECK_LT_ZERO counter=\"%[counter]\""
-		: [counter] "+m" (r->refs.counter)
+		REFCOUNT_CHECK_LT_ZERO
+		: [var] "+m" (r->refs.counter)
 		: "ir" (i)
 		: "cc", "cx");
 }
@@ -63,32 +51,31 @@ static __always_inline void refcount_add(unsigned int i, refcount_t *r)
 static __always_inline void refcount_inc(refcount_t *r)
 {
 	asm volatile(LOCK_PREFIX "incl %0\n\t"
-		"REFCOUNT_CHECK_LT_ZERO counter=\"%[counter]\""
-		: [counter] "+m" (r->refs.counter)
+		REFCOUNT_CHECK_LT_ZERO
+		: [var] "+m" (r->refs.counter)
 		: : "cc", "cx");
 }
 
 static __always_inline void refcount_dec(refcount_t *r)
 {
 	asm volatile(LOCK_PREFIX "decl %0\n\t"
-		"REFCOUNT_CHECK_LE_ZERO counter=\"%[counter]\""
-		: [counter] "+m" (r->refs.counter)
+		REFCOUNT_CHECK_LE_ZERO
+		: [var] "+m" (r->refs.counter)
 		: : "cc", "cx");
 }
 
 static __always_inline __must_check
 bool refcount_sub_and_test(unsigned int i, refcount_t *r)
 {
-
 	return GEN_BINARY_SUFFIXED_RMWcc(LOCK_PREFIX "subl",
-					 "REFCOUNT_CHECK_LT_ZERO counter=\"%[var]\"",
+					 REFCOUNT_CHECK_LT_ZERO,
 					 r->refs.counter, e, "er", i, "cx");
 }
 
 static __always_inline __must_check bool refcount_dec_and_test(refcount_t *r)
 {
 	return GEN_UNARY_SUFFIXED_RMWcc(LOCK_PREFIX "decl",
-					"REFCOUNT_CHECK_LT_ZERO counter=\"%[var]\"",
+					REFCOUNT_CHECK_LT_ZERO,
 					r->refs.counter, e, "cx");
 }
 
@@ -106,8 +93,8 @@ bool refcount_add_not_zero(unsigned int i, refcount_t *r)
 
 		/* Did we try to increment from/to an undesirable state? */
 		if (unlikely(c < 0 || c == INT_MAX || result < c)) {
-			asm volatile("REFCOUNT_ERROR counter=\"%[counter]\""
-				     : : [counter] "m" (r->refs.counter)
+			asm volatile(REFCOUNT_ERROR
+				     : : [var] "m" (r->refs.counter)
 				     : "cc", "cx");
 			break;
 		}
@@ -122,6 +109,4 @@ static __always_inline __must_check bool refcount_inc_not_zero(refcount_t *r)
 	return refcount_add_not_zero(1, r);
 }
 
-#endif /* __ASSEMBLY__ */
-
 #endif
diff --git a/arch/x86/include/asm/intel_rdt_sched.h b/arch/x86/include/asm/resctrl_sched.h
index 9acb06b6f81e..54990fe2a3ae 100644
--- a/arch/x86/include/asm/intel_rdt_sched.h
+++ b/arch/x86/include/asm/resctrl_sched.h
@@ -1,8 +1,8 @@
 /* SPDX-License-Identifier: GPL-2.0 */
-#ifndef _ASM_X86_INTEL_RDT_SCHED_H
-#define _ASM_X86_INTEL_RDT_SCHED_H
+#ifndef _ASM_X86_RESCTRL_SCHED_H
+#define _ASM_X86_RESCTRL_SCHED_H
 
-#ifdef CONFIG_INTEL_RDT
+#ifdef CONFIG_RESCTRL
 
 #include <linux/sched.h>
 #include <linux/jump_label.h>
@@ -10,7 +10,7 @@
 #define IA32_PQR_ASSOC	0x0c8f
 
 /**
- * struct intel_pqr_state - State cache for the PQR MSR
+ * struct resctrl_pqr_state - State cache for the PQR MSR
  * @cur_rmid:		The cached Resource Monitoring ID
  * @cur_closid:	The cached Class Of Service ID
  * @default_rmid:	The user assigned Resource Monitoring ID
@@ -24,21 +24,21 @@
  * The cache also helps to avoid pointless updates if the value does
  * not change.
  */
-struct intel_pqr_state {
+struct resctrl_pqr_state {
 	u32			cur_rmid;
 	u32			cur_closid;
 	u32			default_rmid;
 	u32			default_closid;
 };
 
-DECLARE_PER_CPU(struct intel_pqr_state, pqr_state);
+DECLARE_PER_CPU(struct resctrl_pqr_state, pqr_state);
 
 DECLARE_STATIC_KEY_FALSE(rdt_enable_key);
 DECLARE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
 DECLARE_STATIC_KEY_FALSE(rdt_mon_enable_key);
 
 /*
- * __intel_rdt_sched_in() - Writes the task's CLOSid/RMID to IA32_PQR_MSR
+ * __resctrl_sched_in() - Writes the task's CLOSid/RMID to IA32_PQR_MSR
  *
  * Following considerations are made so that this has minimal impact
  * on scheduler hot path:
@@ -51,9 +51,9 @@ DECLARE_STATIC_KEY_FALSE(rdt_mon_enable_key);
  *   simple as possible.
  * Must be called with preemption disabled.
  */
-static void __intel_rdt_sched_in(void)
+static void __resctrl_sched_in(void)
 {
-	struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
+	struct resctrl_pqr_state *state = this_cpu_ptr(&pqr_state);
 	u32 closid = state->default_closid;
 	u32 rmid = state->default_rmid;
 
@@ -78,16 +78,16 @@ static void __intel_rdt_sched_in(void)
 	}
 }
 
-static inline void intel_rdt_sched_in(void)
+static inline void resctrl_sched_in(void)
 {
 	if (static_branch_likely(&rdt_enable_key))
-		__intel_rdt_sched_in();
+		__resctrl_sched_in();
 }
 
 #else
 
-static inline void intel_rdt_sched_in(void) {}
+static inline void resctrl_sched_in(void) {}
 
-#endif /* CONFIG_INTEL_RDT */
+#endif /* CONFIG_RESCTRL */
 
-#endif /* _ASM_X86_INTEL_RDT_SCHED_H */
+#endif /* _ASM_X86_RESCTRL_SCHED_H */
diff --git a/arch/x86/include/asm/setup.h b/arch/x86/include/asm/setup.h
index ae13bc974416..ed8ec011a9fd 100644
--- a/arch/x86/include/asm/setup.h
+++ b/arch/x86/include/asm/setup.h
@@ -46,6 +46,9 @@ extern unsigned long saved_video_mode;
 
 extern void reserve_standard_io_resources(void);
 extern void i386_reserve_resources(void);
+extern unsigned long __startup_64(unsigned long physaddr, struct boot_params *bp);
+extern unsigned long __startup_secondary_64(void);
+extern int early_make_pgtable(unsigned long address);
 
 #ifdef CONFIG_X86_INTEL_MID
 extern void x86_intel_mid_early_setup(void);
diff --git a/arch/x86/include/asm/sighandling.h b/arch/x86/include/asm/sighandling.h
index bd26834724e5..2fcbd6f33ef7 100644
--- a/arch/x86/include/asm/sighandling.h
+++ b/arch/x86/include/asm/sighandling.h
@@ -17,4 +17,9 @@ void signal_fault(struct pt_regs *regs, void __user *frame, char *where);
 int setup_sigcontext(struct sigcontext __user *sc, void __user *fpstate,
 		     struct pt_regs *regs, unsigned long mask);
 
+
+#ifdef CONFIG_X86_X32_ABI
+asmlinkage long sys32_x32_rt_sigreturn(void);
+#endif
+
 #endif /* _ASM_X86_SIGHANDLING_H */
diff --git a/arch/x86/include/asm/smp.h b/arch/x86/include/asm/smp.h
index 547c4fe50711..2e95b6c1bca3 100644
--- a/arch/x86/include/asm/smp.h
+++ b/arch/x86/include/asm/smp.h
@@ -148,6 +148,12 @@ void x86_idle_thread_init(unsigned int cpu, struct task_struct *idle);
 
 void smp_store_boot_cpu_info(void);
 void smp_store_cpu_info(int id);
+
+asmlinkage __visible void smp_reboot_interrupt(void);
+__visible void smp_reschedule_interrupt(struct pt_regs *regs);
+__visible void smp_call_function_interrupt(struct pt_regs *regs);
+__visible void smp_call_function_single_interrupt(struct pt_regs *r);
+
 #define cpu_physical_id(cpu)	per_cpu(x86_cpu_to_apicid, cpu)
 #define cpu_acpi_id(cpu)	per_cpu(x86_cpu_to_acpiid, cpu)
 
diff --git a/arch/x86/include/asm/spec-ctrl.h b/arch/x86/include/asm/spec-ctrl.h
index ae7c2c5cd7f0..5393babc0598 100644
--- a/arch/x86/include/asm/spec-ctrl.h
+++ b/arch/x86/include/asm/spec-ctrl.h
@@ -53,12 +53,24 @@ static inline u64 ssbd_tif_to_spec_ctrl(u64 tifn)
 	return (tifn & _TIF_SSBD) >> (TIF_SSBD - SPEC_CTRL_SSBD_SHIFT);
 }
 
+static inline u64 stibp_tif_to_spec_ctrl(u64 tifn)
+{
+	BUILD_BUG_ON(TIF_SPEC_IB < SPEC_CTRL_STIBP_SHIFT);
+	return (tifn & _TIF_SPEC_IB) >> (TIF_SPEC_IB - SPEC_CTRL_STIBP_SHIFT);
+}
+
 static inline unsigned long ssbd_spec_ctrl_to_tif(u64 spec_ctrl)
 {
 	BUILD_BUG_ON(TIF_SSBD < SPEC_CTRL_SSBD_SHIFT);
 	return (spec_ctrl & SPEC_CTRL_SSBD) << (TIF_SSBD - SPEC_CTRL_SSBD_SHIFT);
 }
 
+static inline unsigned long stibp_spec_ctrl_to_tif(u64 spec_ctrl)
+{
+	BUILD_BUG_ON(TIF_SPEC_IB < SPEC_CTRL_STIBP_SHIFT);
+	return (spec_ctrl & SPEC_CTRL_STIBP) << (TIF_SPEC_IB - SPEC_CTRL_STIBP_SHIFT);
+}
+
 static inline u64 ssbd_tif_to_amd_ls_cfg(u64 tifn)
 {
 	return (tifn & _TIF_SSBD) ? x86_amd_ls_cfg_ssbd_mask : 0ULL;
@@ -70,11 +82,7 @@ extern void speculative_store_bypass_ht_init(void);
 static inline void speculative_store_bypass_ht_init(void) { }
 #endif
 
-extern void speculative_store_bypass_update(unsigned long tif);
-
-static inline void speculative_store_bypass_update_current(void)
-{
-	speculative_store_bypass_update(current_thread_info()->flags);
-}
+extern void speculation_ctrl_update(unsigned long tif);
+extern void speculation_ctrl_update_current(void);
 
 #endif
diff --git a/arch/x86/include/asm/string_64.h b/arch/x86/include/asm/string_64.h
index 7ad41bfcc16c..4e4194e21a09 100644
--- a/arch/x86/include/asm/string_64.h
+++ b/arch/x86/include/asm/string_64.h
@@ -7,24 +7,6 @@
 
 /* Written 2002 by Andi Kleen */
 
-/* Only used for special circumstances. Stolen from i386/string.h */
-static __always_inline void *__inline_memcpy(void *to, const void *from, size_t n)
-{
-	unsigned long d0, d1, d2;
-	asm volatile("rep ; movsl\n\t"
-		     "testb $2,%b4\n\t"
-		     "je 1f\n\t"
-		     "movsw\n"
-		     "1:\ttestb $1,%b4\n\t"
-		     "je 2f\n\t"
-		     "movsb\n"
-		     "2:"
-		     : "=&c" (d0), "=&D" (d1), "=&S" (d2)
-		     : "0" (n / 4), "q" (n), "1" ((long)to), "2" ((long)from)
-		     : "memory");
-	return to;
-}
-
 /* Even with __builtin_ the compiler may decide to use the out of line
    function. */
 
diff --git a/arch/x86/include/asm/svm.h b/arch/x86/include/asm/svm.h
index 93b462e48067..dec9c1e84c78 100644
--- a/arch/x86/include/asm/svm.h
+++ b/arch/x86/include/asm/svm.h
@@ -290,11 +290,4 @@ struct __attribute__ ((__packed__)) vmcb {
 
 #define SVM_CR0_SELECTIVE_MASK (X86_CR0_TS | X86_CR0_MP)
 
-#define SVM_VMLOAD ".byte 0x0f, 0x01, 0xda"
-#define SVM_VMRUN  ".byte 0x0f, 0x01, 0xd8"
-#define SVM_VMSAVE ".byte 0x0f, 0x01, 0xdb"
-#define SVM_CLGI   ".byte 0x0f, 0x01, 0xdd"
-#define SVM_STGI   ".byte 0x0f, 0x01, 0xdc"
-#define SVM_INVLPGA ".byte 0x0f, 0x01, 0xdf"
-
 #endif
diff --git a/arch/x86/include/asm/switch_to.h b/arch/x86/include/asm/switch_to.h
index 36bd243843d6..7cf1a270d891 100644
--- a/arch/x86/include/asm/switch_to.h
+++ b/arch/x86/include/asm/switch_to.h
@@ -11,9 +11,6 @@ struct task_struct *__switch_to_asm(struct task_struct *prev,
 
 __visible struct task_struct *__switch_to(struct task_struct *prev,
 					  struct task_struct *next);
-struct tss_struct;
-void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
-		      struct tss_struct *tss);
 
 /* This runs runs on the previous thread's stack. */
 static inline void prepare_switch_to(struct task_struct *next)
diff --git a/arch/x86/include/asm/thread_info.h b/arch/x86/include/asm/thread_info.h
index 2ff2a30a264f..e0eccbcb8447 100644
--- a/arch/x86/include/asm/thread_info.h
+++ b/arch/x86/include/asm/thread_info.h
@@ -79,10 +79,12 @@ struct thread_info {
 #define TIF_SIGPENDING		2	/* signal pending */
 #define TIF_NEED_RESCHED	3	/* rescheduling necessary */
 #define TIF_SINGLESTEP		4	/* reenable singlestep on user return*/
-#define TIF_SSBD			5	/* Reduced data speculation */
+#define TIF_SSBD		5	/* Speculative store bypass disable */
 #define TIF_SYSCALL_EMU		6	/* syscall emulation active */
 #define TIF_SYSCALL_AUDIT	7	/* syscall auditing active */
 #define TIF_SECCOMP		8	/* secure computing */
+#define TIF_SPEC_IB		9	/* Indirect branch speculation mitigation */
+#define TIF_SPEC_FORCE_UPDATE	10	/* Force speculation MSR update in context switch */
 #define TIF_USER_RETURN_NOTIFY	11	/* notify kernel of userspace return */
 #define TIF_UPROBE		12	/* breakpointed or singlestepping */
 #define TIF_PATCH_PENDING	13	/* pending live patching update */
@@ -110,6 +112,8 @@ struct thread_info {
 #define _TIF_SYSCALL_EMU	(1 << TIF_SYSCALL_EMU)
 #define _TIF_SYSCALL_AUDIT	(1 << TIF_SYSCALL_AUDIT)
 #define _TIF_SECCOMP		(1 << TIF_SECCOMP)
+#define _TIF_SPEC_IB		(1 << TIF_SPEC_IB)
+#define _TIF_SPEC_FORCE_UPDATE	(1 << TIF_SPEC_FORCE_UPDATE)
 #define _TIF_USER_RETURN_NOTIFY	(1 << TIF_USER_RETURN_NOTIFY)
 #define _TIF_UPROBE		(1 << TIF_UPROBE)
 #define _TIF_PATCH_PENDING	(1 << TIF_PATCH_PENDING)
@@ -136,17 +140,19 @@ struct thread_info {
 	 _TIF_SECCOMP | _TIF_SYSCALL_TRACEPOINT |	\
 	 _TIF_NOHZ)
 
-/* work to do on any return to user space */
-#define _TIF_ALLWORK_MASK						\
-	(_TIF_SYSCALL_TRACE | _TIF_NOTIFY_RESUME | _TIF_SIGPENDING |	\
-	 _TIF_NEED_RESCHED | _TIF_SINGLESTEP | _TIF_SYSCALL_EMU |	\
-	 _TIF_SYSCALL_AUDIT | _TIF_USER_RETURN_NOTIFY | _TIF_UPROBE |	\
-	 _TIF_PATCH_PENDING | _TIF_NOHZ | _TIF_SYSCALL_TRACEPOINT |	\
-	 _TIF_FSCHECK)
-
 /* flags to check in __switch_to() */
-#define _TIF_WORK_CTXSW							\
-	(_TIF_IO_BITMAP|_TIF_NOCPUID|_TIF_NOTSC|_TIF_BLOCKSTEP|_TIF_SSBD)
+#define _TIF_WORK_CTXSW_BASE						\
+	(_TIF_IO_BITMAP|_TIF_NOCPUID|_TIF_NOTSC|_TIF_BLOCKSTEP|		\
+	 _TIF_SSBD | _TIF_SPEC_FORCE_UPDATE)
+
+/*
+ * Avoid calls to __switch_to_xtra() on UP as STIBP is not evaluated.
+ */
+#ifdef CONFIG_SMP
+# define _TIF_WORK_CTXSW	(_TIF_WORK_CTXSW_BASE | _TIF_SPEC_IB)
+#else
+# define _TIF_WORK_CTXSW	(_TIF_WORK_CTXSW_BASE)
+#endif
 
 #define _TIF_WORK_CTXSW_PREV (_TIF_WORK_CTXSW|_TIF_USER_RETURN_NOTIFY)
 #define _TIF_WORK_CTXSW_NEXT (_TIF_WORK_CTXSW)
diff --git a/arch/x86/include/asm/tlbflush.h b/arch/x86/include/asm/tlbflush.h
index d760611cfc35..f4204bf377fc 100644
--- a/arch/x86/include/asm/tlbflush.h
+++ b/arch/x86/include/asm/tlbflush.h
@@ -169,10 +169,14 @@ struct tlb_state {
 
 #define LOADED_MM_SWITCHING ((struct mm_struct *)1)
 
+	/* Last user mm for optimizing IBPB */
+	union {
+		struct mm_struct	*last_user_mm;
+		unsigned long		last_user_mm_ibpb;
+	};
+
 	u16 loaded_mm_asid;
 	u16 next_asid;
-	/* last user mm's ctx id */
-	u64 last_ctx_id;
 
 	/*
 	 * We can be in one of several states:
diff --git a/arch/x86/include/asm/trace/exceptions.h b/arch/x86/include/asm/trace/exceptions.h
index 69615e387973..e0e6d7f21399 100644
--- a/arch/x86/include/asm/trace/exceptions.h
+++ b/arch/x86/include/asm/trace/exceptions.h
@@ -45,6 +45,7 @@ DEFINE_PAGE_FAULT_EVENT(page_fault_user);
 DEFINE_PAGE_FAULT_EVENT(page_fault_kernel);
 
 #undef TRACE_INCLUDE_PATH
+#undef TRACE_INCLUDE_FILE
 #define TRACE_INCLUDE_PATH .
 #define TRACE_INCLUDE_FILE exceptions
 #endif /*  _TRACE_PAGE_FAULT_H */
diff --git a/arch/x86/include/asm/trace/hyperv.h b/arch/x86/include/asm/trace/hyperv.h
index 2e6245a023ef..ace464f09681 100644
--- a/arch/x86/include/asm/trace/hyperv.h
+++ b/arch/x86/include/asm/trace/hyperv.h
@@ -42,6 +42,20 @@ TRACE_EVENT(hyperv_nested_flush_guest_mapping,
 	    TP_printk("address space %llx ret %d", __entry->as, __entry->ret)
 	);
 
+TRACE_EVENT(hyperv_nested_flush_guest_mapping_range,
+	    TP_PROTO(u64 as, int ret),
+	    TP_ARGS(as, ret),
+
+	    TP_STRUCT__entry(
+		    __field(u64, as)
+		    __field(int, ret)
+		    ),
+	    TP_fast_assign(__entry->as = as;
+			   __entry->ret = ret;
+		    ),
+	    TP_printk("address space %llx ret %d", __entry->as, __entry->ret)
+	);
+
 TRACE_EVENT(hyperv_send_ipi_mask,
 	    TP_PROTO(const struct cpumask *cpus,
 		     int vector),
diff --git a/arch/x86/include/asm/trace/irq_vectors.h b/arch/x86/include/asm/trace/irq_vectors.h
index 0af81b590a0c..33b9d0f0aafe 100644
--- a/arch/x86/include/asm/trace/irq_vectors.h
+++ b/arch/x86/include/asm/trace/irq_vectors.h
@@ -389,6 +389,7 @@ TRACE_EVENT(vector_free_moved,
 #endif /* CONFIG_X86_LOCAL_APIC */
 
 #undef TRACE_INCLUDE_PATH
+#undef TRACE_INCLUDE_FILE
 #define TRACE_INCLUDE_PATH .
 #define TRACE_INCLUDE_FILE irq_vectors
 #endif /*  _TRACE_IRQ_VECTORS_H */
diff --git a/arch/x86/include/asm/traps.h b/arch/x86/include/asm/traps.h
index 3de69330e6c5..7d6f3f3fad78 100644
--- a/arch/x86/include/asm/traps.h
+++ b/arch/x86/include/asm/traps.h
@@ -61,34 +61,38 @@ asmlinkage void xen_machine_check(void);
 asmlinkage void xen_simd_coprocessor_error(void);
 #endif
 
-dotraplinkage void do_divide_error(struct pt_regs *, long);
-dotraplinkage void do_debug(struct pt_regs *, long);
-dotraplinkage void do_nmi(struct pt_regs *, long);
-dotraplinkage void do_int3(struct pt_regs *, long);
-dotraplinkage void do_overflow(struct pt_regs *, long);
-dotraplinkage void do_bounds(struct pt_regs *, long);
-dotraplinkage void do_invalid_op(struct pt_regs *, long);
-dotraplinkage void do_device_not_available(struct pt_regs *, long);
-dotraplinkage void do_coprocessor_segment_overrun(struct pt_regs *, long);
-dotraplinkage void do_invalid_TSS(struct pt_regs *, long);
-dotraplinkage void do_segment_not_present(struct pt_regs *, long);
-dotraplinkage void do_stack_segment(struct pt_regs *, long);
+dotraplinkage void do_divide_error(struct pt_regs *regs, long error_code);
+dotraplinkage void do_debug(struct pt_regs *regs, long error_code);
+dotraplinkage void do_nmi(struct pt_regs *regs, long error_code);
+dotraplinkage void do_int3(struct pt_regs *regs, long error_code);
+dotraplinkage void do_overflow(struct pt_regs *regs, long error_code);
+dotraplinkage void do_bounds(struct pt_regs *regs, long error_code);
+dotraplinkage void do_invalid_op(struct pt_regs *regs, long error_code);
+dotraplinkage void do_device_not_available(struct pt_regs *regs, long error_code);
+dotraplinkage void do_coprocessor_segment_overrun(struct pt_regs *regs, long error_code);
+dotraplinkage void do_invalid_TSS(struct pt_regs *regs, long error_code);
+dotraplinkage void do_segment_not_present(struct pt_regs *regs, long error_code);
+dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code);
 #ifdef CONFIG_X86_64
-dotraplinkage void do_double_fault(struct pt_regs *, long);
+dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code);
+asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs);
+asmlinkage __visible notrace
+struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s);
+void __init trap_init(void);
 #endif
-dotraplinkage void do_general_protection(struct pt_regs *, long);
-dotraplinkage void do_page_fault(struct pt_regs *, unsigned long);
-dotraplinkage void do_spurious_interrupt_bug(struct pt_regs *, long);
-dotraplinkage void do_coprocessor_error(struct pt_regs *, long);
-dotraplinkage void do_alignment_check(struct pt_regs *, long);
+dotraplinkage void do_general_protection(struct pt_regs *regs, long error_code);
+dotraplinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code);
+dotraplinkage void do_spurious_interrupt_bug(struct pt_regs *regs, long error_code);
+dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code);
+dotraplinkage void do_alignment_check(struct pt_regs *regs, long error_code);
 #ifdef CONFIG_X86_MCE
-dotraplinkage void do_machine_check(struct pt_regs *, long);
+dotraplinkage void do_machine_check(struct pt_regs *regs, long error_code);
 #endif
-dotraplinkage void do_simd_coprocessor_error(struct pt_regs *, long);
+dotraplinkage void do_simd_coprocessor_error(struct pt_regs *regs, long error_code);
 #ifdef CONFIG_X86_32
-dotraplinkage void do_iret_error(struct pt_regs *, long);
+dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code);
 #endif
-dotraplinkage void do_mce(struct pt_regs *, long);
+dotraplinkage void do_mce(struct pt_regs *regs, long error_code);
 
 static inline int get_si_code(unsigned long condition)
 {
@@ -104,11 +108,16 @@ extern int panic_on_unrecovered_nmi;
 
 void math_emulate(struct math_emu_info *);
 #ifndef CONFIG_X86_32
-asmlinkage void smp_thermal_interrupt(void);
-asmlinkage void smp_threshold_interrupt(void);
-asmlinkage void smp_deferred_error_interrupt(void);
+asmlinkage void smp_thermal_interrupt(struct pt_regs *regs);
+asmlinkage void smp_threshold_interrupt(struct pt_regs *regs);
+asmlinkage void smp_deferred_error_interrupt(struct pt_regs *regs);
 #endif
 
+void smp_apic_timer_interrupt(struct pt_regs *regs);
+void smp_spurious_interrupt(struct pt_regs *regs);
+void smp_error_interrupt(struct pt_regs *regs);
+asmlinkage void smp_irq_move_cleanup_interrupt(void);
+
 extern void ist_enter(struct pt_regs *regs);
 extern void ist_exit(struct pt_regs *regs);
 extern void ist_begin_non_atomic(struct pt_regs *regs);
diff --git a/arch/x86/include/asm/tsc.h b/arch/x86/include/asm/tsc.h
index eb5bbfeccb66..8a0c25c6bf09 100644
--- a/arch/x86/include/asm/tsc.h
+++ b/arch/x86/include/asm/tsc.h
@@ -35,6 +35,7 @@ extern struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns);
 
 extern void tsc_early_init(void);
 extern void tsc_init(void);
+extern unsigned long calibrate_delay_is_known(void);
 extern void mark_tsc_unstable(char *reason);
 extern int unsynchronized_tsc(void);
 extern int check_tsc_unstable(void);
diff --git a/arch/x86/include/asm/uaccess.h b/arch/x86/include/asm/uaccess.h
index b5e58cc0c5e7..a77445d1b034 100644
--- a/arch/x86/include/asm/uaccess.h
+++ b/arch/x86/include/asm/uaccess.h
@@ -77,9 +77,6 @@ static inline bool __chk_range_not_ok(unsigned long addr, unsigned long size, un
 
 /**
  * access_ok: - Checks if a user space pointer is valid
- * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE.  Note that
- *        %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
- *        to write to a block, it is always safe to read from it.
  * @addr: User space pointer to start of block to check
  * @size: Size of block to check
  *
@@ -95,7 +92,7 @@ static inline bool __chk_range_not_ok(unsigned long addr, unsigned long size, un
  * checks that the pointer is in the user space range - after calling
  * this function, memory access functions may still return -EFAULT.
  */
-#define access_ok(type, addr, size)					\
+#define access_ok(addr, size)					\
 ({									\
 	WARN_ON_IN_IRQ();						\
 	likely(!__range_not_ok(addr, size, user_addr_max()));		\
@@ -189,19 +186,14 @@ __typeof__(__builtin_choose_expr(sizeof(x) > sizeof(0UL), 0ULL, 0UL))
 
 
 #ifdef CONFIG_X86_32
-#define __put_user_asm_u64(x, addr, err, errret)			\
-	asm volatile("\n"						\
-		     "1:	movl %%eax,0(%2)\n"			\
-		     "2:	movl %%edx,4(%2)\n"			\
-		     "3:"						\
-		     ".section .fixup,\"ax\"\n"				\
-		     "4:	movl %3,%0\n"				\
-		     "	jmp 3b\n"					\
-		     ".previous\n"					\
-		     _ASM_EXTABLE_UA(1b, 4b)				\
-		     _ASM_EXTABLE_UA(2b, 4b)				\
-		     : "=r" (err)					\
-		     : "A" (x), "r" (addr), "i" (errret), "0" (err))
+#define __put_user_goto_u64(x, addr, label)			\
+	asm_volatile_goto("\n"					\
+		     "1:	movl %%eax,0(%1)\n"		\
+		     "2:	movl %%edx,4(%1)\n"		\
+		     _ASM_EXTABLE_UA(1b, %l2)			\
+		     _ASM_EXTABLE_UA(2b, %l2)			\
+		     : : "A" (x), "r" (addr)			\
+		     : : label)
 
 #define __put_user_asm_ex_u64(x, addr)					\
 	asm volatile("\n"						\
@@ -216,8 +208,8 @@ __typeof__(__builtin_choose_expr(sizeof(x) > sizeof(0UL), 0ULL, 0UL))
 	asm volatile("call __put_user_8" : "=a" (__ret_pu)	\
 		     : "A" ((typeof(*(ptr)))(x)), "c" (ptr) : "ebx")
 #else
-#define __put_user_asm_u64(x, ptr, retval, errret) \
-	__put_user_asm(x, ptr, retval, "q", "", "er", errret)
+#define __put_user_goto_u64(x, ptr, label) \
+	__put_user_goto(x, ptr, "q", "", "er", label)
 #define __put_user_asm_ex_u64(x, addr)	\
 	__put_user_asm_ex(x, addr, "q", "", "er")
 #define __put_user_x8(x, ptr, __ret_pu) __put_user_x(8, x, ptr, __ret_pu)
@@ -278,23 +270,21 @@ extern void __put_user_8(void);
 	__builtin_expect(__ret_pu, 0);				\
 })
 
-#define __put_user_size(x, ptr, size, retval, errret)			\
+#define __put_user_size(x, ptr, size, label)				\
 do {									\
-	retval = 0;							\
 	__chk_user_ptr(ptr);						\
 	switch (size) {							\
 	case 1:								\
-		__put_user_asm(x, ptr, retval, "b", "b", "iq", errret);	\
+		__put_user_goto(x, ptr, "b", "b", "iq", label);	\
 		break;							\
 	case 2:								\
-		__put_user_asm(x, ptr, retval, "w", "w", "ir", errret);	\
+		__put_user_goto(x, ptr, "w", "w", "ir", label);		\
 		break;							\
 	case 4:								\
-		__put_user_asm(x, ptr, retval, "l", "k", "ir", errret);	\
+		__put_user_goto(x, ptr, "l", "k", "ir", label);		\
 		break;							\
 	case 8:								\
-		__put_user_asm_u64((__typeof__(*ptr))(x), ptr, retval,	\
-				   errret);				\
+		__put_user_goto_u64((__typeof__(*ptr))(x), ptr, label);	\
 		break;							\
 	default:							\
 		__put_user_bad();					\
@@ -439,9 +429,12 @@ do {									\
 
 #define __put_user_nocheck(x, ptr, size)			\
 ({								\
-	int __pu_err;						\
+	__label__ __pu_label;					\
+	int __pu_err = -EFAULT;					\
 	__uaccess_begin();					\
-	__put_user_size((x), (ptr), (size), __pu_err, -EFAULT);	\
+	__put_user_size((x), (ptr), (size), __pu_label);	\
+	__pu_err = 0;						\
+__pu_label:							\
 	__uaccess_end();					\
 	__builtin_expect(__pu_err, 0);				\
 })
@@ -466,17 +459,23 @@ struct __large_struct { unsigned long buf[100]; };
  * we do not write to any memory gcc knows about, so there are no
  * aliasing issues.
  */
-#define __put_user_asm(x, addr, err, itype, rtype, ltype, errret)	\
-	asm volatile("\n"						\
-		     "1:	mov"itype" %"rtype"1,%2\n"		\
-		     "2:\n"						\
-		     ".section .fixup,\"ax\"\n"				\
-		     "3:	mov %3,%0\n"				\
-		     "	jmp 2b\n"					\
-		     ".previous\n"					\
-		     _ASM_EXTABLE_UA(1b, 3b)				\
-		     : "=r"(err)					\
-		     : ltype(x), "m" (__m(addr)), "i" (errret), "0" (err))
+#define __put_user_goto(x, addr, itype, rtype, ltype, label)	\
+	asm_volatile_goto("\n"						\
+		"1:	mov"itype" %"rtype"0,%1\n"			\
+		_ASM_EXTABLE_UA(1b, %l2)					\
+		: : ltype(x), "m" (__m(addr))				\
+		: : label)
+
+#define __put_user_failed(x, addr, itype, rtype, ltype, errret)		\
+	({	__label__ __puflab;					\
+		int __pufret = errret;					\
+		__put_user_goto(x,addr,itype,rtype,ltype,__puflab);	\
+		__pufret = 0;						\
+	__puflab: __pufret; })
+
+#define __put_user_asm(x, addr, retval, itype, rtype, ltype, errret)	do {	\
+	retval = __put_user_failed(x, addr, itype, rtype, ltype, errret);	\
+} while (0)
 
 #define __put_user_asm_ex(x, addr, itype, rtype, ltype)			\
 	asm volatile("1:	mov"itype" %"rtype"0,%1\n"		\
@@ -670,7 +669,7 @@ extern void __cmpxchg_wrong_size(void)
 
 #define user_atomic_cmpxchg_inatomic(uval, ptr, old, new)		\
 ({									\
-	access_ok(VERIFY_WRITE, (ptr), sizeof(*(ptr))) ?		\
+	access_ok((ptr), sizeof(*(ptr))) ?		\
 		__user_atomic_cmpxchg_inatomic((uval), (ptr),		\
 				(old), (new), sizeof(*(ptr))) :		\
 		-EFAULT;						\
@@ -708,16 +707,18 @@ extern struct movsl_mask {
  * checking before using them, but you have to surround them with the
  * user_access_begin/end() pair.
  */
-#define user_access_begin()	__uaccess_begin()
+static __must_check inline bool user_access_begin(const void __user *ptr, size_t len)
+{
+	if (unlikely(!access_ok(ptr,len)))
+		return 0;
+	__uaccess_begin();
+	return 1;
+}
+#define user_access_begin(a,b)	user_access_begin(a,b)
 #define user_access_end()	__uaccess_end()
 
-#define unsafe_put_user(x, ptr, err_label)					\
-do {										\
-	int __pu_err;								\
-	__typeof__(*(ptr)) __pu_val = (x);					\
-	__put_user_size(__pu_val, (ptr), sizeof(*(ptr)), __pu_err, -EFAULT);	\
-	if (unlikely(__pu_err)) goto err_label;					\
-} while (0)
+#define unsafe_put_user(x, ptr, label)	\
+	__put_user_size((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr)), label)
 
 #define unsafe_get_user(x, ptr, err_label)					\
 do {										\
diff --git a/arch/x86/include/asm/vmx.h b/arch/x86/include/asm/vmx.h
index ade0f153947d..4e4133e86484 100644
--- a/arch/x86/include/asm/vmx.h
+++ b/arch/x86/include/asm/vmx.h
@@ -77,7 +77,10 @@
 #define SECONDARY_EXEC_ENCLS_EXITING		0x00008000
 #define SECONDARY_EXEC_RDSEED_EXITING		0x00010000
 #define SECONDARY_EXEC_ENABLE_PML               0x00020000
+#define SECONDARY_EXEC_PT_CONCEAL_VMX		0x00080000
 #define SECONDARY_EXEC_XSAVES			0x00100000
+#define SECONDARY_EXEC_PT_USE_GPA		0x01000000
+#define SECONDARY_EXEC_MODE_BASED_EPT_EXEC	0x00400000
 #define SECONDARY_EXEC_TSC_SCALING              0x02000000
 
 #define PIN_BASED_EXT_INTR_MASK                 0x00000001
@@ -98,6 +101,8 @@
 #define VM_EXIT_LOAD_IA32_EFER                  0x00200000
 #define VM_EXIT_SAVE_VMX_PREEMPTION_TIMER       0x00400000
 #define VM_EXIT_CLEAR_BNDCFGS                   0x00800000
+#define VM_EXIT_PT_CONCEAL_PIP			0x01000000
+#define VM_EXIT_CLEAR_IA32_RTIT_CTL		0x02000000
 
 #define VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR	0x00036dff
 
@@ -109,6 +114,8 @@
 #define VM_ENTRY_LOAD_IA32_PAT			0x00004000
 #define VM_ENTRY_LOAD_IA32_EFER                 0x00008000
 #define VM_ENTRY_LOAD_BNDCFGS                   0x00010000
+#define VM_ENTRY_PT_CONCEAL_PIP			0x00020000
+#define VM_ENTRY_LOAD_IA32_RTIT_CTL		0x00040000
 
 #define VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR	0x000011ff
 
@@ -240,6 +247,8 @@ enum vmcs_field {
 	GUEST_PDPTR3_HIGH               = 0x00002811,
 	GUEST_BNDCFGS                   = 0x00002812,
 	GUEST_BNDCFGS_HIGH              = 0x00002813,
+	GUEST_IA32_RTIT_CTL		= 0x00002814,
+	GUEST_IA32_RTIT_CTL_HIGH	= 0x00002815,
 	HOST_IA32_PAT			= 0x00002c00,
 	HOST_IA32_PAT_HIGH		= 0x00002c01,
 	HOST_IA32_EFER			= 0x00002c02,
diff --git a/arch/x86/include/asm/x86_init.h b/arch/x86/include/asm/x86_init.h
index 0f842104862c..b85a7c54c6a1 100644
--- a/arch/x86/include/asm/x86_init.h
+++ b/arch/x86/include/asm/x86_init.h
@@ -303,6 +303,4 @@ extern void x86_init_noop(void);
 extern void x86_init_uint_noop(unsigned int unused);
 extern bool x86_pnpbios_disabled(void);
 
-void x86_verify_bootdata_version(void);
-
 #endif
diff --git a/arch/x86/include/asm/xen/page.h b/arch/x86/include/asm/xen/page.h
index 123e669bf363..790ce08e41f2 100644
--- a/arch/x86/include/asm/xen/page.h
+++ b/arch/x86/include/asm/xen/page.h
@@ -9,7 +9,7 @@
 #include <linux/mm.h>
 #include <linux/device.h>
 
-#include <linux/uaccess.h>
+#include <asm/extable.h>
 #include <asm/page.h>
 #include <asm/pgtable.h>
 
@@ -93,12 +93,39 @@ clear_foreign_p2m_mapping(struct gnttab_unmap_grant_ref *unmap_ops,
  */
 static inline int xen_safe_write_ulong(unsigned long *addr, unsigned long val)
 {
-	return __put_user(val, (unsigned long __user *)addr);
+	int ret = 0;
+
+	asm volatile("1: mov %[val], %[ptr]\n"
+		     "2:\n"
+		     ".section .fixup, \"ax\"\n"
+		     "3: sub $1, %[ret]\n"
+		     "   jmp 2b\n"
+		     ".previous\n"
+		     _ASM_EXTABLE(1b, 3b)
+		     : [ret] "+r" (ret), [ptr] "=m" (*addr)
+		     : [val] "r" (val));
+
+	return ret;
 }
 
-static inline int xen_safe_read_ulong(unsigned long *addr, unsigned long *val)
+static inline int xen_safe_read_ulong(const unsigned long *addr,
+				      unsigned long *val)
 {
-	return __get_user(*val, (unsigned long __user *)addr);
+	int ret = 0;
+	unsigned long rval = ~0ul;
+
+	asm volatile("1: mov %[ptr], %[rval]\n"
+		     "2:\n"
+		     ".section .fixup, \"ax\"\n"
+		     "3: sub $1, %[ret]\n"
+		     "   jmp 2b\n"
+		     ".previous\n"
+		     _ASM_EXTABLE(1b, 3b)
+		     : [ret] "+r" (ret), [rval] "+r" (rval)
+		     : [ptr] "m" (*addr));
+	*val = rval;
+
+	return ret;
 }
 
 #ifdef CONFIG_XEN_PV
diff --git a/arch/x86/include/uapi/asm/bootparam.h b/arch/x86/include/uapi/asm/bootparam.h
index 22f89d040ddd..60733f137e9a 100644
--- a/arch/x86/include/uapi/asm/bootparam.h
+++ b/arch/x86/include/uapi/asm/bootparam.h
@@ -16,9 +16,6 @@
 #define RAMDISK_PROMPT_FLAG		0x8000
 #define RAMDISK_LOAD_FLAG		0x4000
 
-/* version flags */
-#define VERSION_WRITTEN	0x8000
-
 /* loadflags */
 #define LOADED_HIGH	(1<<0)
 #define KASLR_FLAG	(1<<1)
@@ -89,7 +86,6 @@ struct setup_header {
 	__u64	pref_address;
 	__u32	init_size;
 	__u32	handover_offset;
-	__u64	acpi_rsdp_addr;
 } __attribute__((packed));
 
 struct sys_desc_table {
@@ -159,7 +155,8 @@ struct boot_params {
 	__u8  _pad2[4];					/* 0x054 */
 	__u64  tboot_addr;				/* 0x058 */
 	struct ist_info ist_info;			/* 0x060 */
-	__u8  _pad3[16];				/* 0x070 */
+	__u64 acpi_rsdp_addr;				/* 0x070 */
+	__u8  _pad3[8];					/* 0x078 */
 	__u8  hd0_info[16];	/* obsolete! */		/* 0x080 */
 	__u8  hd1_info[16];	/* obsolete! */		/* 0x090 */
 	struct sys_desc_table sys_desc_table; /* obsolete! */	/* 0x0a0 */
diff --git a/arch/x86/kernel/Makefile b/arch/x86/kernel/Makefile
index 8824d01c0c35..eb51b0e1189c 100644
--- a/arch/x86/kernel/Makefile
+++ b/arch/x86/kernel/Makefile
@@ -150,3 +150,7 @@ ifeq ($(CONFIG_X86_64),y)
 	obj-$(CONFIG_MMCONF_FAM10H)	+= mmconf-fam10h_64.o
 	obj-y				+= vsmp_64.o
 endif
+
+ifdef CONFIG_EFI
+obj-$(CONFIG_IMA)			+= ima_arch.o
+endif
diff --git a/arch/x86/kernel/acpi/boot.c b/arch/x86/kernel/acpi/boot.c
index 92c76bf97ad8..2624de16cd7a 100644
--- a/arch/x86/kernel/acpi/boot.c
+++ b/arch/x86/kernel/acpi/boot.c
@@ -848,7 +848,7 @@ EXPORT_SYMBOL(acpi_unregister_ioapic);
 /**
  * acpi_ioapic_registered - Check whether IOAPIC assoicatied with @gsi_base
  *			    has been registered
- * @handle:	ACPI handle of the IOAPIC deivce
+ * @handle:	ACPI handle of the IOAPIC device
  * @gsi_base:	GSI base associated with the IOAPIC
  *
  * Assume caller holds some type of lock to serialize acpi_ioapic_registered()
@@ -1776,5 +1776,5 @@ void __init arch_reserve_mem_area(acpi_physical_address addr, size_t size)
 
 u64 x86_default_get_root_pointer(void)
 {
-	return boot_params.hdr.acpi_rsdp_addr;
+	return boot_params.acpi_rsdp_addr;
 }
diff --git a/arch/x86/kernel/amd_gart_64.c b/arch/x86/kernel/amd_gart_64.c
index 3f9d1b4019bb..e0ff3ac8c127 100644
--- a/arch/x86/kernel/amd_gart_64.c
+++ b/arch/x86/kernel/amd_gart_64.c
@@ -50,8 +50,6 @@ static unsigned long iommu_pages;	/* .. and in pages */
 
 static u32 *iommu_gatt_base;		/* Remapping table */
 
-static dma_addr_t bad_dma_addr;
-
 /*
  * If this is disabled the IOMMU will use an optimized flushing strategy
  * of only flushing when an mapping is reused. With it true the GART is
@@ -74,8 +72,6 @@ static u32 gart_unmapped_entry;
 	(((x) & 0xfffff000) | (((x) >> 32) << 4) | GPTE_VALID | GPTE_COHERENT)
 #define GPTE_DECODE(x) (((x) & 0xfffff000) | (((u64)(x) & 0xff0) << 28))
 
-#define EMERGENCY_PAGES 32 /* = 128KB */
-
 #ifdef CONFIG_AGP
 #define AGPEXTERN extern
 #else
@@ -155,9 +151,6 @@ static void flush_gart(void)
 
 #ifdef CONFIG_IOMMU_LEAK
 /* Debugging aid for drivers that don't free their IOMMU tables */
-static int leak_trace;
-static int iommu_leak_pages = 20;
-
 static void dump_leak(void)
 {
 	static int dump;
@@ -184,14 +177,6 @@ static void iommu_full(struct device *dev, size_t size, int dir)
 	 */
 
 	dev_err(dev, "PCI-DMA: Out of IOMMU space for %lu bytes\n", size);
-
-	if (size > PAGE_SIZE*EMERGENCY_PAGES) {
-		if (dir == PCI_DMA_FROMDEVICE || dir == PCI_DMA_BIDIRECTIONAL)
-			panic("PCI-DMA: Memory would be corrupted\n");
-		if (dir == PCI_DMA_TODEVICE || dir == PCI_DMA_BIDIRECTIONAL)
-			panic(KERN_ERR
-				"PCI-DMA: Random memory would be DMAed\n");
-	}
 #ifdef CONFIG_IOMMU_LEAK
 	dump_leak();
 #endif
@@ -220,7 +205,7 @@ static dma_addr_t dma_map_area(struct device *dev, dma_addr_t phys_mem,
 	int i;
 
 	if (unlikely(phys_mem + size > GART_MAX_PHYS_ADDR))
-		return bad_dma_addr;
+		return DMA_MAPPING_ERROR;
 
 	iommu_page = alloc_iommu(dev, npages, align_mask);
 	if (iommu_page == -1) {
@@ -229,7 +214,7 @@ static dma_addr_t dma_map_area(struct device *dev, dma_addr_t phys_mem,
 		if (panic_on_overflow)
 			panic("dma_map_area overflow %lu bytes\n", size);
 		iommu_full(dev, size, dir);
-		return bad_dma_addr;
+		return DMA_MAPPING_ERROR;
 	}
 
 	for (i = 0; i < npages; i++) {
@@ -271,7 +256,7 @@ static void gart_unmap_page(struct device *dev, dma_addr_t dma_addr,
 	int npages;
 	int i;
 
-	if (dma_addr < iommu_bus_base + EMERGENCY_PAGES*PAGE_SIZE ||
+	if (dma_addr == DMA_MAPPING_ERROR ||
 	    dma_addr >= iommu_bus_base + iommu_size)
 		return;
 
@@ -315,7 +300,7 @@ static int dma_map_sg_nonforce(struct device *dev, struct scatterlist *sg,
 
 		if (nonforced_iommu(dev, addr, s->length)) {
 			addr = dma_map_area(dev, addr, s->length, dir, 0);
-			if (addr == bad_dma_addr) {
+			if (addr == DMA_MAPPING_ERROR) {
 				if (i > 0)
 					gart_unmap_sg(dev, sg, i, dir, 0);
 				nents = 0;
@@ -471,7 +456,7 @@ error:
 
 	iommu_full(dev, pages << PAGE_SHIFT, dir);
 	for_each_sg(sg, s, nents, i)
-		s->dma_address = bad_dma_addr;
+		s->dma_address = DMA_MAPPING_ERROR;
 	return 0;
 }
 
@@ -490,7 +475,7 @@ gart_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_addr,
 	*dma_addr = dma_map_area(dev, virt_to_phys(vaddr), size,
 			DMA_BIDIRECTIONAL, (1UL << get_order(size)) - 1);
 	flush_gart();
-	if (unlikely(*dma_addr == bad_dma_addr))
+	if (unlikely(*dma_addr == DMA_MAPPING_ERROR))
 		goto out_free;
 	return vaddr;
 out_free:
@@ -507,11 +492,6 @@ gart_free_coherent(struct device *dev, size_t size, void *vaddr,
 	dma_direct_free_pages(dev, size, vaddr, dma_addr, attrs);
 }
 
-static int gart_mapping_error(struct device *dev, dma_addr_t dma_addr)
-{
-	return (dma_addr == bad_dma_addr);
-}
-
 static int no_agp;
 
 static __init unsigned long check_iommu_size(unsigned long aper, u64 aper_size)
@@ -695,7 +675,6 @@ static const struct dma_map_ops gart_dma_ops = {
 	.unmap_page			= gart_unmap_page,
 	.alloc				= gart_alloc_coherent,
 	.free				= gart_free_coherent,
-	.mapping_error			= gart_mapping_error,
 	.dma_supported			= dma_direct_supported,
 };
 
@@ -730,7 +709,6 @@ int __init gart_iommu_init(void)
 	unsigned long aper_base, aper_size;
 	unsigned long start_pfn, end_pfn;
 	unsigned long scratch;
-	long i;
 
 	if (!amd_nb_has_feature(AMD_NB_GART))
 		return 0;
@@ -774,29 +752,12 @@ int __init gart_iommu_init(void)
 	if (!iommu_gart_bitmap)
 		panic("Cannot allocate iommu bitmap\n");
 
-#ifdef CONFIG_IOMMU_LEAK
-	if (leak_trace) {
-		int ret;
-
-		ret = dma_debug_resize_entries(iommu_pages);
-		if (ret)
-			pr_debug("PCI-DMA: Cannot trace all the entries\n");
-	}
-#endif
-
-	/*
-	 * Out of IOMMU space handling.
-	 * Reserve some invalid pages at the beginning of the GART.
-	 */
-	bitmap_set(iommu_gart_bitmap, 0, EMERGENCY_PAGES);
-
 	pr_info("PCI-DMA: Reserving %luMB of IOMMU area in the AGP aperture\n",
 	       iommu_size >> 20);
 
 	agp_memory_reserved	= iommu_size;
 	iommu_start		= aper_size - iommu_size;
 	iommu_bus_base		= info.aper_base + iommu_start;
-	bad_dma_addr		= iommu_bus_base;
 	iommu_gatt_base		= agp_gatt_table + (iommu_start>>PAGE_SHIFT);
 
 	/*
@@ -838,8 +799,6 @@ int __init gart_iommu_init(void)
 	if (!scratch)
 		panic("Cannot allocate iommu scratch page");
 	gart_unmapped_entry = GPTE_ENCODE(__pa(scratch));
-	for (i = EMERGENCY_PAGES; i < iommu_pages; i++)
-		iommu_gatt_base[i] = gart_unmapped_entry;
 
 	flush_gart();
 	dma_ops = &gart_dma_ops;
@@ -853,16 +812,6 @@ void __init gart_parse_options(char *p)
 {
 	int arg;
 
-#ifdef CONFIG_IOMMU_LEAK
-	if (!strncmp(p, "leak", 4)) {
-		leak_trace = 1;
-		p += 4;
-		if (*p == '=')
-			++p;
-		if (isdigit(*p) && get_option(&p, &arg))
-			iommu_leak_pages = arg;
-	}
-#endif
 	if (isdigit(*p) && get_option(&p, &arg))
 		iommu_size = arg;
 	if (!strncmp(p, "fullflush", 9))
diff --git a/arch/x86/kernel/amd_nb.c b/arch/x86/kernel/amd_nb.c
index a6eca647bc76..cc51275c8759 100644
--- a/arch/x86/kernel/amd_nb.c
+++ b/arch/x86/kernel/amd_nb.c
@@ -11,14 +11,15 @@
 #include <linux/errno.h>
 #include <linux/export.h>
 #include <linux/spinlock.h>
+#include <linux/pci_ids.h>
 #include <asm/amd_nb.h>
 
 #define PCI_DEVICE_ID_AMD_17H_ROOT	0x1450
 #define PCI_DEVICE_ID_AMD_17H_M10H_ROOT	0x15d0
-#define PCI_DEVICE_ID_AMD_17H_DF_F3	0x1463
+#define PCI_DEVICE_ID_AMD_17H_M30H_ROOT	0x1480
 #define PCI_DEVICE_ID_AMD_17H_DF_F4	0x1464
-#define PCI_DEVICE_ID_AMD_17H_M10H_DF_F3 0x15eb
 #define PCI_DEVICE_ID_AMD_17H_M10H_DF_F4 0x15ec
+#define PCI_DEVICE_ID_AMD_17H_M30H_DF_F4 0x1494
 
 /* Protect the PCI config register pairs used for SMN and DF indirect access. */
 static DEFINE_MUTEX(smn_mutex);
@@ -28,9 +29,11 @@ static u32 *flush_words;
 static const struct pci_device_id amd_root_ids[] = {
 	{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_ROOT) },
 	{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M10H_ROOT) },
+	{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M30H_ROOT) },
 	{}
 };
 
+
 #define PCI_DEVICE_ID_AMD_CNB17H_F4     0x1704
 
 const struct pci_device_id amd_nb_misc_ids[] = {
@@ -44,6 +47,7 @@ const struct pci_device_id amd_nb_misc_ids[] = {
 	{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F3) },
 	{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_DF_F3) },
 	{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M10H_DF_F3) },
+	{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M30H_DF_F3) },
 	{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_CNB17H_F3) },
 	{}
 };
@@ -57,6 +61,7 @@ static const struct pci_device_id amd_nb_link_ids[] = {
 	{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F4) },
 	{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_DF_F4) },
 	{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M10H_DF_F4) },
+	{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_17H_M30H_DF_F4) },
 	{ PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_CNB17H_F4) },
 	{}
 };
@@ -214,7 +219,10 @@ int amd_cache_northbridges(void)
 	const struct pci_device_id *root_ids = amd_root_ids;
 	struct pci_dev *root, *misc, *link;
 	struct amd_northbridge *nb;
-	u16 i = 0;
+	u16 roots_per_misc = 0;
+	u16 misc_count = 0;
+	u16 root_count = 0;
+	u16 i, j;
 
 	if (amd_northbridges.num)
 		return 0;
@@ -227,26 +235,55 @@ int amd_cache_northbridges(void)
 
 	misc = NULL;
 	while ((misc = next_northbridge(misc, misc_ids)) != NULL)
-		i++;
+		misc_count++;
 
-	if (!i)
+	if (!misc_count)
 		return -ENODEV;
 
-	nb = kcalloc(i, sizeof(struct amd_northbridge), GFP_KERNEL);
+	root = NULL;
+	while ((root = next_northbridge(root, root_ids)) != NULL)
+		root_count++;
+
+	if (root_count) {
+		roots_per_misc = root_count / misc_count;
+
+		/*
+		 * There should be _exactly_ N roots for each DF/SMN
+		 * interface.
+		 */
+		if (!roots_per_misc || (root_count % roots_per_misc)) {
+			pr_info("Unsupported AMD DF/PCI configuration found\n");
+			return -ENODEV;
+		}
+	}
+
+	nb = kcalloc(misc_count, sizeof(struct amd_northbridge), GFP_KERNEL);
 	if (!nb)
 		return -ENOMEM;
 
 	amd_northbridges.nb = nb;
-	amd_northbridges.num = i;
+	amd_northbridges.num = misc_count;
 
 	link = misc = root = NULL;
-	for (i = 0; i != amd_northbridges.num; i++) {
+	for (i = 0; i < amd_northbridges.num; i++) {
 		node_to_amd_nb(i)->root = root =
 			next_northbridge(root, root_ids);
 		node_to_amd_nb(i)->misc = misc =
 			next_northbridge(misc, misc_ids);
 		node_to_amd_nb(i)->link = link =
 			next_northbridge(link, link_ids);
+
+		/*
+		 * If there are more PCI root devices than data fabric/
+		 * system management network interfaces, then the (N)
+		 * PCI roots per DF/SMN interface are functionally the
+		 * same (for DF/SMN access) and N-1 are redundant.  N-1
+		 * PCI roots should be skipped per DF/SMN interface so
+		 * the following DF/SMN interfaces get mapped to
+		 * correct PCI roots.
+		 */
+		for (j = 1; j < roots_per_misc; j++)
+			root = next_northbridge(root, root_ids);
 	}
 
 	if (amd_gart_present())
diff --git a/arch/x86/kernel/aperture_64.c b/arch/x86/kernel/aperture_64.c
index 2c4d5ece7456..58176b56354e 100644
--- a/arch/x86/kernel/aperture_64.c
+++ b/arch/x86/kernel/aperture_64.c
@@ -264,18 +264,23 @@ static int __init parse_gart_mem(char *p)
 }
 early_param("gart_fix_e820", parse_gart_mem);
 
+/*
+ * With kexec/kdump, if the first kernel doesn't shut down the GART and the
+ * second kernel allocates a different GART region, there might be two
+ * overlapping GART regions present:
+ *
+ * - the first still used by the GART initialized in the first kernel.
+ * - (sub-)set of it used as normal RAM by the second kernel.
+ *
+ * which leads to memory corruptions and a kernel panic eventually.
+ *
+ * This can also happen if the BIOS has forgotten to mark the GART region
+ * as reserved.
+ *
+ * Try to update the e820 map to mark that new region as reserved.
+ */
 void __init early_gart_iommu_check(void)
 {
-	/*
-	 * in case it is enabled before, esp for kexec/kdump,
-	 * previous kernel already enable that. memset called
-	 * by allocate_aperture/__alloc_bootmem_nopanic cause restart.
-	 * or second kernel have different position for GART hole. and new
-	 * kernel could use hole as RAM that is still used by GART set by
-	 * first kernel
-	 * or BIOS forget to put that in reserved.
-	 * try to update e820 to make that region as reserved.
-	 */
 	u32 agp_aper_order = 0;
 	int i, fix, slot, valid_agp = 0;
 	u32 ctl;
diff --git a/arch/x86/kernel/apic/apic.c b/arch/x86/kernel/apic/apic.c
index 32b2b7a41ef5..b7bcdd781651 100644
--- a/arch/x86/kernel/apic/apic.c
+++ b/arch/x86/kernel/apic/apic.c
@@ -44,6 +44,7 @@
 #include <asm/mpspec.h>
 #include <asm/i8259.h>
 #include <asm/proto.h>
+#include <asm/traps.h>
 #include <asm/apic.h>
 #include <asm/io_apic.h>
 #include <asm/desc.h>
diff --git a/arch/x86/kernel/apic/apic_flat_64.c b/arch/x86/kernel/apic/apic_flat_64.c
index e84c9eb4e5b4..0005c284a5c5 100644
--- a/arch/x86/kernel/apic/apic_flat_64.c
+++ b/arch/x86/kernel/apic/apic_flat_64.c
@@ -8,6 +8,7 @@
  * Martin Bligh, Andi Kleen, James Bottomley, John Stultz, and
  * James Cleverdon.
  */
+#include <linux/acpi.h>
 #include <linux/errno.h>
 #include <linux/threads.h>
 #include <linux/cpumask.h>
@@ -16,13 +17,13 @@
 #include <linux/ctype.h>
 #include <linux/hardirq.h>
 #include <linux/export.h>
+
 #include <asm/smp.h>
-#include <asm/apic.h>
 #include <asm/ipi.h>
+#include <asm/apic.h>
+#include <asm/apic_flat_64.h>
 #include <asm/jailhouse_para.h>
 
-#include <linux/acpi.h>
-
 static struct apic apic_physflat;
 static struct apic apic_flat;
 
diff --git a/arch/x86/kernel/apic/vector.c b/arch/x86/kernel/apic/vector.c
index 652e7ffa9b9d..3173e07d3791 100644
--- a/arch/x86/kernel/apic/vector.c
+++ b/arch/x86/kernel/apic/vector.c
@@ -18,6 +18,7 @@
 #include <linux/slab.h>
 #include <asm/irqdomain.h>
 #include <asm/hw_irq.h>
+#include <asm/traps.h>
 #include <asm/apic.h>
 #include <asm/i8259.h>
 #include <asm/desc.h>
diff --git a/arch/x86/kernel/apic/x2apic_uv_x.c b/arch/x86/kernel/apic/x2apic_uv_x.c
index 391f358ebb4c..a555da094157 100644
--- a/arch/x86/kernel/apic/x2apic_uv_x.c
+++ b/arch/x86/kernel/apic/x2apic_uv_x.c
@@ -1079,7 +1079,7 @@ late_initcall(uv_init_heartbeat);
 #endif /* !CONFIG_HOTPLUG_CPU */
 
 /* Direct Legacy VGA I/O traffic to designated IOH */
-int uv_set_vga_state(struct pci_dev *pdev, bool decode, unsigned int command_bits, u32 flags)
+static int uv_set_vga_state(struct pci_dev *pdev, bool decode, unsigned int command_bits, u32 flags)
 {
 	int domain, bus, rc;
 
@@ -1148,7 +1148,7 @@ static void get_mn(struct mn *mnp)
 	mnp->m_shift = mnp->m_val ? 64 - mnp->m_val : 0;
 }
 
-void __init uv_init_hub_info(struct uv_hub_info_s *hi)
+static void __init uv_init_hub_info(struct uv_hub_info_s *hi)
 {
 	union uvh_node_id_u node_id;
 	struct mn mn;
diff --git a/arch/x86/kernel/asm-offsets.c b/arch/x86/kernel/asm-offsets.c
index 72adf6c335dc..168543d077d7 100644
--- a/arch/x86/kernel/asm-offsets.c
+++ b/arch/x86/kernel/asm-offsets.c
@@ -29,7 +29,8 @@
 # include "asm-offsets_64.c"
 #endif
 
-void common(void) {
+static void __used common(void)
+{
 	BLANK();
 	OFFSET(TASK_threadsp, task_struct, thread.sp);
 #ifdef CONFIG_STACKPROTECTOR
diff --git a/arch/x86/kernel/check.c b/arch/x86/kernel/check.c
index 1979a76bfadd..5136e6818da8 100644
--- a/arch/x86/kernel/check.c
+++ b/arch/x86/kernel/check.c
@@ -9,6 +9,7 @@
 #include <linux/memblock.h>
 
 #include <asm/proto.h>
+#include <asm/setup.h>
 
 /*
  * Some BIOSes seem to corrupt the low 64k of memory during events
@@ -136,7 +137,7 @@ void __init setup_bios_corruption_check(void)
 }
 
 
-void check_for_bios_corruption(void)
+static void check_for_bios_corruption(void)
 {
 	int i;
 	int corruption = 0;
diff --git a/arch/x86/kernel/cpu/Makefile b/arch/x86/kernel/cpu/Makefile
index 1f5d2291c31e..ac78f90aea56 100644
--- a/arch/x86/kernel/cpu/Makefile
+++ b/arch/x86/kernel/cpu/Makefile
@@ -36,13 +36,10 @@ obj-$(CONFIG_CPU_SUP_CENTAUR)		+= centaur.o
 obj-$(CONFIG_CPU_SUP_TRANSMETA_32)	+= transmeta.o
 obj-$(CONFIG_CPU_SUP_UMC_32)		+= umc.o
 
-obj-$(CONFIG_INTEL_RDT)	+= intel_rdt.o intel_rdt_rdtgroup.o intel_rdt_monitor.o
-obj-$(CONFIG_INTEL_RDT)	+= intel_rdt_ctrlmondata.o intel_rdt_pseudo_lock.o
-CFLAGS_intel_rdt_pseudo_lock.o = -I$(src)
-
-obj-$(CONFIG_X86_MCE)			+= mcheck/
+obj-$(CONFIG_X86_MCE)			+= mce/
 obj-$(CONFIG_MTRR)			+= mtrr/
 obj-$(CONFIG_MICROCODE)			+= microcode/
+obj-$(CONFIG_RESCTRL)			+= resctrl/
 
 obj-$(CONFIG_X86_LOCAL_APIC)		+= perfctr-watchdog.o
 
diff --git a/arch/x86/kernel/cpu/amd.c b/arch/x86/kernel/cpu/amd.c
index eeea634bee0a..69f6bbb41be0 100644
--- a/arch/x86/kernel/cpu/amd.c
+++ b/arch/x86/kernel/cpu/amd.c
@@ -15,6 +15,7 @@
 #include <asm/smp.h>
 #include <asm/pci-direct.h>
 #include <asm/delay.h>
+#include <asm/debugreg.h>
 
 #ifdef CONFIG_X86_64
 # include <asm/mmconfig.h>
diff --git a/arch/x86/kernel/cpu/aperfmperf.c b/arch/x86/kernel/cpu/aperfmperf.c
index 7eba34df54c3..804c49493938 100644
--- a/arch/x86/kernel/cpu/aperfmperf.c
+++ b/arch/x86/kernel/cpu/aperfmperf.c
@@ -12,6 +12,7 @@
 #include <linux/ktime.h>
 #include <linux/math64.h>
 #include <linux/percpu.h>
+#include <linux/cpufreq.h>
 #include <linux/smp.h>
 
 #include "cpu.h"
diff --git a/arch/x86/kernel/cpu/bugs.c b/arch/x86/kernel/cpu/bugs.c
index c37e66e493bf..8654b8b0c848 100644
--- a/arch/x86/kernel/cpu/bugs.c
+++ b/arch/x86/kernel/cpu/bugs.c
@@ -14,6 +14,7 @@
 #include <linux/module.h>
 #include <linux/nospec.h>
 #include <linux/prctl.h>
+#include <linux/sched/smt.h>
 
 #include <asm/spec-ctrl.h>
 #include <asm/cmdline.h>
@@ -31,6 +32,8 @@
 #include <asm/e820/api.h>
 #include <asm/hypervisor.h>
 
+#include "cpu.h"
+
 static void __init spectre_v2_select_mitigation(void);
 static void __init ssb_select_mitigation(void);
 static void __init l1tf_select_mitigation(void);
@@ -53,6 +56,13 @@ static u64 __ro_after_init x86_spec_ctrl_mask = SPEC_CTRL_IBRS;
 u64 __ro_after_init x86_amd_ls_cfg_base;
 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
 
+/* Control conditional STIBP in switch_to() */
+DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
+/* Control conditional IBPB in switch_mm() */
+DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
+/* Control unconditional IBPB in switch_mm() */
+DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
+
 void __init check_bugs(void)
 {
 	identify_boot_cpu();
@@ -123,31 +133,6 @@ void __init check_bugs(void)
 #endif
 }
 
-/* The kernel command line selection */
-enum spectre_v2_mitigation_cmd {
-	SPECTRE_V2_CMD_NONE,
-	SPECTRE_V2_CMD_AUTO,
-	SPECTRE_V2_CMD_FORCE,
-	SPECTRE_V2_CMD_RETPOLINE,
-	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
-	SPECTRE_V2_CMD_RETPOLINE_AMD,
-};
-
-static const char *spectre_v2_strings[] = {
-	[SPECTRE_V2_NONE]			= "Vulnerable",
-	[SPECTRE_V2_RETPOLINE_MINIMAL]		= "Vulnerable: Minimal generic ASM retpoline",
-	[SPECTRE_V2_RETPOLINE_MINIMAL_AMD]	= "Vulnerable: Minimal AMD ASM retpoline",
-	[SPECTRE_V2_RETPOLINE_GENERIC]		= "Mitigation: Full generic retpoline",
-	[SPECTRE_V2_RETPOLINE_AMD]		= "Mitigation: Full AMD retpoline",
-	[SPECTRE_V2_IBRS_ENHANCED]		= "Mitigation: Enhanced IBRS",
-};
-
-#undef pr_fmt
-#define pr_fmt(fmt)     "Spectre V2 : " fmt
-
-static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init =
-	SPECTRE_V2_NONE;
-
 void
 x86_virt_spec_ctrl(u64 guest_spec_ctrl, u64 guest_virt_spec_ctrl, bool setguest)
 {
@@ -169,6 +154,10 @@ x86_virt_spec_ctrl(u64 guest_spec_ctrl, u64 guest_virt_spec_ctrl, bool setguest)
 		    static_cpu_has(X86_FEATURE_AMD_SSBD))
 			hostval |= ssbd_tif_to_spec_ctrl(ti->flags);
 
+		/* Conditional STIBP enabled? */
+		if (static_branch_unlikely(&switch_to_cond_stibp))
+			hostval |= stibp_tif_to_spec_ctrl(ti->flags);
+
 		if (hostval != guestval) {
 			msrval = setguest ? guestval : hostval;
 			wrmsrl(MSR_IA32_SPEC_CTRL, msrval);
@@ -202,7 +191,7 @@ x86_virt_spec_ctrl(u64 guest_spec_ctrl, u64 guest_virt_spec_ctrl, bool setguest)
 		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
 				 ssbd_spec_ctrl_to_tif(hostval);
 
-		speculative_store_bypass_update(tif);
+		speculation_ctrl_update(tif);
 	}
 }
 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
@@ -217,6 +206,15 @@ static void x86_amd_ssb_disable(void)
 		wrmsrl(MSR_AMD64_LS_CFG, msrval);
 }
 
+#undef pr_fmt
+#define pr_fmt(fmt)     "Spectre V2 : " fmt
+
+static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init =
+	SPECTRE_V2_NONE;
+
+static enum spectre_v2_user_mitigation spectre_v2_user __ro_after_init =
+	SPECTRE_V2_USER_NONE;
+
 #ifdef RETPOLINE
 static bool spectre_v2_bad_module;
 
@@ -238,67 +236,227 @@ static inline const char *spectre_v2_module_string(void)
 static inline const char *spectre_v2_module_string(void) { return ""; }
 #endif
 
-static void __init spec2_print_if_insecure(const char *reason)
+static inline bool match_option(const char *arg, int arglen, const char *opt)
 {
-	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
-		pr_info("%s selected on command line.\n", reason);
+	int len = strlen(opt);
+
+	return len == arglen && !strncmp(arg, opt, len);
 }
 
-static void __init spec2_print_if_secure(const char *reason)
+/* The kernel command line selection for spectre v2 */
+enum spectre_v2_mitigation_cmd {
+	SPECTRE_V2_CMD_NONE,
+	SPECTRE_V2_CMD_AUTO,
+	SPECTRE_V2_CMD_FORCE,
+	SPECTRE_V2_CMD_RETPOLINE,
+	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
+	SPECTRE_V2_CMD_RETPOLINE_AMD,
+};
+
+enum spectre_v2_user_cmd {
+	SPECTRE_V2_USER_CMD_NONE,
+	SPECTRE_V2_USER_CMD_AUTO,
+	SPECTRE_V2_USER_CMD_FORCE,
+	SPECTRE_V2_USER_CMD_PRCTL,
+	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
+	SPECTRE_V2_USER_CMD_SECCOMP,
+	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
+};
+
+static const char * const spectre_v2_user_strings[] = {
+	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
+	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
+	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
+	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
+	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
+};
+
+static const struct {
+	const char			*option;
+	enum spectre_v2_user_cmd	cmd;
+	bool				secure;
+} v2_user_options[] __initdata = {
+	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
+	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
+	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
+	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
+	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
+	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
+	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
+};
+
+static void __init spec_v2_user_print_cond(const char *reason, bool secure)
 {
-	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
-		pr_info("%s selected on command line.\n", reason);
+	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
+		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
 }
 
-static inline bool retp_compiler(void)
+static enum spectre_v2_user_cmd __init
+spectre_v2_parse_user_cmdline(enum spectre_v2_mitigation_cmd v2_cmd)
 {
-	return __is_defined(RETPOLINE);
+	char arg[20];
+	int ret, i;
+
+	switch (v2_cmd) {
+	case SPECTRE_V2_CMD_NONE:
+		return SPECTRE_V2_USER_CMD_NONE;
+	case SPECTRE_V2_CMD_FORCE:
+		return SPECTRE_V2_USER_CMD_FORCE;
+	default:
+		break;
+	}
+
+	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
+				  arg, sizeof(arg));
+	if (ret < 0)
+		return SPECTRE_V2_USER_CMD_AUTO;
+
+	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
+		if (match_option(arg, ret, v2_user_options[i].option)) {
+			spec_v2_user_print_cond(v2_user_options[i].option,
+						v2_user_options[i].secure);
+			return v2_user_options[i].cmd;
+		}
+	}
+
+	pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
+	return SPECTRE_V2_USER_CMD_AUTO;
 }
 
-static inline bool match_option(const char *arg, int arglen, const char *opt)
+static void __init
+spectre_v2_user_select_mitigation(enum spectre_v2_mitigation_cmd v2_cmd)
 {
-	int len = strlen(opt);
+	enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
+	bool smt_possible = IS_ENABLED(CONFIG_SMP);
+	enum spectre_v2_user_cmd cmd;
 
-	return len == arglen && !strncmp(arg, opt, len);
+	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
+		return;
+
+	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
+	    cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
+		smt_possible = false;
+
+	cmd = spectre_v2_parse_user_cmdline(v2_cmd);
+	switch (cmd) {
+	case SPECTRE_V2_USER_CMD_NONE:
+		goto set_mode;
+	case SPECTRE_V2_USER_CMD_FORCE:
+		mode = SPECTRE_V2_USER_STRICT;
+		break;
+	case SPECTRE_V2_USER_CMD_PRCTL:
+	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
+		mode = SPECTRE_V2_USER_PRCTL;
+		break;
+	case SPECTRE_V2_USER_CMD_AUTO:
+	case SPECTRE_V2_USER_CMD_SECCOMP:
+	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
+		if (IS_ENABLED(CONFIG_SECCOMP))
+			mode = SPECTRE_V2_USER_SECCOMP;
+		else
+			mode = SPECTRE_V2_USER_PRCTL;
+		break;
+	}
+
+	/*
+	 * At this point, an STIBP mode other than "off" has been set.
+	 * If STIBP support is not being forced, check if STIBP always-on
+	 * is preferred.
+	 */
+	if (mode != SPECTRE_V2_USER_STRICT &&
+	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
+		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
+
+	/* Initialize Indirect Branch Prediction Barrier */
+	if (boot_cpu_has(X86_FEATURE_IBPB)) {
+		setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
+
+		switch (cmd) {
+		case SPECTRE_V2_USER_CMD_FORCE:
+		case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
+		case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
+			static_branch_enable(&switch_mm_always_ibpb);
+			break;
+		case SPECTRE_V2_USER_CMD_PRCTL:
+		case SPECTRE_V2_USER_CMD_AUTO:
+		case SPECTRE_V2_USER_CMD_SECCOMP:
+			static_branch_enable(&switch_mm_cond_ibpb);
+			break;
+		default:
+			break;
+		}
+
+		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
+			static_key_enabled(&switch_mm_always_ibpb) ?
+			"always-on" : "conditional");
+	}
+
+	/* If enhanced IBRS is enabled no STIBP required */
+	if (spectre_v2_enabled == SPECTRE_V2_IBRS_ENHANCED)
+		return;
+
+	/*
+	 * If SMT is not possible or STIBP is not available clear the STIBP
+	 * mode.
+	 */
+	if (!smt_possible || !boot_cpu_has(X86_FEATURE_STIBP))
+		mode = SPECTRE_V2_USER_NONE;
+set_mode:
+	spectre_v2_user = mode;
+	/* Only print the STIBP mode when SMT possible */
+	if (smt_possible)
+		pr_info("%s\n", spectre_v2_user_strings[mode]);
 }
 
+static const char * const spectre_v2_strings[] = {
+	[SPECTRE_V2_NONE]			= "Vulnerable",
+	[SPECTRE_V2_RETPOLINE_GENERIC]		= "Mitigation: Full generic retpoline",
+	[SPECTRE_V2_RETPOLINE_AMD]		= "Mitigation: Full AMD retpoline",
+	[SPECTRE_V2_IBRS_ENHANCED]		= "Mitigation: Enhanced IBRS",
+};
+
 static const struct {
 	const char *option;
 	enum spectre_v2_mitigation_cmd cmd;
 	bool secure;
-} mitigation_options[] = {
-	{ "off",               SPECTRE_V2_CMD_NONE,              false },
-	{ "on",                SPECTRE_V2_CMD_FORCE,             true },
-	{ "retpoline",         SPECTRE_V2_CMD_RETPOLINE,         false },
-	{ "retpoline,amd",     SPECTRE_V2_CMD_RETPOLINE_AMD,     false },
-	{ "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
-	{ "auto",              SPECTRE_V2_CMD_AUTO,              false },
+} mitigation_options[] __initdata = {
+	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
+	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
+	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
+	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_AMD,	  false },
+	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
+	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
 };
 
+static void __init spec_v2_print_cond(const char *reason, bool secure)
+{
+	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
+		pr_info("%s selected on command line.\n", reason);
+}
+
 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
 {
+	enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
 	char arg[20];
 	int ret, i;
-	enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
 
 	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2"))
 		return SPECTRE_V2_CMD_NONE;
-	else {
-		ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
-		if (ret < 0)
-			return SPECTRE_V2_CMD_AUTO;
 
-		for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
-			if (!match_option(arg, ret, mitigation_options[i].option))
-				continue;
-			cmd = mitigation_options[i].cmd;
-			break;
-		}
+	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
+	if (ret < 0)
+		return SPECTRE_V2_CMD_AUTO;
 
-		if (i >= ARRAY_SIZE(mitigation_options)) {
-			pr_err("unknown option (%s). Switching to AUTO select\n", arg);
-			return SPECTRE_V2_CMD_AUTO;
-		}
+	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
+		if (!match_option(arg, ret, mitigation_options[i].option))
+			continue;
+		cmd = mitigation_options[i].cmd;
+		break;
+	}
+
+	if (i >= ARRAY_SIZE(mitigation_options)) {
+		pr_err("unknown option (%s). Switching to AUTO select\n", arg);
+		return SPECTRE_V2_CMD_AUTO;
 	}
 
 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
@@ -316,54 +474,11 @@ static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
 		return SPECTRE_V2_CMD_AUTO;
 	}
 
-	if (mitigation_options[i].secure)
-		spec2_print_if_secure(mitigation_options[i].option);
-	else
-		spec2_print_if_insecure(mitigation_options[i].option);
-
+	spec_v2_print_cond(mitigation_options[i].option,
+			   mitigation_options[i].secure);
 	return cmd;
 }
 
-static bool stibp_needed(void)
-{
-	if (spectre_v2_enabled == SPECTRE_V2_NONE)
-		return false;
-
-	if (!boot_cpu_has(X86_FEATURE_STIBP))
-		return false;
-
-	return true;
-}
-
-static void update_stibp_msr(void *info)
-{
-	wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
-}
-
-void arch_smt_update(void)
-{
-	u64 mask;
-
-	if (!stibp_needed())
-		return;
-
-	mutex_lock(&spec_ctrl_mutex);
-	mask = x86_spec_ctrl_base;
-	if (cpu_smt_control == CPU_SMT_ENABLED)
-		mask |= SPEC_CTRL_STIBP;
-	else
-		mask &= ~SPEC_CTRL_STIBP;
-
-	if (mask != x86_spec_ctrl_base) {
-		pr_info("Spectre v2 cross-process SMT mitigation: %s STIBP\n",
-				cpu_smt_control == CPU_SMT_ENABLED ?
-				"Enabling" : "Disabling");
-		x86_spec_ctrl_base = mask;
-		on_each_cpu(update_stibp_msr, NULL, 1);
-	}
-	mutex_unlock(&spec_ctrl_mutex);
-}
-
 static void __init spectre_v2_select_mitigation(void)
 {
 	enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
@@ -417,14 +532,12 @@ retpoline_auto:
 			pr_err("Spectre mitigation: LFENCE not serializing, switching to generic retpoline\n");
 			goto retpoline_generic;
 		}
-		mode = retp_compiler() ? SPECTRE_V2_RETPOLINE_AMD :
-					 SPECTRE_V2_RETPOLINE_MINIMAL_AMD;
+		mode = SPECTRE_V2_RETPOLINE_AMD;
 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_AMD);
 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
 	} else {
 	retpoline_generic:
-		mode = retp_compiler() ? SPECTRE_V2_RETPOLINE_GENERIC :
-					 SPECTRE_V2_RETPOLINE_MINIMAL;
+		mode = SPECTRE_V2_RETPOLINE_GENERIC;
 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
 	}
 
@@ -443,12 +556,6 @@ specv2_set_mode:
 	setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
 	pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
 
-	/* Initialize Indirect Branch Prediction Barrier if supported */
-	if (boot_cpu_has(X86_FEATURE_IBPB)) {
-		setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
-		pr_info("Spectre v2 mitigation: Enabling Indirect Branch Prediction Barrier\n");
-	}
-
 	/*
 	 * Retpoline means the kernel is safe because it has no indirect
 	 * branches. Enhanced IBRS protects firmware too, so, enable restricted
@@ -465,10 +572,68 @@ specv2_set_mode:
 		pr_info("Enabling Restricted Speculation for firmware calls\n");
 	}
 
+	/* Set up IBPB and STIBP depending on the general spectre V2 command */
+	spectre_v2_user_select_mitigation(cmd);
+
 	/* Enable STIBP if appropriate */
 	arch_smt_update();
 }
 
+static void update_stibp_msr(void * __unused)
+{
+	wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
+}
+
+/* Update x86_spec_ctrl_base in case SMT state changed. */
+static void update_stibp_strict(void)
+{
+	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
+
+	if (sched_smt_active())
+		mask |= SPEC_CTRL_STIBP;
+
+	if (mask == x86_spec_ctrl_base)
+		return;
+
+	pr_info("Update user space SMT mitigation: STIBP %s\n",
+		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
+	x86_spec_ctrl_base = mask;
+	on_each_cpu(update_stibp_msr, NULL, 1);
+}
+
+/* Update the static key controlling the evaluation of TIF_SPEC_IB */
+static void update_indir_branch_cond(void)
+{
+	if (sched_smt_active())
+		static_branch_enable(&switch_to_cond_stibp);
+	else
+		static_branch_disable(&switch_to_cond_stibp);
+}
+
+void arch_smt_update(void)
+{
+	/* Enhanced IBRS implies STIBP. No update required. */
+	if (spectre_v2_enabled == SPECTRE_V2_IBRS_ENHANCED)
+		return;
+
+	mutex_lock(&spec_ctrl_mutex);
+
+	switch (spectre_v2_user) {
+	case SPECTRE_V2_USER_NONE:
+		break;
+	case SPECTRE_V2_USER_STRICT:
+	case SPECTRE_V2_USER_STRICT_PREFERRED:
+		update_stibp_strict();
+		break;
+	case SPECTRE_V2_USER_PRCTL:
+	case SPECTRE_V2_USER_SECCOMP:
+		update_indir_branch_cond();
+		break;
+	}
+
+	mutex_unlock(&spec_ctrl_mutex);
+}
+
 #undef pr_fmt
 #define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
 
@@ -483,7 +648,7 @@ enum ssb_mitigation_cmd {
 	SPEC_STORE_BYPASS_CMD_SECCOMP,
 };
 
-static const char *ssb_strings[] = {
+static const char * const ssb_strings[] = {
 	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
 	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
 	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
@@ -493,7 +658,7 @@ static const char *ssb_strings[] = {
 static const struct {
 	const char *option;
 	enum ssb_mitigation_cmd cmd;
-} ssb_mitigation_options[] = {
+} ssb_mitigation_options[]  __initdata = {
 	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
 	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
 	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
@@ -604,10 +769,25 @@ static void ssb_select_mitigation(void)
 #undef pr_fmt
 #define pr_fmt(fmt)     "Speculation prctl: " fmt
 
-static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
+static void task_update_spec_tif(struct task_struct *tsk)
 {
-	bool update;
+	/* Force the update of the real TIF bits */
+	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
 
+	/*
+	 * Immediately update the speculation control MSRs for the current
+	 * task, but for a non-current task delay setting the CPU
+	 * mitigation until it is scheduled next.
+	 *
+	 * This can only happen for SECCOMP mitigation. For PRCTL it's
+	 * always the current task.
+	 */
+	if (tsk == current)
+		speculation_ctrl_update_current();
+}
+
+static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
+{
 	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
 	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
 		return -ENXIO;
@@ -618,28 +798,58 @@ static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
 		if (task_spec_ssb_force_disable(task))
 			return -EPERM;
 		task_clear_spec_ssb_disable(task);
-		update = test_and_clear_tsk_thread_flag(task, TIF_SSBD);
+		task_update_spec_tif(task);
 		break;
 	case PR_SPEC_DISABLE:
 		task_set_spec_ssb_disable(task);
-		update = !test_and_set_tsk_thread_flag(task, TIF_SSBD);
+		task_update_spec_tif(task);
 		break;
 	case PR_SPEC_FORCE_DISABLE:
 		task_set_spec_ssb_disable(task);
 		task_set_spec_ssb_force_disable(task);
-		update = !test_and_set_tsk_thread_flag(task, TIF_SSBD);
+		task_update_spec_tif(task);
 		break;
 	default:
 		return -ERANGE;
 	}
+	return 0;
+}
 
-	/*
-	 * If being set on non-current task, delay setting the CPU
-	 * mitigation until it is next scheduled.
-	 */
-	if (task == current && update)
-		speculative_store_bypass_update_current();
-
+static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
+{
+	switch (ctrl) {
+	case PR_SPEC_ENABLE:
+		if (spectre_v2_user == SPECTRE_V2_USER_NONE)
+			return 0;
+		/*
+		 * Indirect branch speculation is always disabled in strict
+		 * mode.
+		 */
+		if (spectre_v2_user == SPECTRE_V2_USER_STRICT ||
+		    spectre_v2_user == SPECTRE_V2_USER_STRICT_PREFERRED)
+			return -EPERM;
+		task_clear_spec_ib_disable(task);
+		task_update_spec_tif(task);
+		break;
+	case PR_SPEC_DISABLE:
+	case PR_SPEC_FORCE_DISABLE:
+		/*
+		 * Indirect branch speculation is always allowed when
+		 * mitigation is force disabled.
+		 */
+		if (spectre_v2_user == SPECTRE_V2_USER_NONE)
+			return -EPERM;
+		if (spectre_v2_user == SPECTRE_V2_USER_STRICT ||
+		    spectre_v2_user == SPECTRE_V2_USER_STRICT_PREFERRED)
+			return 0;
+		task_set_spec_ib_disable(task);
+		if (ctrl == PR_SPEC_FORCE_DISABLE)
+			task_set_spec_ib_force_disable(task);
+		task_update_spec_tif(task);
+		break;
+	default:
+		return -ERANGE;
+	}
 	return 0;
 }
 
@@ -649,6 +859,8 @@ int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
 	switch (which) {
 	case PR_SPEC_STORE_BYPASS:
 		return ssb_prctl_set(task, ctrl);
+	case PR_SPEC_INDIRECT_BRANCH:
+		return ib_prctl_set(task, ctrl);
 	default:
 		return -ENODEV;
 	}
@@ -659,6 +871,8 @@ void arch_seccomp_spec_mitigate(struct task_struct *task)
 {
 	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
 		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
+	if (spectre_v2_user == SPECTRE_V2_USER_SECCOMP)
+		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
 }
 #endif
 
@@ -681,11 +895,36 @@ static int ssb_prctl_get(struct task_struct *task)
 	}
 }
 
+static int ib_prctl_get(struct task_struct *task)
+{
+	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
+		return PR_SPEC_NOT_AFFECTED;
+
+	switch (spectre_v2_user) {
+	case SPECTRE_V2_USER_NONE:
+		return PR_SPEC_ENABLE;
+	case SPECTRE_V2_USER_PRCTL:
+	case SPECTRE_V2_USER_SECCOMP:
+		if (task_spec_ib_force_disable(task))
+			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
+		if (task_spec_ib_disable(task))
+			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
+		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
+	case SPECTRE_V2_USER_STRICT:
+	case SPECTRE_V2_USER_STRICT_PREFERRED:
+		return PR_SPEC_DISABLE;
+	default:
+		return PR_SPEC_NOT_AFFECTED;
+	}
+}
+
 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
 {
 	switch (which) {
 	case PR_SPEC_STORE_BYPASS:
 		return ssb_prctl_get(task);
+	case PR_SPEC_INDIRECT_BRANCH:
+		return ib_prctl_get(task);
 	default:
 		return -ENODEV;
 	}
@@ -779,7 +1018,8 @@ static void __init l1tf_select_mitigation(void)
 #endif
 
 	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
-	if (e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
+	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
+			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
 		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
 		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
 				half_pa);
@@ -823,7 +1063,7 @@ early_param("l1tf", l1tf_cmdline);
 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
 
 #if IS_ENABLED(CONFIG_KVM_INTEL)
-static const char *l1tf_vmx_states[] = {
+static const char * const l1tf_vmx_states[] = {
 	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
 	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
 	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
@@ -839,13 +1079,14 @@ static ssize_t l1tf_show_state(char *buf)
 
 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
 	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
-	     cpu_smt_control == CPU_SMT_ENABLED))
+	     sched_smt_active())) {
 		return sprintf(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
 			       l1tf_vmx_states[l1tf_vmx_mitigation]);
+	}
 
 	return sprintf(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
 		       l1tf_vmx_states[l1tf_vmx_mitigation],
-		       cpu_smt_control == CPU_SMT_ENABLED ? "vulnerable" : "disabled");
+		       sched_smt_active() ? "vulnerable" : "disabled");
 }
 #else
 static ssize_t l1tf_show_state(char *buf)
@@ -854,11 +1095,41 @@ static ssize_t l1tf_show_state(char *buf)
 }
 #endif
 
+static char *stibp_state(void)
+{
+	if (spectre_v2_enabled == SPECTRE_V2_IBRS_ENHANCED)
+		return "";
+
+	switch (spectre_v2_user) {
+	case SPECTRE_V2_USER_NONE:
+		return ", STIBP: disabled";
+	case SPECTRE_V2_USER_STRICT:
+		return ", STIBP: forced";
+	case SPECTRE_V2_USER_STRICT_PREFERRED:
+		return ", STIBP: always-on";
+	case SPECTRE_V2_USER_PRCTL:
+	case SPECTRE_V2_USER_SECCOMP:
+		if (static_key_enabled(&switch_to_cond_stibp))
+			return ", STIBP: conditional";
+	}
+	return "";
+}
+
+static char *ibpb_state(void)
+{
+	if (boot_cpu_has(X86_FEATURE_IBPB)) {
+		if (static_key_enabled(&switch_mm_always_ibpb))
+			return ", IBPB: always-on";
+		if (static_key_enabled(&switch_mm_cond_ibpb))
+			return ", IBPB: conditional";
+		return ", IBPB: disabled";
+	}
+	return "";
+}
+
 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
 			       char *buf, unsigned int bug)
 {
-	int ret;
-
 	if (!boot_cpu_has_bug(bug))
 		return sprintf(buf, "Not affected\n");
 
@@ -876,13 +1147,12 @@ static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr
 		return sprintf(buf, "Mitigation: __user pointer sanitization\n");
 
 	case X86_BUG_SPECTRE_V2:
-		ret = sprintf(buf, "%s%s%s%s%s%s\n", spectre_v2_strings[spectre_v2_enabled],
-			       boot_cpu_has(X86_FEATURE_USE_IBPB) ? ", IBPB" : "",
+		return sprintf(buf, "%s%s%s%s%s%s\n", spectre_v2_strings[spectre_v2_enabled],
+			       ibpb_state(),
 			       boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
-			       (x86_spec_ctrl_base & SPEC_CTRL_STIBP) ? ", STIBP" : "",
+			       stibp_state(),
 			       boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
 			       spectre_v2_module_string());
-		return ret;
 
 	case X86_BUG_SPEC_STORE_BYPASS:
 		return sprintf(buf, "%s\n", ssb_strings[ssb_mode]);
diff --git a/arch/x86/kernel/cpu/cacheinfo.c b/arch/x86/kernel/cpu/cacheinfo.c
index dc1b9342e9c4..c4d1023fb0ab 100644
--- a/arch/x86/kernel/cpu/cacheinfo.c
+++ b/arch/x86/kernel/cpu/cacheinfo.c
@@ -17,6 +17,7 @@
 #include <linux/pci.h>
 
 #include <asm/cpufeature.h>
+#include <asm/cacheinfo.h>
 #include <asm/amd_nb.h>
 #include <asm/smp.h>
 
diff --git a/arch/x86/kernel/cpu/common.c b/arch/x86/kernel/cpu/common.c
index ffb181f959d2..cb28e98a0659 100644
--- a/arch/x86/kernel/cpu/common.c
+++ b/arch/x86/kernel/cpu/common.c
@@ -353,7 +353,7 @@ static __always_inline void setup_umip(struct cpuinfo_x86 *c)
 
 	cr4_set_bits(X86_CR4_UMIP);
 
-	pr_info("x86/cpu: Activated the Intel User Mode Instruction Prevention (UMIP) CPU feature\n");
+	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
 
 	return;
 
diff --git a/arch/x86/kernel/cpu/cpu.h b/arch/x86/kernel/cpu/cpu.h
index da5446acc241..5eb946b9a9f3 100644
--- a/arch/x86/kernel/cpu/cpu.h
+++ b/arch/x86/kernel/cpu/cpu.h
@@ -49,9 +49,6 @@ extern void get_cpu_cap(struct cpuinfo_x86 *c);
 extern void get_cpu_address_sizes(struct cpuinfo_x86 *c);
 extern void cpu_detect_cache_sizes(struct cpuinfo_x86 *c);
 extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
-extern u32 get_scattered_cpuid_leaf(unsigned int level,
-				    unsigned int sub_leaf,
-				    enum cpuid_regs_idx reg);
 extern void init_intel_cacheinfo(struct cpuinfo_x86 *c);
 extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
 extern void init_hygon_cacheinfo(struct cpuinfo_x86 *c);
diff --git a/arch/x86/kernel/cpu/mcheck/Makefile b/arch/x86/kernel/cpu/mce/Makefile
index bcc7c54c7041..9f020c994154 100644
--- a/arch/x86/kernel/cpu/mcheck/Makefile
+++ b/arch/x86/kernel/cpu/mce/Makefile
@@ -1,14 +1,16 @@
 # SPDX-License-Identifier: GPL-2.0
-obj-y				=  mce.o mce-severity.o mce-genpool.o
+obj-y				=  core.o severity.o genpool.o
 
 obj-$(CONFIG_X86_ANCIENT_MCE)	+= winchip.o p5.o
-obj-$(CONFIG_X86_MCE_INTEL)	+= mce_intel.o
-obj-$(CONFIG_X86_MCE_AMD)	+= mce_amd.o
+obj-$(CONFIG_X86_MCE_INTEL)	+= intel.o
+obj-$(CONFIG_X86_MCE_AMD)	+= amd.o
 obj-$(CONFIG_X86_MCE_THRESHOLD) += threshold.o
+
+mce-inject-y			:= inject.o
 obj-$(CONFIG_X86_MCE_INJECT)	+= mce-inject.o
 
 obj-$(CONFIG_X86_THERMAL_VECTOR) += therm_throt.o
 
-obj-$(CONFIG_ACPI_APEI)		+= mce-apei.o
+obj-$(CONFIG_ACPI_APEI)		+= apei.o
 
 obj-$(CONFIG_X86_MCELOG_LEGACY)	+= dev-mcelog.o
diff --git a/arch/x86/kernel/cpu/mcheck/mce_amd.c b/arch/x86/kernel/cpu/mce/amd.c
index dd33c357548f..89298c83de53 100644
--- a/arch/x86/kernel/cpu/mcheck/mce_amd.c
+++ b/arch/x86/kernel/cpu/mce/amd.c
@@ -23,12 +23,13 @@
 #include <linux/string.h>
 
 #include <asm/amd_nb.h>
+#include <asm/traps.h>
 #include <asm/apic.h>
 #include <asm/mce.h>
 #include <asm/msr.h>
 #include <asm/trace/irq_vectors.h>
 
-#include "mce-internal.h"
+#include "internal.h"
 
 #define NR_BLOCKS         5
 #define THRESHOLD_MAX     0xFFF
@@ -56,7 +57,7 @@
 /* Threshold LVT offset is at MSR0xC0000410[15:12] */
 #define SMCA_THR_LVT_OFF	0xF000
 
-static bool thresholding_en;
+static bool thresholding_irq_en;
 
 static const char * const th_names[] = {
 	"load_store",
@@ -99,7 +100,7 @@ static u32 smca_bank_addrs[MAX_NR_BANKS][NR_BLOCKS] __ro_after_init =
 	[0 ... MAX_NR_BANKS - 1] = { [0 ... NR_BLOCKS - 1] = -1 }
 };
 
-const char *smca_get_name(enum smca_bank_types t)
+static const char *smca_get_name(enum smca_bank_types t)
 {
 	if (t >= N_SMCA_BANK_TYPES)
 		return NULL;
@@ -534,9 +535,8 @@ prepare_threshold_block(unsigned int bank, unsigned int block, u32 addr,
 
 set_offset:
 	offset = setup_APIC_mce_threshold(offset, new);
-
-	if ((offset == new) && (mce_threshold_vector != amd_threshold_interrupt))
-		mce_threshold_vector = amd_threshold_interrupt;
+	if (offset == new)
+		thresholding_irq_en = true;
 
 done:
 	mce_threshold_block_init(&b, offset);
@@ -825,7 +825,7 @@ static void __log_error(unsigned int bank, u64 status, u64 addr, u64 misc)
 	mce_log(&m);
 }
 
-asmlinkage __visible void __irq_entry smp_deferred_error_interrupt(void)
+asmlinkage __visible void __irq_entry smp_deferred_error_interrupt(struct pt_regs *regs)
 {
 	entering_irq();
 	trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR);
@@ -1357,9 +1357,6 @@ int mce_threshold_remove_device(unsigned int cpu)
 {
 	unsigned int bank;
 
-	if (!thresholding_en)
-		return 0;
-
 	for (bank = 0; bank < mca_cfg.banks; ++bank) {
 		if (!(per_cpu(bank_map, cpu) & (1 << bank)))
 			continue;
@@ -1377,9 +1374,6 @@ int mce_threshold_create_device(unsigned int cpu)
 	struct threshold_bank **bp;
 	int err = 0;
 
-	if (!thresholding_en)
-		return 0;
-
 	bp = per_cpu(threshold_banks, cpu);
 	if (bp)
 		return 0;
@@ -1408,9 +1402,6 @@ static __init int threshold_init_device(void)
 {
 	unsigned lcpu = 0;
 
-	if (mce_threshold_vector == amd_threshold_interrupt)
-		thresholding_en = true;
-
 	/* to hit CPUs online before the notifier is up */
 	for_each_online_cpu(lcpu) {
 		int err = mce_threshold_create_device(lcpu);
@@ -1419,6 +1410,9 @@ static __init int threshold_init_device(void)
 			return err;
 	}
 
+	if (thresholding_irq_en)
+		mce_threshold_vector = amd_threshold_interrupt;
+
 	return 0;
 }
 /*
diff --git a/arch/x86/kernel/cpu/mcheck/mce-apei.c b/arch/x86/kernel/cpu/mce/apei.c
index 2eee85379689..1d9b3ce662a0 100644
--- a/arch/x86/kernel/cpu/mcheck/mce-apei.c
+++ b/arch/x86/kernel/cpu/mce/apei.c
@@ -36,7 +36,7 @@
 #include <acpi/ghes.h>
 #include <asm/mce.h>
 
-#include "mce-internal.h"
+#include "internal.h"
 
 void apei_mce_report_mem_error(int severity, struct cper_sec_mem_err *mem_err)
 {
diff --git a/arch/x86/kernel/cpu/mcheck/mce.c b/arch/x86/kernel/cpu/mce/core.c
index 8c66d2fc8f81..672c7225cb1b 100644
--- a/arch/x86/kernel/cpu/mcheck/mce.c
+++ b/arch/x86/kernel/cpu/mce/core.c
@@ -8,8 +8,6 @@
  * Author: Andi Kleen
  */
 
-#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
-
 #include <linux/thread_info.h>
 #include <linux/capability.h>
 #include <linux/miscdevice.h>
@@ -52,7 +50,7 @@
 #include <asm/msr.h>
 #include <asm/reboot.h>
 
-#include "mce-internal.h"
+#include "internal.h"
 
 static DEFINE_MUTEX(mce_log_mutex);
 
@@ -485,7 +483,7 @@ static void mce_report_event(struct pt_regs *regs)
  * be somewhat complicated (e.g. segment offset would require an instruction
  * parser). So only support physical addresses up to page granuality for now.
  */
-static int mce_usable_address(struct mce *m)
+int mce_usable_address(struct mce *m)
 {
 	if (!(m->status & MCI_STATUS_ADDRV))
 		return 0;
@@ -505,6 +503,7 @@ static int mce_usable_address(struct mce *m)
 
 	return 1;
 }
+EXPORT_SYMBOL_GPL(mce_usable_address);
 
 bool mce_is_memory_error(struct mce *m)
 {
@@ -534,7 +533,7 @@ bool mce_is_memory_error(struct mce *m)
 }
 EXPORT_SYMBOL_GPL(mce_is_memory_error);
 
-static bool mce_is_correctable(struct mce *m)
+bool mce_is_correctable(struct mce *m)
 {
 	if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
 		return false;
@@ -547,6 +546,7 @@ static bool mce_is_correctable(struct mce *m)
 
 	return true;
 }
+EXPORT_SYMBOL_GPL(mce_is_correctable);
 
 static bool cec_add_mce(struct mce *m)
 {
@@ -684,7 +684,7 @@ DEFINE_PER_CPU(unsigned, mce_poll_count);
  * errors here. However this would be quite problematic --
  * we would need to reimplement the Monarch handling and
  * it would mess up the exclusion between exception handler
- * and poll hander -- * so we skip this for now.
+ * and poll handler -- * so we skip this for now.
  * These cases should not happen anyways, or only when the CPU
  * is already totally * confused. In this case it's likely it will
  * not fully execute the machine check handler either.
diff --git a/arch/x86/kernel/cpu/mcheck/dev-mcelog.c b/arch/x86/kernel/cpu/mce/dev-mcelog.c
index 27f394ac983f..9690ec5c8051 100644
--- a/arch/x86/kernel/cpu/mcheck/dev-mcelog.c
+++ b/arch/x86/kernel/cpu/mce/dev-mcelog.c
@@ -8,14 +8,12 @@
  * Author: Andi Kleen
  */
 
-#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
-
 #include <linux/miscdevice.h>
 #include <linux/slab.h>
 #include <linux/kmod.h>
 #include <linux/poll.h>
 
-#include "mce-internal.h"
+#include "internal.h"
 
 static BLOCKING_NOTIFIER_HEAD(mce_injector_chain);
 
diff --git a/arch/x86/kernel/cpu/mcheck/mce-genpool.c b/arch/x86/kernel/cpu/mce/genpool.c
index 217cd4449bc9..3395549c51d3 100644
--- a/arch/x86/kernel/cpu/mcheck/mce-genpool.c
+++ b/arch/x86/kernel/cpu/mce/genpool.c
@@ -10,7 +10,7 @@
 #include <linux/mm.h>
 #include <linux/genalloc.h>
 #include <linux/llist.h>
-#include "mce-internal.h"
+#include "internal.h"
 
 /*
  * printk() is not safe in MCE context. This is a lock-less memory allocator
diff --git a/arch/x86/kernel/cpu/mcheck/mce-inject.c b/arch/x86/kernel/cpu/mce/inject.c
index 1fc424c40a31..8492ef7d9015 100644
--- a/arch/x86/kernel/cpu/mcheck/mce-inject.c
+++ b/arch/x86/kernel/cpu/mce/inject.c
@@ -38,7 +38,7 @@
 #include <asm/nmi.h>
 #include <asm/smp.h>
 
-#include "mce-internal.h"
+#include "internal.h"
 
 /*
  * Collect all the MCi_XXX settings
diff --git a/arch/x86/kernel/cpu/mcheck/mce_intel.c b/arch/x86/kernel/cpu/mce/intel.c
index d05be307d081..e43eb6732630 100644
--- a/arch/x86/kernel/cpu/mcheck/mce_intel.c
+++ b/arch/x86/kernel/cpu/mce/intel.c
@@ -18,7 +18,7 @@
 #include <asm/msr.h>
 #include <asm/mce.h>
 
-#include "mce-internal.h"
+#include "internal.h"
 
 /*
  * Support for Intel Correct Machine Check Interrupts. This allows
diff --git a/arch/x86/kernel/cpu/mcheck/mce-internal.h b/arch/x86/kernel/cpu/mce/internal.h
index ceb67cd5918f..af5eab1e65e2 100644
--- a/arch/x86/kernel/cpu/mcheck/mce-internal.h
+++ b/arch/x86/kernel/cpu/mce/internal.h
@@ -2,6 +2,9 @@
 #ifndef __X86_MCE_INTERNAL_H__
 #define __X86_MCE_INTERNAL_H__
 
+#undef pr_fmt
+#define pr_fmt(fmt) "mce: " fmt
+
 #include <linux/device.h>
 #include <asm/mce.h>
 
diff --git a/arch/x86/kernel/cpu/mcheck/p5.c b/arch/x86/kernel/cpu/mce/p5.c
index 5cddf831720f..4ae6df556526 100644
--- a/arch/x86/kernel/cpu/mcheck/p5.c
+++ b/arch/x86/kernel/cpu/mce/p5.c
@@ -14,6 +14,8 @@
 #include <asm/mce.h>
 #include <asm/msr.h>
 
+#include "internal.h"
+
 /* By default disabled */
 int mce_p5_enabled __read_mostly;
 
diff --git a/arch/x86/kernel/cpu/mcheck/mce-severity.c b/arch/x86/kernel/cpu/mce/severity.c
index 44396d521987..dc3e26e905a3 100644
--- a/arch/x86/kernel/cpu/mcheck/mce-severity.c
+++ b/arch/x86/kernel/cpu/mce/severity.c
@@ -16,7 +16,7 @@
 #include <asm/mce.h>
 #include <linux/uaccess.h>
 
-#include "mce-internal.h"
+#include "internal.h"
 
 /*
  * Grade an mce by severity. In general the most severe ones are processed
diff --git a/arch/x86/kernel/cpu/mcheck/therm_throt.c b/arch/x86/kernel/cpu/mce/therm_throt.c
index 2da67b70ba98..10a3b0599300 100644
--- a/arch/x86/kernel/cpu/mcheck/therm_throt.c
+++ b/arch/x86/kernel/cpu/mce/therm_throt.c
@@ -25,11 +25,14 @@
 #include <linux/cpu.h>
 
 #include <asm/processor.h>
+#include <asm/traps.h>
 #include <asm/apic.h>
 #include <asm/mce.h>
 #include <asm/msr.h>
 #include <asm/trace/irq_vectors.h>
 
+#include "internal.h"
+
 /* How long to wait between reporting thermal events */
 #define CHECK_INTERVAL		(300 * HZ)
 
@@ -390,7 +393,7 @@ static void unexpected_thermal_interrupt(void)
 
 static void (*smp_thermal_vector)(void) = unexpected_thermal_interrupt;
 
-asmlinkage __visible void __irq_entry smp_thermal_interrupt(struct pt_regs *r)
+asmlinkage __visible void __irq_entry smp_thermal_interrupt(struct pt_regs *regs)
 {
 	entering_irq();
 	trace_thermal_apic_entry(THERMAL_APIC_VECTOR);
diff --git a/arch/x86/kernel/cpu/mcheck/threshold.c b/arch/x86/kernel/cpu/mce/threshold.c
index 2b584b319eff..28812cc15300 100644
--- a/arch/x86/kernel/cpu/mcheck/threshold.c
+++ b/arch/x86/kernel/cpu/mce/threshold.c
@@ -6,10 +6,13 @@
 #include <linux/kernel.h>
 
 #include <asm/irq_vectors.h>
+#include <asm/traps.h>
 #include <asm/apic.h>
 #include <asm/mce.h>
 #include <asm/trace/irq_vectors.h>
 
+#include "internal.h"
+
 static void default_threshold_interrupt(void)
 {
 	pr_err("Unexpected threshold interrupt at vector %x\n",
@@ -18,7 +21,7 @@ static void default_threshold_interrupt(void)
 
 void (*mce_threshold_vector)(void) = default_threshold_interrupt;
 
-asmlinkage __visible void __irq_entry smp_threshold_interrupt(void)
+asmlinkage __visible void __irq_entry smp_threshold_interrupt(struct pt_regs *regs)
 {
 	entering_irq();
 	trace_threshold_apic_entry(THRESHOLD_APIC_VECTOR);
diff --git a/arch/x86/kernel/cpu/mcheck/winchip.c b/arch/x86/kernel/cpu/mce/winchip.c
index 3b45b270a865..a30ea13cccc2 100644
--- a/arch/x86/kernel/cpu/mcheck/winchip.c
+++ b/arch/x86/kernel/cpu/mce/winchip.c
@@ -13,6 +13,8 @@
 #include <asm/mce.h>
 #include <asm/msr.h>
 
+#include "internal.h"
+
 /* Machine check handler for WinChip C6: */
 static void winchip_machine_check(struct pt_regs *regs, long error_code)
 {
diff --git a/arch/x86/kernel/cpu/microcode/amd.c b/arch/x86/kernel/cpu/microcode/amd.c
index 07b5fc00b188..51adde0a0f1a 100644
--- a/arch/x86/kernel/cpu/microcode/amd.c
+++ b/arch/x86/kernel/cpu/microcode/amd.c
@@ -5,7 +5,7 @@
  *  CPUs and later.
  *
  *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
- *	          2013-2016 Borislav Petkov <bp@alien8.de>
+ *	          2013-2018 Borislav Petkov <bp@alien8.de>
  *
  *  Author: Peter Oruba <peter.oruba@amd.com>
  *
@@ -38,7 +38,10 @@
 #include <asm/cpu.h>
 #include <asm/msr.h>
 
-static struct equiv_cpu_entry *equiv_cpu_table;
+static struct equiv_cpu_table {
+	unsigned int num_entries;
+	struct equiv_cpu_entry *entry;
+} equiv_table;
 
 /*
  * This points to the current valid container of microcode patches which we will
@@ -63,13 +66,225 @@ static u8 amd_ucode_patch[PATCH_MAX_SIZE];
 static const char
 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
 
-static u16 find_equiv_id(struct equiv_cpu_entry *equiv_table, u32 sig)
+static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
 {
-	for (; equiv_table && equiv_table->installed_cpu; equiv_table++) {
-		if (sig == equiv_table->installed_cpu)
-			return equiv_table->equiv_cpu;
+	unsigned int i;
+
+	if (!et || !et->num_entries)
+		return 0;
+
+	for (i = 0; i < et->num_entries; i++) {
+		struct equiv_cpu_entry *e = &et->entry[i];
+
+		if (sig == e->installed_cpu)
+			return e->equiv_cpu;
+
+		e++;
+	}
+	return 0;
+}
+
+/*
+ * Check whether there is a valid microcode container file at the beginning
+ * of @buf of size @buf_size. Set @early to use this function in the early path.
+ */
+static bool verify_container(const u8 *buf, size_t buf_size, bool early)
+{
+	u32 cont_magic;
+
+	if (buf_size <= CONTAINER_HDR_SZ) {
+		if (!early)
+			pr_debug("Truncated microcode container header.\n");
+
+		return false;
+	}
+
+	cont_magic = *(const u32 *)buf;
+	if (cont_magic != UCODE_MAGIC) {
+		if (!early)
+			pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
+
+		return false;
+	}
+
+	return true;
+}
+
+/*
+ * Check whether there is a valid, non-truncated CPU equivalence table at the
+ * beginning of @buf of size @buf_size. Set @early to use this function in the
+ * early path.
+ */
+static bool verify_equivalence_table(const u8 *buf, size_t buf_size, bool early)
+{
+	const u32 *hdr = (const u32 *)buf;
+	u32 cont_type, equiv_tbl_len;
+
+	if (!verify_container(buf, buf_size, early))
+		return false;
+
+	cont_type = hdr[1];
+	if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
+		if (!early)
+			pr_debug("Wrong microcode container equivalence table type: %u.\n",
+			       cont_type);
+
+		return false;
+	}
+
+	buf_size -= CONTAINER_HDR_SZ;
+
+	equiv_tbl_len = hdr[2];
+	if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
+	    buf_size < equiv_tbl_len) {
+		if (!early)
+			pr_debug("Truncated equivalence table.\n");
+
+		return false;
+	}
+
+	return true;
+}
+
+/*
+ * Check whether there is a valid, non-truncated microcode patch section at the
+ * beginning of @buf of size @buf_size. Set @early to use this function in the
+ * early path.
+ *
+ * On success, @sh_psize returns the patch size according to the section header,
+ * to the caller.
+ */
+static bool
+__verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize, bool early)
+{
+	u32 p_type, p_size;
+	const u32 *hdr;
+
+	if (buf_size < SECTION_HDR_SIZE) {
+		if (!early)
+			pr_debug("Truncated patch section.\n");
+
+		return false;
+	}
+
+	hdr = (const u32 *)buf;
+	p_type = hdr[0];
+	p_size = hdr[1];
+
+	if (p_type != UCODE_UCODE_TYPE) {
+		if (!early)
+			pr_debug("Invalid type field (0x%x) in container file section header.\n",
+				p_type);
+
+		return false;
+	}
+
+	if (p_size < sizeof(struct microcode_header_amd)) {
+		if (!early)
+			pr_debug("Patch of size %u too short.\n", p_size);
+
+		return false;
+	}
+
+	*sh_psize = p_size;
+
+	return true;
+}
+
+/*
+ * Check whether the passed remaining file @buf_size is large enough to contain
+ * a patch of the indicated @sh_psize (and also whether this size does not
+ * exceed the per-family maximum). @sh_psize is the size read from the section
+ * header.
+ */
+static unsigned int __verify_patch_size(u8 family, u32 sh_psize, size_t buf_size)
+{
+	u32 max_size;
+
+	if (family >= 0x15)
+		return min_t(u32, sh_psize, buf_size);
+
+#define F1XH_MPB_MAX_SIZE 2048
+#define F14H_MPB_MAX_SIZE 1824
+
+	switch (family) {
+	case 0x10 ... 0x12:
+		max_size = F1XH_MPB_MAX_SIZE;
+		break;
+	case 0x14:
+		max_size = F14H_MPB_MAX_SIZE;
+		break;
+	default:
+		WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
+		return 0;
+		break;
+	}
+
+	if (sh_psize > min_t(u32, buf_size, max_size))
+		return 0;
+
+	return sh_psize;
+}
+
+/*
+ * Verify the patch in @buf.
+ *
+ * Returns:
+ * negative: on error
+ * positive: patch is not for this family, skip it
+ * 0: success
+ */
+static int
+verify_patch(u8 family, const u8 *buf, size_t buf_size, u32 *patch_size, bool early)
+{
+	struct microcode_header_amd *mc_hdr;
+	unsigned int ret;
+	u32 sh_psize;
+	u16 proc_id;
+	u8 patch_fam;
+
+	if (!__verify_patch_section(buf, buf_size, &sh_psize, early))
+		return -1;
+
+	/*
+	 * The section header length is not included in this indicated size
+	 * but is present in the leftover file length so we need to subtract
+	 * it before passing this value to the function below.
+	 */
+	buf_size -= SECTION_HDR_SIZE;
+
+	/*
+	 * Check if the remaining buffer is big enough to contain a patch of
+	 * size sh_psize, as the section claims.
+	 */
+	if (buf_size < sh_psize) {
+		if (!early)
+			pr_debug("Patch of size %u truncated.\n", sh_psize);
+
+		return -1;
+	}
+
+	ret = __verify_patch_size(family, sh_psize, buf_size);
+	if (!ret) {
+		if (!early)
+			pr_debug("Per-family patch size mismatch.\n");
+		return -1;
+	}
+
+	*patch_size = sh_psize;
+
+	mc_hdr	= (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
+	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
+		if (!early)
+			pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
+		return -1;
 	}
 
+	proc_id	= mc_hdr->processor_rev_id;
+	patch_fam = 0xf + (proc_id >> 12);
+	if (patch_fam != family)
+		return 1;
+
 	return 0;
 }
 
@@ -80,26 +295,28 @@ static u16 find_equiv_id(struct equiv_cpu_entry *equiv_table, u32 sig)
  * Returns the amount of bytes consumed while scanning. @desc contains all the
  * data we're going to use in later stages of the application.
  */
-static ssize_t parse_container(u8 *ucode, ssize_t size, struct cont_desc *desc)
+static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
 {
-	struct equiv_cpu_entry *eq;
-	ssize_t orig_size = size;
+	struct equiv_cpu_table table;
+	size_t orig_size = size;
 	u32 *hdr = (u32 *)ucode;
 	u16 eq_id;
 	u8 *buf;
 
-	/* Am I looking at an equivalence table header? */
-	if (hdr[0] != UCODE_MAGIC ||
-	    hdr[1] != UCODE_EQUIV_CPU_TABLE_TYPE ||
-	    hdr[2] == 0)
-		return CONTAINER_HDR_SZ;
+	if (!verify_equivalence_table(ucode, size, true))
+		return 0;
 
 	buf = ucode;
 
-	eq = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
+	table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
+	table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
 
-	/* Find the equivalence ID of our CPU in this table: */
-	eq_id = find_equiv_id(eq, desc->cpuid_1_eax);
+	/*
+	 * Find the equivalence ID of our CPU in this table. Even if this table
+	 * doesn't contain a patch for the CPU, scan through the whole container
+	 * so that it can be skipped in case there are other containers appended.
+	 */
+	eq_id = find_equiv_id(&table, desc->cpuid_1_eax);
 
 	buf  += hdr[2] + CONTAINER_HDR_SZ;
 	size -= hdr[2] + CONTAINER_HDR_SZ;
@@ -111,29 +328,29 @@ static ssize_t parse_container(u8 *ucode, ssize_t size, struct cont_desc *desc)
 	while (size > 0) {
 		struct microcode_amd *mc;
 		u32 patch_size;
+		int ret;
+
+		ret = verify_patch(x86_family(desc->cpuid_1_eax), buf, size, &patch_size, true);
+		if (ret < 0) {
+			/*
+			 * Patch verification failed, skip to the next
+			 * container, if there's one:
+			 */
+			goto out;
+		} else if (ret > 0) {
+			goto skip;
+		}
 
-		hdr = (u32 *)buf;
-
-		if (hdr[0] != UCODE_UCODE_TYPE)
-			break;
-
-		/* Sanity-check patch size. */
-		patch_size = hdr[1];
-		if (patch_size > PATCH_MAX_SIZE)
-			break;
-
-		/* Skip patch section header: */
-		buf  += SECTION_HDR_SIZE;
-		size -= SECTION_HDR_SIZE;
-
-		mc = (struct microcode_amd *)buf;
+		mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
 		if (eq_id == mc->hdr.processor_rev_id) {
 			desc->psize = patch_size;
 			desc->mc = mc;
 		}
 
-		buf  += patch_size;
-		size -= patch_size;
+skip:
+		/* Skip patch section header too: */
+		buf  += patch_size + SECTION_HDR_SIZE;
+		size -= patch_size + SECTION_HDR_SIZE;
 	}
 
 	/*
@@ -150,6 +367,7 @@ static ssize_t parse_container(u8 *ucode, ssize_t size, struct cont_desc *desc)
 		return 0;
 	}
 
+out:
 	return orig_size - size;
 }
 
@@ -159,15 +377,18 @@ static ssize_t parse_container(u8 *ucode, ssize_t size, struct cont_desc *desc)
  */
 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
 {
-	ssize_t rem = size;
-
-	while (rem >= 0) {
-		ssize_t s = parse_container(ucode, rem, desc);
+	while (size) {
+		size_t s = parse_container(ucode, size, desc);
 		if (!s)
 			return;
 
-		ucode += s;
-		rem   -= s;
+		/* catch wraparound */
+		if (size >= s) {
+			ucode += s;
+			size  -= s;
+		} else {
+			return;
+		}
 	}
 }
 
@@ -364,21 +585,7 @@ void reload_ucode_amd(void)
 static u16 __find_equiv_id(unsigned int cpu)
 {
 	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
-	return find_equiv_id(equiv_cpu_table, uci->cpu_sig.sig);
-}
-
-static u32 find_cpu_family_by_equiv_cpu(u16 equiv_cpu)
-{
-	int i = 0;
-
-	BUG_ON(!equiv_cpu_table);
-
-	while (equiv_cpu_table[i].equiv_cpu != 0) {
-		if (equiv_cpu == equiv_cpu_table[i].equiv_cpu)
-			return equiv_cpu_table[i].installed_cpu;
-		i++;
-	}
-	return 0;
+	return find_equiv_id(&equiv_table, uci->cpu_sig.sig);
 }
 
 /*
@@ -461,43 +668,6 @@ static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
 	return 0;
 }
 
-static unsigned int verify_patch_size(u8 family, u32 patch_size,
-				      unsigned int size)
-{
-	u32 max_size;
-
-#define F1XH_MPB_MAX_SIZE 2048
-#define F14H_MPB_MAX_SIZE 1824
-#define F15H_MPB_MAX_SIZE 4096
-#define F16H_MPB_MAX_SIZE 3458
-#define F17H_MPB_MAX_SIZE 3200
-
-	switch (family) {
-	case 0x14:
-		max_size = F14H_MPB_MAX_SIZE;
-		break;
-	case 0x15:
-		max_size = F15H_MPB_MAX_SIZE;
-		break;
-	case 0x16:
-		max_size = F16H_MPB_MAX_SIZE;
-		break;
-	case 0x17:
-		max_size = F17H_MPB_MAX_SIZE;
-		break;
-	default:
-		max_size = F1XH_MPB_MAX_SIZE;
-		break;
-	}
-
-	if (patch_size > min_t(u32, size, max_size)) {
-		pr_err("patch size mismatch\n");
-		return 0;
-	}
-
-	return patch_size;
-}
-
 static enum ucode_state apply_microcode_amd(int cpu)
 {
 	struct cpuinfo_x86 *c = &cpu_data(cpu);
@@ -548,34 +718,34 @@ out:
 	return ret;
 }
 
-static int install_equiv_cpu_table(const u8 *buf)
+static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
 {
-	unsigned int *ibuf = (unsigned int *)buf;
-	unsigned int type = ibuf[1];
-	unsigned int size = ibuf[2];
+	u32 equiv_tbl_len;
+	const u32 *hdr;
 
-	if (type != UCODE_EQUIV_CPU_TABLE_TYPE || !size) {
-		pr_err("empty section/"
-		       "invalid type field in container file section header\n");
-		return -EINVAL;
-	}
+	if (!verify_equivalence_table(buf, buf_size, false))
+		return 0;
+
+	hdr = (const u32 *)buf;
+	equiv_tbl_len = hdr[2];
 
-	equiv_cpu_table = vmalloc(size);
-	if (!equiv_cpu_table) {
+	equiv_table.entry = vmalloc(equiv_tbl_len);
+	if (!equiv_table.entry) {
 		pr_err("failed to allocate equivalent CPU table\n");
-		return -ENOMEM;
+		return 0;
 	}
 
-	memcpy(equiv_cpu_table, buf + CONTAINER_HDR_SZ, size);
+	memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
+	equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
 
 	/* add header length */
-	return size + CONTAINER_HDR_SZ;
+	return equiv_tbl_len + CONTAINER_HDR_SZ;
 }
 
 static void free_equiv_cpu_table(void)
 {
-	vfree(equiv_cpu_table);
-	equiv_cpu_table = NULL;
+	vfree(equiv_table.entry);
+	memset(&equiv_table, 0, sizeof(equiv_table));
 }
 
 static void cleanup(void)
@@ -585,47 +755,23 @@ static void cleanup(void)
 }
 
 /*
- * We return the current size even if some of the checks failed so that
+ * Return a non-negative value even if some of the checks failed so that
  * we can skip over the next patch. If we return a negative value, we
  * signal a grave error like a memory allocation has failed and the
  * driver cannot continue functioning normally. In such cases, we tear
  * down everything we've used up so far and exit.
  */
-static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover)
+static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
+				unsigned int *patch_size)
 {
 	struct microcode_header_amd *mc_hdr;
 	struct ucode_patch *patch;
-	unsigned int patch_size, crnt_size, ret;
-	u32 proc_fam;
 	u16 proc_id;
+	int ret;
 
-	patch_size  = *(u32 *)(fw + 4);
-	crnt_size   = patch_size + SECTION_HDR_SIZE;
-	mc_hdr	    = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
-	proc_id	    = mc_hdr->processor_rev_id;
-
-	proc_fam = find_cpu_family_by_equiv_cpu(proc_id);
-	if (!proc_fam) {
-		pr_err("No patch family for equiv ID: 0x%04x\n", proc_id);
-		return crnt_size;
-	}
-
-	/* check if patch is for the current family */
-	proc_fam = ((proc_fam >> 8) & 0xf) + ((proc_fam >> 20) & 0xff);
-	if (proc_fam != family)
-		return crnt_size;
-
-	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
-		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n",
-			mc_hdr->patch_id);
-		return crnt_size;
-	}
-
-	ret = verify_patch_size(family, patch_size, leftover);
-	if (!ret) {
-		pr_err("Patch-ID 0x%08x: size mismatch.\n", mc_hdr->patch_id);
-		return crnt_size;
-	}
+	ret = verify_patch(family, fw, leftover, patch_size, false);
+	if (ret)
+		return ret;
 
 	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
 	if (!patch) {
@@ -633,13 +779,16 @@ static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover)
 		return -EINVAL;
 	}
 
-	patch->data = kmemdup(fw + SECTION_HDR_SIZE, patch_size, GFP_KERNEL);
+	patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
 	if (!patch->data) {
 		pr_err("Patch data allocation failure.\n");
 		kfree(patch);
 		return -EINVAL;
 	}
 
+	mc_hdr      = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
+	proc_id     = mc_hdr->processor_rev_id;
+
 	INIT_LIST_HEAD(&patch->plist);
 	patch->patch_id  = mc_hdr->patch_id;
 	patch->equiv_cpu = proc_id;
@@ -650,39 +799,38 @@ static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover)
 	/* ... and add to cache. */
 	update_cache(patch);
 
-	return crnt_size;
+	return 0;
 }
 
 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
 					     size_t size)
 {
-	enum ucode_state ret = UCODE_ERROR;
-	unsigned int leftover;
 	u8 *fw = (u8 *)data;
-	int crnt_size = 0;
-	int offset;
+	size_t offset;
 
-	offset = install_equiv_cpu_table(data);
-	if (offset < 0) {
-		pr_err("failed to create equivalent cpu table\n");
-		return ret;
-	}
-	fw += offset;
-	leftover = size - offset;
+	offset = install_equiv_cpu_table(data, size);
+	if (!offset)
+		return UCODE_ERROR;
+
+	fw   += offset;
+	size -= offset;
 
 	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
 		pr_err("invalid type field in container file section header\n");
 		free_equiv_cpu_table();
-		return ret;
+		return UCODE_ERROR;
 	}
 
-	while (leftover) {
-		crnt_size = verify_and_add_patch(family, fw, leftover);
-		if (crnt_size < 0)
-			return ret;
+	while (size > 0) {
+		unsigned int crnt_size = 0;
+		int ret;
 
-		fw	 += crnt_size;
-		leftover -= crnt_size;
+		ret = verify_and_add_patch(family, fw, size, &crnt_size);
+		if (ret < 0)
+			return UCODE_ERROR;
+
+		fw   +=  crnt_size + SECTION_HDR_SIZE;
+		size -= (crnt_size + SECTION_HDR_SIZE);
 	}
 
 	return UCODE_OK;
@@ -761,10 +909,8 @@ static enum ucode_state request_microcode_amd(int cpu, struct device *device,
 	}
 
 	ret = UCODE_ERROR;
-	if (*(u32 *)fw->data != UCODE_MAGIC) {
-		pr_err("invalid magic value (0x%08x)\n", *(u32 *)fw->data);
+	if (!verify_container(fw->data, fw->size, false))
 		goto fw_release;
-	}
 
 	ret = load_microcode_amd(bsp, c->x86, fw->data, fw->size);
 
diff --git a/arch/x86/kernel/cpu/microcode/core.c b/arch/x86/kernel/cpu/microcode/core.c
index 2637ff09d6a0..97f9ada9ceda 100644
--- a/arch/x86/kernel/cpu/microcode/core.c
+++ b/arch/x86/kernel/cpu/microcode/core.c
@@ -434,9 +434,10 @@ static ssize_t microcode_write(struct file *file, const char __user *buf,
 			       size_t len, loff_t *ppos)
 {
 	ssize_t ret = -EINVAL;
+	unsigned long nr_pages = totalram_pages();
 
-	if ((len >> PAGE_SHIFT) > totalram_pages) {
-		pr_err("too much data (max %ld pages)\n", totalram_pages);
+	if ((len >> PAGE_SHIFT) > nr_pages) {
+		pr_err("too much data (max %ld pages)\n", nr_pages);
 		return ret;
 	}
 
diff --git a/arch/x86/kernel/cpu/mshyperv.c b/arch/x86/kernel/cpu/mshyperv.c
index 1c72f3819eb1..e81a2db42df7 100644
--- a/arch/x86/kernel/cpu/mshyperv.c
+++ b/arch/x86/kernel/cpu/mshyperv.c
@@ -20,6 +20,7 @@
 #include <linux/interrupt.h>
 #include <linux/irq.h>
 #include <linux/kexec.h>
+#include <linux/i8253.h>
 #include <asm/processor.h>
 #include <asm/hypervisor.h>
 #include <asm/hyperv-tlfs.h>
@@ -295,6 +296,16 @@ static void __init ms_hyperv_init_platform(void)
 	if (efi_enabled(EFI_BOOT))
 		x86_platform.get_nmi_reason = hv_get_nmi_reason;
 
+	/*
+	 * Hyper-V VMs have a PIT emulation quirk such that zeroing the
+	 * counter register during PIT shutdown restarts the PIT. So it
+	 * continues to interrupt @18.2 HZ. Setting i8253_clear_counter
+	 * to false tells pit_shutdown() not to zero the counter so that
+	 * the PIT really is shutdown. Generation 2 VMs don't have a PIT,
+	 * and setting this value has no effect.
+	 */
+	i8253_clear_counter_on_shutdown = false;
+
 #if IS_ENABLED(CONFIG_HYPERV)
 	/*
 	 * Setup the hook to get control post apic initialization.
diff --git a/arch/x86/kernel/cpu/mtrr/if.c b/arch/x86/kernel/cpu/mtrr/if.c
index 2e173d47b450..4d36dcc1cf87 100644
--- a/arch/x86/kernel/cpu/mtrr/if.c
+++ b/arch/x86/kernel/cpu/mtrr/if.c
@@ -165,6 +165,8 @@ mtrr_ioctl(struct file *file, unsigned int cmd, unsigned long __arg)
 	struct mtrr_gentry gentry;
 	void __user *arg = (void __user *) __arg;
 
+	memset(&gentry, 0, sizeof(gentry));
+
 	switch (cmd) {
 	case MTRRIOC_ADD_ENTRY:
 	case MTRRIOC_SET_ENTRY:
diff --git a/arch/x86/kernel/cpu/resctrl/Makefile b/arch/x86/kernel/cpu/resctrl/Makefile
new file mode 100644
index 000000000000..6895049ceef7
--- /dev/null
+++ b/arch/x86/kernel/cpu/resctrl/Makefile
@@ -0,0 +1,4 @@
+# SPDX-License-Identifier: GPL-2.0
+obj-$(CONFIG_RESCTRL)	+= core.o rdtgroup.o monitor.o
+obj-$(CONFIG_RESCTRL)	+= ctrlmondata.o pseudo_lock.o
+CFLAGS_pseudo_lock.o = -I$(src)
diff --git a/arch/x86/kernel/cpu/intel_rdt.c b/arch/x86/kernel/cpu/resctrl/core.c
index 44272b7107ad..c3a9dc63edf2 100644
--- a/arch/x86/kernel/cpu/intel_rdt.c
+++ b/arch/x86/kernel/cpu/resctrl/core.c
@@ -22,7 +22,7 @@
  * Software Developer Manual June 2016, volume 3, section 17.17.
  */
 
-#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
+#define pr_fmt(fmt)	"resctrl: " fmt
 
 #include <linux/slab.h>
 #include <linux/err.h>
@@ -30,22 +30,19 @@
 #include <linux/cpuhotplug.h>
 
 #include <asm/intel-family.h>
-#include <asm/intel_rdt_sched.h>
-#include "intel_rdt.h"
-
-#define MBA_IS_LINEAR	0x4
-#define MBA_MAX_MBPS	U32_MAX
+#include <asm/resctrl_sched.h>
+#include "internal.h"
 
 /* Mutex to protect rdtgroup access. */
 DEFINE_MUTEX(rdtgroup_mutex);
 
 /*
- * The cached intel_pqr_state is strictly per CPU and can never be
+ * The cached resctrl_pqr_state is strictly per CPU and can never be
  * updated from a remote CPU. Functions which modify the state
  * are called with interrupts disabled and no preemption, which
  * is sufficient for the protection.
  */
-DEFINE_PER_CPU(struct intel_pqr_state, pqr_state);
+DEFINE_PER_CPU(struct resctrl_pqr_state, pqr_state);
 
 /*
  * Used to store the max resource name width and max resource data width
@@ -60,9 +57,13 @@ int max_name_width, max_data_width;
 bool rdt_alloc_capable;
 
 static void
-mba_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r);
+mba_wrmsr_intel(struct rdt_domain *d, struct msr_param *m,
+		struct rdt_resource *r);
 static void
 cat_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r);
+static void
+mba_wrmsr_amd(struct rdt_domain *d, struct msr_param *m,
+	      struct rdt_resource *r);
 
 #define domain_init(id) LIST_HEAD_INIT(rdt_resources_all[id].domains)
 
@@ -72,7 +73,7 @@ struct rdt_resource rdt_resources_all[] = {
 		.rid			= RDT_RESOURCE_L3,
 		.name			= "L3",
 		.domains		= domain_init(RDT_RESOURCE_L3),
-		.msr_base		= IA32_L3_CBM_BASE,
+		.msr_base		= MSR_IA32_L3_CBM_BASE,
 		.msr_update		= cat_wrmsr,
 		.cache_level		= 3,
 		.cache = {
@@ -89,7 +90,7 @@ struct rdt_resource rdt_resources_all[] = {
 		.rid			= RDT_RESOURCE_L3DATA,
 		.name			= "L3DATA",
 		.domains		= domain_init(RDT_RESOURCE_L3DATA),
-		.msr_base		= IA32_L3_CBM_BASE,
+		.msr_base		= MSR_IA32_L3_CBM_BASE,
 		.msr_update		= cat_wrmsr,
 		.cache_level		= 3,
 		.cache = {
@@ -106,7 +107,7 @@ struct rdt_resource rdt_resources_all[] = {
 		.rid			= RDT_RESOURCE_L3CODE,
 		.name			= "L3CODE",
 		.domains		= domain_init(RDT_RESOURCE_L3CODE),
-		.msr_base		= IA32_L3_CBM_BASE,
+		.msr_base		= MSR_IA32_L3_CBM_BASE,
 		.msr_update		= cat_wrmsr,
 		.cache_level		= 3,
 		.cache = {
@@ -123,7 +124,7 @@ struct rdt_resource rdt_resources_all[] = {
 		.rid			= RDT_RESOURCE_L2,
 		.name			= "L2",
 		.domains		= domain_init(RDT_RESOURCE_L2),
-		.msr_base		= IA32_L2_CBM_BASE,
+		.msr_base		= MSR_IA32_L2_CBM_BASE,
 		.msr_update		= cat_wrmsr,
 		.cache_level		= 2,
 		.cache = {
@@ -140,7 +141,7 @@ struct rdt_resource rdt_resources_all[] = {
 		.rid			= RDT_RESOURCE_L2DATA,
 		.name			= "L2DATA",
 		.domains		= domain_init(RDT_RESOURCE_L2DATA),
-		.msr_base		= IA32_L2_CBM_BASE,
+		.msr_base		= MSR_IA32_L2_CBM_BASE,
 		.msr_update		= cat_wrmsr,
 		.cache_level		= 2,
 		.cache = {
@@ -157,7 +158,7 @@ struct rdt_resource rdt_resources_all[] = {
 		.rid			= RDT_RESOURCE_L2CODE,
 		.name			= "L2CODE",
 		.domains		= domain_init(RDT_RESOURCE_L2CODE),
-		.msr_base		= IA32_L2_CBM_BASE,
+		.msr_base		= MSR_IA32_L2_CBM_BASE,
 		.msr_update		= cat_wrmsr,
 		.cache_level		= 2,
 		.cache = {
@@ -174,10 +175,7 @@ struct rdt_resource rdt_resources_all[] = {
 		.rid			= RDT_RESOURCE_MBA,
 		.name			= "MB",
 		.domains		= domain_init(RDT_RESOURCE_MBA),
-		.msr_base		= IA32_MBA_THRTL_BASE,
-		.msr_update		= mba_wrmsr,
 		.cache_level		= 3,
-		.parse_ctrlval		= parse_bw,
 		.format_str		= "%d=%*u",
 		.fflags			= RFTYPE_RES_MB,
 	},
@@ -211,9 +209,10 @@ static inline void cache_alloc_hsw_probe(void)
 	struct rdt_resource *r  = &rdt_resources_all[RDT_RESOURCE_L3];
 	u32 l, h, max_cbm = BIT_MASK(20) - 1;
 
-	if (wrmsr_safe(IA32_L3_CBM_BASE, max_cbm, 0))
+	if (wrmsr_safe(MSR_IA32_L3_CBM_BASE, max_cbm, 0))
 		return;
-	rdmsr(IA32_L3_CBM_BASE, l, h);
+
+	rdmsr(MSR_IA32_L3_CBM_BASE, l, h);
 
 	/* If all the bits were set in MSR, return success */
 	if (l != max_cbm)
@@ -259,7 +258,7 @@ static inline bool rdt_get_mb_table(struct rdt_resource *r)
 	return false;
 }
 
-static bool rdt_get_mem_config(struct rdt_resource *r)
+static bool __get_mem_config_intel(struct rdt_resource *r)
 {
 	union cpuid_0x10_3_eax eax;
 	union cpuid_0x10_x_edx edx;
@@ -285,6 +284,30 @@ static bool rdt_get_mem_config(struct rdt_resource *r)
 	return true;
 }
 
+static bool __rdt_get_mem_config_amd(struct rdt_resource *r)
+{
+	union cpuid_0x10_3_eax eax;
+	union cpuid_0x10_x_edx edx;
+	u32 ebx, ecx;
+
+	cpuid_count(0x80000020, 1, &eax.full, &ebx, &ecx, &edx.full);
+	r->num_closid = edx.split.cos_max + 1;
+	r->default_ctrl = MAX_MBA_BW_AMD;
+
+	/* AMD does not use delay */
+	r->membw.delay_linear = false;
+
+	r->membw.min_bw = 0;
+	r->membw.bw_gran = 1;
+	/* Max value is 2048, Data width should be 4 in decimal */
+	r->data_width = 4;
+
+	r->alloc_capable = true;
+	r->alloc_enabled = true;
+
+	return true;
+}
+
 static void rdt_get_cache_alloc_cfg(int idx, struct rdt_resource *r)
 {
 	union cpuid_0x10_1_eax eax;
@@ -344,6 +367,15 @@ static int get_cache_id(int cpu, int level)
 	return -1;
 }
 
+static void
+mba_wrmsr_amd(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r)
+{
+	unsigned int i;
+
+	for (i = m->low; i < m->high; i++)
+		wrmsrl(r->msr_base + i, d->ctrl_val[i]);
+}
+
 /*
  * Map the memory b/w percentage value to delay values
  * that can be written to QOS_MSRs.
@@ -359,7 +391,8 @@ u32 delay_bw_map(unsigned long bw, struct rdt_resource *r)
 }
 
 static void
-mba_wrmsr(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r)
+mba_wrmsr_intel(struct rdt_domain *d, struct msr_param *m,
+		struct rdt_resource *r)
 {
 	unsigned int i;
 
@@ -421,7 +454,7 @@ struct rdt_domain *rdt_find_domain(struct rdt_resource *r, int id,
 	struct list_head *l;
 
 	if (id < 0)
-		return ERR_PTR(id);
+		return ERR_PTR(-ENODEV);
 
 	list_for_each(l, &r->domains) {
 		d = list_entry(l, struct rdt_domain, list);
@@ -639,7 +672,7 @@ static void domain_remove_cpu(int cpu, struct rdt_resource *r)
 
 static void clear_closid_rmid(int cpu)
 {
-	struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
+	struct resctrl_pqr_state *state = this_cpu_ptr(&pqr_state);
 
 	state->default_closid = 0;
 	state->default_rmid = 0;
@@ -648,7 +681,7 @@ static void clear_closid_rmid(int cpu)
 	wrmsr(IA32_PQR_ASSOC, 0, 0);
 }
 
-static int intel_rdt_online_cpu(unsigned int cpu)
+static int resctrl_online_cpu(unsigned int cpu)
 {
 	struct rdt_resource *r;
 
@@ -674,7 +707,7 @@ static void clear_childcpus(struct rdtgroup *r, unsigned int cpu)
 	}
 }
 
-static int intel_rdt_offline_cpu(unsigned int cpu)
+static int resctrl_offline_cpu(unsigned int cpu)
 {
 	struct rdtgroup *rdtgrp;
 	struct rdt_resource *r;
@@ -794,6 +827,19 @@ static bool __init rdt_cpu_has(int flag)
 	return ret;
 }
 
+static __init bool get_mem_config(void)
+{
+	if (!rdt_cpu_has(X86_FEATURE_MBA))
+		return false;
+
+	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
+		return __get_mem_config_intel(&rdt_resources_all[RDT_RESOURCE_MBA]);
+	else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
+		return __rdt_get_mem_config_amd(&rdt_resources_all[RDT_RESOURCE_MBA]);
+
+	return false;
+}
+
 static __init bool get_rdt_alloc_resources(void)
 {
 	bool ret = false;
@@ -818,10 +864,9 @@ static __init bool get_rdt_alloc_resources(void)
 		ret = true;
 	}
 
-	if (rdt_cpu_has(X86_FEATURE_MBA)) {
-		if (rdt_get_mem_config(&rdt_resources_all[RDT_RESOURCE_MBA]))
-			ret = true;
-	}
+	if (get_mem_config())
+		ret = true;
+
 	return ret;
 }
 
@@ -840,7 +885,7 @@ static __init bool get_rdt_mon_resources(void)
 	return !rdt_get_mon_l3_config(&rdt_resources_all[RDT_RESOURCE_L3]);
 }
 
-static __init void rdt_quirks(void)
+static __init void __check_quirks_intel(void)
 {
 	switch (boot_cpu_data.x86_model) {
 	case INTEL_FAM6_HASWELL_X:
@@ -855,30 +900,91 @@ static __init void rdt_quirks(void)
 	}
 }
 
+static __init void check_quirks(void)
+{
+	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
+		__check_quirks_intel();
+}
+
 static __init bool get_rdt_resources(void)
 {
-	rdt_quirks();
 	rdt_alloc_capable = get_rdt_alloc_resources();
 	rdt_mon_capable = get_rdt_mon_resources();
 
 	return (rdt_mon_capable || rdt_alloc_capable);
 }
 
+static __init void rdt_init_res_defs_intel(void)
+{
+	struct rdt_resource *r;
+
+	for_each_rdt_resource(r) {
+		if (r->rid == RDT_RESOURCE_L3 ||
+		    r->rid == RDT_RESOURCE_L3DATA ||
+		    r->rid == RDT_RESOURCE_L3CODE ||
+		    r->rid == RDT_RESOURCE_L2 ||
+		    r->rid == RDT_RESOURCE_L2DATA ||
+		    r->rid == RDT_RESOURCE_L2CODE)
+			r->cbm_validate = cbm_validate_intel;
+		else if (r->rid == RDT_RESOURCE_MBA) {
+			r->msr_base = MSR_IA32_MBA_THRTL_BASE;
+			r->msr_update = mba_wrmsr_intel;
+			r->parse_ctrlval = parse_bw_intel;
+		}
+	}
+}
+
+static __init void rdt_init_res_defs_amd(void)
+{
+	struct rdt_resource *r;
+
+	for_each_rdt_resource(r) {
+		if (r->rid == RDT_RESOURCE_L3 ||
+		    r->rid == RDT_RESOURCE_L3DATA ||
+		    r->rid == RDT_RESOURCE_L3CODE ||
+		    r->rid == RDT_RESOURCE_L2 ||
+		    r->rid == RDT_RESOURCE_L2DATA ||
+		    r->rid == RDT_RESOURCE_L2CODE)
+			r->cbm_validate = cbm_validate_amd;
+		else if (r->rid == RDT_RESOURCE_MBA) {
+			r->msr_base = MSR_IA32_MBA_BW_BASE;
+			r->msr_update = mba_wrmsr_amd;
+			r->parse_ctrlval = parse_bw_amd;
+		}
+	}
+}
+
+static __init void rdt_init_res_defs(void)
+{
+	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
+		rdt_init_res_defs_intel();
+	else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
+		rdt_init_res_defs_amd();
+}
+
 static enum cpuhp_state rdt_online;
 
-static int __init intel_rdt_late_init(void)
+static int __init resctrl_late_init(void)
 {
 	struct rdt_resource *r;
 	int state, ret;
 
+	/*
+	 * Initialize functions(or definitions) that are different
+	 * between vendors here.
+	 */
+	rdt_init_res_defs();
+
+	check_quirks();
+
 	if (!get_rdt_resources())
 		return -ENODEV;
 
 	rdt_init_padding();
 
 	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
-				  "x86/rdt/cat:online:",
-				  intel_rdt_online_cpu, intel_rdt_offline_cpu);
+				  "x86/resctrl/cat:online:",
+				  resctrl_online_cpu, resctrl_offline_cpu);
 	if (state < 0)
 		return state;
 
@@ -890,20 +996,20 @@ static int __init intel_rdt_late_init(void)
 	rdt_online = state;
 
 	for_each_alloc_capable_rdt_resource(r)
-		pr_info("Intel RDT %s allocation detected\n", r->name);
+		pr_info("%s allocation detected\n", r->name);
 
 	for_each_mon_capable_rdt_resource(r)
-		pr_info("Intel RDT %s monitoring detected\n", r->name);
+		pr_info("%s monitoring detected\n", r->name);
 
 	return 0;
 }
 
-late_initcall(intel_rdt_late_init);
+late_initcall(resctrl_late_init);
 
-static void __exit intel_rdt_exit(void)
+static void __exit resctrl_exit(void)
 {
 	cpuhp_remove_state(rdt_online);
 	rdtgroup_exit();
 }
 
-__exitcall(intel_rdt_exit);
+__exitcall(resctrl_exit);
diff --git a/arch/x86/kernel/cpu/intel_rdt_ctrlmondata.c b/arch/x86/kernel/cpu/resctrl/ctrlmondata.c
index 27937458c231..2dbd990a2eb7 100644
--- a/arch/x86/kernel/cpu/intel_rdt_ctrlmondata.c
+++ b/arch/x86/kernel/cpu/resctrl/ctrlmondata.c
@@ -23,10 +23,58 @@
 
 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
 
+#include <linux/cpu.h>
 #include <linux/kernfs.h>
 #include <linux/seq_file.h>
 #include <linux/slab.h>
-#include "intel_rdt.h"
+#include "internal.h"
+
+/*
+ * Check whether MBA bandwidth percentage value is correct. The value is
+ * checked against the minimum and maximum bandwidth values specified by
+ * the hardware. The allocated bandwidth percentage is rounded to the next
+ * control step available on the hardware.
+ */
+static bool bw_validate_amd(char *buf, unsigned long *data,
+			    struct rdt_resource *r)
+{
+	unsigned long bw;
+	int ret;
+
+	ret = kstrtoul(buf, 10, &bw);
+	if (ret) {
+		rdt_last_cmd_printf("Non-decimal digit in MB value %s\n", buf);
+		return false;
+	}
+
+	if (bw < r->membw.min_bw || bw > r->default_ctrl) {
+		rdt_last_cmd_printf("MB value %ld out of range [%d,%d]\n", bw,
+				    r->membw.min_bw, r->default_ctrl);
+		return false;
+	}
+
+	*data = roundup(bw, (unsigned long)r->membw.bw_gran);
+	return true;
+}
+
+int parse_bw_amd(struct rdt_parse_data *data, struct rdt_resource *r,
+		 struct rdt_domain *d)
+{
+	unsigned long bw_val;
+
+	if (d->have_new_ctrl) {
+		rdt_last_cmd_printf("Duplicate domain %d\n", d->id);
+		return -EINVAL;
+	}
+
+	if (!bw_validate_amd(data->buf, &bw_val, r))
+		return -EINVAL;
+
+	d->new_ctrl = bw_val;
+	d->have_new_ctrl = true;
+
+	return 0;
+}
 
 /*
  * Check whether MBA bandwidth percentage value is correct. The value is
@@ -64,13 +112,13 @@ static bool bw_validate(char *buf, unsigned long *data, struct rdt_resource *r)
 	return true;
 }
 
-int parse_bw(struct rdt_parse_data *data, struct rdt_resource *r,
-	     struct rdt_domain *d)
+int parse_bw_intel(struct rdt_parse_data *data, struct rdt_resource *r,
+		   struct rdt_domain *d)
 {
 	unsigned long bw_val;
 
 	if (d->have_new_ctrl) {
-		rdt_last_cmd_printf("duplicate domain %d\n", d->id);
+		rdt_last_cmd_printf("Duplicate domain %d\n", d->id);
 		return -EINVAL;
 	}
 
@@ -88,7 +136,7 @@ int parse_bw(struct rdt_parse_data *data, struct rdt_resource *r,
  *	are allowed (e.g. FFFFH, 0FF0H, 003CH, etc.).
  * Additionally Haswell requires at least two bits set.
  */
-static bool cbm_validate(char *buf, u32 *data, struct rdt_resource *r)
+bool cbm_validate_intel(char *buf, u32 *data, struct rdt_resource *r)
 {
 	unsigned long first_bit, zero_bit, val;
 	unsigned int cbm_len = r->cache.cbm_len;
@@ -96,12 +144,12 @@ static bool cbm_validate(char *buf, u32 *data, struct rdt_resource *r)
 
 	ret = kstrtoul(buf, 16, &val);
 	if (ret) {
-		rdt_last_cmd_printf("non-hex character in mask %s\n", buf);
+		rdt_last_cmd_printf("Non-hex character in the mask %s\n", buf);
 		return false;
 	}
 
 	if (val == 0 || val > r->default_ctrl) {
-		rdt_last_cmd_puts("mask out of range\n");
+		rdt_last_cmd_puts("Mask out of range\n");
 		return false;
 	}
 
@@ -109,12 +157,12 @@ static bool cbm_validate(char *buf, u32 *data, struct rdt_resource *r)
 	zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
 
 	if (find_next_bit(&val, cbm_len, zero_bit) < cbm_len) {
-		rdt_last_cmd_printf("mask %lx has non-consecutive 1-bits\n", val);
+		rdt_last_cmd_printf("The mask %lx has non-consecutive 1-bits\n", val);
 		return false;
 	}
 
 	if ((zero_bit - first_bit) < r->cache.min_cbm_bits) {
-		rdt_last_cmd_printf("Need at least %d bits in mask\n",
+		rdt_last_cmd_printf("Need at least %d bits in the mask\n",
 				    r->cache.min_cbm_bits);
 		return false;
 	}
@@ -124,6 +172,30 @@ static bool cbm_validate(char *buf, u32 *data, struct rdt_resource *r)
 }
 
 /*
+ * Check whether a cache bit mask is valid. AMD allows non-contiguous
+ * bitmasks
+ */
+bool cbm_validate_amd(char *buf, u32 *data, struct rdt_resource *r)
+{
+	unsigned long val;
+	int ret;
+
+	ret = kstrtoul(buf, 16, &val);
+	if (ret) {
+		rdt_last_cmd_printf("Non-hex character in the mask %s\n", buf);
+		return false;
+	}
+
+	if (val > r->default_ctrl) {
+		rdt_last_cmd_puts("Mask out of range\n");
+		return false;
+	}
+
+	*data = val;
+	return true;
+}
+
+/*
  * Read one cache bit mask (hex). Check that it is valid for the current
  * resource type.
  */
@@ -134,7 +206,7 @@ int parse_cbm(struct rdt_parse_data *data, struct rdt_resource *r,
 	u32 cbm_val;
 
 	if (d->have_new_ctrl) {
-		rdt_last_cmd_printf("duplicate domain %d\n", d->id);
+		rdt_last_cmd_printf("Duplicate domain %d\n", d->id);
 		return -EINVAL;
 	}
 
@@ -144,17 +216,17 @@ int parse_cbm(struct rdt_parse_data *data, struct rdt_resource *r,
 	 */
 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP &&
 	    rdtgroup_pseudo_locked_in_hierarchy(d)) {
-		rdt_last_cmd_printf("pseudo-locked region in hierarchy\n");
+		rdt_last_cmd_puts("Pseudo-locked region in hierarchy\n");
 		return -EINVAL;
 	}
 
-	if (!cbm_validate(data->buf, &cbm_val, r))
+	if (!r->cbm_validate(data->buf, &cbm_val, r))
 		return -EINVAL;
 
 	if ((rdtgrp->mode == RDT_MODE_EXCLUSIVE ||
 	     rdtgrp->mode == RDT_MODE_SHAREABLE) &&
 	    rdtgroup_cbm_overlaps_pseudo_locked(d, cbm_val)) {
-		rdt_last_cmd_printf("CBM overlaps with pseudo-locked region\n");
+		rdt_last_cmd_puts("CBM overlaps with pseudo-locked region\n");
 		return -EINVAL;
 	}
 
@@ -163,14 +235,14 @@ int parse_cbm(struct rdt_parse_data *data, struct rdt_resource *r,
 	 * either is exclusive.
 	 */
 	if (rdtgroup_cbm_overlaps(r, d, cbm_val, rdtgrp->closid, true)) {
-		rdt_last_cmd_printf("overlaps with exclusive group\n");
+		rdt_last_cmd_puts("Overlaps with exclusive group\n");
 		return -EINVAL;
 	}
 
 	if (rdtgroup_cbm_overlaps(r, d, cbm_val, rdtgrp->closid, false)) {
 		if (rdtgrp->mode == RDT_MODE_EXCLUSIVE ||
 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
-			rdt_last_cmd_printf("overlaps with other group\n");
+			rdt_last_cmd_puts("Overlaps with other group\n");
 			return -EINVAL;
 		}
 	}
@@ -292,7 +364,7 @@ static int rdtgroup_parse_resource(char *resname, char *tok,
 		if (!strcmp(resname, r->name) && rdtgrp->closid < r->num_closid)
 			return parse_line(tok, r, rdtgrp);
 	}
-	rdt_last_cmd_printf("unknown/unsupported resource name '%s'\n", resname);
+	rdt_last_cmd_printf("Unknown or unsupported resource name '%s'\n", resname);
 	return -EINVAL;
 }
 
@@ -310,9 +382,11 @@ ssize_t rdtgroup_schemata_write(struct kernfs_open_file *of,
 		return -EINVAL;
 	buf[nbytes - 1] = '\0';
 
+	cpus_read_lock();
 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
 	if (!rdtgrp) {
 		rdtgroup_kn_unlock(of->kn);
+		cpus_read_unlock();
 		return -ENOENT;
 	}
 	rdt_last_cmd_clear();
@@ -323,7 +397,7 @@ ssize_t rdtgroup_schemata_write(struct kernfs_open_file *of,
 	 */
 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
 		ret = -EINVAL;
-		rdt_last_cmd_puts("resource group is pseudo-locked\n");
+		rdt_last_cmd_puts("Resource group is pseudo-locked\n");
 		goto out;
 	}
 
@@ -367,6 +441,7 @@ ssize_t rdtgroup_schemata_write(struct kernfs_open_file *of,
 
 out:
 	rdtgroup_kn_unlock(of->kn);
+	cpus_read_unlock();
 	return ret ?: nbytes;
 }
 
@@ -463,7 +538,7 @@ int rdtgroup_mondata_show(struct seq_file *m, void *arg)
 
 	r = &rdt_resources_all[resid];
 	d = rdt_find_domain(r, domid, NULL);
-	if (!d) {
+	if (IS_ERR_OR_NULL(d)) {
 		ret = -ENOENT;
 		goto out;
 	}
diff --git a/arch/x86/kernel/cpu/intel_rdt.h b/arch/x86/kernel/cpu/resctrl/internal.h
index 3736f6dc9545..822b7db634ee 100644
--- a/arch/x86/kernel/cpu/intel_rdt.h
+++ b/arch/x86/kernel/cpu/resctrl/internal.h
@@ -1,20 +1,24 @@
 /* SPDX-License-Identifier: GPL-2.0 */
-#ifndef _ASM_X86_INTEL_RDT_H
-#define _ASM_X86_INTEL_RDT_H
+#ifndef _ASM_X86_RESCTRL_INTERNAL_H
+#define _ASM_X86_RESCTRL_INTERNAL_H
 
 #include <linux/sched.h>
 #include <linux/kernfs.h>
 #include <linux/jump_label.h>
 
-#define IA32_L3_QOS_CFG		0xc81
-#define IA32_L2_QOS_CFG		0xc82
-#define IA32_L3_CBM_BASE	0xc90
-#define IA32_L2_CBM_BASE	0xd10
-#define IA32_MBA_THRTL_BASE	0xd50
+#define MSR_IA32_L3_QOS_CFG		0xc81
+#define MSR_IA32_L2_QOS_CFG		0xc82
+#define MSR_IA32_L3_CBM_BASE		0xc90
+#define MSR_IA32_L2_CBM_BASE		0xd10
+#define MSR_IA32_MBA_THRTL_BASE		0xd50
+#define MSR_IA32_MBA_BW_BASE		0xc0000200
 
-#define L3_QOS_CDP_ENABLE	0x01ULL
+#define MSR_IA32_QM_CTR			0x0c8e
+#define MSR_IA32_QM_EVTSEL		0x0c8d
 
-#define L2_QOS_CDP_ENABLE	0x01ULL
+#define L3_QOS_CDP_ENABLE		0x01ULL
+
+#define L2_QOS_CDP_ENABLE		0x01ULL
 
 /*
  * Event IDs are used to program IA32_QM_EVTSEL before reading event
@@ -29,6 +33,9 @@
 #define MBM_CNTR_WIDTH			24
 #define MBM_OVERFLOW_INTERVAL		1000
 #define MAX_MBA_BW			100u
+#define MBA_IS_LINEAR			0x4
+#define MBA_MAX_MBPS			U32_MAX
+#define MAX_MBA_BW_AMD			0x800
 
 #define RMID_VAL_ERROR			BIT_ULL(63)
 #define RMID_VAL_UNAVAIL		BIT_ULL(62)
@@ -69,7 +76,7 @@ struct rmid_read {
 	u64			val;
 };
 
-extern unsigned int intel_cqm_threshold;
+extern unsigned int resctrl_cqm_threshold;
 extern bool rdt_alloc_capable;
 extern bool rdt_mon_capable;
 extern unsigned int rdt_mon_features;
@@ -391,9 +398,9 @@ struct rdt_parse_data {
  * struct rdt_resource - attributes of an RDT resource
  * @rid:		The index of the resource
  * @alloc_enabled:	Is allocation enabled on this machine
- * @mon_enabled:		Is monitoring enabled for this feature
+ * @mon_enabled:	Is monitoring enabled for this feature
  * @alloc_capable:	Is allocation available on this machine
- * @mon_capable:		Is monitor feature available on this machine
+ * @mon_capable:	Is monitor feature available on this machine
  * @name:		Name to use in "schemata" file
  * @num_closid:		Number of CLOSIDs available
  * @cache_level:	Which cache level defines scope of this resource
@@ -405,10 +412,11 @@ struct rdt_parse_data {
  * @cache:		Cache allocation related data
  * @format_str:		Per resource format string to show domain value
  * @parse_ctrlval:	Per resource function pointer to parse control values
- * @evt_list:			List of monitoring events
- * @num_rmid:			Number of RMIDs available
- * @mon_scale:			cqm counter * mon_scale = occupancy in bytes
- * @fflags:			flags to choose base and info files
+ * @cbm_validate	Cache bitmask validate function
+ * @evt_list:		List of monitoring events
+ * @num_rmid:		Number of RMIDs available
+ * @mon_scale:		cqm counter * mon_scale = occupancy in bytes
+ * @fflags:		flags to choose base and info files
  */
 struct rdt_resource {
 	int			rid;
@@ -431,6 +439,7 @@ struct rdt_resource {
 	int (*parse_ctrlval)(struct rdt_parse_data *data,
 			     struct rdt_resource *r,
 			     struct rdt_domain *d);
+	bool (*cbm_validate)(char *buf, u32 *data, struct rdt_resource *r);
 	struct list_head	evt_list;
 	int			num_rmid;
 	unsigned int		mon_scale;
@@ -439,8 +448,10 @@ struct rdt_resource {
 
 int parse_cbm(struct rdt_parse_data *data, struct rdt_resource *r,
 	      struct rdt_domain *d);
-int parse_bw(struct rdt_parse_data *data, struct rdt_resource *r,
-	     struct rdt_domain *d);
+int parse_bw_intel(struct rdt_parse_data *data, struct rdt_resource *r,
+		   struct rdt_domain *d);
+int parse_bw_amd(struct rdt_parse_data *data, struct rdt_resource *r,
+		 struct rdt_domain *d);
 
 extern struct mutex rdtgroup_mutex;
 
@@ -463,6 +474,10 @@ enum {
 	RDT_NUM_RESOURCES,
 };
 
+#define for_each_rdt_resource(r)					      \
+	for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
+	     r++)
+
 #define for_each_capable_rdt_resource(r)				      \
 	for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
 	     r++)							      \
@@ -567,5 +582,7 @@ void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms);
 void cqm_handle_limbo(struct work_struct *work);
 bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d);
 void __check_limbo(struct rdt_domain *d, bool force_free);
+bool cbm_validate_intel(char *buf, u32 *data, struct rdt_resource *r);
+bool cbm_validate_amd(char *buf, u32 *data, struct rdt_resource *r);
 
-#endif /* _ASM_X86_INTEL_RDT_H */
+#endif /* _ASM_X86_RESCTRL_INTERNAL_H */
diff --git a/arch/x86/kernel/cpu/intel_rdt_monitor.c b/arch/x86/kernel/cpu/resctrl/monitor.c
index b0f3aed76b75..f33f11f69078 100644
--- a/arch/x86/kernel/cpu/intel_rdt_monitor.c
+++ b/arch/x86/kernel/cpu/resctrl/monitor.c
@@ -26,10 +26,7 @@
 #include <linux/module.h>
 #include <linux/slab.h>
 #include <asm/cpu_device_id.h>
-#include "intel_rdt.h"
-
-#define MSR_IA32_QM_CTR		0x0c8e
-#define MSR_IA32_QM_EVTSEL		0x0c8d
+#include "internal.h"
 
 struct rmid_entry {
 	u32				rmid;
@@ -73,7 +70,7 @@ unsigned int rdt_mon_features;
  * This is the threshold cache occupancy at which we will consider an
  * RMID available for re-allocation.
  */
-unsigned int intel_cqm_threshold;
+unsigned int resctrl_cqm_threshold;
 
 static inline struct rmid_entry *__rmid_entry(u32 rmid)
 {
@@ -107,7 +104,7 @@ static bool rmid_dirty(struct rmid_entry *entry)
 {
 	u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
 
-	return val >= intel_cqm_threshold;
+	return val >= resctrl_cqm_threshold;
 }
 
 /*
@@ -187,7 +184,7 @@ static void add_rmid_to_limbo(struct rmid_entry *entry)
 	list_for_each_entry(d, &r->domains, list) {
 		if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
 			val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
-			if (val <= intel_cqm_threshold)
+			if (val <= resctrl_cqm_threshold)
 				continue;
 		}
 
@@ -625,6 +622,7 @@ static void l3_mon_evt_init(struct rdt_resource *r)
 
 int rdt_get_mon_l3_config(struct rdt_resource *r)
 {
+	unsigned int cl_size = boot_cpu_data.x86_cache_size;
 	int ret;
 
 	r->mon_scale = boot_cpu_data.x86_cache_occ_scale;
@@ -637,10 +635,10 @@ int rdt_get_mon_l3_config(struct rdt_resource *r)
 	 *
 	 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
 	 */
-	intel_cqm_threshold = boot_cpu_data.x86_cache_size * 1024 / r->num_rmid;
+	resctrl_cqm_threshold = cl_size * 1024 / r->num_rmid;
 
 	/* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */
-	intel_cqm_threshold /= r->mon_scale;
+	resctrl_cqm_threshold /= r->mon_scale;
 
 	ret = dom_data_init(r);
 	if (ret)
diff --git a/arch/x86/kernel/cpu/intel_rdt_pseudo_lock.c b/arch/x86/kernel/cpu/resctrl/pseudo_lock.c
index 815b4e92522c..14bed6af8377 100644
--- a/arch/x86/kernel/cpu/intel_rdt_pseudo_lock.c
+++ b/arch/x86/kernel/cpu/resctrl/pseudo_lock.c
@@ -24,14 +24,14 @@
 
 #include <asm/cacheflush.h>
 #include <asm/intel-family.h>
-#include <asm/intel_rdt_sched.h>
+#include <asm/resctrl_sched.h>
 #include <asm/perf_event.h>
 
 #include "../../events/perf_event.h" /* For X86_CONFIG() */
-#include "intel_rdt.h"
+#include "internal.h"
 
 #define CREATE_TRACE_POINTS
-#include "intel_rdt_pseudo_lock_event.h"
+#include "pseudo_lock_event.h"
 
 /*
  * MSR_MISC_FEATURE_CONTROL register enables the modification of hardware
@@ -213,7 +213,7 @@ static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
 	for_each_cpu(cpu, &plr->d->cpu_mask) {
 		pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
 		if (!pm_req) {
-			rdt_last_cmd_puts("fail allocating mem for PM QoS\n");
+			rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n");
 			ret = -ENOMEM;
 			goto out_err;
 		}
@@ -222,7 +222,7 @@ static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
 					     DEV_PM_QOS_RESUME_LATENCY,
 					     30);
 		if (ret < 0) {
-			rdt_last_cmd_printf("fail to add latency req cpu%d\n",
+			rdt_last_cmd_printf("Failed to add latency req CPU%d\n",
 					    cpu);
 			kfree(pm_req);
 			ret = -1;
@@ -289,7 +289,7 @@ static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
 	plr->cpu = cpumask_first(&plr->d->cpu_mask);
 
 	if (!cpu_online(plr->cpu)) {
-		rdt_last_cmd_printf("cpu %u associated with cache not online\n",
+		rdt_last_cmd_printf("CPU %u associated with cache not online\n",
 				    plr->cpu);
 		ret = -ENODEV;
 		goto out_region;
@@ -307,7 +307,7 @@ static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
 	}
 
 	ret = -1;
-	rdt_last_cmd_puts("unable to determine cache line size\n");
+	rdt_last_cmd_puts("Unable to determine cache line size\n");
 out_region:
 	pseudo_lock_region_clear(plr);
 	return ret;
@@ -361,14 +361,14 @@ static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
 	 * KMALLOC_MAX_SIZE.
 	 */
 	if (plr->size > KMALLOC_MAX_SIZE) {
-		rdt_last_cmd_puts("requested region exceeds maximum size\n");
+		rdt_last_cmd_puts("Requested region exceeds maximum size\n");
 		ret = -E2BIG;
 		goto out_region;
 	}
 
 	plr->kmem = kzalloc(plr->size, GFP_KERNEL);
 	if (!plr->kmem) {
-		rdt_last_cmd_puts("unable to allocate memory\n");
+		rdt_last_cmd_puts("Unable to allocate memory\n");
 		ret = -ENOMEM;
 		goto out_region;
 	}
@@ -665,7 +665,7 @@ int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
 	 * default closid associated with it.
 	 */
 	if (rdtgrp == &rdtgroup_default) {
-		rdt_last_cmd_puts("cannot pseudo-lock default group\n");
+		rdt_last_cmd_puts("Cannot pseudo-lock default group\n");
 		return -EINVAL;
 	}
 
@@ -707,17 +707,17 @@ int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
 	 */
 	prefetch_disable_bits = get_prefetch_disable_bits();
 	if (prefetch_disable_bits == 0) {
-		rdt_last_cmd_puts("pseudo-locking not supported\n");
+		rdt_last_cmd_puts("Pseudo-locking not supported\n");
 		return -EINVAL;
 	}
 
 	if (rdtgroup_monitor_in_progress(rdtgrp)) {
-		rdt_last_cmd_puts("monitoring in progress\n");
+		rdt_last_cmd_puts("Monitoring in progress\n");
 		return -EINVAL;
 	}
 
 	if (rdtgroup_tasks_assigned(rdtgrp)) {
-		rdt_last_cmd_puts("tasks assigned to resource group\n");
+		rdt_last_cmd_puts("Tasks assigned to resource group\n");
 		return -EINVAL;
 	}
 
@@ -727,13 +727,13 @@ int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
 	}
 
 	if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
-		rdt_last_cmd_puts("unable to modify resctrl permissions\n");
+		rdt_last_cmd_puts("Unable to modify resctrl permissions\n");
 		return -EIO;
 	}
 
 	ret = pseudo_lock_init(rdtgrp);
 	if (ret) {
-		rdt_last_cmd_puts("unable to init pseudo-lock region\n");
+		rdt_last_cmd_puts("Unable to init pseudo-lock region\n");
 		goto out_release;
 	}
 
@@ -770,7 +770,7 @@ int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
 	if (rdt_mon_capable) {
 		ret = alloc_rmid();
 		if (ret < 0) {
-			rdt_last_cmd_puts("out of RMIDs\n");
+			rdt_last_cmd_puts("Out of RMIDs\n");
 			return ret;
 		}
 		rdtgrp->mon.rmid = ret;
@@ -1304,7 +1304,7 @@ int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
 					"pseudo_lock/%u", plr->cpu);
 	if (IS_ERR(thread)) {
 		ret = PTR_ERR(thread);
-		rdt_last_cmd_printf("locking thread returned error %d\n", ret);
+		rdt_last_cmd_printf("Locking thread returned error %d\n", ret);
 		goto out_cstates;
 	}
 
@@ -1322,13 +1322,13 @@ int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
 		 * the cleared, but not freed, plr struct resulting in an
 		 * empty pseudo-locking loop.
 		 */
-		rdt_last_cmd_puts("locking thread interrupted\n");
+		rdt_last_cmd_puts("Locking thread interrupted\n");
 		goto out_cstates;
 	}
 
 	ret = pseudo_lock_minor_get(&new_minor);
 	if (ret < 0) {
-		rdt_last_cmd_puts("unable to obtain a new minor number\n");
+		rdt_last_cmd_puts("Unable to obtain a new minor number\n");
 		goto out_cstates;
 	}
 
@@ -1360,7 +1360,7 @@ int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
 
 	if (IS_ERR(dev)) {
 		ret = PTR_ERR(dev);
-		rdt_last_cmd_printf("failed to create character device: %d\n",
+		rdt_last_cmd_printf("Failed to create character device: %d\n",
 				    ret);
 		goto out_debugfs;
 	}
diff --git a/arch/x86/kernel/cpu/intel_rdt_pseudo_lock_event.h b/arch/x86/kernel/cpu/resctrl/pseudo_lock_event.h
index 2c041e6d9f05..428ebbd4270b 100644
--- a/arch/x86/kernel/cpu/intel_rdt_pseudo_lock_event.h
+++ b/arch/x86/kernel/cpu/resctrl/pseudo_lock_event.h
@@ -39,5 +39,5 @@ TRACE_EVENT(pseudo_lock_l3,
 
 #undef TRACE_INCLUDE_PATH
 #define TRACE_INCLUDE_PATH .
-#define TRACE_INCLUDE_FILE intel_rdt_pseudo_lock_event
+#define TRACE_INCLUDE_FILE pseudo_lock_event
 #include <trace/define_trace.h>
diff --git a/arch/x86/kernel/cpu/intel_rdt_rdtgroup.c b/arch/x86/kernel/cpu/resctrl/rdtgroup.c
index f27b8115ffa2..8388adf241b2 100644
--- a/arch/x86/kernel/cpu/intel_rdt_rdtgroup.c
+++ b/arch/x86/kernel/cpu/resctrl/rdtgroup.c
@@ -35,8 +35,8 @@
 
 #include <uapi/linux/magic.h>
 
-#include <asm/intel_rdt_sched.h>
-#include "intel_rdt.h"
+#include <asm/resctrl_sched.h>
+#include "internal.h"
 
 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
@@ -298,7 +298,7 @@ static int rdtgroup_cpus_show(struct kernfs_open_file *of,
 }
 
 /*
- * This is safe against intel_rdt_sched_in() called from __switch_to()
+ * This is safe against resctrl_sched_in() called from __switch_to()
  * because __switch_to() is executed with interrupts disabled. A local call
  * from update_closid_rmid() is proteced against __switch_to() because
  * preemption is disabled.
@@ -317,7 +317,7 @@ static void update_cpu_closid_rmid(void *info)
 	 * executing task might have its own closid selected. Just reuse
 	 * the context switch code.
 	 */
-	intel_rdt_sched_in();
+	resctrl_sched_in();
 }
 
 /*
@@ -345,7 +345,7 @@ static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
 	/* Check whether cpus belong to parent ctrl group */
 	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
 	if (cpumask_weight(tmpmask)) {
-		rdt_last_cmd_puts("can only add CPUs to mongroup that belong to parent\n");
+		rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
 		return -EINVAL;
 	}
 
@@ -470,14 +470,14 @@ static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
 	rdt_last_cmd_clear();
 	if (!rdtgrp) {
 		ret = -ENOENT;
-		rdt_last_cmd_puts("directory was removed\n");
+		rdt_last_cmd_puts("Directory was removed\n");
 		goto unlock;
 	}
 
 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
 		ret = -EINVAL;
-		rdt_last_cmd_puts("pseudo-locking in progress\n");
+		rdt_last_cmd_puts("Pseudo-locking in progress\n");
 		goto unlock;
 	}
 
@@ -487,7 +487,7 @@ static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
 		ret = cpumask_parse(buf, newmask);
 
 	if (ret) {
-		rdt_last_cmd_puts("bad cpu list/mask\n");
+		rdt_last_cmd_puts("Bad CPU list/mask\n");
 		goto unlock;
 	}
 
@@ -495,7 +495,7 @@ static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
 	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
 	if (cpumask_weight(tmpmask)) {
 		ret = -EINVAL;
-		rdt_last_cmd_puts("can only assign online cpus\n");
+		rdt_last_cmd_puts("Can only assign online CPUs\n");
 		goto unlock;
 	}
 
@@ -542,7 +542,7 @@ static void move_myself(struct callback_head *head)
 
 	preempt_disable();
 	/* update PQR_ASSOC MSR to make resource group go into effect */
-	intel_rdt_sched_in();
+	resctrl_sched_in();
 	preempt_enable();
 
 	kfree(callback);
@@ -574,7 +574,7 @@ static int __rdtgroup_move_task(struct task_struct *tsk,
 		 */
 		atomic_dec(&rdtgrp->waitcount);
 		kfree(callback);
-		rdt_last_cmd_puts("task exited\n");
+		rdt_last_cmd_puts("Task exited\n");
 	} else {
 		/*
 		 * For ctrl_mon groups move both closid and rmid.
@@ -692,7 +692,7 @@ static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
 		ret = -EINVAL;
-		rdt_last_cmd_puts("pseudo-locking in progress\n");
+		rdt_last_cmd_puts("Pseudo-locking in progress\n");
 		goto unlock;
 	}
 
@@ -926,7 +926,7 @@ static int max_threshold_occ_show(struct kernfs_open_file *of,
 {
 	struct rdt_resource *r = of->kn->parent->priv;
 
-	seq_printf(seq, "%u\n", intel_cqm_threshold * r->mon_scale);
+	seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale);
 
 	return 0;
 }
@@ -945,7 +945,7 @@ static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
 	if (bytes > (boot_cpu_data.x86_cache_size * 1024))
 		return -EINVAL;
 
-	intel_cqm_threshold = bytes / r->mon_scale;
+	resctrl_cqm_threshold = bytes / r->mon_scale;
 
 	return nbytes;
 }
@@ -1029,7 +1029,7 @@ static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d,
 	 * peer RDT CDP resource. Hence the WARN.
 	 */
 	_d_cdp = rdt_find_domain(_r_cdp, d->id, NULL);
-	if (WARN_ON(!_d_cdp)) {
+	if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) {
 		_r_cdp = NULL;
 		ret = -EINVAL;
 	}
@@ -1158,14 +1158,14 @@ static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
 		list_for_each_entry(d, &r->domains, list) {
 			if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
 						  rdtgrp->closid, false)) {
-				rdt_last_cmd_puts("schemata overlaps\n");
+				rdt_last_cmd_puts("Schemata overlaps\n");
 				return false;
 			}
 		}
 	}
 
 	if (!has_cache) {
-		rdt_last_cmd_puts("cannot be exclusive without CAT/CDP\n");
+		rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
 		return false;
 	}
 
@@ -1206,7 +1206,7 @@ static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
 		goto out;
 
 	if (mode == RDT_MODE_PSEUDO_LOCKED) {
-		rdt_last_cmd_printf("cannot change pseudo-locked group\n");
+		rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
 		ret = -EINVAL;
 		goto out;
 	}
@@ -1235,7 +1235,7 @@ static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
 			goto out;
 		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
 	} else {
-		rdt_last_cmd_printf("unknown/unsupported mode\n");
+		rdt_last_cmd_puts("Unknown or unsupported mode\n");
 		ret = -EINVAL;
 	}
 
@@ -1722,14 +1722,14 @@ static void l3_qos_cfg_update(void *arg)
 {
 	bool *enable = arg;
 
-	wrmsrl(IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
+	wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
 }
 
 static void l2_qos_cfg_update(void *arg)
 {
 	bool *enable = arg;
 
-	wrmsrl(IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
+	wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
 }
 
 static inline bool is_mba_linear(void)
@@ -1878,7 +1878,10 @@ static int parse_rdtgroupfs_options(char *data)
 			if (ret)
 				goto out;
 		} else if (!strcmp(token, "mba_MBps")) {
-			ret = set_mba_sc(true);
+			if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
+				ret = set_mba_sc(true);
+			else
+				ret = -EINVAL;
 			if (ret)
 				goto out;
 		} else {
@@ -2540,7 +2543,7 @@ static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
 			tmp_cbm = d->new_ctrl;
 			if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) <
 			    r->cache.min_cbm_bits) {
-				rdt_last_cmd_printf("no space on %s:%d\n",
+				rdt_last_cmd_printf("No space on %s:%d\n",
 						    r->name, d->id);
 				return -ENOSPC;
 			}
@@ -2557,7 +2560,7 @@ static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
 			continue;
 		ret = update_domains(r, rdtgrp->closid);
 		if (ret < 0) {
-			rdt_last_cmd_puts("failed to initialize allocations\n");
+			rdt_last_cmd_puts("Failed to initialize allocations\n");
 			return ret;
 		}
 		rdtgrp->mode = RDT_MODE_SHAREABLE;
@@ -2580,7 +2583,7 @@ static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
 	rdt_last_cmd_clear();
 	if (!prdtgrp) {
 		ret = -ENODEV;
-		rdt_last_cmd_puts("directory was removed\n");
+		rdt_last_cmd_puts("Directory was removed\n");
 		goto out_unlock;
 	}
 
@@ -2588,7 +2591,7 @@ static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
 	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
 	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
 		ret = -EINVAL;
-		rdt_last_cmd_puts("pseudo-locking in progress\n");
+		rdt_last_cmd_puts("Pseudo-locking in progress\n");
 		goto out_unlock;
 	}
 
@@ -2596,7 +2599,7 @@ static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
 	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
 	if (!rdtgrp) {
 		ret = -ENOSPC;
-		rdt_last_cmd_puts("kernel out of memory\n");
+		rdt_last_cmd_puts("Kernel out of memory\n");
 		goto out_unlock;
 	}
 	*r = rdtgrp;
@@ -2637,7 +2640,7 @@ static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
 	if (rdt_mon_capable) {
 		ret = alloc_rmid();
 		if (ret < 0) {
-			rdt_last_cmd_puts("out of RMIDs\n");
+			rdt_last_cmd_puts("Out of RMIDs\n");
 			goto out_destroy;
 		}
 		rdtgrp->mon.rmid = ret;
@@ -2725,7 +2728,7 @@ static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
 	kn = rdtgrp->kn;
 	ret = closid_alloc();
 	if (ret < 0) {
-		rdt_last_cmd_puts("out of CLOSIDs\n");
+		rdt_last_cmd_puts("Out of CLOSIDs\n");
 		goto out_common_fail;
 	}
 	closid = ret;
diff --git a/arch/x86/kernel/cpu/scattered.c b/arch/x86/kernel/cpu/scattered.c
index 772c219b6889..94aa1c72ca98 100644
--- a/arch/x86/kernel/cpu/scattered.c
+++ b/arch/x86/kernel/cpu/scattered.c
@@ -5,9 +5,10 @@
 #include <linux/cpu.h>
 
 #include <asm/pat.h>
+#include <asm/apic.h>
 #include <asm/processor.h>
 
-#include <asm/apic.h>
+#include "cpu.h"
 
 struct cpuid_bit {
 	u16 feature;
@@ -17,7 +18,11 @@ struct cpuid_bit {
 	u32 sub_leaf;
 };
 
-/* Please keep the leaf sorted by cpuid_bit.level for faster search. */
+/*
+ * Please keep the leaf sorted by cpuid_bit.level for faster search.
+ * X86_FEATURE_MBA is supported by both Intel and AMD. But the CPUID
+ * levels are different and there is a separate entry for each.
+ */
 static const struct cpuid_bit cpuid_bits[] = {
 	{ X86_FEATURE_APERFMPERF,       CPUID_ECX,  0, 0x00000006, 0 },
 	{ X86_FEATURE_EPB,		CPUID_ECX,  3, 0x00000006, 0 },
@@ -29,6 +34,7 @@ static const struct cpuid_bit cpuid_bits[] = {
 	{ X86_FEATURE_HW_PSTATE,	CPUID_EDX,  7, 0x80000007, 0 },
 	{ X86_FEATURE_CPB,		CPUID_EDX,  9, 0x80000007, 0 },
 	{ X86_FEATURE_PROC_FEEDBACK,    CPUID_EDX, 11, 0x80000007, 0 },
+	{ X86_FEATURE_MBA,		CPUID_EBX,  6, 0x80000008, 0 },
 	{ X86_FEATURE_SME,		CPUID_EAX,  0, 0x8000001f, 0 },
 	{ X86_FEATURE_SEV,		CPUID_EAX,  1, 0x8000001f, 0 },
 	{ 0, 0, 0, 0, 0 }
@@ -56,27 +62,3 @@ void init_scattered_cpuid_features(struct cpuinfo_x86 *c)
 			set_cpu_cap(c, cb->feature);
 	}
 }
-
-u32 get_scattered_cpuid_leaf(unsigned int level, unsigned int sub_leaf,
-			     enum cpuid_regs_idx reg)
-{
-	const struct cpuid_bit *cb;
-	u32 cpuid_val = 0;
-
-	for (cb = cpuid_bits; cb->feature; cb++) {
-
-		if (level > cb->level)
-			continue;
-
-		if (level < cb->level)
-			break;
-
-		if (reg == cb->reg && sub_leaf == cb->sub_leaf) {
-			if (cpu_has(&boot_cpu_data, cb->feature))
-				cpuid_val |= BIT(cb->bit);
-		}
-	}
-
-	return cpuid_val;
-}
-EXPORT_SYMBOL_GPL(get_scattered_cpuid_leaf);
diff --git a/arch/x86/kernel/cpu/topology.c b/arch/x86/kernel/cpu/topology.c
index 71ca064e3794..8f6c784141d1 100644
--- a/arch/x86/kernel/cpu/topology.c
+++ b/arch/x86/kernel/cpu/topology.c
@@ -10,6 +10,8 @@
 #include <asm/pat.h>
 #include <asm/processor.h>
 
+#include "cpu.h"
+
 /* leaf 0xb SMT level */
 #define SMT_LEVEL	0
 
diff --git a/arch/x86/kernel/cpu/vmware.c b/arch/x86/kernel/cpu/vmware.c
index d9ab49bed8af..0eda91f8eeac 100644
--- a/arch/x86/kernel/cpu/vmware.c
+++ b/arch/x86/kernel/cpu/vmware.c
@@ -77,7 +77,7 @@ static __init int setup_vmw_sched_clock(char *s)
 }
 early_param("no-vmw-sched-clock", setup_vmw_sched_clock);
 
-static unsigned long long vmware_sched_clock(void)
+static unsigned long long notrace vmware_sched_clock(void)
 {
 	unsigned long long ns;
 
diff --git a/arch/x86/kernel/crash.c b/arch/x86/kernel/crash.c
index f631a3f15587..c8b07d8ea5a2 100644
--- a/arch/x86/kernel/crash.c
+++ b/arch/x86/kernel/crash.c
@@ -37,6 +37,7 @@
 #include <asm/reboot.h>
 #include <asm/virtext.h>
 #include <asm/intel_pt.h>
+#include <asm/crash.h>
 
 /* Used while preparing memory map entries for second kernel */
 struct crash_memmap_data {
diff --git a/arch/x86/kernel/crash_dump_64.c b/arch/x86/kernel/crash_dump_64.c
index eb8ab3915268..22369dd5de3b 100644
--- a/arch/x86/kernel/crash_dump_64.c
+++ b/arch/x86/kernel/crash_dump_64.c
@@ -62,7 +62,7 @@ ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
 
 /**
  * copy_oldmem_page_encrypted - same as copy_oldmem_page() above but ioremap the
- * memory with the encryption mask set to accomodate kdump on SME-enabled
+ * memory with the encryption mask set to accommodate kdump on SME-enabled
  * machines.
  */
 ssize_t copy_oldmem_page_encrypted(unsigned long pfn, char *buf, size_t csize,
diff --git a/arch/x86/kernel/devicetree.c b/arch/x86/kernel/devicetree.c
index 7299dcbf8e85..8d85e00bb40a 100644
--- a/arch/x86/kernel/devicetree.c
+++ b/arch/x86/kernel/devicetree.c
@@ -23,6 +23,7 @@
 #include <asm/pci_x86.h>
 #include <asm/setup.h>
 #include <asm/i8259.h>
+#include <asm/prom.h>
 
 __initdata u64 initial_dtb;
 char __initdata cmd_line[COMMAND_LINE_SIZE];
diff --git a/arch/x86/kernel/fpu/core.c b/arch/x86/kernel/fpu/core.c
index 2ea85b32421a..2e5003fef51a 100644
--- a/arch/x86/kernel/fpu/core.c
+++ b/arch/x86/kernel/fpu/core.c
@@ -93,7 +93,7 @@ bool irq_fpu_usable(void)
 }
 EXPORT_SYMBOL(irq_fpu_usable);
 
-void __kernel_fpu_begin(void)
+static void __kernel_fpu_begin(void)
 {
 	struct fpu *fpu = &current->thread.fpu;
 
@@ -111,9 +111,8 @@ void __kernel_fpu_begin(void)
 		__cpu_invalidate_fpregs_state();
 	}
 }
-EXPORT_SYMBOL(__kernel_fpu_begin);
 
-void __kernel_fpu_end(void)
+static void __kernel_fpu_end(void)
 {
 	struct fpu *fpu = &current->thread.fpu;
 
@@ -122,7 +121,6 @@ void __kernel_fpu_end(void)
 
 	kernel_fpu_enable();
 }
-EXPORT_SYMBOL(__kernel_fpu_end);
 
 void kernel_fpu_begin(void)
 {
diff --git a/arch/x86/kernel/fpu/signal.c b/arch/x86/kernel/fpu/signal.c
index 61a949d84dfa..f6a1d299627c 100644
--- a/arch/x86/kernel/fpu/signal.c
+++ b/arch/x86/kernel/fpu/signal.c
@@ -164,7 +164,7 @@ int copy_fpstate_to_sigframe(void __user *buf, void __user *buf_fx, int size)
 	ia32_fxstate &= (IS_ENABLED(CONFIG_X86_32) ||
 			 IS_ENABLED(CONFIG_IA32_EMULATION));
 
-	if (!access_ok(VERIFY_WRITE, buf, size))
+	if (!access_ok(buf, size))
 		return -EACCES;
 
 	if (!static_cpu_has(X86_FEATURE_FPU))
@@ -281,7 +281,7 @@ static int __fpu__restore_sig(void __user *buf, void __user *buf_fx, int size)
 		return 0;
 	}
 
-	if (!access_ok(VERIFY_READ, buf, size))
+	if (!access_ok(buf, size))
 		return -EACCES;
 
 	fpu__initialize(fpu);
@@ -344,10 +344,10 @@ static int __fpu__restore_sig(void __user *buf, void __user *buf_fx, int size)
 			sanitize_restored_xstate(tsk, &env, xfeatures, fx_only);
 		}
 
+		local_bh_disable();
 		fpu->initialized = 1;
-		preempt_disable();
 		fpu__restore(fpu);
-		preempt_enable();
+		local_bh_enable();
 
 		return err;
 	} else {
diff --git a/arch/x86/kernel/fpu/xstate.c b/arch/x86/kernel/fpu/xstate.c
index 87a57b7642d3..9cc108456d0b 100644
--- a/arch/x86/kernel/fpu/xstate.c
+++ b/arch/x86/kernel/fpu/xstate.c
@@ -444,7 +444,7 @@ static int xfeature_uncompacted_offset(int xfeature_nr)
 	 * format. Checking a supervisor state's uncompacted offset is
 	 * an error.
 	 */
-	if (XFEATURE_MASK_SUPERVISOR & (1 << xfeature_nr)) {
+	if (XFEATURE_MASK_SUPERVISOR & BIT_ULL(xfeature_nr)) {
 		WARN_ONCE(1, "No fixed offset for xstate %d\n", xfeature_nr);
 		return -1;
 	}
@@ -808,10 +808,8 @@ void fpu__resume_cpu(void)
  * Given an xstate feature mask, calculate where in the xsave
  * buffer the state is.  Callers should ensure that the buffer
  * is valid.
- *
- * Note: does not work for compacted buffers.
  */
-void *__raw_xsave_addr(struct xregs_state *xsave, int xstate_feature_mask)
+static void *__raw_xsave_addr(struct xregs_state *xsave, int xstate_feature_mask)
 {
 	int feature_nr = fls64(xstate_feature_mask) - 1;
 
diff --git a/arch/x86/kernel/ftrace.c b/arch/x86/kernel/ftrace.c
index 01ebcb6f263e..8257a59704ae 100644
--- a/arch/x86/kernel/ftrace.c
+++ b/arch/x86/kernel/ftrace.c
@@ -733,18 +733,20 @@ union ftrace_op_code_union {
 	} __attribute__((packed));
 };
 
+#define RET_SIZE		1
+
 static unsigned long
 create_trampoline(struct ftrace_ops *ops, unsigned int *tramp_size)
 {
-	unsigned const char *jmp;
 	unsigned long start_offset;
 	unsigned long end_offset;
 	unsigned long op_offset;
 	unsigned long offset;
 	unsigned long size;
-	unsigned long ip;
+	unsigned long retq;
 	unsigned long *ptr;
 	void *trampoline;
+	void *ip;
 	/* 48 8b 15 <offset> is movq <offset>(%rip), %rdx */
 	unsigned const char op_ref[] = { 0x48, 0x8b, 0x15 };
 	union ftrace_op_code_union op_ptr;
@@ -764,27 +766,27 @@ create_trampoline(struct ftrace_ops *ops, unsigned int *tramp_size)
 
 	/*
 	 * Allocate enough size to store the ftrace_caller code,
-	 * the jmp to ftrace_epilogue, as well as the address of
-	 * the ftrace_ops this trampoline is used for.
+	 * the iret , as well as the address of the ftrace_ops this
+	 * trampoline is used for.
 	 */
-	trampoline = alloc_tramp(size + MCOUNT_INSN_SIZE + sizeof(void *));
+	trampoline = alloc_tramp(size + RET_SIZE + sizeof(void *));
 	if (!trampoline)
 		return 0;
 
-	*tramp_size = size + MCOUNT_INSN_SIZE + sizeof(void *);
+	*tramp_size = size + RET_SIZE + sizeof(void *);
 
 	/* Copy ftrace_caller onto the trampoline memory */
 	ret = probe_kernel_read(trampoline, (void *)start_offset, size);
-	if (WARN_ON(ret < 0)) {
-		tramp_free(trampoline, *tramp_size);
-		return 0;
-	}
+	if (WARN_ON(ret < 0))
+		goto fail;
 
-	ip = (unsigned long)trampoline + size;
+	ip = trampoline + size;
 
-	/* The trampoline ends with a jmp to ftrace_epilogue */
-	jmp = ftrace_jmp_replace(ip, (unsigned long)ftrace_epilogue);
-	memcpy(trampoline + size, jmp, MCOUNT_INSN_SIZE);
+	/* The trampoline ends with ret(q) */
+	retq = (unsigned long)ftrace_stub;
+	ret = probe_kernel_read(ip, (void *)retq, RET_SIZE);
+	if (WARN_ON(ret < 0))
+		goto fail;
 
 	/*
 	 * The address of the ftrace_ops that is used for this trampoline
@@ -794,17 +796,15 @@ create_trampoline(struct ftrace_ops *ops, unsigned int *tramp_size)
 	 * the global function_trace_op variable.
 	 */
 
-	ptr = (unsigned long *)(trampoline + size + MCOUNT_INSN_SIZE);
+	ptr = (unsigned long *)(trampoline + size + RET_SIZE);
 	*ptr = (unsigned long)ops;
 
 	op_offset -= start_offset;
 	memcpy(&op_ptr, trampoline + op_offset, OP_REF_SIZE);
 
 	/* Are we pointing to the reference? */
-	if (WARN_ON(memcmp(op_ptr.op, op_ref, 3) != 0)) {
-		tramp_free(trampoline, *tramp_size);
-		return 0;
-	}
+	if (WARN_ON(memcmp(op_ptr.op, op_ref, 3) != 0))
+		goto fail;
 
 	/* Load the contents of ptr into the callback parameter */
 	offset = (unsigned long)ptr;
@@ -819,6 +819,9 @@ create_trampoline(struct ftrace_ops *ops, unsigned int *tramp_size)
 	ops->flags |= FTRACE_OPS_FL_ALLOC_TRAMP;
 
 	return (unsigned long)trampoline;
+fail:
+	tramp_free(trampoline, *tramp_size);
+	return 0;
 }
 
 static unsigned long calc_trampoline_call_offset(bool save_regs)
@@ -994,7 +997,6 @@ void prepare_ftrace_return(unsigned long self_addr, unsigned long *parent,
 {
 	unsigned long old;
 	int faulted;
-	struct ftrace_graph_ent trace;
 	unsigned long return_hooker = (unsigned long)
 				&return_to_handler;
 
@@ -1046,19 +1048,7 @@ void prepare_ftrace_return(unsigned long self_addr, unsigned long *parent,
 		return;
 	}
 
-	trace.func = self_addr;
-	trace.depth = current->curr_ret_stack + 1;
-
-	/* Only trace if the calling function expects to */
-	if (!ftrace_graph_entry(&trace)) {
+	if (function_graph_enter(old, self_addr, frame_pointer, parent))
 		*parent = old;
-		return;
-	}
-
-	if (ftrace_push_return_trace(old, self_addr, &trace.depth,
-				     frame_pointer, parent) == -EBUSY) {
-		*parent = old;
-		return;
-	}
 }
 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
diff --git a/arch/x86/kernel/ftrace_64.S b/arch/x86/kernel/ftrace_64.S
index 91b2cff4b79a..75f2b36b41a6 100644
--- a/arch/x86/kernel/ftrace_64.S
+++ b/arch/x86/kernel/ftrace_64.S
@@ -171,9 +171,6 @@ GLOBAL(ftrace_call)
 	restore_mcount_regs
 
 	/*
-	 * The copied trampoline must call ftrace_epilogue as it
-	 * still may need to call the function graph tracer.
-	 *
 	 * The code up to this label is copied into trampolines so
 	 * think twice before adding any new code or changing the
 	 * layout here.
@@ -185,7 +182,10 @@ GLOBAL(ftrace_graph_call)
 	jmp ftrace_stub
 #endif
 
-/* This is weak to keep gas from relaxing the jumps */
+/*
+ * This is weak to keep gas from relaxing the jumps.
+ * It is also used to copy the retq for trampolines.
+ */
 WEAK(ftrace_stub)
 	retq
 ENDPROC(ftrace_caller)
diff --git a/arch/x86/kernel/head32.c b/arch/x86/kernel/head32.c
index 76fa3b836598..ec6fefbfd3c0 100644
--- a/arch/x86/kernel/head32.c
+++ b/arch/x86/kernel/head32.c
@@ -37,7 +37,6 @@ asmlinkage __visible void __init i386_start_kernel(void)
 	cr4_init_shadow();
 
 	sanitize_boot_params(&boot_params);
-	x86_verify_bootdata_version();
 
 	x86_early_init_platform_quirks();
 
diff --git a/arch/x86/kernel/head64.c b/arch/x86/kernel/head64.c
index 7663a8eb602b..16b1cbd3a61e 100644
--- a/arch/x86/kernel/head64.c
+++ b/arch/x86/kernel/head64.c
@@ -457,8 +457,6 @@ void __init x86_64_start_reservations(char *real_mode_data)
 	if (!boot_params.hdr.version)
 		copy_bootdata(__va(real_mode_data));
 
-	x86_verify_bootdata_version();
-
 	x86_early_init_platform_quirks();
 
 	switch (boot_params.hdr.hardware_subarch) {
diff --git a/arch/x86/kernel/head_64.S b/arch/x86/kernel/head_64.S
index 747c758f67b7..d1dbe8e4eb82 100644
--- a/arch/x86/kernel/head_64.S
+++ b/arch/x86/kernel/head_64.S
@@ -386,7 +386,7 @@ NEXT_PAGE(early_dynamic_pgts)
 
 	.data
 
-#if defined(CONFIG_XEN_PV) || defined(CONFIG_XEN_PVH)
+#if defined(CONFIG_XEN_PV) || defined(CONFIG_PVH)
 NEXT_PGD_PAGE(init_top_pgt)
 	.quad   level3_ident_pgt - __START_KERNEL_map + _KERNPG_TABLE_NOENC
 	.org    init_top_pgt + L4_PAGE_OFFSET*8, 0
diff --git a/arch/x86/kernel/ima_arch.c b/arch/x86/kernel/ima_arch.c
new file mode 100644
index 000000000000..e47cd9390ab4
--- /dev/null
+++ b/arch/x86/kernel/ima_arch.c
@@ -0,0 +1,75 @@
+/* SPDX-License-Identifier: GPL-2.0+ */
+/*
+ * Copyright (C) 2018 IBM Corporation
+ */
+#include <linux/efi.h>
+#include <linux/ima.h>
+
+extern struct boot_params boot_params;
+
+static enum efi_secureboot_mode get_sb_mode(void)
+{
+	efi_char16_t efi_SecureBoot_name[] = L"SecureBoot";
+	efi_guid_t efi_variable_guid = EFI_GLOBAL_VARIABLE_GUID;
+	efi_status_t status;
+	unsigned long size;
+	u8 secboot;
+
+	size = sizeof(secboot);
+
+	/* Get variable contents into buffer */
+	status = efi.get_variable(efi_SecureBoot_name, &efi_variable_guid,
+				  NULL, &size, &secboot);
+	if (status == EFI_NOT_FOUND) {
+		pr_info("ima: secureboot mode disabled\n");
+		return efi_secureboot_mode_disabled;
+	}
+
+	if (status != EFI_SUCCESS) {
+		pr_info("ima: secureboot mode unknown\n");
+		return efi_secureboot_mode_unknown;
+	}
+
+	if (secboot == 0) {
+		pr_info("ima: secureboot mode disabled\n");
+		return efi_secureboot_mode_disabled;
+	}
+
+	pr_info("ima: secureboot mode enabled\n");
+	return efi_secureboot_mode_enabled;
+}
+
+bool arch_ima_get_secureboot(void)
+{
+	static enum efi_secureboot_mode sb_mode;
+	static bool initialized;
+
+	if (!initialized && efi_enabled(EFI_BOOT)) {
+		sb_mode = boot_params.secure_boot;
+
+		if (sb_mode == efi_secureboot_mode_unset)
+			sb_mode = get_sb_mode();
+		initialized = true;
+	}
+
+	if (sb_mode == efi_secureboot_mode_enabled)
+		return true;
+	else
+		return false;
+}
+
+/* secureboot arch rules */
+static const char * const sb_arch_rules[] = {
+#if !IS_ENABLED(CONFIG_KEXEC_VERIFY_SIG)
+	"appraise func=KEXEC_KERNEL_CHECK appraise_type=imasig",
+#endif /* CONFIG_KEXEC_VERIFY_SIG */
+	"measure func=KEXEC_KERNEL_CHECK",
+	NULL
+};
+
+const char * const *arch_get_ima_policy(void)
+{
+	if (IS_ENABLED(CONFIG_IMA_ARCH_POLICY) && arch_ima_get_secureboot())
+		return sb_arch_rules;
+	return NULL;
+}
diff --git a/arch/x86/kernel/jailhouse.c b/arch/x86/kernel/jailhouse.c
index 108c48d0d40e..1b2ee55a2dfb 100644
--- a/arch/x86/kernel/jailhouse.c
+++ b/arch/x86/kernel/jailhouse.c
@@ -19,6 +19,7 @@
 #include <asm/pci_x86.h>
 #include <asm/reboot.h>
 #include <asm/setup.h>
+#include <asm/jailhouse_para.h>
 
 static __initdata struct jailhouse_setup_data setup_data;
 static unsigned int precalibrated_tsc_khz;
diff --git a/arch/x86/kernel/kgdb.c b/arch/x86/kernel/kgdb.c
index 8e36f249646e..5db08425063e 100644
--- a/arch/x86/kernel/kgdb.c
+++ b/arch/x86/kernel/kgdb.c
@@ -422,21 +422,16 @@ static void kgdb_disable_hw_debug(struct pt_regs *regs)
 #ifdef CONFIG_SMP
 /**
  *	kgdb_roundup_cpus - Get other CPUs into a holding pattern
- *	@flags: Current IRQ state
  *
  *	On SMP systems, we need to get the attention of the other CPUs
  *	and get them be in a known state.  This should do what is needed
  *	to get the other CPUs to call kgdb_wait(). Note that on some arches,
  *	the NMI approach is not used for rounding up all the CPUs. For example,
- *	in case of MIPS, smp_call_function() is used to roundup CPUs. In
- *	this case, we have to make sure that interrupts are enabled before
- *	calling smp_call_function(). The argument to this function is
- *	the flags that will be used when restoring the interrupts. There is
- *	local_irq_save() call before kgdb_roundup_cpus().
+ *	in case of MIPS, smp_call_function() is used to roundup CPUs.
  *
  *	On non-SMP systems, this is not called.
  */
-void kgdb_roundup_cpus(unsigned long flags)
+void kgdb_roundup_cpus(void)
 {
 	apic->send_IPI_allbutself(APIC_DM_NMI);
 }
@@ -804,7 +799,7 @@ knl_write:
 				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
 }
 
-struct kgdb_arch arch_kgdb_ops = {
+const struct kgdb_arch arch_kgdb_ops = {
 	/* Breakpoint instruction: */
 	.gdb_bpt_instr		= { 0xcc },
 	.flags			= KGDB_HW_BREAKPOINT,
diff --git a/arch/x86/kernel/kprobes/core.c b/arch/x86/kernel/kprobes/core.c
index c33b06f5faa4..4ba75afba527 100644
--- a/arch/x86/kernel/kprobes/core.c
+++ b/arch/x86/kernel/kprobes/core.c
@@ -751,7 +751,7 @@ STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
 /*
  * Called from kretprobe_trampoline
  */
-__visible __used void *trampoline_handler(struct pt_regs *regs)
+static __used void *trampoline_handler(struct pt_regs *regs)
 {
 	struct kretprobe_instance *ri = NULL;
 	struct hlist_head *head, empty_rp;
@@ -1026,12 +1026,10 @@ int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 }
 NOKPROBE_SYMBOL(kprobe_fault_handler);
 
-bool arch_within_kprobe_blacklist(unsigned long addr)
+int __init arch_populate_kprobe_blacklist(void)
 {
-	return  (addr >= (unsigned long)__kprobes_text_start &&
-		 addr < (unsigned long)__kprobes_text_end) ||
-		(addr >= (unsigned long)__entry_text_start &&
-		 addr < (unsigned long)__entry_text_end);
+	return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
+					 (unsigned long)__entry_text_end);
 }
 
 int __init arch_init_kprobes(void)
diff --git a/arch/x86/kernel/kprobes/opt.c b/arch/x86/kernel/kprobes/opt.c
index 40b16b270656..6adf6e6c2933 100644
--- a/arch/x86/kernel/kprobes/opt.c
+++ b/arch/x86/kernel/kprobes/opt.c
@@ -189,7 +189,7 @@ static int copy_optimized_instructions(u8 *dest, u8 *src, u8 *real)
 	int len = 0, ret;
 
 	while (len < RELATIVEJUMP_SIZE) {
-		ret = __copy_instruction(dest + len, src + len, real, &insn);
+		ret = __copy_instruction(dest + len, src + len, real + len, &insn);
 		if (!ret || !can_boost(&insn, src + len))
 			return -EINVAL;
 		len += ret;
diff --git a/arch/x86/kernel/kvmclock.c b/arch/x86/kernel/kvmclock.c
index 30084ecaa20f..e811d4d1c824 100644
--- a/arch/x86/kernel/kvmclock.c
+++ b/arch/x86/kernel/kvmclock.c
@@ -1,19 +1,6 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
 /*  KVM paravirtual clock driver. A clocksource implementation
     Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
-
-    This program is free software; you can redistribute it and/or modify
-    it under the terms of the GNU General Public License as published by
-    the Free Software Foundation; either version 2 of the License, or
-    (at your option) any later version.
-
-    This program is distributed in the hope that it will be useful,
-    but WITHOUT ANY WARRANTY; without even the implied warranty of
-    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-    GNU General Public License for more details.
-
-    You should have received a copy of the GNU General Public License
-    along with this program; if not, write to the Free Software
-    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
 
 #include <linux/clocksource.h>
diff --git a/arch/x86/kernel/ldt.c b/arch/x86/kernel/ldt.c
index ab18e0884dc6..6135ae8ce036 100644
--- a/arch/x86/kernel/ldt.c
+++ b/arch/x86/kernel/ldt.c
@@ -199,14 +199,6 @@ static void sanity_check_ldt_mapping(struct mm_struct *mm)
 /*
  * If PTI is enabled, this maps the LDT into the kernelmode and
  * usermode tables for the given mm.
- *
- * There is no corresponding unmap function.  Even if the LDT is freed, we
- * leave the PTEs around until the slot is reused or the mm is destroyed.
- * This is harmless: the LDT is always in ordinary memory, and no one will
- * access the freed slot.
- *
- * If we wanted to unmap freed LDTs, we'd also need to do a flush to make
- * it useful, and the flush would slow down modify_ldt().
  */
 static int
 map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
@@ -214,8 +206,7 @@ map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
 	unsigned long va;
 	bool is_vmalloc;
 	spinlock_t *ptl;
-	pgd_t *pgd;
-	int i;
+	int i, nr_pages;
 
 	if (!static_cpu_has(X86_FEATURE_PTI))
 		return 0;
@@ -229,16 +220,11 @@ map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
 	/* Check if the current mappings are sane */
 	sanity_check_ldt_mapping(mm);
 
-	/*
-	 * Did we already have the top level entry allocated?  We can't
-	 * use pgd_none() for this because it doens't do anything on
-	 * 4-level page table kernels.
-	 */
-	pgd = pgd_offset(mm, LDT_BASE_ADDR);
-
 	is_vmalloc = is_vmalloc_addr(ldt->entries);
 
-	for (i = 0; i * PAGE_SIZE < ldt->nr_entries * LDT_ENTRY_SIZE; i++) {
+	nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE);
+
+	for (i = 0; i < nr_pages; i++) {
 		unsigned long offset = i << PAGE_SHIFT;
 		const void *src = (char *)ldt->entries + offset;
 		unsigned long pfn;
@@ -272,13 +258,39 @@ map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
 	/* Propagate LDT mapping to the user page-table */
 	map_ldt_struct_to_user(mm);
 
-	va = (unsigned long)ldt_slot_va(slot);
-	flush_tlb_mm_range(mm, va, va + LDT_SLOT_STRIDE, PAGE_SHIFT, false);
-
 	ldt->slot = slot;
 	return 0;
 }
 
+static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt)
+{
+	unsigned long va;
+	int i, nr_pages;
+
+	if (!ldt)
+		return;
+
+	/* LDT map/unmap is only required for PTI */
+	if (!static_cpu_has(X86_FEATURE_PTI))
+		return;
+
+	nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE);
+
+	for (i = 0; i < nr_pages; i++) {
+		unsigned long offset = i << PAGE_SHIFT;
+		spinlock_t *ptl;
+		pte_t *ptep;
+
+		va = (unsigned long)ldt_slot_va(ldt->slot) + offset;
+		ptep = get_locked_pte(mm, va, &ptl);
+		pte_clear(mm, va, ptep);
+		pte_unmap_unlock(ptep, ptl);
+	}
+
+	va = (unsigned long)ldt_slot_va(ldt->slot);
+	flush_tlb_mm_range(mm, va, va + nr_pages * PAGE_SIZE, PAGE_SHIFT, false);
+}
+
 #else /* !CONFIG_PAGE_TABLE_ISOLATION */
 
 static int
@@ -286,6 +298,10 @@ map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
 {
 	return 0;
 }
+
+static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt)
+{
+}
 #endif /* CONFIG_PAGE_TABLE_ISOLATION */
 
 static void free_ldt_pgtables(struct mm_struct *mm)
@@ -524,6 +540,7 @@ static int write_ldt(void __user *ptr, unsigned long bytecount, int oldmode)
 	}
 
 	install_ldt(mm, new_ldt);
+	unmap_ldt_struct(mm, old_ldt);
 	free_ldt_struct(old_ldt);
 	error = 0;
 
diff --git a/arch/x86/kernel/macros.S b/arch/x86/kernel/macros.S
deleted file mode 100644
index 161c95059044..000000000000
--- a/arch/x86/kernel/macros.S
+++ /dev/null
@@ -1,16 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0 */
-
-/*
- * This file includes headers whose assembly part includes macros which are
- * commonly used. The macros are precompiled into assmebly file which is later
- * assembled together with each compiled file.
- */
-
-#include <linux/compiler.h>
-#include <asm/refcount.h>
-#include <asm/alternative-asm.h>
-#include <asm/bug.h>
-#include <asm/paravirt.h>
-#include <asm/asm.h>
-#include <asm/cpufeature.h>
-#include <asm/jump_label.h>
diff --git a/arch/x86/kernel/pci-calgary_64.c b/arch/x86/kernel/pci-calgary_64.c
index bbfc8b1e9104..c70720f61a34 100644
--- a/arch/x86/kernel/pci-calgary_64.c
+++ b/arch/x86/kernel/pci-calgary_64.c
@@ -51,8 +51,6 @@
 #include <asm/x86_init.h>
 #include <asm/iommu_table.h>
 
-#define CALGARY_MAPPING_ERROR	0
-
 #ifdef CONFIG_CALGARY_IOMMU_ENABLED_BY_DEFAULT
 int use_calgary __read_mostly = 1;
 #else
@@ -157,8 +155,6 @@ static const unsigned long phb_debug_offsets[] = {
 
 #define PHB_DEBUG_STUFF_OFFSET	0x0020
 
-#define EMERGENCY_PAGES 32 /* = 128KB */
-
 unsigned int specified_table_size = TCE_TABLE_SIZE_UNSPECIFIED;
 static int translate_empty_slots __read_mostly = 0;
 static int calgary_detected __read_mostly = 0;
@@ -255,7 +251,7 @@ static unsigned long iommu_range_alloc(struct device *dev,
 			if (panic_on_overflow)
 				panic("Calgary: fix the allocator.\n");
 			else
-				return CALGARY_MAPPING_ERROR;
+				return DMA_MAPPING_ERROR;
 		}
 	}
 
@@ -274,11 +270,10 @@ static dma_addr_t iommu_alloc(struct device *dev, struct iommu_table *tbl,
 	dma_addr_t ret;
 
 	entry = iommu_range_alloc(dev, tbl, npages);
-
-	if (unlikely(entry == CALGARY_MAPPING_ERROR)) {
+	if (unlikely(entry == DMA_MAPPING_ERROR)) {
 		pr_warn("failed to allocate %u pages in iommu %p\n",
 			npages, tbl);
-		return CALGARY_MAPPING_ERROR;
+		return DMA_MAPPING_ERROR;
 	}
 
 	/* set the return dma address */
@@ -294,12 +289,10 @@ static void iommu_free(struct iommu_table *tbl, dma_addr_t dma_addr,
 	unsigned int npages)
 {
 	unsigned long entry;
-	unsigned long badend;
 	unsigned long flags;
 
 	/* were we called with bad_dma_address? */
-	badend = CALGARY_MAPPING_ERROR + (EMERGENCY_PAGES * PAGE_SIZE);
-	if (unlikely(dma_addr < badend)) {
+	if (unlikely(dma_addr == DMA_MAPPING_ERROR)) {
 		WARN(1, KERN_ERR "Calgary: driver tried unmapping bad DMA "
 		       "address 0x%Lx\n", dma_addr);
 		return;
@@ -383,7 +376,7 @@ static int calgary_map_sg(struct device *dev, struct scatterlist *sg,
 		npages = iommu_num_pages(vaddr, s->length, PAGE_SIZE);
 
 		entry = iommu_range_alloc(dev, tbl, npages);
-		if (entry == CALGARY_MAPPING_ERROR) {
+		if (entry == DMA_MAPPING_ERROR) {
 			/* makes sure unmap knows to stop */
 			s->dma_length = 0;
 			goto error;
@@ -401,7 +394,7 @@ static int calgary_map_sg(struct device *dev, struct scatterlist *sg,
 error:
 	calgary_unmap_sg(dev, sg, nelems, dir, 0);
 	for_each_sg(sg, s, nelems, i) {
-		sg->dma_address = CALGARY_MAPPING_ERROR;
+		sg->dma_address = DMA_MAPPING_ERROR;
 		sg->dma_length = 0;
 	}
 	return 0;
@@ -454,7 +447,7 @@ static void* calgary_alloc_coherent(struct device *dev, size_t size,
 
 	/* set up tces to cover the allocated range */
 	mapping = iommu_alloc(dev, tbl, ret, npages, DMA_BIDIRECTIONAL);
-	if (mapping == CALGARY_MAPPING_ERROR)
+	if (mapping == DMA_MAPPING_ERROR)
 		goto free;
 	*dma_handle = mapping;
 	return ret;
@@ -479,11 +472,6 @@ static void calgary_free_coherent(struct device *dev, size_t size,
 	free_pages((unsigned long)vaddr, get_order(size));
 }
 
-static int calgary_mapping_error(struct device *dev, dma_addr_t dma_addr)
-{
-	return dma_addr == CALGARY_MAPPING_ERROR;
-}
-
 static const struct dma_map_ops calgary_dma_ops = {
 	.alloc = calgary_alloc_coherent,
 	.free = calgary_free_coherent,
@@ -491,7 +479,6 @@ static const struct dma_map_ops calgary_dma_ops = {
 	.unmap_sg = calgary_unmap_sg,
 	.map_page = calgary_map_page,
 	.unmap_page = calgary_unmap_page,
-	.mapping_error = calgary_mapping_error,
 	.dma_supported = dma_direct_supported,
 };
 
@@ -739,9 +726,6 @@ static void __init calgary_reserve_regions(struct pci_dev *dev)
 	u64 start;
 	struct iommu_table *tbl = pci_iommu(dev->bus);
 
-	/* reserve EMERGENCY_PAGES from bad_dma_address and up */
-	iommu_range_reserve(tbl, CALGARY_MAPPING_ERROR, EMERGENCY_PAGES);
-
 	/* avoid the BIOS/VGA first 640KB-1MB region */
 	/* for CalIOC2 - avoid the entire first MB */
 	if (is_calgary(dev->device)) {
diff --git a/arch/x86/kernel/pci-dma.c b/arch/x86/kernel/pci-dma.c
index f4562fcec681..d460998ae828 100644
--- a/arch/x86/kernel/pci-dma.c
+++ b/arch/x86/kernel/pci-dma.c
@@ -17,7 +17,7 @@
 
 static bool disable_dac_quirk __read_mostly;
 
-const struct dma_map_ops *dma_ops = &dma_direct_ops;
+const struct dma_map_ops *dma_ops;
 EXPORT_SYMBOL(dma_ops);
 
 #ifdef CONFIG_IOMMU_DEBUG
diff --git a/arch/x86/kernel/pci-swiotlb.c b/arch/x86/kernel/pci-swiotlb.c
index bd08b9e1c9e2..5f5302028a9a 100644
--- a/arch/x86/kernel/pci-swiotlb.c
+++ b/arch/x86/kernel/pci-swiotlb.c
@@ -62,10 +62,8 @@ IOMMU_INIT(pci_swiotlb_detect_4gb,
 
 void __init pci_swiotlb_init(void)
 {
-	if (swiotlb) {
+	if (swiotlb)
 		swiotlb_init(0);
-		dma_ops = &swiotlb_dma_ops;
-	}
 }
 
 void __init pci_swiotlb_late_init(void)
diff --git a/arch/x86/kernel/process.c b/arch/x86/kernel/process.c
index c93fcfdf1673..90ae0ca51083 100644
--- a/arch/x86/kernel/process.c
+++ b/arch/x86/kernel/process.c
@@ -22,6 +22,8 @@
 #include <linux/utsname.h>
 #include <linux/stackprotector.h>
 #include <linux/cpuidle.h>
+#include <linux/acpi.h>
+#include <linux/elf-randomize.h>
 #include <trace/events/power.h>
 #include <linux/hw_breakpoint.h>
 #include <asm/cpu.h>
@@ -39,6 +41,9 @@
 #include <asm/desc.h>
 #include <asm/prctl.h>
 #include <asm/spec-ctrl.h>
+#include <asm/proto.h>
+
+#include "process.h"
 
 /*
  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
@@ -252,11 +257,12 @@ void arch_setup_new_exec(void)
 		enable_cpuid();
 }
 
-static inline void switch_to_bitmap(struct tss_struct *tss,
-				    struct thread_struct *prev,
+static inline void switch_to_bitmap(struct thread_struct *prev,
 				    struct thread_struct *next,
 				    unsigned long tifp, unsigned long tifn)
 {
+	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
+
 	if (tifn & _TIF_IO_BITMAP) {
 		/*
 		 * Copy the relevant range of the IO bitmap.
@@ -395,32 +401,85 @@ static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
 }
 
-static __always_inline void intel_set_ssb_state(unsigned long tifn)
+/*
+ * Update the MSRs managing speculation control, during context switch.
+ *
+ * tifp: Previous task's thread flags
+ * tifn: Next task's thread flags
+ */
+static __always_inline void __speculation_ctrl_update(unsigned long tifp,
+						      unsigned long tifn)
 {
-	u64 msr = x86_spec_ctrl_base | ssbd_tif_to_spec_ctrl(tifn);
+	unsigned long tif_diff = tifp ^ tifn;
+	u64 msr = x86_spec_ctrl_base;
+	bool updmsr = false;
+
+	/*
+	 * If TIF_SSBD is different, select the proper mitigation
+	 * method. Note that if SSBD mitigation is disabled or permanentely
+	 * enabled this branch can't be taken because nothing can set
+	 * TIF_SSBD.
+	 */
+	if (tif_diff & _TIF_SSBD) {
+		if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
+			amd_set_ssb_virt_state(tifn);
+		} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
+			amd_set_core_ssb_state(tifn);
+		} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
+			   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
+			msr |= ssbd_tif_to_spec_ctrl(tifn);
+			updmsr  = true;
+		}
+	}
+
+	/*
+	 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
+	 * otherwise avoid the MSR write.
+	 */
+	if (IS_ENABLED(CONFIG_SMP) &&
+	    static_branch_unlikely(&switch_to_cond_stibp)) {
+		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
+		msr |= stibp_tif_to_spec_ctrl(tifn);
+	}
 
-	wrmsrl(MSR_IA32_SPEC_CTRL, msr);
+	if (updmsr)
+		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
 }
 
-static __always_inline void __speculative_store_bypass_update(unsigned long tifn)
+static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
 {
-	if (static_cpu_has(X86_FEATURE_VIRT_SSBD))
-		amd_set_ssb_virt_state(tifn);
-	else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD))
-		amd_set_core_ssb_state(tifn);
-	else
-		intel_set_ssb_state(tifn);
+	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
+		if (task_spec_ssb_disable(tsk))
+			set_tsk_thread_flag(tsk, TIF_SSBD);
+		else
+			clear_tsk_thread_flag(tsk, TIF_SSBD);
+
+		if (task_spec_ib_disable(tsk))
+			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
+		else
+			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
+	}
+	/* Return the updated threadinfo flags*/
+	return task_thread_info(tsk)->flags;
 }
 
-void speculative_store_bypass_update(unsigned long tif)
+void speculation_ctrl_update(unsigned long tif)
 {
+	/* Forced update. Make sure all relevant TIF flags are different */
 	preempt_disable();
-	__speculative_store_bypass_update(tif);
+	__speculation_ctrl_update(~tif, tif);
 	preempt_enable();
 }
 
-void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
-		      struct tss_struct *tss)
+/* Called from seccomp/prctl update */
+void speculation_ctrl_update_current(void)
+{
+	preempt_disable();
+	speculation_ctrl_update(speculation_ctrl_update_tif(current));
+	preempt_enable();
+}
+
+void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
 {
 	struct thread_struct *prev, *next;
 	unsigned long tifp, tifn;
@@ -430,7 +489,7 @@ void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
 
 	tifn = READ_ONCE(task_thread_info(next_p)->flags);
 	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
-	switch_to_bitmap(tss, prev, next, tifp, tifn);
+	switch_to_bitmap(prev, next, tifp, tifn);
 
 	propagate_user_return_notify(prev_p, next_p);
 
@@ -451,8 +510,15 @@ void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
 	if ((tifp ^ tifn) & _TIF_NOCPUID)
 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
 
-	if ((tifp ^ tifn) & _TIF_SSBD)
-		__speculative_store_bypass_update(tifn);
+	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
+		__speculation_ctrl_update(tifp, tifn);
+	} else {
+		speculation_ctrl_update_tif(prev_p);
+		tifn = speculation_ctrl_update_tif(next_p);
+
+		/* Enforce MSR update to ensure consistent state */
+		__speculation_ctrl_update(~tifn, tifn);
+	}
 }
 
 /*
@@ -730,7 +796,7 @@ unsigned long get_wchan(struct task_struct *p)
 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
 	int count = 0;
 
-	if (!p || p == current || p->state == TASK_RUNNING)
+	if (p == current || p->state == TASK_RUNNING)
 		return 0;
 
 	if (!try_get_task_stack(p))
diff --git a/arch/x86/kernel/process.h b/arch/x86/kernel/process.h
new file mode 100644
index 000000000000..320ab978fb1f
--- /dev/null
+++ b/arch/x86/kernel/process.h
@@ -0,0 +1,39 @@
+// SPDX-License-Identifier: GPL-2.0
+//
+// Code shared between 32 and 64 bit
+
+#include <asm/spec-ctrl.h>
+
+void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p);
+
+/*
+ * This needs to be inline to optimize for the common case where no extra
+ * work needs to be done.
+ */
+static inline void switch_to_extra(struct task_struct *prev,
+				   struct task_struct *next)
+{
+	unsigned long next_tif = task_thread_info(next)->flags;
+	unsigned long prev_tif = task_thread_info(prev)->flags;
+
+	if (IS_ENABLED(CONFIG_SMP)) {
+		/*
+		 * Avoid __switch_to_xtra() invocation when conditional
+		 * STIBP is disabled and the only different bit is
+		 * TIF_SPEC_IB. For CONFIG_SMP=n TIF_SPEC_IB is not
+		 * in the TIF_WORK_CTXSW masks.
+		 */
+		if (!static_branch_likely(&switch_to_cond_stibp)) {
+			prev_tif &= ~_TIF_SPEC_IB;
+			next_tif &= ~_TIF_SPEC_IB;
+		}
+	}
+
+	/*
+	 * __switch_to_xtra() handles debug registers, i/o bitmaps,
+	 * speculation mitigations etc.
+	 */
+	if (unlikely(next_tif & _TIF_WORK_CTXSW_NEXT ||
+		     prev_tif & _TIF_WORK_CTXSW_PREV))
+		__switch_to_xtra(prev, next);
+}
diff --git a/arch/x86/kernel/process_32.c b/arch/x86/kernel/process_32.c
index 5046a3c9dec2..e471d8e6f0b2 100644
--- a/arch/x86/kernel/process_32.c
+++ b/arch/x86/kernel/process_32.c
@@ -44,9 +44,6 @@
 #include <asm/processor.h>
 #include <asm/fpu/internal.h>
 #include <asm/desc.h>
-#ifdef CONFIG_MATH_EMULATION
-#include <asm/math_emu.h>
-#endif
 
 #include <linux/err.h>
 
@@ -56,9 +53,11 @@
 #include <asm/debugreg.h>
 #include <asm/switch_to.h>
 #include <asm/vm86.h>
-#include <asm/intel_rdt_sched.h>
+#include <asm/resctrl_sched.h>
 #include <asm/proto.h>
 
+#include "process.h"
+
 void __show_regs(struct pt_regs *regs, enum show_regs_mode mode)
 {
 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
@@ -232,7 +231,6 @@ __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
 	struct fpu *prev_fpu = &prev->fpu;
 	struct fpu *next_fpu = &next->fpu;
 	int cpu = smp_processor_id();
-	struct tss_struct *tss = &per_cpu(cpu_tss_rw, cpu);
 
 	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
 
@@ -264,12 +262,7 @@ __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
 	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
 		set_iopl_mask(next->iopl);
 
-	/*
-	 * Now maybe handle debug registers and/or IO bitmaps
-	 */
-	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
-		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
-		__switch_to_xtra(prev_p, next_p, tss);
+	switch_to_extra(prev_p, next_p);
 
 	/*
 	 * Leave lazy mode, flushing any hypercalls made here.
@@ -302,7 +295,7 @@ __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
 	this_cpu_write(current_task, next_p);
 
 	/* Load the Intel cache allocation PQR MSR. */
-	intel_rdt_sched_in();
+	resctrl_sched_in();
 
 	return prev_p;
 }
diff --git a/arch/x86/kernel/process_64.c b/arch/x86/kernel/process_64.c
index 0e0b4288a4b2..6a62f4af9fcf 100644
--- a/arch/x86/kernel/process_64.c
+++ b/arch/x86/kernel/process_64.c
@@ -52,7 +52,7 @@
 #include <asm/switch_to.h>
 #include <asm/xen/hypervisor.h>
 #include <asm/vdso.h>
-#include <asm/intel_rdt_sched.h>
+#include <asm/resctrl_sched.h>
 #include <asm/unistd.h>
 #include <asm/fsgsbase.h>
 #ifdef CONFIG_IA32_EMULATION
@@ -60,13 +60,15 @@
 #include <asm/unistd_32_ia32.h>
 #endif
 
+#include "process.h"
+
 /* Prints also some state that isn't saved in the pt_regs */
 void __show_regs(struct pt_regs *regs, enum show_regs_mode mode)
 {
 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
 	unsigned long d0, d1, d2, d3, d6, d7;
 	unsigned int fsindex, gsindex;
-	unsigned int ds, cs, es;
+	unsigned int ds, es;
 
 	show_iret_regs(regs);
 
@@ -98,7 +100,6 @@ void __show_regs(struct pt_regs *regs, enum show_regs_mode mode)
 	}
 
 	asm("movl %%ds,%0" : "=r" (ds));
-	asm("movl %%cs,%0" : "=r" (cs));
 	asm("movl %%es,%0" : "=r" (es));
 	asm("movl %%fs,%0" : "=r" (fsindex));
 	asm("movl %%gs,%0" : "=r" (gsindex));
@@ -114,7 +115,7 @@ void __show_regs(struct pt_regs *regs, enum show_regs_mode mode)
 
 	printk(KERN_DEFAULT "FS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
 	       fs, fsindex, gs, gsindex, shadowgs);
-	printk(KERN_DEFAULT "CS:  %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
+	printk(KERN_DEFAULT "CS:  %04lx DS: %04x ES: %04x CR0: %016lx\n", regs->cs, ds,
 			es, cr0);
 	printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
 			cr4);
@@ -337,24 +338,6 @@ static unsigned long x86_fsgsbase_read_task(struct task_struct *task,
 	return base;
 }
 
-void x86_fsbase_write_cpu(unsigned long fsbase)
-{
-	/*
-	 * Set the selector to 0 as a notion, that the segment base is
-	 * overwritten, which will be checked for skipping the segment load
-	 * during context switch.
-	 */
-	loadseg(FS, 0);
-	wrmsrl(MSR_FS_BASE, fsbase);
-}
-
-void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
-{
-	/* Set the selector to 0 for the same reason as %fs above. */
-	loadseg(GS, 0);
-	wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
-}
-
 unsigned long x86_fsbase_read_task(struct task_struct *task)
 {
 	unsigned long fsbase;
@@ -383,38 +366,18 @@ unsigned long x86_gsbase_read_task(struct task_struct *task)
 	return gsbase;
 }
 
-int x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
+void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
 {
-	/*
-	 * Not strictly needed for %fs, but do it for symmetry
-	 * with %gs
-	 */
-	if (unlikely(fsbase >= TASK_SIZE_MAX))
-		return -EPERM;
+	WARN_ON_ONCE(task == current);
 
-	preempt_disable();
 	task->thread.fsbase = fsbase;
-	if (task == current)
-		x86_fsbase_write_cpu(fsbase);
-	task->thread.fsindex = 0;
-	preempt_enable();
-
-	return 0;
 }
 
-int x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
+void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
 {
-	if (unlikely(gsbase >= TASK_SIZE_MAX))
-		return -EPERM;
+	WARN_ON_ONCE(task == current);
 
-	preempt_disable();
 	task->thread.gsbase = gsbase;
-	if (task == current)
-		x86_gsbase_write_cpu_inactive(gsbase);
-	task->thread.gsindex = 0;
-	preempt_enable();
-
-	return 0;
 }
 
 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
@@ -553,7 +516,6 @@ __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
 	struct fpu *prev_fpu = &prev->fpu;
 	struct fpu *next_fpu = &next->fpu;
 	int cpu = smp_processor_id();
-	struct tss_struct *tss = &per_cpu(cpu_tss_rw, cpu);
 
 	WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
 		     this_cpu_read(irq_count) != -1);
@@ -617,12 +579,7 @@ __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
 	/* Reload sp0. */
 	update_task_stack(next_p);
 
-	/*
-	 * Now maybe reload the debug registers and handle I/O bitmaps
-	 */
-	if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
-		     task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
-		__switch_to_xtra(prev_p, next_p, tss);
+	switch_to_extra(prev_p, next_p);
 
 #ifdef CONFIG_XEN_PV
 	/*
@@ -664,7 +621,7 @@ __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
 	}
 
 	/* Load the Intel cache allocation PQR MSR. */
-	intel_rdt_sched_in();
+	resctrl_sched_in();
 
 	return prev_p;
 }
@@ -688,7 +645,7 @@ void set_personality_64bit(void)
 	/* TBD: overwrites user setup. Should have two bits.
 	   But 64bit processes have always behaved this way,
 	   so it's not too bad. The main problem is just that
-	   32bit childs are affected again. */
+	   32bit children are affected again. */
 	current->personality &= ~READ_IMPLIES_EXEC;
 }
 
@@ -758,11 +715,60 @@ long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
 
 	switch (option) {
 	case ARCH_SET_GS: {
-		ret = x86_gsbase_write_task(task, arg2);
+		if (unlikely(arg2 >= TASK_SIZE_MAX))
+			return -EPERM;
+
+		preempt_disable();
+		/*
+		 * ARCH_SET_GS has always overwritten the index
+		 * and the base. Zero is the most sensible value
+		 * to put in the index, and is the only value that
+		 * makes any sense if FSGSBASE is unavailable.
+		 */
+		if (task == current) {
+			loadseg(GS, 0);
+			x86_gsbase_write_cpu_inactive(arg2);
+
+			/*
+			 * On non-FSGSBASE systems, save_base_legacy() expects
+			 * that we also fill in thread.gsbase.
+			 */
+			task->thread.gsbase = arg2;
+
+		} else {
+			task->thread.gsindex = 0;
+			x86_gsbase_write_task(task, arg2);
+		}
+		preempt_enable();
 		break;
 	}
 	case ARCH_SET_FS: {
-		ret = x86_fsbase_write_task(task, arg2);
+		/*
+		 * Not strictly needed for %fs, but do it for symmetry
+		 * with %gs
+		 */
+		if (unlikely(arg2 >= TASK_SIZE_MAX))
+			return -EPERM;
+
+		preempt_disable();
+		/*
+		 * Set the selector to 0 for the same reason
+		 * as %gs above.
+		 */
+		if (task == current) {
+			loadseg(FS, 0);
+			x86_fsbase_write_cpu(arg2);
+
+			/*
+			 * On non-FSGSBASE systems, save_base_legacy() expects
+			 * that we also fill in thread.fsbase.
+			 */
+			task->thread.fsbase = arg2;
+		} else {
+			task->thread.fsindex = 0;
+			x86_fsbase_write_task(task, arg2);
+		}
+		preempt_enable();
 		break;
 	}
 	case ARCH_GET_FS: {
diff --git a/arch/x86/kernel/ptrace.c b/arch/x86/kernel/ptrace.c
index ffae9b9740fd..4b8ee05dd6ad 100644
--- a/arch/x86/kernel/ptrace.c
+++ b/arch/x86/kernel/ptrace.c
@@ -397,11 +397,12 @@ static int putreg(struct task_struct *child,
 		if (value >= TASK_SIZE_MAX)
 			return -EIO;
 		/*
-		 * When changing the FS base, use the same
-		 * mechanism as for do_arch_prctl_64().
+		 * When changing the FS base, use do_arch_prctl_64()
+		 * to set the index to zero and to set the base
+		 * as requested.
 		 */
 		if (child->thread.fsbase != value)
-			return x86_fsbase_write_task(child, value);
+			return do_arch_prctl_64(child, ARCH_SET_FS, value);
 		return 0;
 	case offsetof(struct user_regs_struct,gs_base):
 		/*
@@ -410,7 +411,7 @@ static int putreg(struct task_struct *child,
 		if (value >= TASK_SIZE_MAX)
 			return -EIO;
 		if (child->thread.gsbase != value)
-			return x86_gsbase_write_task(child, value);
+			return do_arch_prctl_64(child, ARCH_SET_GS, value);
 		return 0;
 #endif
 	}
diff --git a/arch/x86/kernel/quirks.c b/arch/x86/kernel/quirks.c
index 736348ead421..8451f38ad399 100644
--- a/arch/x86/kernel/quirks.c
+++ b/arch/x86/kernel/quirks.c
@@ -7,6 +7,7 @@
 #include <linux/irq.h>
 
 #include <asm/hpet.h>
+#include <asm/setup.h>
 
 #if defined(CONFIG_X86_IO_APIC) && defined(CONFIG_SMP) && defined(CONFIG_PCI)
 
diff --git a/arch/x86/kernel/setup.c b/arch/x86/kernel/setup.c
index 25a9802fffec..3d872a527cd9 100644
--- a/arch/x86/kernel/setup.c
+++ b/arch/x86/kernel/setup.c
@@ -1281,23 +1281,6 @@ void __init setup_arch(char **cmdline_p)
 	unwind_init();
 }
 
-/*
- * From boot protocol 2.14 onwards we expect the bootloader to set the
- * version to "0x8000 | <used version>". In case we find a version >= 2.14
- * without the 0x8000 we assume the boot loader supports 2.13 only and
- * reset the version accordingly. The 0x8000 flag is removed in any case.
- */
-void __init x86_verify_bootdata_version(void)
-{
-	if (boot_params.hdr.version & VERSION_WRITTEN)
-		boot_params.hdr.version &= ~VERSION_WRITTEN;
-	else if (boot_params.hdr.version >= 0x020e)
-		boot_params.hdr.version = 0x020d;
-
-	if (boot_params.hdr.version < 0x020e)
-		boot_params.hdr.acpi_rsdp_addr = 0;
-}
-
 #ifdef CONFIG_X86_32
 
 static struct resource video_ram_resource = {
diff --git a/arch/x86/kernel/signal.c b/arch/x86/kernel/signal.c
index 92a3b312a53c..08dfd4c1a4f9 100644
--- a/arch/x86/kernel/signal.c
+++ b/arch/x86/kernel/signal.c
@@ -322,7 +322,7 @@ __setup_frame(int sig, struct ksignal *ksig, sigset_t *set,
 
 	frame = get_sigframe(&ksig->ka, regs, sizeof(*frame), &fpstate);
 
-	if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
+	if (!access_ok(frame, sizeof(*frame)))
 		return -EFAULT;
 
 	if (__put_user(sig, &frame->sig))
@@ -385,7 +385,7 @@ static int __setup_rt_frame(int sig, struct ksignal *ksig,
 
 	frame = get_sigframe(&ksig->ka, regs, sizeof(*frame), &fpstate);
 
-	if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
+	if (!access_ok(frame, sizeof(*frame)))
 		return -EFAULT;
 
 	put_user_try {
@@ -465,7 +465,7 @@ static int __setup_rt_frame(int sig, struct ksignal *ksig,
 
 	frame = get_sigframe(&ksig->ka, regs, sizeof(struct rt_sigframe), &fp);
 
-	if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
+	if (!access_ok(frame, sizeof(*frame)))
 		return -EFAULT;
 
 	if (ksig->ka.sa.sa_flags & SA_SIGINFO) {
@@ -547,7 +547,7 @@ static int x32_setup_rt_frame(struct ksignal *ksig,
 
 	frame = get_sigframe(&ksig->ka, regs, sizeof(*frame), &fpstate);
 
-	if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
+	if (!access_ok(frame, sizeof(*frame)))
 		return -EFAULT;
 
 	if (ksig->ka.sa.sa_flags & SA_SIGINFO) {
@@ -610,7 +610,7 @@ SYSCALL_DEFINE0(sigreturn)
 
 	frame = (struct sigframe __user *)(regs->sp - 8);
 
-	if (!access_ok(VERIFY_READ, frame, sizeof(*frame)))
+	if (!access_ok(frame, sizeof(*frame)))
 		goto badframe;
 	if (__get_user(set.sig[0], &frame->sc.oldmask) || (_NSIG_WORDS > 1
 		&& __copy_from_user(&set.sig[1], &frame->extramask,
@@ -642,7 +642,7 @@ SYSCALL_DEFINE0(rt_sigreturn)
 	unsigned long uc_flags;
 
 	frame = (struct rt_sigframe __user *)(regs->sp - sizeof(long));
-	if (!access_ok(VERIFY_READ, frame, sizeof(*frame)))
+	if (!access_ok(frame, sizeof(*frame)))
 		goto badframe;
 	if (__copy_from_user(&set, &frame->uc.uc_sigmask, sizeof(set)))
 		goto badframe;
@@ -871,7 +871,7 @@ asmlinkage long sys32_x32_rt_sigreturn(void)
 
 	frame = (struct rt_sigframe_x32 __user *)(regs->sp - 8);
 
-	if (!access_ok(VERIFY_READ, frame, sizeof(*frame)))
+	if (!access_ok(frame, sizeof(*frame)))
 		goto badframe;
 	if (__copy_from_user(&set, &frame->uc.uc_sigmask, sizeof(set)))
 		goto badframe;
diff --git a/arch/x86/kernel/smpboot.c b/arch/x86/kernel/smpboot.c
index a9134d1910b9..ccd1f2a8e557 100644
--- a/arch/x86/kernel/smpboot.c
+++ b/arch/x86/kernel/smpboot.c
@@ -1347,7 +1347,7 @@ void __init calculate_max_logical_packages(void)
 	 * extrapolate the boot cpu's data to all packages.
 	 */
 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
-	__max_logical_packages = DIV_ROUND_UP(nr_cpu_ids, ncpus);
+	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
 	pr_info("Max logical packages: %u\n", __max_logical_packages);
 }
 
diff --git a/arch/x86/kernel/stacktrace.c b/arch/x86/kernel/stacktrace.c
index 7627455047c2..5c2d71a1dc06 100644
--- a/arch/x86/kernel/stacktrace.c
+++ b/arch/x86/kernel/stacktrace.c
@@ -177,7 +177,7 @@ copy_stack_frame(const void __user *fp, struct stack_frame_user *frame)
 {
 	int ret;
 
-	if (!access_ok(VERIFY_READ, fp, sizeof(*frame)))
+	if (!access_ok(fp, sizeof(*frame)))
 		return 0;
 
 	ret = 1;
diff --git a/arch/x86/kernel/sysfb_efi.c b/arch/x86/kernel/sysfb_efi.c
index 623965e86b65..fa51723571c8 100644
--- a/arch/x86/kernel/sysfb_efi.c
+++ b/arch/x86/kernel/sysfb_efi.c
@@ -19,12 +19,15 @@
 
 #include <linux/dmi.h>
 #include <linux/err.h>
+#include <linux/efi.h>
 #include <linux/init.h>
 #include <linux/kernel.h>
 #include <linux/mm.h>
 #include <linux/pci.h>
 #include <linux/screen_info.h>
 #include <video/vga.h>
+
+#include <asm/efi.h>
 #include <asm/sysfb.h>
 
 enum {
diff --git a/arch/x86/kernel/tboot.c b/arch/x86/kernel/tboot.c
index a2486f444073..6e5ef8fb8a02 100644
--- a/arch/x86/kernel/tboot.c
+++ b/arch/x86/kernel/tboot.c
@@ -19,7 +19,7 @@
  *
  */
 
-#include <linux/dma_remapping.h>
+#include <linux/intel-iommu.h>
 #include <linux/init_task.h>
 #include <linux/spinlock.h>
 #include <linux/export.h>
diff --git a/arch/x86/kernel/tracepoint.c b/arch/x86/kernel/tracepoint.c
index 5bd30c442794..496748ed266a 100644
--- a/arch/x86/kernel/tracepoint.c
+++ b/arch/x86/kernel/tracepoint.c
@@ -10,6 +10,8 @@
 
 #include <asm/hw_irq.h>
 #include <asm/desc.h>
+#include <asm/trace/exceptions.h>
+#include <asm/trace/irq_vectors.h>
 
 DEFINE_STATIC_KEY_FALSE(trace_pagefault_key);
 
diff --git a/arch/x86/kernel/vm86_32.c b/arch/x86/kernel/vm86_32.c
index c2fd39752da8..a092b6b40c6b 100644
--- a/arch/x86/kernel/vm86_32.c
+++ b/arch/x86/kernel/vm86_32.c
@@ -114,7 +114,7 @@ void save_v86_state(struct kernel_vm86_regs *regs, int retval)
 	set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
 	user = vm86->user_vm86;
 
-	if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
+	if (!access_ok(user, vm86->vm86plus.is_vm86pus ?
 		       sizeof(struct vm86plus_struct) :
 		       sizeof(struct vm86_struct))) {
 		pr_alert("could not access userspace vm86 info\n");
@@ -278,7 +278,7 @@ static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
 	if (vm86->saved_sp0)
 		return -EPERM;
 
-	if (!access_ok(VERIFY_READ, user_vm86, plus ?
+	if (!access_ok(user_vm86, plus ?
 		       sizeof(struct vm86_struct) :
 		       sizeof(struct vm86plus_struct)))
 		return -EFAULT;
diff --git a/arch/x86/kernel/vsmp_64.c b/arch/x86/kernel/vsmp_64.c
index 1eae5af491c2..891a75dbc131 100644
--- a/arch/x86/kernel/vsmp_64.c
+++ b/arch/x86/kernel/vsmp_64.c
@@ -26,65 +26,8 @@
 
 #define TOPOLOGY_REGISTER_OFFSET 0x10
 
-#if defined CONFIG_PCI && defined CONFIG_PARAVIRT_XXL
-/*
- * Interrupt control on vSMPowered systems:
- * ~AC is a shadow of IF.  If IF is 'on' AC should be 'off'
- * and vice versa.
- */
-
-asmlinkage __visible unsigned long vsmp_save_fl(void)
-{
-	unsigned long flags = native_save_fl();
-
-	if (!(flags & X86_EFLAGS_IF) || (flags & X86_EFLAGS_AC))
-		flags &= ~X86_EFLAGS_IF;
-	return flags;
-}
-PV_CALLEE_SAVE_REGS_THUNK(vsmp_save_fl);
-
-__visible void vsmp_restore_fl(unsigned long flags)
-{
-	if (flags & X86_EFLAGS_IF)
-		flags &= ~X86_EFLAGS_AC;
-	else
-		flags |= X86_EFLAGS_AC;
-	native_restore_fl(flags);
-}
-PV_CALLEE_SAVE_REGS_THUNK(vsmp_restore_fl);
-
-asmlinkage __visible void vsmp_irq_disable(void)
-{
-	unsigned long flags = native_save_fl();
-
-	native_restore_fl((flags & ~X86_EFLAGS_IF) | X86_EFLAGS_AC);
-}
-PV_CALLEE_SAVE_REGS_THUNK(vsmp_irq_disable);
-
-asmlinkage __visible void vsmp_irq_enable(void)
-{
-	unsigned long flags = native_save_fl();
-
-	native_restore_fl((flags | X86_EFLAGS_IF) & (~X86_EFLAGS_AC));
-}
-PV_CALLEE_SAVE_REGS_THUNK(vsmp_irq_enable);
-
-static unsigned __init vsmp_patch(u8 type, void *ibuf,
-				  unsigned long addr, unsigned len)
-{
-	switch (type) {
-	case PARAVIRT_PATCH(irq.irq_enable):
-	case PARAVIRT_PATCH(irq.irq_disable):
-	case PARAVIRT_PATCH(irq.save_fl):
-	case PARAVIRT_PATCH(irq.restore_fl):
-		return paravirt_patch_default(type, ibuf, addr, len);
-	default:
-		return native_patch(type, ibuf, addr, len);
-	}
-
-}
-
-static void __init set_vsmp_pv_ops(void)
+#ifdef CONFIG_PCI
+static void __init set_vsmp_ctl(void)
 {
 	void __iomem *address;
 	unsigned int cap, ctl, cfg;
@@ -109,28 +52,12 @@ static void __init set_vsmp_pv_ops(void)
 	}
 #endif
 
-	if (cap & ctl & (1 << 4)) {
-		/* Setup irq ops and turn on vSMP  IRQ fastpath handling */
-		pv_ops.irq.irq_disable = PV_CALLEE_SAVE(vsmp_irq_disable);
-		pv_ops.irq.irq_enable = PV_CALLEE_SAVE(vsmp_irq_enable);
-		pv_ops.irq.save_fl = PV_CALLEE_SAVE(vsmp_save_fl);
-		pv_ops.irq.restore_fl = PV_CALLEE_SAVE(vsmp_restore_fl);
-		pv_ops.init.patch = vsmp_patch;
-		ctl &= ~(1 << 4);
-	}
 	writel(ctl, address + 4);
 	ctl = readl(address + 4);
 	pr_info("vSMP CTL: control set to:0x%08x\n", ctl);
 
 	early_iounmap(address, 8);
 }
-#else
-static void __init set_vsmp_pv_ops(void)
-{
-}
-#endif
-
-#ifdef CONFIG_PCI
 static int is_vsmp = -1;
 
 static void __init detect_vsmp_box(void)
@@ -164,11 +91,14 @@ static int is_vsmp_box(void)
 {
 	return 0;
 }
+static void __init set_vsmp_ctl(void)
+{
+}
 #endif
 
 static void __init vsmp_cap_cpus(void)
 {
-#if !defined(CONFIG_X86_VSMP) && defined(CONFIG_SMP)
+#if !defined(CONFIG_X86_VSMP) && defined(CONFIG_SMP) && defined(CONFIG_PCI)
 	void __iomem *address;
 	unsigned int cfg, topology, node_shift, maxcpus;
 
@@ -221,6 +151,6 @@ void __init vsmp_init(void)
 
 	vsmp_cap_cpus();
 
-	set_vsmp_pv_ops();
+	set_vsmp_ctl();
 	return;
 }
diff --git a/arch/x86/kvm/Kconfig b/arch/x86/kvm/Kconfig
index 1bbec387d289..72fa955f4a15 100644
--- a/arch/x86/kvm/Kconfig
+++ b/arch/x86/kvm/Kconfig
@@ -98,6 +98,6 @@ config KVM_MMU_AUDIT
 
 # OK, it's a little counter-intuitive to do this, but it puts it neatly under
 # the virtualization menu.
-source drivers/vhost/Kconfig
+source "drivers/vhost/Kconfig"
 
 endif # VIRTUALIZATION
diff --git a/arch/x86/kvm/Makefile b/arch/x86/kvm/Makefile
index dc4f2fdf5e57..69b3a7c30013 100644
--- a/arch/x86/kvm/Makefile
+++ b/arch/x86/kvm/Makefile
@@ -16,7 +16,7 @@ kvm-y			+= x86.o mmu.o emulate.o i8259.o irq.o lapic.o \
 			   i8254.o ioapic.o irq_comm.o cpuid.o pmu.o mtrr.o \
 			   hyperv.o page_track.o debugfs.o
 
-kvm-intel-y		+= vmx.o pmu_intel.o
+kvm-intel-y		+= vmx/vmx.o vmx/vmenter.o vmx/pmu_intel.o vmx/vmcs12.o vmx/evmcs.o vmx/nested.o
 kvm-amd-y		+= svm.o pmu_amd.o
 
 obj-$(CONFIG_KVM)	+= kvm.o
diff --git a/arch/x86/kvm/cpuid.c b/arch/x86/kvm/cpuid.c
index 7bcfa61375c0..bbffa6c54697 100644
--- a/arch/x86/kvm/cpuid.c
+++ b/arch/x86/kvm/cpuid.c
@@ -67,9 +67,6 @@ u64 kvm_supported_xcr0(void)
 
 #define F(x) bit(X86_FEATURE_##x)
 
-/* For scattered features from cpufeatures.h; we currently expose none */
-#define KF(x) bit(KVM_CPUID_BIT_##x)
-
 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
 {
 	struct kvm_cpuid_entry2 *best;
@@ -337,6 +334,7 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
 	unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
 	unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
 	unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
+	unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
 
 	/* cpuid 1.edx */
 	const u32 kvm_cpuid_1_edx_x86_features =
@@ -380,8 +378,8 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
 
 	/* cpuid 0x80000008.ebx */
 	const u32 kvm_cpuid_8000_0008_ebx_x86_features =
-		F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
-		F(AMD_SSB_NO);
+		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
+		F(AMD_SSB_NO) | F(AMD_STIBP);
 
 	/* cpuid 0xC0000001.edx */
 	const u32 kvm_cpuid_C000_0001_edx_x86_features =
@@ -395,7 +393,7 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
 		F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
 		F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
 		F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
-		F(SHA_NI) | F(AVX512BW) | F(AVX512VL);
+		F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt;
 
 	/* cpuid 0xD.1.eax */
 	const u32 kvm_cpuid_D_1_eax_x86_features =
@@ -411,7 +409,7 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
 	/* cpuid 7.0.edx*/
 	const u32 kvm_cpuid_7_0_edx_x86_features =
 		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
-		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES);
+		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP);
 
 	/* all calls to cpuid_count() should be made on the same cpu */
 	get_cpu();
@@ -426,7 +424,7 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
 
 	switch (function) {
 	case 0:
-		entry->eax = min(entry->eax, (u32)0xd);
+		entry->eax = min(entry->eax, (u32)(f_intel_pt ? 0x14 : 0xd));
 		break;
 	case 1:
 		entry->edx &= kvm_cpuid_1_edx_x86_features;
@@ -603,6 +601,23 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
 		}
 		break;
 	}
+	/* Intel PT */
+	case 0x14: {
+		int t, times = entry->eax;
+
+		if (!f_intel_pt)
+			break;
+
+		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
+		for (t = 1; t <= times; ++t) {
+			if (*nent >= maxnent)
+				goto out;
+			do_cpuid_1_ent(&entry[t], function, t);
+			entry[t].flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
+			++*nent;
+		}
+		break;
+	}
 	case KVM_CPUID_SIGNATURE: {
 		static const char signature[12] = "KVMKVMKVM\0\0";
 		const u32 *sigptr = (const u32 *)signature;
diff --git a/arch/x86/kvm/hyperv.c b/arch/x86/kvm/hyperv.c
index 4e80080f277a..c90a5352d158 100644
--- a/arch/x86/kvm/hyperv.c
+++ b/arch/x86/kvm/hyperv.c
@@ -38,6 +38,9 @@
 
 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
 
+static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
+				bool vcpu_kick);
+
 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
 {
 	return atomic64_read(&synic->sint[sint]);
@@ -158,59 +161,24 @@ static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
 	return (synic->active) ? synic : NULL;
 }
 
-static void synic_clear_sint_msg_pending(struct kvm_vcpu_hv_synic *synic,
-					u32 sint)
-{
-	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
-	struct page *page;
-	gpa_t gpa;
-	struct hv_message *msg;
-	struct hv_message_page *msg_page;
-
-	gpa = synic->msg_page & PAGE_MASK;
-	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
-	if (is_error_page(page)) {
-		vcpu_err(vcpu, "Hyper-V SynIC can't get msg page, gpa 0x%llx\n",
-			 gpa);
-		return;
-	}
-	msg_page = kmap_atomic(page);
-
-	msg = &msg_page->sint_message[sint];
-	msg->header.message_flags.msg_pending = 0;
-
-	kunmap_atomic(msg_page);
-	kvm_release_page_dirty(page);
-	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
-}
-
 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
 {
 	struct kvm *kvm = vcpu->kvm;
 	struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
 	struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
 	struct kvm_vcpu_hv_stimer *stimer;
-	int gsi, idx, stimers_pending;
+	int gsi, idx;
 
 	trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
 
-	if (synic->msg_page & HV_SYNIC_SIMP_ENABLE)
-		synic_clear_sint_msg_pending(synic, sint);
-
 	/* Try to deliver pending Hyper-V SynIC timers messages */
-	stimers_pending = 0;
 	for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
 		stimer = &hv_vcpu->stimer[idx];
-		if (stimer->msg_pending &&
-		    (stimer->config & HV_STIMER_ENABLE) &&
-		    HV_STIMER_SINT(stimer->config) == sint) {
-			set_bit(stimer->index,
-				hv_vcpu->stimer_pending_bitmap);
-			stimers_pending++;
-		}
+		if (stimer->msg_pending && stimer->config.enable &&
+		    !stimer->config.direct_mode &&
+		    stimer->config.sintx == sint)
+			stimer_mark_pending(stimer, false);
 	}
-	if (stimers_pending)
-		kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
 
 	idx = srcu_read_lock(&kvm->irq_srcu);
 	gsi = atomic_read(&synic->sint_to_gsi[sint]);
@@ -497,7 +465,7 @@ static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
 	time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm);
 	ktime_now = ktime_get();
 
-	if (stimer->config & HV_STIMER_PERIODIC) {
+	if (stimer->config.periodic) {
 		if (stimer->exp_time) {
 			if (time_now >= stimer->exp_time) {
 				u64 remainder;
@@ -546,13 +514,18 @@ static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
 			     bool host)
 {
+	union hv_stimer_config new_config = {.as_uint64 = config},
+		old_config = {.as_uint64 = stimer->config.as_uint64};
+
 	trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id,
 				       stimer->index, config, host);
 
 	stimer_cleanup(stimer);
-	if ((stimer->config & HV_STIMER_ENABLE) && HV_STIMER_SINT(config) == 0)
-		config &= ~HV_STIMER_ENABLE;
-	stimer->config = config;
+	if (old_config.enable &&
+	    !new_config.direct_mode && new_config.sintx == 0)
+		new_config.enable = 0;
+	stimer->config.as_uint64 = new_config.as_uint64;
+
 	stimer_mark_pending(stimer, false);
 	return 0;
 }
@@ -566,16 +539,16 @@ static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
 	stimer_cleanup(stimer);
 	stimer->count = count;
 	if (stimer->count == 0)
-		stimer->config &= ~HV_STIMER_ENABLE;
-	else if (stimer->config & HV_STIMER_AUTOENABLE)
-		stimer->config |= HV_STIMER_ENABLE;
+		stimer->config.enable = 0;
+	else if (stimer->config.auto_enable)
+		stimer->config.enable = 1;
 	stimer_mark_pending(stimer, false);
 	return 0;
 }
 
 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
 {
-	*pconfig = stimer->config;
+	*pconfig = stimer->config.as_uint64;
 	return 0;
 }
 
@@ -586,44 +559,60 @@ static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
 }
 
 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
-			     struct hv_message *src_msg)
+			     struct hv_message *src_msg, bool no_retry)
 {
 	struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
-	struct page *page;
-	gpa_t gpa;
-	struct hv_message *dst_msg;
+	int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
+	gfn_t msg_page_gfn;
+	struct hv_message_header hv_hdr;
 	int r;
-	struct hv_message_page *msg_page;
 
 	if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
 		return -ENOENT;
 
-	gpa = synic->msg_page & PAGE_MASK;
-	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
-	if (is_error_page(page))
-		return -EFAULT;
+	msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
 
-	msg_page = kmap_atomic(page);
-	dst_msg = &msg_page->sint_message[sint];
-	if (sync_cmpxchg(&dst_msg->header.message_type, HVMSG_NONE,
-			 src_msg->header.message_type) != HVMSG_NONE) {
-		dst_msg->header.message_flags.msg_pending = 1;
-		r = -EAGAIN;
-	} else {
-		memcpy(&dst_msg->u.payload, &src_msg->u.payload,
-		       src_msg->header.payload_size);
-		dst_msg->header.message_type = src_msg->header.message_type;
-		dst_msg->header.payload_size = src_msg->header.payload_size;
-		r = synic_set_irq(synic, sint);
-		if (r >= 1)
-			r = 0;
-		else if (r == 0)
-			r = -EFAULT;
+	/*
+	 * Strictly following the spec-mandated ordering would assume setting
+	 * .msg_pending before checking .message_type.  However, this function
+	 * is only called in vcpu context so the entire update is atomic from
+	 * guest POV and thus the exact order here doesn't matter.
+	 */
+	r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
+				     msg_off + offsetof(struct hv_message,
+							header.message_type),
+				     sizeof(hv_hdr.message_type));
+	if (r < 0)
+		return r;
+
+	if (hv_hdr.message_type != HVMSG_NONE) {
+		if (no_retry)
+			return 0;
+
+		hv_hdr.message_flags.msg_pending = 1;
+		r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
+					      &hv_hdr.message_flags,
+					      msg_off +
+					      offsetof(struct hv_message,
+						       header.message_flags),
+					      sizeof(hv_hdr.message_flags));
+		if (r < 0)
+			return r;
+		return -EAGAIN;
 	}
-	kunmap_atomic(msg_page);
-	kvm_release_page_dirty(page);
-	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
-	return r;
+
+	r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
+				      sizeof(src_msg->header) +
+				      src_msg->header.payload_size);
+	if (r < 0)
+		return r;
+
+	r = synic_set_irq(synic, sint);
+	if (r < 0)
+		return r;
+	if (r == 0)
+		return -EFAULT;
+	return 0;
 }
 
 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
@@ -633,24 +622,45 @@ static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
 	struct hv_timer_message_payload *payload =
 			(struct hv_timer_message_payload *)&msg->u.payload;
 
+	/*
+	 * To avoid piling up periodic ticks, don't retry message
+	 * delivery for them (within "lazy" lost ticks policy).
+	 */
+	bool no_retry = stimer->config.periodic;
+
 	payload->expiration_time = stimer->exp_time;
 	payload->delivery_time = get_time_ref_counter(vcpu->kvm);
 	return synic_deliver_msg(vcpu_to_synic(vcpu),
-				 HV_STIMER_SINT(stimer->config), msg);
+				 stimer->config.sintx, msg,
+				 no_retry);
+}
+
+static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
+{
+	struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
+	struct kvm_lapic_irq irq = {
+		.delivery_mode = APIC_DM_FIXED,
+		.vector = stimer->config.apic_vector
+	};
+
+	return !kvm_apic_set_irq(vcpu, &irq, NULL);
 }
 
 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
 {
-	int r;
+	int r, direct = stimer->config.direct_mode;
 
 	stimer->msg_pending = true;
-	r = stimer_send_msg(stimer);
+	if (!direct)
+		r = stimer_send_msg(stimer);
+	else
+		r = stimer_notify_direct(stimer);
 	trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id,
-				       stimer->index, r);
+				       stimer->index, direct, r);
 	if (!r) {
 		stimer->msg_pending = false;
-		if (!(stimer->config & HV_STIMER_PERIODIC))
-			stimer->config &= ~HV_STIMER_ENABLE;
+		if (!(stimer->config.periodic))
+			stimer->config.enable = 0;
 	}
 }
 
@@ -664,7 +674,7 @@ void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
 	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
 		if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
 			stimer = &hv_vcpu->stimer[i];
-			if (stimer->config & HV_STIMER_ENABLE) {
+			if (stimer->config.enable) {
 				exp_time = stimer->exp_time;
 
 				if (exp_time) {
@@ -674,7 +684,7 @@ void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
 						stimer_expiration(stimer);
 				}
 
-				if ((stimer->config & HV_STIMER_ENABLE) &&
+				if ((stimer->config.enable) &&
 				    stimer->count) {
 					if (!stimer->msg_pending)
 						stimer_start(stimer);
@@ -815,9 +825,9 @@ static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host)
 	struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
 
 	if (host)
-		hv->hv_crash_ctl = data & HV_X64_MSR_CRASH_CTL_NOTIFY;
+		hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
 
-	if (!host && (data & HV_X64_MSR_CRASH_CTL_NOTIFY)) {
+	if (!host && (data & HV_CRASH_CTL_CRASH_NOTIFY)) {
 
 		vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
 			  hv->hv_crash_param[0],
@@ -1758,3 +1768,124 @@ int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
 		return kvm_hv_eventfd_deassign(kvm, args->conn_id);
 	return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
 }
+
+int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
+				struct kvm_cpuid_entry2 __user *entries)
+{
+	uint16_t evmcs_ver = kvm_x86_ops->nested_get_evmcs_version(vcpu);
+	struct kvm_cpuid_entry2 cpuid_entries[] = {
+		{ .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
+		{ .function = HYPERV_CPUID_INTERFACE },
+		{ .function = HYPERV_CPUID_VERSION },
+		{ .function = HYPERV_CPUID_FEATURES },
+		{ .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
+		{ .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
+		{ .function = HYPERV_CPUID_NESTED_FEATURES },
+	};
+	int i, nent = ARRAY_SIZE(cpuid_entries);
+
+	/* Skip NESTED_FEATURES if eVMCS is not supported */
+	if (!evmcs_ver)
+		--nent;
+
+	if (cpuid->nent < nent)
+		return -E2BIG;
+
+	if (cpuid->nent > nent)
+		cpuid->nent = nent;
+
+	for (i = 0; i < nent; i++) {
+		struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
+		u32 signature[3];
+
+		switch (ent->function) {
+		case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
+			memcpy(signature, "Linux KVM Hv", 12);
+
+			ent->eax = HYPERV_CPUID_NESTED_FEATURES;
+			ent->ebx = signature[0];
+			ent->ecx = signature[1];
+			ent->edx = signature[2];
+			break;
+
+		case HYPERV_CPUID_INTERFACE:
+			memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
+			ent->eax = signature[0];
+			break;
+
+		case HYPERV_CPUID_VERSION:
+			/*
+			 * We implement some Hyper-V 2016 functions so let's use
+			 * this version.
+			 */
+			ent->eax = 0x00003839;
+			ent->ebx = 0x000A0000;
+			break;
+
+		case HYPERV_CPUID_FEATURES:
+			ent->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE;
+			ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
+			ent->eax |= HV_X64_MSR_SYNIC_AVAILABLE;
+			ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
+			ent->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
+			ent->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
+			ent->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE;
+			ent->eax |= HV_X64_MSR_RESET_AVAILABLE;
+			ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
+			ent->eax |= HV_X64_MSR_GUEST_IDLE_AVAILABLE;
+			ent->eax |= HV_X64_ACCESS_FREQUENCY_MSRS;
+			ent->eax |= HV_X64_ACCESS_REENLIGHTENMENT;
+
+			ent->ebx |= HV_X64_POST_MESSAGES;
+			ent->ebx |= HV_X64_SIGNAL_EVENTS;
+
+			ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
+			ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
+			ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
+
+			break;
+
+		case HYPERV_CPUID_ENLIGHTMENT_INFO:
+			ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
+			ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
+			ent->eax |= HV_X64_SYSTEM_RESET_RECOMMENDED;
+			ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
+			ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
+			ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
+			ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
+
+			/*
+			 * Default number of spinlock retry attempts, matches
+			 * HyperV 2016.
+			 */
+			ent->ebx = 0x00000FFF;
+
+			break;
+
+		case HYPERV_CPUID_IMPLEMENT_LIMITS:
+			/* Maximum number of virtual processors */
+			ent->eax = KVM_MAX_VCPUS;
+			/*
+			 * Maximum number of logical processors, matches
+			 * HyperV 2016.
+			 */
+			ent->ebx = 64;
+
+			break;
+
+		case HYPERV_CPUID_NESTED_FEATURES:
+			ent->eax = evmcs_ver;
+
+			break;
+
+		default:
+			break;
+		}
+	}
+
+	if (copy_to_user(entries, cpuid_entries,
+			 nent * sizeof(struct kvm_cpuid_entry2)))
+		return -EFAULT;
+
+	return 0;
+}
diff --git a/arch/x86/kvm/hyperv.h b/arch/x86/kvm/hyperv.h
index 0e66c12ed2c3..fd7cf13a2144 100644
--- a/arch/x86/kvm/hyperv.h
+++ b/arch/x86/kvm/hyperv.h
@@ -24,6 +24,8 @@
 #ifndef __ARCH_X86_KVM_HYPERV_H__
 #define __ARCH_X86_KVM_HYPERV_H__
 
+#include <linux/kvm_host.h>
+
 static inline struct kvm_vcpu_hv *vcpu_to_hv_vcpu(struct kvm_vcpu *vcpu)
 {
 	return &vcpu->arch.hyperv;
@@ -95,5 +97,7 @@ void kvm_hv_setup_tsc_page(struct kvm *kvm,
 void kvm_hv_init_vm(struct kvm *kvm);
 void kvm_hv_destroy_vm(struct kvm *kvm);
 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args);
+int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
+				struct kvm_cpuid_entry2 __user *entries);
 
 #endif
diff --git a/arch/x86/kvm/kvm_cache_regs.h b/arch/x86/kvm/kvm_cache_regs.h
index 9619dcc2b325..f8f56a93358b 100644
--- a/arch/x86/kvm/kvm_cache_regs.h
+++ b/arch/x86/kvm/kvm_cache_regs.h
@@ -2,6 +2,8 @@
 #ifndef ASM_KVM_CACHE_REGS_H
 #define ASM_KVM_CACHE_REGS_H
 
+#include <linux/kvm_host.h>
+
 #define KVM_POSSIBLE_CR0_GUEST_BITS X86_CR0_TS
 #define KVM_POSSIBLE_CR4_GUEST_BITS				  \
 	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR  \
diff --git a/arch/x86/kvm/lapic.c b/arch/x86/kvm/lapic.c
index 89db20f8cb70..9f089e2e09d0 100644
--- a/arch/x86/kvm/lapic.c
+++ b/arch/x86/kvm/lapic.c
@@ -55,7 +55,7 @@
 #define PRIo64 "o"
 
 /* #define apic_debug(fmt,arg...) printk(KERN_WARNING fmt,##arg) */
-#define apic_debug(fmt, arg...)
+#define apic_debug(fmt, arg...) do {} while (0)
 
 /* 14 is the version for Xeon and Pentium 8.4.8*/
 #define APIC_VERSION			(0x14UL | ((KVM_APIC_LVT_NUM - 1) << 16))
@@ -251,10 +251,9 @@ static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
 
 	if (enabled != apic->sw_enabled) {
 		apic->sw_enabled = enabled;
-		if (enabled) {
+		if (enabled)
 			static_key_slow_dec_deferred(&apic_sw_disabled);
-			recalculate_apic_map(apic->vcpu->kvm);
-		} else
+		else
 			static_key_slow_inc(&apic_sw_disabled.key);
 	}
 }
@@ -576,6 +575,11 @@ int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
 	rcu_read_lock();
 	map = rcu_dereference(kvm->arch.apic_map);
 
+	if (unlikely(!map)) {
+		count = -EOPNOTSUPP;
+		goto out;
+	}
+
 	if (min > map->max_apic_id)
 		goto out;
 	/* Bits above cluster_size are masked in the caller.  */
diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c
index cf5f572f2305..ce770b446238 100644
--- a/arch/x86/kvm/mmu.c
+++ b/arch/x86/kvm/mmu.c
@@ -264,6 +264,35 @@ static void mmu_spte_set(u64 *sptep, u64 spte);
 static union kvm_mmu_page_role
 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
 
+
+static inline bool kvm_available_flush_tlb_with_range(void)
+{
+	return kvm_x86_ops->tlb_remote_flush_with_range;
+}
+
+static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
+		struct kvm_tlb_range *range)
+{
+	int ret = -ENOTSUPP;
+
+	if (range && kvm_x86_ops->tlb_remote_flush_with_range)
+		ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
+
+	if (ret)
+		kvm_flush_remote_tlbs(kvm);
+}
+
+static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
+		u64 start_gfn, u64 pages)
+{
+	struct kvm_tlb_range range;
+
+	range.start_gfn = start_gfn;
+	range.pages = pages;
+
+	kvm_flush_remote_tlbs_with_range(kvm, &range);
+}
+
 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
 {
 	BUG_ON((mmio_mask & mmio_value) != mmio_value);
@@ -1456,8 +1485,12 @@ static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
 
 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
 {
-	if (__drop_large_spte(vcpu->kvm, sptep))
-		kvm_flush_remote_tlbs(vcpu->kvm);
+	if (__drop_large_spte(vcpu->kvm, sptep)) {
+		struct kvm_mmu_page *sp = page_header(__pa(sptep));
+
+		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
+			KVM_PAGES_PER_HPAGE(sp->role.level));
+	}
 }
 
 /*
@@ -1743,10 +1776,12 @@ restart:
 		}
 	}
 
-	if (need_flush)
-		kvm_flush_remote_tlbs(kvm);
+	if (need_flush && kvm_available_flush_tlb_with_range()) {
+		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
+		return 0;
+	}
 
-	return 0;
+	return need_flush;
 }
 
 struct slot_rmap_walk_iterator {
@@ -1880,9 +1915,9 @@ int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
 	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
 }
 
-void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
+int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
 {
-	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
+	return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
 }
 
 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
@@ -1925,7 +1960,8 @@ static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
 
 	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
-	kvm_flush_remote_tlbs(vcpu->kvm);
+	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
+			KVM_PAGES_PER_HPAGE(sp->role.level));
 }
 
 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
@@ -2441,7 +2477,7 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
 		account_shadowed(vcpu->kvm, sp);
 		if (level == PT_PAGE_TABLE_LEVEL &&
 		      rmap_write_protect(vcpu, gfn))
-			kvm_flush_remote_tlbs(vcpu->kvm);
+			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
 
 		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
 			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
@@ -2561,7 +2597,7 @@ static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
 			return;
 
 		drop_parent_pte(child, sptep);
-		kvm_flush_remote_tlbs(vcpu->kvm);
+		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
 	}
 }
 
@@ -2985,8 +3021,10 @@ static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
 			ret = RET_PF_EMULATE;
 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
 	}
+
 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
-		kvm_flush_remote_tlbs(vcpu->kvm);
+		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
+				KVM_PAGES_PER_HPAGE(level));
 
 	if (unlikely(is_mmio_spte(*sptep)))
 		ret = RET_PF_EMULATE;
@@ -5074,9 +5112,9 @@ static bool need_remote_flush(u64 old, u64 new)
 }
 
 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
-				    const u8 *new, int *bytes)
+				    int *bytes)
 {
-	u64 gentry;
+	u64 gentry = 0;
 	int r;
 
 	/*
@@ -5088,22 +5126,12 @@ static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
 		*gpa &= ~(gpa_t)7;
 		*bytes = 8;
-		r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
-		if (r)
-			gentry = 0;
-		new = (const u8 *)&gentry;
 	}
 
-	switch (*bytes) {
-	case 4:
-		gentry = *(const u32 *)new;
-		break;
-	case 8:
-		gentry = *(const u64 *)new;
-		break;
-	default:
-		gentry = 0;
-		break;
+	if (*bytes == 4 || *bytes == 8) {
+		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
+		if (r)
+			gentry = 0;
 	}
 
 	return gentry;
@@ -5207,8 +5235,6 @@ static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
 
 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
 
-	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
-
 	/*
 	 * No need to care whether allocation memory is successful
 	 * or not since pte prefetch is skiped if it does not have
@@ -5217,6 +5243,9 @@ static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
 	mmu_topup_memory_caches(vcpu);
 
 	spin_lock(&vcpu->kvm->mmu_lock);
+
+	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
+
 	++vcpu->kvm->stat.mmu_pte_write;
 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
 
@@ -5595,8 +5624,13 @@ void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
 {
 	struct kvm_memslots *slots;
 	struct kvm_memory_slot *memslot;
+	bool flush_tlb = true;
+	bool flush = false;
 	int i;
 
+	if (kvm_available_flush_tlb_with_range())
+		flush_tlb = false;
+
 	spin_lock(&kvm->mmu_lock);
 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 		slots = __kvm_memslots(kvm, i);
@@ -5608,12 +5642,17 @@ void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
 			if (start >= end)
 				continue;
 
-			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
-						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
-						start, end - 1, true);
+			flush |= slot_handle_level_range(kvm, memslot,
+					kvm_zap_rmapp, PT_PAGE_TABLE_LEVEL,
+					PT_MAX_HUGEPAGE_LEVEL, start,
+					end - 1, flush_tlb);
 		}
 	}
 
+	if (flush)
+		kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
+				gfn_end - gfn_start + 1);
+
 	spin_unlock(&kvm->mmu_lock);
 }
 
@@ -5647,12 +5686,13 @@ void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
 	 * spte from present to present (changing the spte from present
 	 * to nonpresent will flush all the TLBs immediately), in other
 	 * words, the only case we care is mmu_spte_update() where we
-	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
+	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
 	 * instead of PT_WRITABLE_MASK, that means it does not depend
 	 * on PT_WRITABLE_MASK anymore.
 	 */
 	if (flush)
-		kvm_flush_remote_tlbs(kvm);
+		kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
+			memslot->npages);
 }
 
 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
@@ -5680,7 +5720,13 @@ restart:
 			!kvm_is_reserved_pfn(pfn) &&
 			PageTransCompoundMap(pfn_to_page(pfn))) {
 			pte_list_remove(rmap_head, sptep);
-			need_tlb_flush = 1;
+
+			if (kvm_available_flush_tlb_with_range())
+				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
+					KVM_PAGES_PER_HPAGE(sp->role.level));
+			else
+				need_tlb_flush = 1;
+
 			goto restart;
 		}
 	}
@@ -5716,7 +5762,8 @@ void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
 	 * dirty_bitmap.
 	 */
 	if (flush)
-		kvm_flush_remote_tlbs(kvm);
+		kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
+				memslot->npages);
 }
 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
 
@@ -5734,7 +5781,8 @@ void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
 	lockdep_assert_held(&kvm->slots_lock);
 
 	if (flush)
-		kvm_flush_remote_tlbs(kvm);
+		kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
+				memslot->npages);
 }
 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
 
@@ -5751,7 +5799,8 @@ void kvm_mmu_slot_set_dirty(struct kvm *kvm,
 
 	/* see kvm_mmu_slot_leaf_clear_dirty */
 	if (flush)
-		kvm_flush_remote_tlbs(kvm);
+		kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
+				memslot->npages);
 }
 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
 
diff --git a/arch/x86/kvm/paging_tmpl.h b/arch/x86/kvm/paging_tmpl.h
index 7cf2185b7eb5..6bdca39829bc 100644
--- a/arch/x86/kvm/paging_tmpl.h
+++ b/arch/x86/kvm/paging_tmpl.h
@@ -894,7 +894,8 @@ static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
 			pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
 
 			if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
-				kvm_flush_remote_tlbs(vcpu->kvm);
+				kvm_flush_remote_tlbs_with_address(vcpu->kvm,
+					sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
 
 			if (!rmap_can_add(vcpu))
 				break;
diff --git a/arch/x86/kvm/svm.c b/arch/x86/kvm/svm.c
index 0e21ccc46792..307e5bddb6d9 100644
--- a/arch/x86/kvm/svm.c
+++ b/arch/x86/kvm/svm.c
@@ -675,11 +675,6 @@ struct svm_cpu_data {
 
 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
 
-struct svm_init_data {
-	int cpu;
-	int r;
-};
-
 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
 
 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
@@ -711,17 +706,17 @@ static u32 svm_msrpm_offset(u32 msr)
 
 static inline void clgi(void)
 {
-	asm volatile (__ex(SVM_CLGI));
+	asm volatile (__ex("clgi"));
 }
 
 static inline void stgi(void)
 {
-	asm volatile (__ex(SVM_STGI));
+	asm volatile (__ex("stgi"));
 }
 
 static inline void invlpga(unsigned long addr, u32 asid)
 {
-	asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
+	asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
 }
 
 static int get_npt_level(struct kvm_vcpu *vcpu)
@@ -1446,7 +1441,7 @@ static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
 	return vcpu->arch.tsc_offset;
 }
 
-static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
+static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
 {
 	struct vcpu_svm *svm = to_svm(vcpu);
 	u64 g_tsc_offset = 0;
@@ -1456,14 +1451,16 @@ static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
 		g_tsc_offset = svm->vmcb->control.tsc_offset -
 			       svm->nested.hsave->control.tsc_offset;
 		svm->nested.hsave->control.tsc_offset = offset;
-	} else
-		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
-					   svm->vmcb->control.tsc_offset,
-					   offset);
+	}
+
+	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
+				   svm->vmcb->control.tsc_offset - g_tsc_offset,
+				   offset);
 
 	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
 
 	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
+	return svm->vmcb->control.tsc_offset;
 }
 
 static void avic_init_vmcb(struct vcpu_svm *svm)
@@ -1664,20 +1661,23 @@ static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
 static int avic_init_access_page(struct kvm_vcpu *vcpu)
 {
 	struct kvm *kvm = vcpu->kvm;
-	int ret;
+	int ret = 0;
 
+	mutex_lock(&kvm->slots_lock);
 	if (kvm->arch.apic_access_page_done)
-		return 0;
+		goto out;
 
-	ret = x86_set_memory_region(kvm,
-				    APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
-				    APIC_DEFAULT_PHYS_BASE,
-				    PAGE_SIZE);
+	ret = __x86_set_memory_region(kvm,
+				      APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
+				      APIC_DEFAULT_PHYS_BASE,
+				      PAGE_SIZE);
 	if (ret)
-		return ret;
+		goto out;
 
 	kvm->arch.apic_access_page_done = true;
-	return 0;
+out:
+	mutex_unlock(&kvm->slots_lock);
+	return ret;
 }
 
 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
@@ -2125,6 +2125,13 @@ static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
 		goto out;
 	}
 
+	svm->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, GFP_KERNEL);
+	if (!svm->vcpu.arch.guest_fpu) {
+		printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
+		err = -ENOMEM;
+		goto free_partial_svm;
+	}
+
 	err = kvm_vcpu_init(&svm->vcpu, kvm, id);
 	if (err)
 		goto free_svm;
@@ -2184,26 +2191,39 @@ free_page1:
 uninit:
 	kvm_vcpu_uninit(&svm->vcpu);
 free_svm:
+	kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
+free_partial_svm:
 	kmem_cache_free(kvm_vcpu_cache, svm);
 out:
 	return ERR_PTR(err);
 }
 
+static void svm_clear_current_vmcb(struct vmcb *vmcb)
+{
+	int i;
+
+	for_each_online_cpu(i)
+		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
+}
+
 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
 {
 	struct vcpu_svm *svm = to_svm(vcpu);
 
+	/*
+	 * The vmcb page can be recycled, causing a false negative in
+	 * svm_vcpu_load(). So, ensure that no logical CPU has this
+	 * vmcb page recorded as its current vmcb.
+	 */
+	svm_clear_current_vmcb(svm->vmcb);
+
 	__free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
 	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
 	__free_page(virt_to_page(svm->nested.hsave));
 	__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
 	kvm_vcpu_uninit(vcpu);
+	kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
 	kmem_cache_free(kvm_vcpu_cache, svm);
-	/*
-	 * The vmcb page can be recycled, causing a false negative in
-	 * svm_vcpu_load(). So do a full IBPB now.
-	 */
-	indirect_branch_prediction_barrier();
 }
 
 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
@@ -2923,6 +2943,8 @@ static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
 {
 	WARN_ON(mmu_is_nested(vcpu));
+
+	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
 	kvm_init_shadow_mmu(vcpu);
 	vcpu->arch.mmu->set_cr3           = nested_svm_set_tdp_cr3;
 	vcpu->arch.mmu->get_cr3           = nested_svm_get_tdp_cr3;
@@ -2935,6 +2957,7 @@ static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
 
 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
 {
+	vcpu->arch.mmu = &vcpu->arch.root_mmu;
 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
 }
 
@@ -3261,6 +3284,8 @@ static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *fr
 	dst->event_inj_err        = from->event_inj_err;
 	dst->nested_cr3           = from->nested_cr3;
 	dst->virt_ext              = from->virt_ext;
+	dst->pause_filter_count   = from->pause_filter_count;
+	dst->pause_filter_thresh  = from->pause_filter_thresh;
 }
 
 static int nested_svm_vmexit(struct vcpu_svm *svm)
@@ -3339,6 +3364,11 @@ static int nested_svm_vmexit(struct vcpu_svm *svm)
 	nested_vmcb->control.event_inj         = 0;
 	nested_vmcb->control.event_inj_err     = 0;
 
+	nested_vmcb->control.pause_filter_count =
+		svm->vmcb->control.pause_filter_count;
+	nested_vmcb->control.pause_filter_thresh =
+		svm->vmcb->control.pause_filter_thresh;
+
 	/* We always set V_INTR_MASKING and remember the old value in hflags */
 	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
 		nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
@@ -3444,7 +3474,6 @@ static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
 		svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
 
 	if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
-		kvm_mmu_unload(&svm->vcpu);
 		svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
 		nested_svm_init_mmu_context(&svm->vcpu);
 	}
@@ -3516,6 +3545,11 @@ static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
 	svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
 	svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
 
+	svm->vmcb->control.pause_filter_count =
+		nested_vmcb->control.pause_filter_count;
+	svm->vmcb->control.pause_filter_thresh =
+		nested_vmcb->control.pause_filter_thresh;
+
 	nested_svm_unmap(page);
 
 	/* Enter Guest-Mode */
@@ -5620,9 +5654,9 @@ static void svm_vcpu_run(struct kvm_vcpu *vcpu)
 		/* Enter guest mode */
 		"push %%" _ASM_AX " \n\t"
 		"mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
-		__ex(SVM_VMLOAD) "\n\t"
-		__ex(SVM_VMRUN) "\n\t"
-		__ex(SVM_VMSAVE) "\n\t"
+		__ex("vmload %%" _ASM_AX) "\n\t"
+		__ex("vmrun %%" _ASM_AX) "\n\t"
+		__ex("vmsave %%" _ASM_AX) "\n\t"
 		"pop %%" _ASM_AX " \n\t"
 
 		/* Save guest registers, load host registers */
@@ -5820,6 +5854,13 @@ static bool svm_cpu_has_accelerated_tpr(void)
 
 static bool svm_has_emulated_msr(int index)
 {
+	switch (index) {
+	case MSR_IA32_MCG_EXT_CTL:
+		return false;
+	default:
+		break;
+	}
+
 	return true;
 }
 
@@ -5908,6 +5949,11 @@ static bool svm_umip_emulated(void)
 	return false;
 }
 
+static bool svm_pt_supported(void)
+{
+	return false;
+}
+
 static bool svm_has_wbinvd_exit(void)
 {
 	return true;
@@ -7037,6 +7083,12 @@ failed:
 	return ret;
 }
 
+static uint16_t nested_get_evmcs_version(struct kvm_vcpu *vcpu)
+{
+	/* Not supported */
+	return 0;
+}
+
 static int nested_enable_evmcs(struct kvm_vcpu *vcpu,
 				   uint16_t *vmcs_version)
 {
@@ -7143,13 +7195,14 @@ static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
 	.mpx_supported = svm_mpx_supported,
 	.xsaves_supported = svm_xsaves_supported,
 	.umip_emulated = svm_umip_emulated,
+	.pt_supported = svm_pt_supported,
 
 	.set_supported_cpuid = svm_set_supported_cpuid,
 
 	.has_wbinvd_exit = svm_has_wbinvd_exit,
 
 	.read_l1_tsc_offset = svm_read_l1_tsc_offset,
-	.write_tsc_offset = svm_write_tsc_offset,
+	.write_l1_tsc_offset = svm_write_l1_tsc_offset,
 
 	.set_tdp_cr3 = set_tdp_cr3,
 
@@ -7175,6 +7228,7 @@ static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
 	.mem_enc_unreg_region = svm_unregister_enc_region,
 
 	.nested_enable_evmcs = nested_enable_evmcs,
+	.nested_get_evmcs_version = nested_get_evmcs_version,
 };
 
 static int __init svm_init(void)
diff --git a/arch/x86/kvm/trace.h b/arch/x86/kvm/trace.h
index 0659465a745c..705f40ae2532 100644
--- a/arch/x86/kvm/trace.h
+++ b/arch/x86/kvm/trace.h
@@ -1254,24 +1254,26 @@ TRACE_EVENT(kvm_hv_stimer_callback,
  * Tracepoint for stimer_expiration.
  */
 TRACE_EVENT(kvm_hv_stimer_expiration,
-	TP_PROTO(int vcpu_id, int timer_index, int msg_send_result),
-	TP_ARGS(vcpu_id, timer_index, msg_send_result),
+	TP_PROTO(int vcpu_id, int timer_index, int direct, int msg_send_result),
+	TP_ARGS(vcpu_id, timer_index, direct, msg_send_result),
 
 	TP_STRUCT__entry(
 		__field(int, vcpu_id)
 		__field(int, timer_index)
+		__field(int, direct)
 		__field(int, msg_send_result)
 	),
 
 	TP_fast_assign(
 		__entry->vcpu_id = vcpu_id;
 		__entry->timer_index = timer_index;
+		__entry->direct = direct;
 		__entry->msg_send_result = msg_send_result;
 	),
 
-	TP_printk("vcpu_id %d timer %d msg send result %d",
+	TP_printk("vcpu_id %d timer %d direct %d send result %d",
 		  __entry->vcpu_id, __entry->timer_index,
-		  __entry->msg_send_result)
+		  __entry->direct, __entry->msg_send_result)
 );
 
 /*
diff --git a/arch/x86/kvm/vmx.c b/arch/x86/kvm/vmx.c
deleted file mode 100644
index 4555077d69ce..000000000000
--- a/arch/x86/kvm/vmx.c
+++ /dev/null
@@ -1,15218 +0,0 @@
-/*
- * Kernel-based Virtual Machine driver for Linux
- *
- * This module enables machines with Intel VT-x extensions to run virtual
- * machines without emulation or binary translation.
- *
- * Copyright (C) 2006 Qumranet, Inc.
- * Copyright 2010 Red Hat, Inc. and/or its affiliates.
- *
- * Authors:
- *   Avi Kivity   <avi@qumranet.com>
- *   Yaniv Kamay  <yaniv@qumranet.com>
- *
- * This work is licensed under the terms of the GNU GPL, version 2.  See
- * the COPYING file in the top-level directory.
- *
- */
-
-#include "irq.h"
-#include "mmu.h"
-#include "cpuid.h"
-#include "lapic.h"
-#include "hyperv.h"
-
-#include <linux/kvm_host.h>
-#include <linux/module.h>
-#include <linux/kernel.h>
-#include <linux/mm.h>
-#include <linux/highmem.h>
-#include <linux/sched.h>
-#include <linux/moduleparam.h>
-#include <linux/mod_devicetable.h>
-#include <linux/trace_events.h>
-#include <linux/slab.h>
-#include <linux/tboot.h>
-#include <linux/hrtimer.h>
-#include <linux/frame.h>
-#include <linux/nospec.h>
-#include "kvm_cache_regs.h"
-#include "x86.h"
-
-#include <asm/asm.h>
-#include <asm/cpu.h>
-#include <asm/io.h>
-#include <asm/desc.h>
-#include <asm/vmx.h>
-#include <asm/virtext.h>
-#include <asm/mce.h>
-#include <asm/fpu/internal.h>
-#include <asm/perf_event.h>
-#include <asm/debugreg.h>
-#include <asm/kexec.h>
-#include <asm/apic.h>
-#include <asm/irq_remapping.h>
-#include <asm/mmu_context.h>
-#include <asm/spec-ctrl.h>
-#include <asm/mshyperv.h>
-
-#include "trace.h"
-#include "pmu.h"
-#include "vmx_evmcs.h"
-
-#define __ex(x) __kvm_handle_fault_on_reboot(x)
-#define __ex_clear(x, reg) \
-	____kvm_handle_fault_on_reboot(x, "xor " reg ", " reg)
-
-MODULE_AUTHOR("Qumranet");
-MODULE_LICENSE("GPL");
-
-static const struct x86_cpu_id vmx_cpu_id[] = {
-	X86_FEATURE_MATCH(X86_FEATURE_VMX),
-	{}
-};
-MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
-
-static bool __read_mostly enable_vpid = 1;
-module_param_named(vpid, enable_vpid, bool, 0444);
-
-static bool __read_mostly enable_vnmi = 1;
-module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
-
-static bool __read_mostly flexpriority_enabled = 1;
-module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
-
-static bool __read_mostly enable_ept = 1;
-module_param_named(ept, enable_ept, bool, S_IRUGO);
-
-static bool __read_mostly enable_unrestricted_guest = 1;
-module_param_named(unrestricted_guest,
-			enable_unrestricted_guest, bool, S_IRUGO);
-
-static bool __read_mostly enable_ept_ad_bits = 1;
-module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
-
-static bool __read_mostly emulate_invalid_guest_state = true;
-module_param(emulate_invalid_guest_state, bool, S_IRUGO);
-
-static bool __read_mostly fasteoi = 1;
-module_param(fasteoi, bool, S_IRUGO);
-
-static bool __read_mostly enable_apicv = 1;
-module_param(enable_apicv, bool, S_IRUGO);
-
-static bool __read_mostly enable_shadow_vmcs = 1;
-module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
-/*
- * If nested=1, nested virtualization is supported, i.e., guests may use
- * VMX and be a hypervisor for its own guests. If nested=0, guests may not
- * use VMX instructions.
- */
-static bool __read_mostly nested = 1;
-module_param(nested, bool, S_IRUGO);
-
-static bool __read_mostly nested_early_check = 0;
-module_param(nested_early_check, bool, S_IRUGO);
-
-static u64 __read_mostly host_xss;
-
-static bool __read_mostly enable_pml = 1;
-module_param_named(pml, enable_pml, bool, S_IRUGO);
-
-#define MSR_TYPE_R	1
-#define MSR_TYPE_W	2
-#define MSR_TYPE_RW	3
-
-#define MSR_BITMAP_MODE_X2APIC		1
-#define MSR_BITMAP_MODE_X2APIC_APICV	2
-
-#define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
-
-/* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
-static int __read_mostly cpu_preemption_timer_multi;
-static bool __read_mostly enable_preemption_timer = 1;
-#ifdef CONFIG_X86_64
-module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
-#endif
-
-#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
-#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
-#define KVM_VM_CR0_ALWAYS_ON				\
-	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
-	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
-#define KVM_CR4_GUEST_OWNED_BITS				      \
-	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
-	 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
-
-#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
-#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
-#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
-
-#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
-
-#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
-
-/*
- * Hyper-V requires all of these, so mark them as supported even though
- * they are just treated the same as all-context.
- */
-#define VMX_VPID_EXTENT_SUPPORTED_MASK		\
-	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
-	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
-	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
-	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
-
-/*
- * These 2 parameters are used to config the controls for Pause-Loop Exiting:
- * ple_gap:    upper bound on the amount of time between two successive
- *             executions of PAUSE in a loop. Also indicate if ple enabled.
- *             According to test, this time is usually smaller than 128 cycles.
- * ple_window: upper bound on the amount of time a guest is allowed to execute
- *             in a PAUSE loop. Tests indicate that most spinlocks are held for
- *             less than 2^12 cycles
- * Time is measured based on a counter that runs at the same rate as the TSC,
- * refer SDM volume 3b section 21.6.13 & 22.1.3.
- */
-static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
-
-static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
-module_param(ple_window, uint, 0444);
-
-/* Default doubles per-vcpu window every exit. */
-static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
-module_param(ple_window_grow, uint, 0444);
-
-/* Default resets per-vcpu window every exit to ple_window. */
-static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
-module_param(ple_window_shrink, uint, 0444);
-
-/* Default is to compute the maximum so we can never overflow. */
-static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
-module_param(ple_window_max, uint, 0444);
-
-extern const ulong vmx_return;
-extern const ulong vmx_early_consistency_check_return;
-
-static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
-static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
-static DEFINE_MUTEX(vmx_l1d_flush_mutex);
-
-/* Storage for pre module init parameter parsing */
-static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
-
-static const struct {
-	const char *option;
-	bool for_parse;
-} vmentry_l1d_param[] = {
-	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
-	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
-	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
-	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
-	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
-	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
-};
-
-#define L1D_CACHE_ORDER 4
-static void *vmx_l1d_flush_pages;
-
-static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
-{
-	struct page *page;
-	unsigned int i;
-
-	if (!enable_ept) {
-		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
-		return 0;
-	}
-
-	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
-		u64 msr;
-
-		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
-		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
-			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
-			return 0;
-		}
-	}
-
-	/* If set to auto use the default l1tf mitigation method */
-	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
-		switch (l1tf_mitigation) {
-		case L1TF_MITIGATION_OFF:
-			l1tf = VMENTER_L1D_FLUSH_NEVER;
-			break;
-		case L1TF_MITIGATION_FLUSH_NOWARN:
-		case L1TF_MITIGATION_FLUSH:
-		case L1TF_MITIGATION_FLUSH_NOSMT:
-			l1tf = VMENTER_L1D_FLUSH_COND;
-			break;
-		case L1TF_MITIGATION_FULL:
-		case L1TF_MITIGATION_FULL_FORCE:
-			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
-			break;
-		}
-	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
-		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
-	}
-
-	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
-	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
-		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
-		if (!page)
-			return -ENOMEM;
-		vmx_l1d_flush_pages = page_address(page);
-
-		/*
-		 * Initialize each page with a different pattern in
-		 * order to protect against KSM in the nested
-		 * virtualization case.
-		 */
-		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
-			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
-			       PAGE_SIZE);
-		}
-	}
-
-	l1tf_vmx_mitigation = l1tf;
-
-	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
-		static_branch_enable(&vmx_l1d_should_flush);
-	else
-		static_branch_disable(&vmx_l1d_should_flush);
-
-	if (l1tf == VMENTER_L1D_FLUSH_COND)
-		static_branch_enable(&vmx_l1d_flush_cond);
-	else
-		static_branch_disable(&vmx_l1d_flush_cond);
-	return 0;
-}
-
-static int vmentry_l1d_flush_parse(const char *s)
-{
-	unsigned int i;
-
-	if (s) {
-		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
-			if (vmentry_l1d_param[i].for_parse &&
-			    sysfs_streq(s, vmentry_l1d_param[i].option))
-				return i;
-		}
-	}
-	return -EINVAL;
-}
-
-static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
-{
-	int l1tf, ret;
-
-	l1tf = vmentry_l1d_flush_parse(s);
-	if (l1tf < 0)
-		return l1tf;
-
-	if (!boot_cpu_has(X86_BUG_L1TF))
-		return 0;
-
-	/*
-	 * Has vmx_init() run already? If not then this is the pre init
-	 * parameter parsing. In that case just store the value and let
-	 * vmx_init() do the proper setup after enable_ept has been
-	 * established.
-	 */
-	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
-		vmentry_l1d_flush_param = l1tf;
-		return 0;
-	}
-
-	mutex_lock(&vmx_l1d_flush_mutex);
-	ret = vmx_setup_l1d_flush(l1tf);
-	mutex_unlock(&vmx_l1d_flush_mutex);
-	return ret;
-}
-
-static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
-{
-	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
-		return sprintf(s, "???\n");
-
-	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
-}
-
-static const struct kernel_param_ops vmentry_l1d_flush_ops = {
-	.set = vmentry_l1d_flush_set,
-	.get = vmentry_l1d_flush_get,
-};
-module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
-
-enum ept_pointers_status {
-	EPT_POINTERS_CHECK = 0,
-	EPT_POINTERS_MATCH = 1,
-	EPT_POINTERS_MISMATCH = 2
-};
-
-struct kvm_vmx {
-	struct kvm kvm;
-
-	unsigned int tss_addr;
-	bool ept_identity_pagetable_done;
-	gpa_t ept_identity_map_addr;
-
-	enum ept_pointers_status ept_pointers_match;
-	spinlock_t ept_pointer_lock;
-};
-
-#define NR_AUTOLOAD_MSRS 8
-
-struct vmcs_hdr {
-	u32 revision_id:31;
-	u32 shadow_vmcs:1;
-};
-
-struct vmcs {
-	struct vmcs_hdr hdr;
-	u32 abort;
-	char data[0];
-};
-
-/*
- * vmcs_host_state tracks registers that are loaded from the VMCS on VMEXIT
- * and whose values change infrequently, but are not constant.  I.e. this is
- * used as a write-through cache of the corresponding VMCS fields.
- */
-struct vmcs_host_state {
-	unsigned long cr3;	/* May not match real cr3 */
-	unsigned long cr4;	/* May not match real cr4 */
-	unsigned long gs_base;
-	unsigned long fs_base;
-
-	u16           fs_sel, gs_sel, ldt_sel;
-#ifdef CONFIG_X86_64
-	u16           ds_sel, es_sel;
-#endif
-};
-
-/*
- * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
- * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
- * loaded on this CPU (so we can clear them if the CPU goes down).
- */
-struct loaded_vmcs {
-	struct vmcs *vmcs;
-	struct vmcs *shadow_vmcs;
-	int cpu;
-	bool launched;
-	bool nmi_known_unmasked;
-	bool hv_timer_armed;
-	/* Support for vnmi-less CPUs */
-	int soft_vnmi_blocked;
-	ktime_t entry_time;
-	s64 vnmi_blocked_time;
-	unsigned long *msr_bitmap;
-	struct list_head loaded_vmcss_on_cpu_link;
-	struct vmcs_host_state host_state;
-};
-
-struct shared_msr_entry {
-	unsigned index;
-	u64 data;
-	u64 mask;
-};
-
-/*
- * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
- * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
- * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
- * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
- * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
- * More than one of these structures may exist, if L1 runs multiple L2 guests.
- * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the
- * underlying hardware which will be used to run L2.
- * This structure is packed to ensure that its layout is identical across
- * machines (necessary for live migration).
- *
- * IMPORTANT: Changing the layout of existing fields in this structure
- * will break save/restore compatibility with older kvm releases. When
- * adding new fields, either use space in the reserved padding* arrays
- * or add the new fields to the end of the structure.
- */
-typedef u64 natural_width;
-struct __packed vmcs12 {
-	/* According to the Intel spec, a VMCS region must start with the
-	 * following two fields. Then follow implementation-specific data.
-	 */
-	struct vmcs_hdr hdr;
-	u32 abort;
-
-	u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
-	u32 padding[7]; /* room for future expansion */
-
-	u64 io_bitmap_a;
-	u64 io_bitmap_b;
-	u64 msr_bitmap;
-	u64 vm_exit_msr_store_addr;
-	u64 vm_exit_msr_load_addr;
-	u64 vm_entry_msr_load_addr;
-	u64 tsc_offset;
-	u64 virtual_apic_page_addr;
-	u64 apic_access_addr;
-	u64 posted_intr_desc_addr;
-	u64 ept_pointer;
-	u64 eoi_exit_bitmap0;
-	u64 eoi_exit_bitmap1;
-	u64 eoi_exit_bitmap2;
-	u64 eoi_exit_bitmap3;
-	u64 xss_exit_bitmap;
-	u64 guest_physical_address;
-	u64 vmcs_link_pointer;
-	u64 guest_ia32_debugctl;
-	u64 guest_ia32_pat;
-	u64 guest_ia32_efer;
-	u64 guest_ia32_perf_global_ctrl;
-	u64 guest_pdptr0;
-	u64 guest_pdptr1;
-	u64 guest_pdptr2;
-	u64 guest_pdptr3;
-	u64 guest_bndcfgs;
-	u64 host_ia32_pat;
-	u64 host_ia32_efer;
-	u64 host_ia32_perf_global_ctrl;
-	u64 vmread_bitmap;
-	u64 vmwrite_bitmap;
-	u64 vm_function_control;
-	u64 eptp_list_address;
-	u64 pml_address;
-	u64 padding64[3]; /* room for future expansion */
-	/*
-	 * To allow migration of L1 (complete with its L2 guests) between
-	 * machines of different natural widths (32 or 64 bit), we cannot have
-	 * unsigned long fields with no explict size. We use u64 (aliased
-	 * natural_width) instead. Luckily, x86 is little-endian.
-	 */
-	natural_width cr0_guest_host_mask;
-	natural_width cr4_guest_host_mask;
-	natural_width cr0_read_shadow;
-	natural_width cr4_read_shadow;
-	natural_width cr3_target_value0;
-	natural_width cr3_target_value1;
-	natural_width cr3_target_value2;
-	natural_width cr3_target_value3;
-	natural_width exit_qualification;
-	natural_width guest_linear_address;
-	natural_width guest_cr0;
-	natural_width guest_cr3;
-	natural_width guest_cr4;
-	natural_width guest_es_base;
-	natural_width guest_cs_base;
-	natural_width guest_ss_base;
-	natural_width guest_ds_base;
-	natural_width guest_fs_base;
-	natural_width guest_gs_base;
-	natural_width guest_ldtr_base;
-	natural_width guest_tr_base;
-	natural_width guest_gdtr_base;
-	natural_width guest_idtr_base;
-	natural_width guest_dr7;
-	natural_width guest_rsp;
-	natural_width guest_rip;
-	natural_width guest_rflags;
-	natural_width guest_pending_dbg_exceptions;
-	natural_width guest_sysenter_esp;
-	natural_width guest_sysenter_eip;
-	natural_width host_cr0;
-	natural_width host_cr3;
-	natural_width host_cr4;
-	natural_width host_fs_base;
-	natural_width host_gs_base;
-	natural_width host_tr_base;
-	natural_width host_gdtr_base;
-	natural_width host_idtr_base;
-	natural_width host_ia32_sysenter_esp;
-	natural_width host_ia32_sysenter_eip;
-	natural_width host_rsp;
-	natural_width host_rip;
-	natural_width paddingl[8]; /* room for future expansion */
-	u32 pin_based_vm_exec_control;
-	u32 cpu_based_vm_exec_control;
-	u32 exception_bitmap;
-	u32 page_fault_error_code_mask;
-	u32 page_fault_error_code_match;
-	u32 cr3_target_count;
-	u32 vm_exit_controls;
-	u32 vm_exit_msr_store_count;
-	u32 vm_exit_msr_load_count;
-	u32 vm_entry_controls;
-	u32 vm_entry_msr_load_count;
-	u32 vm_entry_intr_info_field;
-	u32 vm_entry_exception_error_code;
-	u32 vm_entry_instruction_len;
-	u32 tpr_threshold;
-	u32 secondary_vm_exec_control;
-	u32 vm_instruction_error;
-	u32 vm_exit_reason;
-	u32 vm_exit_intr_info;
-	u32 vm_exit_intr_error_code;
-	u32 idt_vectoring_info_field;
-	u32 idt_vectoring_error_code;
-	u32 vm_exit_instruction_len;
-	u32 vmx_instruction_info;
-	u32 guest_es_limit;
-	u32 guest_cs_limit;
-	u32 guest_ss_limit;
-	u32 guest_ds_limit;
-	u32 guest_fs_limit;
-	u32 guest_gs_limit;
-	u32 guest_ldtr_limit;
-	u32 guest_tr_limit;
-	u32 guest_gdtr_limit;
-	u32 guest_idtr_limit;
-	u32 guest_es_ar_bytes;
-	u32 guest_cs_ar_bytes;
-	u32 guest_ss_ar_bytes;
-	u32 guest_ds_ar_bytes;
-	u32 guest_fs_ar_bytes;
-	u32 guest_gs_ar_bytes;
-	u32 guest_ldtr_ar_bytes;
-	u32 guest_tr_ar_bytes;
-	u32 guest_interruptibility_info;
-	u32 guest_activity_state;
-	u32 guest_sysenter_cs;
-	u32 host_ia32_sysenter_cs;
-	u32 vmx_preemption_timer_value;
-	u32 padding32[7]; /* room for future expansion */
-	u16 virtual_processor_id;
-	u16 posted_intr_nv;
-	u16 guest_es_selector;
-	u16 guest_cs_selector;
-	u16 guest_ss_selector;
-	u16 guest_ds_selector;
-	u16 guest_fs_selector;
-	u16 guest_gs_selector;
-	u16 guest_ldtr_selector;
-	u16 guest_tr_selector;
-	u16 guest_intr_status;
-	u16 host_es_selector;
-	u16 host_cs_selector;
-	u16 host_ss_selector;
-	u16 host_ds_selector;
-	u16 host_fs_selector;
-	u16 host_gs_selector;
-	u16 host_tr_selector;
-	u16 guest_pml_index;
-};
-
-/*
- * For save/restore compatibility, the vmcs12 field offsets must not change.
- */
-#define CHECK_OFFSET(field, loc)				\
-	BUILD_BUG_ON_MSG(offsetof(struct vmcs12, field) != (loc),	\
-		"Offset of " #field " in struct vmcs12 has changed.")
-
-static inline void vmx_check_vmcs12_offsets(void) {
-	CHECK_OFFSET(hdr, 0);
-	CHECK_OFFSET(abort, 4);
-	CHECK_OFFSET(launch_state, 8);
-	CHECK_OFFSET(io_bitmap_a, 40);
-	CHECK_OFFSET(io_bitmap_b, 48);
-	CHECK_OFFSET(msr_bitmap, 56);
-	CHECK_OFFSET(vm_exit_msr_store_addr, 64);
-	CHECK_OFFSET(vm_exit_msr_load_addr, 72);
-	CHECK_OFFSET(vm_entry_msr_load_addr, 80);
-	CHECK_OFFSET(tsc_offset, 88);
-	CHECK_OFFSET(virtual_apic_page_addr, 96);
-	CHECK_OFFSET(apic_access_addr, 104);
-	CHECK_OFFSET(posted_intr_desc_addr, 112);
-	CHECK_OFFSET(ept_pointer, 120);
-	CHECK_OFFSET(eoi_exit_bitmap0, 128);
-	CHECK_OFFSET(eoi_exit_bitmap1, 136);
-	CHECK_OFFSET(eoi_exit_bitmap2, 144);
-	CHECK_OFFSET(eoi_exit_bitmap3, 152);
-	CHECK_OFFSET(xss_exit_bitmap, 160);
-	CHECK_OFFSET(guest_physical_address, 168);
-	CHECK_OFFSET(vmcs_link_pointer, 176);
-	CHECK_OFFSET(guest_ia32_debugctl, 184);
-	CHECK_OFFSET(guest_ia32_pat, 192);
-	CHECK_OFFSET(guest_ia32_efer, 200);
-	CHECK_OFFSET(guest_ia32_perf_global_ctrl, 208);
-	CHECK_OFFSET(guest_pdptr0, 216);
-	CHECK_OFFSET(guest_pdptr1, 224);
-	CHECK_OFFSET(guest_pdptr2, 232);
-	CHECK_OFFSET(guest_pdptr3, 240);
-	CHECK_OFFSET(guest_bndcfgs, 248);
-	CHECK_OFFSET(host_ia32_pat, 256);
-	CHECK_OFFSET(host_ia32_efer, 264);
-	CHECK_OFFSET(host_ia32_perf_global_ctrl, 272);
-	CHECK_OFFSET(vmread_bitmap, 280);
-	CHECK_OFFSET(vmwrite_bitmap, 288);
-	CHECK_OFFSET(vm_function_control, 296);
-	CHECK_OFFSET(eptp_list_address, 304);
-	CHECK_OFFSET(pml_address, 312);
-	CHECK_OFFSET(cr0_guest_host_mask, 344);
-	CHECK_OFFSET(cr4_guest_host_mask, 352);
-	CHECK_OFFSET(cr0_read_shadow, 360);
-	CHECK_OFFSET(cr4_read_shadow, 368);
-	CHECK_OFFSET(cr3_target_value0, 376);
-	CHECK_OFFSET(cr3_target_value1, 384);
-	CHECK_OFFSET(cr3_target_value2, 392);
-	CHECK_OFFSET(cr3_target_value3, 400);
-	CHECK_OFFSET(exit_qualification, 408);
-	CHECK_OFFSET(guest_linear_address, 416);
-	CHECK_OFFSET(guest_cr0, 424);
-	CHECK_OFFSET(guest_cr3, 432);
-	CHECK_OFFSET(guest_cr4, 440);
-	CHECK_OFFSET(guest_es_base, 448);
-	CHECK_OFFSET(guest_cs_base, 456);
-	CHECK_OFFSET(guest_ss_base, 464);
-	CHECK_OFFSET(guest_ds_base, 472);
-	CHECK_OFFSET(guest_fs_base, 480);
-	CHECK_OFFSET(guest_gs_base, 488);
-	CHECK_OFFSET(guest_ldtr_base, 496);
-	CHECK_OFFSET(guest_tr_base, 504);
-	CHECK_OFFSET(guest_gdtr_base, 512);
-	CHECK_OFFSET(guest_idtr_base, 520);
-	CHECK_OFFSET(guest_dr7, 528);
-	CHECK_OFFSET(guest_rsp, 536);
-	CHECK_OFFSET(guest_rip, 544);
-	CHECK_OFFSET(guest_rflags, 552);
-	CHECK_OFFSET(guest_pending_dbg_exceptions, 560);
-	CHECK_OFFSET(guest_sysenter_esp, 568);
-	CHECK_OFFSET(guest_sysenter_eip, 576);
-	CHECK_OFFSET(host_cr0, 584);
-	CHECK_OFFSET(host_cr3, 592);
-	CHECK_OFFSET(host_cr4, 600);
-	CHECK_OFFSET(host_fs_base, 608);
-	CHECK_OFFSET(host_gs_base, 616);
-	CHECK_OFFSET(host_tr_base, 624);
-	CHECK_OFFSET(host_gdtr_base, 632);
-	CHECK_OFFSET(host_idtr_base, 640);
-	CHECK_OFFSET(host_ia32_sysenter_esp, 648);
-	CHECK_OFFSET(host_ia32_sysenter_eip, 656);
-	CHECK_OFFSET(host_rsp, 664);
-	CHECK_OFFSET(host_rip, 672);
-	CHECK_OFFSET(pin_based_vm_exec_control, 744);
-	CHECK_OFFSET(cpu_based_vm_exec_control, 748);
-	CHECK_OFFSET(exception_bitmap, 752);
-	CHECK_OFFSET(page_fault_error_code_mask, 756);
-	CHECK_OFFSET(page_fault_error_code_match, 760);
-	CHECK_OFFSET(cr3_target_count, 764);
-	CHECK_OFFSET(vm_exit_controls, 768);
-	CHECK_OFFSET(vm_exit_msr_store_count, 772);
-	CHECK_OFFSET(vm_exit_msr_load_count, 776);
-	CHECK_OFFSET(vm_entry_controls, 780);
-	CHECK_OFFSET(vm_entry_msr_load_count, 784);
-	CHECK_OFFSET(vm_entry_intr_info_field, 788);
-	CHECK_OFFSET(vm_entry_exception_error_code, 792);
-	CHECK_OFFSET(vm_entry_instruction_len, 796);
-	CHECK_OFFSET(tpr_threshold, 800);
-	CHECK_OFFSET(secondary_vm_exec_control, 804);
-	CHECK_OFFSET(vm_instruction_error, 808);
-	CHECK_OFFSET(vm_exit_reason, 812);
-	CHECK_OFFSET(vm_exit_intr_info, 816);
-	CHECK_OFFSET(vm_exit_intr_error_code, 820);
-	CHECK_OFFSET(idt_vectoring_info_field, 824);
-	CHECK_OFFSET(idt_vectoring_error_code, 828);
-	CHECK_OFFSET(vm_exit_instruction_len, 832);
-	CHECK_OFFSET(vmx_instruction_info, 836);
-	CHECK_OFFSET(guest_es_limit, 840);
-	CHECK_OFFSET(guest_cs_limit, 844);
-	CHECK_OFFSET(guest_ss_limit, 848);
-	CHECK_OFFSET(guest_ds_limit, 852);
-	CHECK_OFFSET(guest_fs_limit, 856);
-	CHECK_OFFSET(guest_gs_limit, 860);
-	CHECK_OFFSET(guest_ldtr_limit, 864);
-	CHECK_OFFSET(guest_tr_limit, 868);
-	CHECK_OFFSET(guest_gdtr_limit, 872);
-	CHECK_OFFSET(guest_idtr_limit, 876);
-	CHECK_OFFSET(guest_es_ar_bytes, 880);
-	CHECK_OFFSET(guest_cs_ar_bytes, 884);
-	CHECK_OFFSET(guest_ss_ar_bytes, 888);
-	CHECK_OFFSET(guest_ds_ar_bytes, 892);
-	CHECK_OFFSET(guest_fs_ar_bytes, 896);
-	CHECK_OFFSET(guest_gs_ar_bytes, 900);
-	CHECK_OFFSET(guest_ldtr_ar_bytes, 904);
-	CHECK_OFFSET(guest_tr_ar_bytes, 908);
-	CHECK_OFFSET(guest_interruptibility_info, 912);
-	CHECK_OFFSET(guest_activity_state, 916);
-	CHECK_OFFSET(guest_sysenter_cs, 920);
-	CHECK_OFFSET(host_ia32_sysenter_cs, 924);
-	CHECK_OFFSET(vmx_preemption_timer_value, 928);
-	CHECK_OFFSET(virtual_processor_id, 960);
-	CHECK_OFFSET(posted_intr_nv, 962);
-	CHECK_OFFSET(guest_es_selector, 964);
-	CHECK_OFFSET(guest_cs_selector, 966);
-	CHECK_OFFSET(guest_ss_selector, 968);
-	CHECK_OFFSET(guest_ds_selector, 970);
-	CHECK_OFFSET(guest_fs_selector, 972);
-	CHECK_OFFSET(guest_gs_selector, 974);
-	CHECK_OFFSET(guest_ldtr_selector, 976);
-	CHECK_OFFSET(guest_tr_selector, 978);
-	CHECK_OFFSET(guest_intr_status, 980);
-	CHECK_OFFSET(host_es_selector, 982);
-	CHECK_OFFSET(host_cs_selector, 984);
-	CHECK_OFFSET(host_ss_selector, 986);
-	CHECK_OFFSET(host_ds_selector, 988);
-	CHECK_OFFSET(host_fs_selector, 990);
-	CHECK_OFFSET(host_gs_selector, 992);
-	CHECK_OFFSET(host_tr_selector, 994);
-	CHECK_OFFSET(guest_pml_index, 996);
-}
-
-/*
- * VMCS12_REVISION is an arbitrary id that should be changed if the content or
- * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
- * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
- *
- * IMPORTANT: Changing this value will break save/restore compatibility with
- * older kvm releases.
- */
-#define VMCS12_REVISION 0x11e57ed0
-
-/*
- * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
- * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
- * current implementation, 4K are reserved to avoid future complications.
- */
-#define VMCS12_SIZE 0x1000
-
-/*
- * VMCS12_MAX_FIELD_INDEX is the highest index value used in any
- * supported VMCS12 field encoding.
- */
-#define VMCS12_MAX_FIELD_INDEX 0x17
-
-struct nested_vmx_msrs {
-	/*
-	 * We only store the "true" versions of the VMX capability MSRs. We
-	 * generate the "non-true" versions by setting the must-be-1 bits
-	 * according to the SDM.
-	 */
-	u32 procbased_ctls_low;
-	u32 procbased_ctls_high;
-	u32 secondary_ctls_low;
-	u32 secondary_ctls_high;
-	u32 pinbased_ctls_low;
-	u32 pinbased_ctls_high;
-	u32 exit_ctls_low;
-	u32 exit_ctls_high;
-	u32 entry_ctls_low;
-	u32 entry_ctls_high;
-	u32 misc_low;
-	u32 misc_high;
-	u32 ept_caps;
-	u32 vpid_caps;
-	u64 basic;
-	u64 cr0_fixed0;
-	u64 cr0_fixed1;
-	u64 cr4_fixed0;
-	u64 cr4_fixed1;
-	u64 vmcs_enum;
-	u64 vmfunc_controls;
-};
-
-/*
- * The nested_vmx structure is part of vcpu_vmx, and holds information we need
- * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
- */
-struct nested_vmx {
-	/* Has the level1 guest done vmxon? */
-	bool vmxon;
-	gpa_t vmxon_ptr;
-	bool pml_full;
-
-	/* The guest-physical address of the current VMCS L1 keeps for L2 */
-	gpa_t current_vmptr;
-	/*
-	 * Cache of the guest's VMCS, existing outside of guest memory.
-	 * Loaded from guest memory during VMPTRLD. Flushed to guest
-	 * memory during VMCLEAR and VMPTRLD.
-	 */
-	struct vmcs12 *cached_vmcs12;
-	/*
-	 * Cache of the guest's shadow VMCS, existing outside of guest
-	 * memory. Loaded from guest memory during VM entry. Flushed
-	 * to guest memory during VM exit.
-	 */
-	struct vmcs12 *cached_shadow_vmcs12;
-	/*
-	 * Indicates if the shadow vmcs or enlightened vmcs must be updated
-	 * with the data held by struct vmcs12.
-	 */
-	bool need_vmcs12_sync;
-	bool dirty_vmcs12;
-
-	/*
-	 * vmcs02 has been initialized, i.e. state that is constant for
-	 * vmcs02 has been written to the backing VMCS.  Initialization
-	 * is delayed until L1 actually attempts to run a nested VM.
-	 */
-	bool vmcs02_initialized;
-
-	bool change_vmcs01_virtual_apic_mode;
-
-	/*
-	 * Enlightened VMCS has been enabled. It does not mean that L1 has to
-	 * use it. However, VMX features available to L1 will be limited based
-	 * on what the enlightened VMCS supports.
-	 */
-	bool enlightened_vmcs_enabled;
-
-	/* L2 must run next, and mustn't decide to exit to L1. */
-	bool nested_run_pending;
-
-	struct loaded_vmcs vmcs02;
-
-	/*
-	 * Guest pages referred to in the vmcs02 with host-physical
-	 * pointers, so we must keep them pinned while L2 runs.
-	 */
-	struct page *apic_access_page;
-	struct page *virtual_apic_page;
-	struct page *pi_desc_page;
-	struct pi_desc *pi_desc;
-	bool pi_pending;
-	u16 posted_intr_nv;
-
-	struct hrtimer preemption_timer;
-	bool preemption_timer_expired;
-
-	/* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
-	u64 vmcs01_debugctl;
-	u64 vmcs01_guest_bndcfgs;
-
-	u16 vpid02;
-	u16 last_vpid;
-
-	struct nested_vmx_msrs msrs;
-
-	/* SMM related state */
-	struct {
-		/* in VMX operation on SMM entry? */
-		bool vmxon;
-		/* in guest mode on SMM entry? */
-		bool guest_mode;
-	} smm;
-
-	gpa_t hv_evmcs_vmptr;
-	struct page *hv_evmcs_page;
-	struct hv_enlightened_vmcs *hv_evmcs;
-};
-
-#define POSTED_INTR_ON  0
-#define POSTED_INTR_SN  1
-
-/* Posted-Interrupt Descriptor */
-struct pi_desc {
-	u32 pir[8];     /* Posted interrupt requested */
-	union {
-		struct {
-				/* bit 256 - Outstanding Notification */
-			u16	on	: 1,
-				/* bit 257 - Suppress Notification */
-				sn	: 1,
-				/* bit 271:258 - Reserved */
-				rsvd_1	: 14;
-				/* bit 279:272 - Notification Vector */
-			u8	nv;
-				/* bit 287:280 - Reserved */
-			u8	rsvd_2;
-				/* bit 319:288 - Notification Destination */
-			u32	ndst;
-		};
-		u64 control;
-	};
-	u32 rsvd[6];
-} __aligned(64);
-
-static bool pi_test_and_set_on(struct pi_desc *pi_desc)
-{
-	return test_and_set_bit(POSTED_INTR_ON,
-			(unsigned long *)&pi_desc->control);
-}
-
-static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
-{
-	return test_and_clear_bit(POSTED_INTR_ON,
-			(unsigned long *)&pi_desc->control);
-}
-
-static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
-{
-	return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
-}
-
-static inline void pi_clear_sn(struct pi_desc *pi_desc)
-{
-	return clear_bit(POSTED_INTR_SN,
-			(unsigned long *)&pi_desc->control);
-}
-
-static inline void pi_set_sn(struct pi_desc *pi_desc)
-{
-	return set_bit(POSTED_INTR_SN,
-			(unsigned long *)&pi_desc->control);
-}
-
-static inline void pi_clear_on(struct pi_desc *pi_desc)
-{
-	clear_bit(POSTED_INTR_ON,
-  		  (unsigned long *)&pi_desc->control);
-}
-
-static inline int pi_test_on(struct pi_desc *pi_desc)
-{
-	return test_bit(POSTED_INTR_ON,
-			(unsigned long *)&pi_desc->control);
-}
-
-static inline int pi_test_sn(struct pi_desc *pi_desc)
-{
-	return test_bit(POSTED_INTR_SN,
-			(unsigned long *)&pi_desc->control);
-}
-
-struct vmx_msrs {
-	unsigned int		nr;
-	struct vmx_msr_entry	val[NR_AUTOLOAD_MSRS];
-};
-
-struct vcpu_vmx {
-	struct kvm_vcpu       vcpu;
-	unsigned long         host_rsp;
-	u8                    fail;
-	u8		      msr_bitmap_mode;
-	u32                   exit_intr_info;
-	u32                   idt_vectoring_info;
-	ulong                 rflags;
-	struct shared_msr_entry *guest_msrs;
-	int                   nmsrs;
-	int                   save_nmsrs;
-	unsigned long	      host_idt_base;
-#ifdef CONFIG_X86_64
-	u64 		      msr_host_kernel_gs_base;
-	u64 		      msr_guest_kernel_gs_base;
-#endif
-
-	u64 		      arch_capabilities;
-	u64 		      spec_ctrl;
-
-	u32 vm_entry_controls_shadow;
-	u32 vm_exit_controls_shadow;
-	u32 secondary_exec_control;
-
-	/*
-	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
-	 * non-nested (L1) guest, it always points to vmcs01. For a nested
-	 * guest (L2), it points to a different VMCS.  loaded_cpu_state points
-	 * to the VMCS whose state is loaded into the CPU registers that only
-	 * need to be switched when transitioning to/from the kernel; a NULL
-	 * value indicates that host state is loaded.
-	 */
-	struct loaded_vmcs    vmcs01;
-	struct loaded_vmcs   *loaded_vmcs;
-	struct loaded_vmcs   *loaded_cpu_state;
-	bool                  __launched; /* temporary, used in vmx_vcpu_run */
-	struct msr_autoload {
-		struct vmx_msrs guest;
-		struct vmx_msrs host;
-	} msr_autoload;
-
-	struct {
-		int vm86_active;
-		ulong save_rflags;
-		struct kvm_segment segs[8];
-	} rmode;
-	struct {
-		u32 bitmask; /* 4 bits per segment (1 bit per field) */
-		struct kvm_save_segment {
-			u16 selector;
-			unsigned long base;
-			u32 limit;
-			u32 ar;
-		} seg[8];
-	} segment_cache;
-	int vpid;
-	bool emulation_required;
-
-	u32 exit_reason;
-
-	/* Posted interrupt descriptor */
-	struct pi_desc pi_desc;
-
-	/* Support for a guest hypervisor (nested VMX) */
-	struct nested_vmx nested;
-
-	/* Dynamic PLE window. */
-	int ple_window;
-	bool ple_window_dirty;
-
-	bool req_immediate_exit;
-
-	/* Support for PML */
-#define PML_ENTITY_NUM		512
-	struct page *pml_pg;
-
-	/* apic deadline value in host tsc */
-	u64 hv_deadline_tsc;
-
-	u64 current_tsc_ratio;
-
-	u32 host_pkru;
-
-	unsigned long host_debugctlmsr;
-
-	/*
-	 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
-	 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
-	 * in msr_ia32_feature_control_valid_bits.
-	 */
-	u64 msr_ia32_feature_control;
-	u64 msr_ia32_feature_control_valid_bits;
-	u64 ept_pointer;
-};
-
-enum segment_cache_field {
-	SEG_FIELD_SEL = 0,
-	SEG_FIELD_BASE = 1,
-	SEG_FIELD_LIMIT = 2,
-	SEG_FIELD_AR = 3,
-
-	SEG_FIELD_NR = 4
-};
-
-static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
-{
-	return container_of(kvm, struct kvm_vmx, kvm);
-}
-
-static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
-{
-	return container_of(vcpu, struct vcpu_vmx, vcpu);
-}
-
-static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
-{
-	return &(to_vmx(vcpu)->pi_desc);
-}
-
-#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
-#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
-#define FIELD(number, name)	[ROL16(number, 6)] = VMCS12_OFFSET(name)
-#define FIELD64(number, name)						\
-	FIELD(number, name),						\
-	[ROL16(number##_HIGH, 6)] = VMCS12_OFFSET(name) + sizeof(u32)
-
-
-static u16 shadow_read_only_fields[] = {
-#define SHADOW_FIELD_RO(x) x,
-#include "vmx_shadow_fields.h"
-};
-static int max_shadow_read_only_fields =
-	ARRAY_SIZE(shadow_read_only_fields);
-
-static u16 shadow_read_write_fields[] = {
-#define SHADOW_FIELD_RW(x) x,
-#include "vmx_shadow_fields.h"
-};
-static int max_shadow_read_write_fields =
-	ARRAY_SIZE(shadow_read_write_fields);
-
-static const unsigned short vmcs_field_to_offset_table[] = {
-	FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
-	FIELD(POSTED_INTR_NV, posted_intr_nv),
-	FIELD(GUEST_ES_SELECTOR, guest_es_selector),
-	FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
-	FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
-	FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
-	FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
-	FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
-	FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
-	FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
-	FIELD(GUEST_INTR_STATUS, guest_intr_status),
-	FIELD(GUEST_PML_INDEX, guest_pml_index),
-	FIELD(HOST_ES_SELECTOR, host_es_selector),
-	FIELD(HOST_CS_SELECTOR, host_cs_selector),
-	FIELD(HOST_SS_SELECTOR, host_ss_selector),
-	FIELD(HOST_DS_SELECTOR, host_ds_selector),
-	FIELD(HOST_FS_SELECTOR, host_fs_selector),
-	FIELD(HOST_GS_SELECTOR, host_gs_selector),
-	FIELD(HOST_TR_SELECTOR, host_tr_selector),
-	FIELD64(IO_BITMAP_A, io_bitmap_a),
-	FIELD64(IO_BITMAP_B, io_bitmap_b),
-	FIELD64(MSR_BITMAP, msr_bitmap),
-	FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
-	FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
-	FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
-	FIELD64(PML_ADDRESS, pml_address),
-	FIELD64(TSC_OFFSET, tsc_offset),
-	FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
-	FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
-	FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
-	FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
-	FIELD64(EPT_POINTER, ept_pointer),
-	FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
-	FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
-	FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
-	FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
-	FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
-	FIELD64(VMREAD_BITMAP, vmread_bitmap),
-	FIELD64(VMWRITE_BITMAP, vmwrite_bitmap),
-	FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
-	FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
-	FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
-	FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
-	FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
-	FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
-	FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
-	FIELD64(GUEST_PDPTR0, guest_pdptr0),
-	FIELD64(GUEST_PDPTR1, guest_pdptr1),
-	FIELD64(GUEST_PDPTR2, guest_pdptr2),
-	FIELD64(GUEST_PDPTR3, guest_pdptr3),
-	FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
-	FIELD64(HOST_IA32_PAT, host_ia32_pat),
-	FIELD64(HOST_IA32_EFER, host_ia32_efer),
-	FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
-	FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
-	FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
-	FIELD(EXCEPTION_BITMAP, exception_bitmap),
-	FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
-	FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
-	FIELD(CR3_TARGET_COUNT, cr3_target_count),
-	FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
-	FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
-	FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
-	FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
-	FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
-	FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
-	FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
-	FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
-	FIELD(TPR_THRESHOLD, tpr_threshold),
-	FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
-	FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
-	FIELD(VM_EXIT_REASON, vm_exit_reason),
-	FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
-	FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
-	FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
-	FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
-	FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
-	FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
-	FIELD(GUEST_ES_LIMIT, guest_es_limit),
-	FIELD(GUEST_CS_LIMIT, guest_cs_limit),
-	FIELD(GUEST_SS_LIMIT, guest_ss_limit),
-	FIELD(GUEST_DS_LIMIT, guest_ds_limit),
-	FIELD(GUEST_FS_LIMIT, guest_fs_limit),
-	FIELD(GUEST_GS_LIMIT, guest_gs_limit),
-	FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
-	FIELD(GUEST_TR_LIMIT, guest_tr_limit),
-	FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
-	FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
-	FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
-	FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
-	FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
-	FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
-	FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
-	FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
-	FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
-	FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
-	FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
-	FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
-	FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
-	FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
-	FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
-	FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
-	FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
-	FIELD(CR0_READ_SHADOW, cr0_read_shadow),
-	FIELD(CR4_READ_SHADOW, cr4_read_shadow),
-	FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
-	FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
-	FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
-	FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
-	FIELD(EXIT_QUALIFICATION, exit_qualification),
-	FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
-	FIELD(GUEST_CR0, guest_cr0),
-	FIELD(GUEST_CR3, guest_cr3),
-	FIELD(GUEST_CR4, guest_cr4),
-	FIELD(GUEST_ES_BASE, guest_es_base),
-	FIELD(GUEST_CS_BASE, guest_cs_base),
-	FIELD(GUEST_SS_BASE, guest_ss_base),
-	FIELD(GUEST_DS_BASE, guest_ds_base),
-	FIELD(GUEST_FS_BASE, guest_fs_base),
-	FIELD(GUEST_GS_BASE, guest_gs_base),
-	FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
-	FIELD(GUEST_TR_BASE, guest_tr_base),
-	FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
-	FIELD(GUEST_IDTR_BASE, guest_idtr_base),
-	FIELD(GUEST_DR7, guest_dr7),
-	FIELD(GUEST_RSP, guest_rsp),
-	FIELD(GUEST_RIP, guest_rip),
-	FIELD(GUEST_RFLAGS, guest_rflags),
-	FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
-	FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
-	FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
-	FIELD(HOST_CR0, host_cr0),
-	FIELD(HOST_CR3, host_cr3),
-	FIELD(HOST_CR4, host_cr4),
-	FIELD(HOST_FS_BASE, host_fs_base),
-	FIELD(HOST_GS_BASE, host_gs_base),
-	FIELD(HOST_TR_BASE, host_tr_base),
-	FIELD(HOST_GDTR_BASE, host_gdtr_base),
-	FIELD(HOST_IDTR_BASE, host_idtr_base),
-	FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
-	FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
-	FIELD(HOST_RSP, host_rsp),
-	FIELD(HOST_RIP, host_rip),
-};
-
-static inline short vmcs_field_to_offset(unsigned long field)
-{
-	const size_t size = ARRAY_SIZE(vmcs_field_to_offset_table);
-	unsigned short offset;
-	unsigned index;
-
-	if (field >> 15)
-		return -ENOENT;
-
-	index = ROL16(field, 6);
-	if (index >= size)
-		return -ENOENT;
-
-	index = array_index_nospec(index, size);
-	offset = vmcs_field_to_offset_table[index];
-	if (offset == 0)
-		return -ENOENT;
-	return offset;
-}
-
-static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
-{
-	return to_vmx(vcpu)->nested.cached_vmcs12;
-}
-
-static inline struct vmcs12 *get_shadow_vmcs12(struct kvm_vcpu *vcpu)
-{
-	return to_vmx(vcpu)->nested.cached_shadow_vmcs12;
-}
-
-static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
-static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
-static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
-static bool vmx_xsaves_supported(void);
-static void vmx_set_segment(struct kvm_vcpu *vcpu,
-			    struct kvm_segment *var, int seg);
-static void vmx_get_segment(struct kvm_vcpu *vcpu,
-			    struct kvm_segment *var, int seg);
-static bool guest_state_valid(struct kvm_vcpu *vcpu);
-static u32 vmx_segment_access_rights(struct kvm_segment *var);
-static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
-static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
-static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
-static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
-					    u16 error_code);
-static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
-static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
-							  u32 msr, int type);
-
-static DEFINE_PER_CPU(struct vmcs *, vmxarea);
-static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
-/*
- * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
- * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
- */
-static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
-
-/*
- * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
- * can find which vCPU should be waken up.
- */
-static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
-static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
-
-enum {
-	VMX_VMREAD_BITMAP,
-	VMX_VMWRITE_BITMAP,
-	VMX_BITMAP_NR
-};
-
-static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
-
-#define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
-#define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
-
-static bool cpu_has_load_ia32_efer;
-static bool cpu_has_load_perf_global_ctrl;
-
-static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
-static DEFINE_SPINLOCK(vmx_vpid_lock);
-
-static struct vmcs_config {
-	int size;
-	int order;
-	u32 basic_cap;
-	u32 revision_id;
-	u32 pin_based_exec_ctrl;
-	u32 cpu_based_exec_ctrl;
-	u32 cpu_based_2nd_exec_ctrl;
-	u32 vmexit_ctrl;
-	u32 vmentry_ctrl;
-	struct nested_vmx_msrs nested;
-} vmcs_config;
-
-static struct vmx_capability {
-	u32 ept;
-	u32 vpid;
-} vmx_capability;
-
-#define VMX_SEGMENT_FIELD(seg)					\
-	[VCPU_SREG_##seg] = {                                   \
-		.selector = GUEST_##seg##_SELECTOR,		\
-		.base = GUEST_##seg##_BASE,		   	\
-		.limit = GUEST_##seg##_LIMIT,		   	\
-		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
-	}
-
-static const struct kvm_vmx_segment_field {
-	unsigned selector;
-	unsigned base;
-	unsigned limit;
-	unsigned ar_bytes;
-} kvm_vmx_segment_fields[] = {
-	VMX_SEGMENT_FIELD(CS),
-	VMX_SEGMENT_FIELD(DS),
-	VMX_SEGMENT_FIELD(ES),
-	VMX_SEGMENT_FIELD(FS),
-	VMX_SEGMENT_FIELD(GS),
-	VMX_SEGMENT_FIELD(SS),
-	VMX_SEGMENT_FIELD(TR),
-	VMX_SEGMENT_FIELD(LDTR),
-};
-
-static u64 host_efer;
-
-static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
-
-/*
- * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
- * away by decrementing the array size.
- */
-static const u32 vmx_msr_index[] = {
-#ifdef CONFIG_X86_64
-	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
-#endif
-	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
-};
-
-DEFINE_STATIC_KEY_FALSE(enable_evmcs);
-
-#define current_evmcs ((struct hv_enlightened_vmcs *)this_cpu_read(current_vmcs))
-
-#define KVM_EVMCS_VERSION 1
-
-/*
- * Enlightened VMCSv1 doesn't support these:
- *
- *	POSTED_INTR_NV                  = 0x00000002,
- *	GUEST_INTR_STATUS               = 0x00000810,
- *	APIC_ACCESS_ADDR		= 0x00002014,
- *	POSTED_INTR_DESC_ADDR           = 0x00002016,
- *	EOI_EXIT_BITMAP0                = 0x0000201c,
- *	EOI_EXIT_BITMAP1                = 0x0000201e,
- *	EOI_EXIT_BITMAP2                = 0x00002020,
- *	EOI_EXIT_BITMAP3                = 0x00002022,
- *	GUEST_PML_INDEX			= 0x00000812,
- *	PML_ADDRESS			= 0x0000200e,
- *	VM_FUNCTION_CONTROL             = 0x00002018,
- *	EPTP_LIST_ADDRESS               = 0x00002024,
- *	VMREAD_BITMAP                   = 0x00002026,
- *	VMWRITE_BITMAP                  = 0x00002028,
- *
- *	TSC_MULTIPLIER                  = 0x00002032,
- *	PLE_GAP                         = 0x00004020,
- *	PLE_WINDOW                      = 0x00004022,
- *	VMX_PREEMPTION_TIMER_VALUE      = 0x0000482E,
- *      GUEST_IA32_PERF_GLOBAL_CTRL     = 0x00002808,
- *      HOST_IA32_PERF_GLOBAL_CTRL      = 0x00002c04,
- *
- * Currently unsupported in KVM:
- *	GUEST_IA32_RTIT_CTL		= 0x00002814,
- */
-#define EVMCS1_UNSUPPORTED_PINCTRL (PIN_BASED_POSTED_INTR | \
-				    PIN_BASED_VMX_PREEMPTION_TIMER)
-#define EVMCS1_UNSUPPORTED_2NDEXEC					\
-	(SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |				\
-	 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |			\
-	 SECONDARY_EXEC_APIC_REGISTER_VIRT |				\
-	 SECONDARY_EXEC_ENABLE_PML |					\
-	 SECONDARY_EXEC_ENABLE_VMFUNC |					\
-	 SECONDARY_EXEC_SHADOW_VMCS |					\
-	 SECONDARY_EXEC_TSC_SCALING |					\
-	 SECONDARY_EXEC_PAUSE_LOOP_EXITING)
-#define EVMCS1_UNSUPPORTED_VMEXIT_CTRL (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
-#define EVMCS1_UNSUPPORTED_VMENTRY_CTRL (VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
-#define EVMCS1_UNSUPPORTED_VMFUNC (VMX_VMFUNC_EPTP_SWITCHING)
-
-#if IS_ENABLED(CONFIG_HYPERV)
-static bool __read_mostly enlightened_vmcs = true;
-module_param(enlightened_vmcs, bool, 0444);
-
-static inline void evmcs_write64(unsigned long field, u64 value)
-{
-	u16 clean_field;
-	int offset = get_evmcs_offset(field, &clean_field);
-
-	if (offset < 0)
-		return;
-
-	*(u64 *)((char *)current_evmcs + offset) = value;
-
-	current_evmcs->hv_clean_fields &= ~clean_field;
-}
-
-static inline void evmcs_write32(unsigned long field, u32 value)
-{
-	u16 clean_field;
-	int offset = get_evmcs_offset(field, &clean_field);
-
-	if (offset < 0)
-		return;
-
-	*(u32 *)((char *)current_evmcs + offset) = value;
-	current_evmcs->hv_clean_fields &= ~clean_field;
-}
-
-static inline void evmcs_write16(unsigned long field, u16 value)
-{
-	u16 clean_field;
-	int offset = get_evmcs_offset(field, &clean_field);
-
-	if (offset < 0)
-		return;
-
-	*(u16 *)((char *)current_evmcs + offset) = value;
-	current_evmcs->hv_clean_fields &= ~clean_field;
-}
-
-static inline u64 evmcs_read64(unsigned long field)
-{
-	int offset = get_evmcs_offset(field, NULL);
-
-	if (offset < 0)
-		return 0;
-
-	return *(u64 *)((char *)current_evmcs + offset);
-}
-
-static inline u32 evmcs_read32(unsigned long field)
-{
-	int offset = get_evmcs_offset(field, NULL);
-
-	if (offset < 0)
-		return 0;
-
-	return *(u32 *)((char *)current_evmcs + offset);
-}
-
-static inline u16 evmcs_read16(unsigned long field)
-{
-	int offset = get_evmcs_offset(field, NULL);
-
-	if (offset < 0)
-		return 0;
-
-	return *(u16 *)((char *)current_evmcs + offset);
-}
-
-static inline void evmcs_touch_msr_bitmap(void)
-{
-	if (unlikely(!current_evmcs))
-		return;
-
-	if (current_evmcs->hv_enlightenments_control.msr_bitmap)
-		current_evmcs->hv_clean_fields &=
-			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
-}
-
-static void evmcs_load(u64 phys_addr)
-{
-	struct hv_vp_assist_page *vp_ap =
-		hv_get_vp_assist_page(smp_processor_id());
-
-	vp_ap->current_nested_vmcs = phys_addr;
-	vp_ap->enlighten_vmentry = 1;
-}
-
-static void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf)
-{
-	vmcs_conf->pin_based_exec_ctrl &= ~EVMCS1_UNSUPPORTED_PINCTRL;
-	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~EVMCS1_UNSUPPORTED_2NDEXEC;
-
-	vmcs_conf->vmexit_ctrl &= ~EVMCS1_UNSUPPORTED_VMEXIT_CTRL;
-	vmcs_conf->vmentry_ctrl &= ~EVMCS1_UNSUPPORTED_VMENTRY_CTRL;
-
-}
-
-/* check_ept_pointer() should be under protection of ept_pointer_lock. */
-static void check_ept_pointer_match(struct kvm *kvm)
-{
-	struct kvm_vcpu *vcpu;
-	u64 tmp_eptp = INVALID_PAGE;
-	int i;
-
-	kvm_for_each_vcpu(i, vcpu, kvm) {
-		if (!VALID_PAGE(tmp_eptp)) {
-			tmp_eptp = to_vmx(vcpu)->ept_pointer;
-		} else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
-			to_kvm_vmx(kvm)->ept_pointers_match
-				= EPT_POINTERS_MISMATCH;
-			return;
-		}
-	}
-
-	to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
-}
-
-static int vmx_hv_remote_flush_tlb(struct kvm *kvm)
-{
-	struct kvm_vcpu *vcpu;
-	int ret = -ENOTSUPP, i;
-
-	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
-
-	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
-		check_ept_pointer_match(kvm);
-
-	/*
-	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs the address of the
-	 * base of EPT PML4 table, strip off EPT configuration information.
-	 */
-	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
-		kvm_for_each_vcpu(i, vcpu, kvm)
-			ret |= hyperv_flush_guest_mapping(
-				to_vmx(kvm_get_vcpu(kvm, i))->ept_pointer & PAGE_MASK);
-	} else {
-		ret = hyperv_flush_guest_mapping(
-				to_vmx(kvm_get_vcpu(kvm, 0))->ept_pointer & PAGE_MASK);
-	}
-
-	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
-	return ret;
-}
-#else /* !IS_ENABLED(CONFIG_HYPERV) */
-static inline void evmcs_write64(unsigned long field, u64 value) {}
-static inline void evmcs_write32(unsigned long field, u32 value) {}
-static inline void evmcs_write16(unsigned long field, u16 value) {}
-static inline u64 evmcs_read64(unsigned long field) { return 0; }
-static inline u32 evmcs_read32(unsigned long field) { return 0; }
-static inline u16 evmcs_read16(unsigned long field) { return 0; }
-static inline void evmcs_load(u64 phys_addr) {}
-static inline void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) {}
-static inline void evmcs_touch_msr_bitmap(void) {}
-#endif /* IS_ENABLED(CONFIG_HYPERV) */
-
-static int nested_enable_evmcs(struct kvm_vcpu *vcpu,
-			       uint16_t *vmcs_version)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-
-	/* We don't support disabling the feature for simplicity. */
-	if (vmx->nested.enlightened_vmcs_enabled)
-		return 0;
-
-	vmx->nested.enlightened_vmcs_enabled = true;
-
-	/*
-	 * vmcs_version represents the range of supported Enlightened VMCS
-	 * versions: lower 8 bits is the minimal version, higher 8 bits is the
-	 * maximum supported version. KVM supports versions from 1 to
-	 * KVM_EVMCS_VERSION.
-	 */
-	if (vmcs_version)
-		*vmcs_version = (KVM_EVMCS_VERSION << 8) | 1;
-
-	vmx->nested.msrs.pinbased_ctls_high &= ~EVMCS1_UNSUPPORTED_PINCTRL;
-	vmx->nested.msrs.entry_ctls_high &= ~EVMCS1_UNSUPPORTED_VMENTRY_CTRL;
-	vmx->nested.msrs.exit_ctls_high &= ~EVMCS1_UNSUPPORTED_VMEXIT_CTRL;
-	vmx->nested.msrs.secondary_ctls_high &= ~EVMCS1_UNSUPPORTED_2NDEXEC;
-	vmx->nested.msrs.vmfunc_controls &= ~EVMCS1_UNSUPPORTED_VMFUNC;
-
-	return 0;
-}
-
-static inline bool is_exception_n(u32 intr_info, u8 vector)
-{
-	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
-			     INTR_INFO_VALID_MASK)) ==
-		(INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
-}
-
-static inline bool is_debug(u32 intr_info)
-{
-	return is_exception_n(intr_info, DB_VECTOR);
-}
-
-static inline bool is_breakpoint(u32 intr_info)
-{
-	return is_exception_n(intr_info, BP_VECTOR);
-}
-
-static inline bool is_page_fault(u32 intr_info)
-{
-	return is_exception_n(intr_info, PF_VECTOR);
-}
-
-static inline bool is_invalid_opcode(u32 intr_info)
-{
-	return is_exception_n(intr_info, UD_VECTOR);
-}
-
-static inline bool is_gp_fault(u32 intr_info)
-{
-	return is_exception_n(intr_info, GP_VECTOR);
-}
-
-static inline bool is_machine_check(u32 intr_info)
-{
-	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
-			     INTR_INFO_VALID_MASK)) ==
-		(INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
-}
-
-/* Undocumented: icebp/int1 */
-static inline bool is_icebp(u32 intr_info)
-{
-	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
-		== (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK);
-}
-
-static inline bool cpu_has_vmx_msr_bitmap(void)
-{
-	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
-}
-
-static inline bool cpu_has_vmx_tpr_shadow(void)
-{
-	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
-}
-
-static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
-{
-	return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
-}
-
-static inline bool cpu_has_secondary_exec_ctrls(void)
-{
-	return vmcs_config.cpu_based_exec_ctrl &
-		CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
-}
-
-static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
-{
-	return vmcs_config.cpu_based_2nd_exec_ctrl &
-		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
-}
-
-static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
-{
-	return vmcs_config.cpu_based_2nd_exec_ctrl &
-		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
-}
-
-static inline bool cpu_has_vmx_apic_register_virt(void)
-{
-	return vmcs_config.cpu_based_2nd_exec_ctrl &
-		SECONDARY_EXEC_APIC_REGISTER_VIRT;
-}
-
-static inline bool cpu_has_vmx_virtual_intr_delivery(void)
-{
-	return vmcs_config.cpu_based_2nd_exec_ctrl &
-		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
-}
-
-static inline bool cpu_has_vmx_encls_vmexit(void)
-{
-	return vmcs_config.cpu_based_2nd_exec_ctrl &
-		SECONDARY_EXEC_ENCLS_EXITING;
-}
-
-/*
- * Comment's format: document - errata name - stepping - processor name.
- * Refer from
- * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
- */
-static u32 vmx_preemption_cpu_tfms[] = {
-/* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
-0x000206E6,
-/* 323056.pdf - AAX65  - C2 - Xeon L3406 */
-/* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
-/* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
-0x00020652,
-/* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
-0x00020655,
-/* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
-/* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
-/*
- * 320767.pdf - AAP86  - B1 -
- * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
- */
-0x000106E5,
-/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
-0x000106A0,
-/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
-0x000106A1,
-/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
-0x000106A4,
- /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
- /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
- /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
-0x000106A5,
-};
-
-static inline bool cpu_has_broken_vmx_preemption_timer(void)
-{
-	u32 eax = cpuid_eax(0x00000001), i;
-
-	/* Clear the reserved bits */
-	eax &= ~(0x3U << 14 | 0xfU << 28);
-	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
-		if (eax == vmx_preemption_cpu_tfms[i])
-			return true;
-
-	return false;
-}
-
-static inline bool cpu_has_vmx_preemption_timer(void)
-{
-	return vmcs_config.pin_based_exec_ctrl &
-		PIN_BASED_VMX_PREEMPTION_TIMER;
-}
-
-static inline bool cpu_has_vmx_posted_intr(void)
-{
-	return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
-		vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
-}
-
-static inline bool cpu_has_vmx_apicv(void)
-{
-	return cpu_has_vmx_apic_register_virt() &&
-		cpu_has_vmx_virtual_intr_delivery() &&
-		cpu_has_vmx_posted_intr();
-}
-
-static inline bool cpu_has_vmx_flexpriority(void)
-{
-	return cpu_has_vmx_tpr_shadow() &&
-		cpu_has_vmx_virtualize_apic_accesses();
-}
-
-static inline bool cpu_has_vmx_ept_execute_only(void)
-{
-	return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
-}
-
-static inline bool cpu_has_vmx_ept_2m_page(void)
-{
-	return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
-}
-
-static inline bool cpu_has_vmx_ept_1g_page(void)
-{
-	return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
-}
-
-static inline bool cpu_has_vmx_ept_4levels(void)
-{
-	return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
-}
-
-static inline bool cpu_has_vmx_ept_mt_wb(void)
-{
-	return vmx_capability.ept & VMX_EPTP_WB_BIT;
-}
-
-static inline bool cpu_has_vmx_ept_5levels(void)
-{
-	return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
-}
-
-static inline bool cpu_has_vmx_ept_ad_bits(void)
-{
-	return vmx_capability.ept & VMX_EPT_AD_BIT;
-}
-
-static inline bool cpu_has_vmx_invept_context(void)
-{
-	return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
-}
-
-static inline bool cpu_has_vmx_invept_global(void)
-{
-	return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
-}
-
-static inline bool cpu_has_vmx_invvpid_individual_addr(void)
-{
-	return vmx_capability.vpid & VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT;
-}
-
-static inline bool cpu_has_vmx_invvpid_single(void)
-{
-	return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
-}
-
-static inline bool cpu_has_vmx_invvpid_global(void)
-{
-	return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
-}
-
-static inline bool cpu_has_vmx_invvpid(void)
-{
-	return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
-}
-
-static inline bool cpu_has_vmx_ept(void)
-{
-	return vmcs_config.cpu_based_2nd_exec_ctrl &
-		SECONDARY_EXEC_ENABLE_EPT;
-}
-
-static inline bool cpu_has_vmx_unrestricted_guest(void)
-{
-	return vmcs_config.cpu_based_2nd_exec_ctrl &
-		SECONDARY_EXEC_UNRESTRICTED_GUEST;
-}
-
-static inline bool cpu_has_vmx_ple(void)
-{
-	return vmcs_config.cpu_based_2nd_exec_ctrl &
-		SECONDARY_EXEC_PAUSE_LOOP_EXITING;
-}
-
-static inline bool cpu_has_vmx_basic_inout(void)
-{
-	return	(((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
-}
-
-static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
-{
-	return flexpriority_enabled && lapic_in_kernel(vcpu);
-}
-
-static inline bool cpu_has_vmx_vpid(void)
-{
-	return vmcs_config.cpu_based_2nd_exec_ctrl &
-		SECONDARY_EXEC_ENABLE_VPID;
-}
-
-static inline bool cpu_has_vmx_rdtscp(void)
-{
-	return vmcs_config.cpu_based_2nd_exec_ctrl &
-		SECONDARY_EXEC_RDTSCP;
-}
-
-static inline bool cpu_has_vmx_invpcid(void)
-{
-	return vmcs_config.cpu_based_2nd_exec_ctrl &
-		SECONDARY_EXEC_ENABLE_INVPCID;
-}
-
-static inline bool cpu_has_virtual_nmis(void)
-{
-	return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
-}
-
-static inline bool cpu_has_vmx_wbinvd_exit(void)
-{
-	return vmcs_config.cpu_based_2nd_exec_ctrl &
-		SECONDARY_EXEC_WBINVD_EXITING;
-}
-
-static inline bool cpu_has_vmx_shadow_vmcs(void)
-{
-	u64 vmx_msr;
-	rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
-	/* check if the cpu supports writing r/o exit information fields */
-	if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
-		return false;
-
-	return vmcs_config.cpu_based_2nd_exec_ctrl &
-		SECONDARY_EXEC_SHADOW_VMCS;
-}
-
-static inline bool cpu_has_vmx_pml(void)
-{
-	return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
-}
-
-static inline bool cpu_has_vmx_tsc_scaling(void)
-{
-	return vmcs_config.cpu_based_2nd_exec_ctrl &
-		SECONDARY_EXEC_TSC_SCALING;
-}
-
-static inline bool cpu_has_vmx_vmfunc(void)
-{
-	return vmcs_config.cpu_based_2nd_exec_ctrl &
-		SECONDARY_EXEC_ENABLE_VMFUNC;
-}
-
-static bool vmx_umip_emulated(void)
-{
-	return vmcs_config.cpu_based_2nd_exec_ctrl &
-		SECONDARY_EXEC_DESC;
-}
-
-static inline bool report_flexpriority(void)
-{
-	return flexpriority_enabled;
-}
-
-static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
-{
-	return vmx_misc_cr3_count(to_vmx(vcpu)->nested.msrs.misc_low);
-}
-
-/*
- * Do the virtual VMX capability MSRs specify that L1 can use VMWRITE
- * to modify any valid field of the VMCS, or are the VM-exit
- * information fields read-only?
- */
-static inline bool nested_cpu_has_vmwrite_any_field(struct kvm_vcpu *vcpu)
-{
-	return to_vmx(vcpu)->nested.msrs.misc_low &
-		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS;
-}
-
-static inline bool nested_cpu_has_zero_length_injection(struct kvm_vcpu *vcpu)
-{
-	return to_vmx(vcpu)->nested.msrs.misc_low & VMX_MISC_ZERO_LEN_INS;
-}
-
-static inline bool nested_cpu_supports_monitor_trap_flag(struct kvm_vcpu *vcpu)
-{
-	return to_vmx(vcpu)->nested.msrs.procbased_ctls_high &
-			CPU_BASED_MONITOR_TRAP_FLAG;
-}
-
-static inline bool nested_cpu_has_vmx_shadow_vmcs(struct kvm_vcpu *vcpu)
-{
-	return to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
-		SECONDARY_EXEC_SHADOW_VMCS;
-}
-
-static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
-{
-	return vmcs12->cpu_based_vm_exec_control & bit;
-}
-
-static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
-{
-	return (vmcs12->cpu_based_vm_exec_control &
-			CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
-		(vmcs12->secondary_vm_exec_control & bit);
-}
-
-static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
-{
-	return vmcs12->pin_based_vm_exec_control &
-		PIN_BASED_VMX_PREEMPTION_TIMER;
-}
-
-static inline bool nested_cpu_has_nmi_exiting(struct vmcs12 *vmcs12)
-{
-	return vmcs12->pin_based_vm_exec_control & PIN_BASED_NMI_EXITING;
-}
-
-static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
-{
-	return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
-}
-
-static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
-{
-	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
-}
-
-static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
-{
-	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
-}
-
-static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
-{
-	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
-}
-
-static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
-{
-	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
-}
-
-static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
-{
-	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
-}
-
-static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
-{
-	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
-}
-
-static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
-{
-	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
-}
-
-static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
-{
-	return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
-}
-
-static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
-{
-	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
-}
-
-static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
-{
-	return nested_cpu_has_vmfunc(vmcs12) &&
-		(vmcs12->vm_function_control &
-		 VMX_VMFUNC_EPTP_SWITCHING);
-}
-
-static inline bool nested_cpu_has_shadow_vmcs(struct vmcs12 *vmcs12)
-{
-	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS);
-}
-
-static inline bool is_nmi(u32 intr_info)
-{
-	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
-		== (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
-}
-
-static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
-			      u32 exit_intr_info,
-			      unsigned long exit_qualification);
-
-static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
-{
-	int i;
-
-	for (i = 0; i < vmx->nmsrs; ++i)
-		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
-			return i;
-	return -1;
-}
-
-static inline void __invvpid(unsigned long ext, u16 vpid, gva_t gva)
-{
-    struct {
-	u64 vpid : 16;
-	u64 rsvd : 48;
-	u64 gva;
-    } operand = { vpid, 0, gva };
-    bool error;
-
-    asm volatile (__ex("invvpid %2, %1") CC_SET(na)
-		  : CC_OUT(na) (error) : "r"(ext), "m"(operand));
-    BUG_ON(error);
-}
-
-static inline void __invept(unsigned long ext, u64 eptp, gpa_t gpa)
-{
-	struct {
-		u64 eptp, gpa;
-	} operand = {eptp, gpa};
-	bool error;
-
-	asm volatile (__ex("invept %2, %1") CC_SET(na)
-		      : CC_OUT(na) (error) : "r"(ext), "m"(operand));
-	BUG_ON(error);
-}
-
-static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
-{
-	int i;
-
-	i = __find_msr_index(vmx, msr);
-	if (i >= 0)
-		return &vmx->guest_msrs[i];
-	return NULL;
-}
-
-static void vmcs_clear(struct vmcs *vmcs)
-{
-	u64 phys_addr = __pa(vmcs);
-	bool error;
-
-	asm volatile (__ex("vmclear %1") CC_SET(na)
-		      : CC_OUT(na) (error) : "m"(phys_addr));
-	if (unlikely(error))
-		printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
-		       vmcs, phys_addr);
-}
-
-static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
-{
-	vmcs_clear(loaded_vmcs->vmcs);
-	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
-		vmcs_clear(loaded_vmcs->shadow_vmcs);
-	loaded_vmcs->cpu = -1;
-	loaded_vmcs->launched = 0;
-}
-
-static void vmcs_load(struct vmcs *vmcs)
-{
-	u64 phys_addr = __pa(vmcs);
-	bool error;
-
-	if (static_branch_unlikely(&enable_evmcs))
-		return evmcs_load(phys_addr);
-
-	asm volatile (__ex("vmptrld %1") CC_SET(na)
-		      : CC_OUT(na) (error) : "m"(phys_addr));
-	if (unlikely(error))
-		printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
-		       vmcs, phys_addr);
-}
-
-#ifdef CONFIG_KEXEC_CORE
-/*
- * This bitmap is used to indicate whether the vmclear
- * operation is enabled on all cpus. All disabled by
- * default.
- */
-static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
-
-static inline void crash_enable_local_vmclear(int cpu)
-{
-	cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
-}
-
-static inline void crash_disable_local_vmclear(int cpu)
-{
-	cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
-}
-
-static inline int crash_local_vmclear_enabled(int cpu)
-{
-	return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
-}
-
-static void crash_vmclear_local_loaded_vmcss(void)
-{
-	int cpu = raw_smp_processor_id();
-	struct loaded_vmcs *v;
-
-	if (!crash_local_vmclear_enabled(cpu))
-		return;
-
-	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
-			    loaded_vmcss_on_cpu_link)
-		vmcs_clear(v->vmcs);
-}
-#else
-static inline void crash_enable_local_vmclear(int cpu) { }
-static inline void crash_disable_local_vmclear(int cpu) { }
-#endif /* CONFIG_KEXEC_CORE */
-
-static void __loaded_vmcs_clear(void *arg)
-{
-	struct loaded_vmcs *loaded_vmcs = arg;
-	int cpu = raw_smp_processor_id();
-
-	if (loaded_vmcs->cpu != cpu)
-		return; /* vcpu migration can race with cpu offline */
-	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
-		per_cpu(current_vmcs, cpu) = NULL;
-	crash_disable_local_vmclear(cpu);
-	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
-
-	/*
-	 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
-	 * is before setting loaded_vmcs->vcpu to -1 which is done in
-	 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
-	 * then adds the vmcs into percpu list before it is deleted.
-	 */
-	smp_wmb();
-
-	loaded_vmcs_init(loaded_vmcs);
-	crash_enable_local_vmclear(cpu);
-}
-
-static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
-{
-	int cpu = loaded_vmcs->cpu;
-
-	if (cpu != -1)
-		smp_call_function_single(cpu,
-			 __loaded_vmcs_clear, loaded_vmcs, 1);
-}
-
-static inline bool vpid_sync_vcpu_addr(int vpid, gva_t addr)
-{
-	if (vpid == 0)
-		return true;
-
-	if (cpu_has_vmx_invvpid_individual_addr()) {
-		__invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR, vpid, addr);
-		return true;
-	}
-
-	return false;
-}
-
-static inline void vpid_sync_vcpu_single(int vpid)
-{
-	if (vpid == 0)
-		return;
-
-	if (cpu_has_vmx_invvpid_single())
-		__invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
-}
-
-static inline void vpid_sync_vcpu_global(void)
-{
-	if (cpu_has_vmx_invvpid_global())
-		__invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
-}
-
-static inline void vpid_sync_context(int vpid)
-{
-	if (cpu_has_vmx_invvpid_single())
-		vpid_sync_vcpu_single(vpid);
-	else
-		vpid_sync_vcpu_global();
-}
-
-static inline void ept_sync_global(void)
-{
-	__invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
-}
-
-static inline void ept_sync_context(u64 eptp)
-{
-	if (cpu_has_vmx_invept_context())
-		__invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
-	else
-		ept_sync_global();
-}
-
-static __always_inline void vmcs_check16(unsigned long field)
-{
-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
-			 "16-bit accessor invalid for 64-bit field");
-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
-			 "16-bit accessor invalid for 64-bit high field");
-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
-			 "16-bit accessor invalid for 32-bit high field");
-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
-			 "16-bit accessor invalid for natural width field");
-}
-
-static __always_inline void vmcs_check32(unsigned long field)
-{
-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
-			 "32-bit accessor invalid for 16-bit field");
-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
-			 "32-bit accessor invalid for natural width field");
-}
-
-static __always_inline void vmcs_check64(unsigned long field)
-{
-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
-			 "64-bit accessor invalid for 16-bit field");
-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
-			 "64-bit accessor invalid for 64-bit high field");
-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
-			 "64-bit accessor invalid for 32-bit field");
-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
-			 "64-bit accessor invalid for natural width field");
-}
-
-static __always_inline void vmcs_checkl(unsigned long field)
-{
-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
-			 "Natural width accessor invalid for 16-bit field");
-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
-			 "Natural width accessor invalid for 64-bit field");
-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
-			 "Natural width accessor invalid for 64-bit high field");
-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
-			 "Natural width accessor invalid for 32-bit field");
-}
-
-static __always_inline unsigned long __vmcs_readl(unsigned long field)
-{
-	unsigned long value;
-
-	asm volatile (__ex_clear("vmread %1, %0", "%k0")
-		      : "=r"(value) : "r"(field));
-	return value;
-}
-
-static __always_inline u16 vmcs_read16(unsigned long field)
-{
-	vmcs_check16(field);
-	if (static_branch_unlikely(&enable_evmcs))
-		return evmcs_read16(field);
-	return __vmcs_readl(field);
-}
-
-static __always_inline u32 vmcs_read32(unsigned long field)
-{
-	vmcs_check32(field);
-	if (static_branch_unlikely(&enable_evmcs))
-		return evmcs_read32(field);
-	return __vmcs_readl(field);
-}
-
-static __always_inline u64 vmcs_read64(unsigned long field)
-{
-	vmcs_check64(field);
-	if (static_branch_unlikely(&enable_evmcs))
-		return evmcs_read64(field);
-#ifdef CONFIG_X86_64
-	return __vmcs_readl(field);
-#else
-	return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
-#endif
-}
-
-static __always_inline unsigned long vmcs_readl(unsigned long field)
-{
-	vmcs_checkl(field);
-	if (static_branch_unlikely(&enable_evmcs))
-		return evmcs_read64(field);
-	return __vmcs_readl(field);
-}
-
-static noinline void vmwrite_error(unsigned long field, unsigned long value)
-{
-	printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
-	       field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
-	dump_stack();
-}
-
-static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
-{
-	bool error;
-
-	asm volatile (__ex("vmwrite %2, %1") CC_SET(na)
-		      : CC_OUT(na) (error) : "r"(field), "rm"(value));
-	if (unlikely(error))
-		vmwrite_error(field, value);
-}
-
-static __always_inline void vmcs_write16(unsigned long field, u16 value)
-{
-	vmcs_check16(field);
-	if (static_branch_unlikely(&enable_evmcs))
-		return evmcs_write16(field, value);
-
-	__vmcs_writel(field, value);
-}
-
-static __always_inline void vmcs_write32(unsigned long field, u32 value)
-{
-	vmcs_check32(field);
-	if (static_branch_unlikely(&enable_evmcs))
-		return evmcs_write32(field, value);
-
-	__vmcs_writel(field, value);
-}
-
-static __always_inline void vmcs_write64(unsigned long field, u64 value)
-{
-	vmcs_check64(field);
-	if (static_branch_unlikely(&enable_evmcs))
-		return evmcs_write64(field, value);
-
-	__vmcs_writel(field, value);
-#ifndef CONFIG_X86_64
-	asm volatile ("");
-	__vmcs_writel(field+1, value >> 32);
-#endif
-}
-
-static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
-{
-	vmcs_checkl(field);
-	if (static_branch_unlikely(&enable_evmcs))
-		return evmcs_write64(field, value);
-
-	__vmcs_writel(field, value);
-}
-
-static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
-{
-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
-			 "vmcs_clear_bits does not support 64-bit fields");
-	if (static_branch_unlikely(&enable_evmcs))
-		return evmcs_write32(field, evmcs_read32(field) & ~mask);
-
-	__vmcs_writel(field, __vmcs_readl(field) & ~mask);
-}
-
-static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
-{
-        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
-			 "vmcs_set_bits does not support 64-bit fields");
-	if (static_branch_unlikely(&enable_evmcs))
-		return evmcs_write32(field, evmcs_read32(field) | mask);
-
-	__vmcs_writel(field, __vmcs_readl(field) | mask);
-}
-
-static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
-{
-	vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
-}
-
-static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
-{
-	vmcs_write32(VM_ENTRY_CONTROLS, val);
-	vmx->vm_entry_controls_shadow = val;
-}
-
-static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
-{
-	if (vmx->vm_entry_controls_shadow != val)
-		vm_entry_controls_init(vmx, val);
-}
-
-static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
-{
-	return vmx->vm_entry_controls_shadow;
-}
-
-
-static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
-{
-	vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
-}
-
-static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
-{
-	vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
-}
-
-static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
-{
-	vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
-}
-
-static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
-{
-	vmcs_write32(VM_EXIT_CONTROLS, val);
-	vmx->vm_exit_controls_shadow = val;
-}
-
-static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
-{
-	if (vmx->vm_exit_controls_shadow != val)
-		vm_exit_controls_init(vmx, val);
-}
-
-static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
-{
-	return vmx->vm_exit_controls_shadow;
-}
-
-
-static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
-{
-	vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
-}
-
-static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
-{
-	vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
-}
-
-static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
-{
-	vmx->segment_cache.bitmask = 0;
-}
-
-static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
-				       unsigned field)
-{
-	bool ret;
-	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
-
-	if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
-		vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
-		vmx->segment_cache.bitmask = 0;
-	}
-	ret = vmx->segment_cache.bitmask & mask;
-	vmx->segment_cache.bitmask |= mask;
-	return ret;
-}
-
-static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
-{
-	u16 *p = &vmx->segment_cache.seg[seg].selector;
-
-	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
-		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
-	return *p;
-}
-
-static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
-{
-	ulong *p = &vmx->segment_cache.seg[seg].base;
-
-	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
-		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
-	return *p;
-}
-
-static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
-{
-	u32 *p = &vmx->segment_cache.seg[seg].limit;
-
-	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
-		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
-	return *p;
-}
-
-static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
-{
-	u32 *p = &vmx->segment_cache.seg[seg].ar;
-
-	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
-		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
-	return *p;
-}
-
-static void update_exception_bitmap(struct kvm_vcpu *vcpu)
-{
-	u32 eb;
-
-	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
-	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
-	/*
-	 * Guest access to VMware backdoor ports could legitimately
-	 * trigger #GP because of TSS I/O permission bitmap.
-	 * We intercept those #GP and allow access to them anyway
-	 * as VMware does.
-	 */
-	if (enable_vmware_backdoor)
-		eb |= (1u << GP_VECTOR);
-	if ((vcpu->guest_debug &
-	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
-	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
-		eb |= 1u << BP_VECTOR;
-	if (to_vmx(vcpu)->rmode.vm86_active)
-		eb = ~0;
-	if (enable_ept)
-		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
-
-	/* When we are running a nested L2 guest and L1 specified for it a
-	 * certain exception bitmap, we must trap the same exceptions and pass
-	 * them to L1. When running L2, we will only handle the exceptions
-	 * specified above if L1 did not want them.
-	 */
-	if (is_guest_mode(vcpu))
-		eb |= get_vmcs12(vcpu)->exception_bitmap;
-
-	vmcs_write32(EXCEPTION_BITMAP, eb);
-}
-
-/*
- * Check if MSR is intercepted for currently loaded MSR bitmap.
- */
-static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
-{
-	unsigned long *msr_bitmap;
-	int f = sizeof(unsigned long);
-
-	if (!cpu_has_vmx_msr_bitmap())
-		return true;
-
-	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
-
-	if (msr <= 0x1fff) {
-		return !!test_bit(msr, msr_bitmap + 0x800 / f);
-	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
-		msr &= 0x1fff;
-		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
-	}
-
-	return true;
-}
-
-/*
- * Check if MSR is intercepted for L01 MSR bitmap.
- */
-static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
-{
-	unsigned long *msr_bitmap;
-	int f = sizeof(unsigned long);
-
-	if (!cpu_has_vmx_msr_bitmap())
-		return true;
-
-	msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
-
-	if (msr <= 0x1fff) {
-		return !!test_bit(msr, msr_bitmap + 0x800 / f);
-	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
-		msr &= 0x1fff;
-		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
-	}
-
-	return true;
-}
-
-static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
-		unsigned long entry, unsigned long exit)
-{
-	vm_entry_controls_clearbit(vmx, entry);
-	vm_exit_controls_clearbit(vmx, exit);
-}
-
-static int find_msr(struct vmx_msrs *m, unsigned int msr)
-{
-	unsigned int i;
-
-	for (i = 0; i < m->nr; ++i) {
-		if (m->val[i].index == msr)
-			return i;
-	}
-	return -ENOENT;
-}
-
-static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
-{
-	int i;
-	struct msr_autoload *m = &vmx->msr_autoload;
-
-	switch (msr) {
-	case MSR_EFER:
-		if (cpu_has_load_ia32_efer) {
-			clear_atomic_switch_msr_special(vmx,
-					VM_ENTRY_LOAD_IA32_EFER,
-					VM_EXIT_LOAD_IA32_EFER);
-			return;
-		}
-		break;
-	case MSR_CORE_PERF_GLOBAL_CTRL:
-		if (cpu_has_load_perf_global_ctrl) {
-			clear_atomic_switch_msr_special(vmx,
-					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
-					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
-			return;
-		}
-		break;
-	}
-	i = find_msr(&m->guest, msr);
-	if (i < 0)
-		goto skip_guest;
-	--m->guest.nr;
-	m->guest.val[i] = m->guest.val[m->guest.nr];
-	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
-
-skip_guest:
-	i = find_msr(&m->host, msr);
-	if (i < 0)
-		return;
-
-	--m->host.nr;
-	m->host.val[i] = m->host.val[m->host.nr];
-	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
-}
-
-static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
-		unsigned long entry, unsigned long exit,
-		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
-		u64 guest_val, u64 host_val)
-{
-	vmcs_write64(guest_val_vmcs, guest_val);
-	if (host_val_vmcs != HOST_IA32_EFER)
-		vmcs_write64(host_val_vmcs, host_val);
-	vm_entry_controls_setbit(vmx, entry);
-	vm_exit_controls_setbit(vmx, exit);
-}
-
-static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
-				  u64 guest_val, u64 host_val, bool entry_only)
-{
-	int i, j = 0;
-	struct msr_autoload *m = &vmx->msr_autoload;
-
-	switch (msr) {
-	case MSR_EFER:
-		if (cpu_has_load_ia32_efer) {
-			add_atomic_switch_msr_special(vmx,
-					VM_ENTRY_LOAD_IA32_EFER,
-					VM_EXIT_LOAD_IA32_EFER,
-					GUEST_IA32_EFER,
-					HOST_IA32_EFER,
-					guest_val, host_val);
-			return;
-		}
-		break;
-	case MSR_CORE_PERF_GLOBAL_CTRL:
-		if (cpu_has_load_perf_global_ctrl) {
-			add_atomic_switch_msr_special(vmx,
-					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
-					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
-					GUEST_IA32_PERF_GLOBAL_CTRL,
-					HOST_IA32_PERF_GLOBAL_CTRL,
-					guest_val, host_val);
-			return;
-		}
-		break;
-	case MSR_IA32_PEBS_ENABLE:
-		/* PEBS needs a quiescent period after being disabled (to write
-		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
-		 * provide that period, so a CPU could write host's record into
-		 * guest's memory.
-		 */
-		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
-	}
-
-	i = find_msr(&m->guest, msr);
-	if (!entry_only)
-		j = find_msr(&m->host, msr);
-
-	if (i == NR_AUTOLOAD_MSRS || j == NR_AUTOLOAD_MSRS) {
-		printk_once(KERN_WARNING "Not enough msr switch entries. "
-				"Can't add msr %x\n", msr);
-		return;
-	}
-	if (i < 0) {
-		i = m->guest.nr++;
-		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
-	}
-	m->guest.val[i].index = msr;
-	m->guest.val[i].value = guest_val;
-
-	if (entry_only)
-		return;
-
-	if (j < 0) {
-		j = m->host.nr++;
-		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
-	}
-	m->host.val[j].index = msr;
-	m->host.val[j].value = host_val;
-}
-
-static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
-{
-	u64 guest_efer = vmx->vcpu.arch.efer;
-	u64 ignore_bits = 0;
-
-	if (!enable_ept) {
-		/*
-		 * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
-		 * host CPUID is more efficient than testing guest CPUID
-		 * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
-		 */
-		if (boot_cpu_has(X86_FEATURE_SMEP))
-			guest_efer |= EFER_NX;
-		else if (!(guest_efer & EFER_NX))
-			ignore_bits |= EFER_NX;
-	}
-
-	/*
-	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
-	 */
-	ignore_bits |= EFER_SCE;
-#ifdef CONFIG_X86_64
-	ignore_bits |= EFER_LMA | EFER_LME;
-	/* SCE is meaningful only in long mode on Intel */
-	if (guest_efer & EFER_LMA)
-		ignore_bits &= ~(u64)EFER_SCE;
-#endif
-
-	/*
-	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
-	 * On CPUs that support "load IA32_EFER", always switch EFER
-	 * atomically, since it's faster than switching it manually.
-	 */
-	if (cpu_has_load_ia32_efer ||
-	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
-		if (!(guest_efer & EFER_LMA))
-			guest_efer &= ~EFER_LME;
-		if (guest_efer != host_efer)
-			add_atomic_switch_msr(vmx, MSR_EFER,
-					      guest_efer, host_efer, false);
-		else
-			clear_atomic_switch_msr(vmx, MSR_EFER);
-		return false;
-	} else {
-		clear_atomic_switch_msr(vmx, MSR_EFER);
-
-		guest_efer &= ~ignore_bits;
-		guest_efer |= host_efer & ignore_bits;
-
-		vmx->guest_msrs[efer_offset].data = guest_efer;
-		vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
-
-		return true;
-	}
-}
-
-#ifdef CONFIG_X86_32
-/*
- * On 32-bit kernels, VM exits still load the FS and GS bases from the
- * VMCS rather than the segment table.  KVM uses this helper to figure
- * out the current bases to poke them into the VMCS before entry.
- */
-static unsigned long segment_base(u16 selector)
-{
-	struct desc_struct *table;
-	unsigned long v;
-
-	if (!(selector & ~SEGMENT_RPL_MASK))
-		return 0;
-
-	table = get_current_gdt_ro();
-
-	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
-		u16 ldt_selector = kvm_read_ldt();
-
-		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
-			return 0;
-
-		table = (struct desc_struct *)segment_base(ldt_selector);
-	}
-	v = get_desc_base(&table[selector >> 3]);
-	return v;
-}
-#endif
-
-static void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	struct vmcs_host_state *host_state;
-#ifdef CONFIG_X86_64
-	int cpu = raw_smp_processor_id();
-#endif
-	unsigned long fs_base, gs_base;
-	u16 fs_sel, gs_sel;
-	int i;
-
-	vmx->req_immediate_exit = false;
-
-	if (vmx->loaded_cpu_state)
-		return;
-
-	vmx->loaded_cpu_state = vmx->loaded_vmcs;
-	host_state = &vmx->loaded_cpu_state->host_state;
-
-	/*
-	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
-	 * allow segment selectors with cpl > 0 or ti == 1.
-	 */
-	host_state->ldt_sel = kvm_read_ldt();
-
-#ifdef CONFIG_X86_64
-	savesegment(ds, host_state->ds_sel);
-	savesegment(es, host_state->es_sel);
-
-	gs_base = cpu_kernelmode_gs_base(cpu);
-	if (likely(is_64bit_mm(current->mm))) {
-		save_fsgs_for_kvm();
-		fs_sel = current->thread.fsindex;
-		gs_sel = current->thread.gsindex;
-		fs_base = current->thread.fsbase;
-		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
-	} else {
-		savesegment(fs, fs_sel);
-		savesegment(gs, gs_sel);
-		fs_base = read_msr(MSR_FS_BASE);
-		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
-	}
-
-	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
-#else
-	savesegment(fs, fs_sel);
-	savesegment(gs, gs_sel);
-	fs_base = segment_base(fs_sel);
-	gs_base = segment_base(gs_sel);
-#endif
-
-	if (unlikely(fs_sel != host_state->fs_sel)) {
-		if (!(fs_sel & 7))
-			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
-		else
-			vmcs_write16(HOST_FS_SELECTOR, 0);
-		host_state->fs_sel = fs_sel;
-	}
-	if (unlikely(gs_sel != host_state->gs_sel)) {
-		if (!(gs_sel & 7))
-			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
-		else
-			vmcs_write16(HOST_GS_SELECTOR, 0);
-		host_state->gs_sel = gs_sel;
-	}
-	if (unlikely(fs_base != host_state->fs_base)) {
-		vmcs_writel(HOST_FS_BASE, fs_base);
-		host_state->fs_base = fs_base;
-	}
-	if (unlikely(gs_base != host_state->gs_base)) {
-		vmcs_writel(HOST_GS_BASE, gs_base);
-		host_state->gs_base = gs_base;
-	}
-
-	for (i = 0; i < vmx->save_nmsrs; ++i)
-		kvm_set_shared_msr(vmx->guest_msrs[i].index,
-				   vmx->guest_msrs[i].data,
-				   vmx->guest_msrs[i].mask);
-}
-
-static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
-{
-	struct vmcs_host_state *host_state;
-
-	if (!vmx->loaded_cpu_state)
-		return;
-
-	WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs);
-	host_state = &vmx->loaded_cpu_state->host_state;
-
-	++vmx->vcpu.stat.host_state_reload;
-	vmx->loaded_cpu_state = NULL;
-
-#ifdef CONFIG_X86_64
-	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
-#endif
-	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
-		kvm_load_ldt(host_state->ldt_sel);
-#ifdef CONFIG_X86_64
-		load_gs_index(host_state->gs_sel);
-#else
-		loadsegment(gs, host_state->gs_sel);
-#endif
-	}
-	if (host_state->fs_sel & 7)
-		loadsegment(fs, host_state->fs_sel);
-#ifdef CONFIG_X86_64
-	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
-		loadsegment(ds, host_state->ds_sel);
-		loadsegment(es, host_state->es_sel);
-	}
-#endif
-	invalidate_tss_limit();
-#ifdef CONFIG_X86_64
-	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
-#endif
-	load_fixmap_gdt(raw_smp_processor_id());
-}
-
-#ifdef CONFIG_X86_64
-static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
-{
-	preempt_disable();
-	if (vmx->loaded_cpu_state)
-		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
-	preempt_enable();
-	return vmx->msr_guest_kernel_gs_base;
-}
-
-static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
-{
-	preempt_disable();
-	if (vmx->loaded_cpu_state)
-		wrmsrl(MSR_KERNEL_GS_BASE, data);
-	preempt_enable();
-	vmx->msr_guest_kernel_gs_base = data;
-}
-#endif
-
-static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
-{
-	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
-	struct pi_desc old, new;
-	unsigned int dest;
-
-	/*
-	 * In case of hot-plug or hot-unplug, we may have to undo
-	 * vmx_vcpu_pi_put even if there is no assigned device.  And we
-	 * always keep PI.NDST up to date for simplicity: it makes the
-	 * code easier, and CPU migration is not a fast path.
-	 */
-	if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
-		return;
-
-	/*
-	 * First handle the simple case where no cmpxchg is necessary; just
-	 * allow posting non-urgent interrupts.
-	 *
-	 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
-	 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
-	 * expects the VCPU to be on the blocked_vcpu_list that matches
-	 * PI.NDST.
-	 */
-	if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
-	    vcpu->cpu == cpu) {
-		pi_clear_sn(pi_desc);
-		return;
-	}
-
-	/* The full case.  */
-	do {
-		old.control = new.control = pi_desc->control;
-
-		dest = cpu_physical_id(cpu);
-
-		if (x2apic_enabled())
-			new.ndst = dest;
-		else
-			new.ndst = (dest << 8) & 0xFF00;
-
-		new.sn = 0;
-	} while (cmpxchg64(&pi_desc->control, old.control,
-			   new.control) != old.control);
-}
-
-static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
-{
-	vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
-	vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
-}
-
-/*
- * Switches to specified vcpu, until a matching vcpu_put(), but assumes
- * vcpu mutex is already taken.
- */
-static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
-
-	if (!already_loaded) {
-		loaded_vmcs_clear(vmx->loaded_vmcs);
-		local_irq_disable();
-		crash_disable_local_vmclear(cpu);
-
-		/*
-		 * Read loaded_vmcs->cpu should be before fetching
-		 * loaded_vmcs->loaded_vmcss_on_cpu_link.
-		 * See the comments in __loaded_vmcs_clear().
-		 */
-		smp_rmb();
-
-		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
-			 &per_cpu(loaded_vmcss_on_cpu, cpu));
-		crash_enable_local_vmclear(cpu);
-		local_irq_enable();
-	}
-
-	if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
-		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
-		vmcs_load(vmx->loaded_vmcs->vmcs);
-		indirect_branch_prediction_barrier();
-	}
-
-	if (!already_loaded) {
-		void *gdt = get_current_gdt_ro();
-		unsigned long sysenter_esp;
-
-		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
-
-		/*
-		 * Linux uses per-cpu TSS and GDT, so set these when switching
-		 * processors.  See 22.2.4.
-		 */
-		vmcs_writel(HOST_TR_BASE,
-			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
-		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
-
-		/*
-		 * VM exits change the host TR limit to 0x67 after a VM
-		 * exit.  This is okay, since 0x67 covers everything except
-		 * the IO bitmap and have have code to handle the IO bitmap
-		 * being lost after a VM exit.
-		 */
-		BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
-
-		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
-		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
-
-		vmx->loaded_vmcs->cpu = cpu;
-	}
-
-	/* Setup TSC multiplier */
-	if (kvm_has_tsc_control &&
-	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
-		decache_tsc_multiplier(vmx);
-
-	vmx_vcpu_pi_load(vcpu, cpu);
-	vmx->host_pkru = read_pkru();
-	vmx->host_debugctlmsr = get_debugctlmsr();
-}
-
-static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
-{
-	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
-
-	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
-		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
-		!kvm_vcpu_apicv_active(vcpu))
-		return;
-
-	/* Set SN when the vCPU is preempted */
-	if (vcpu->preempted)
-		pi_set_sn(pi_desc);
-}
-
-static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
-{
-	vmx_vcpu_pi_put(vcpu);
-
-	vmx_prepare_switch_to_host(to_vmx(vcpu));
-}
-
-static bool emulation_required(struct kvm_vcpu *vcpu)
-{
-	return emulate_invalid_guest_state && !guest_state_valid(vcpu);
-}
-
-static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
-
-/*
- * Return the cr0 value that a nested guest would read. This is a combination
- * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
- * its hypervisor (cr0_read_shadow).
- */
-static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
-{
-	return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
-		(fields->cr0_read_shadow & fields->cr0_guest_host_mask);
-}
-static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
-{
-	return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
-		(fields->cr4_read_shadow & fields->cr4_guest_host_mask);
-}
-
-static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
-{
-	unsigned long rflags, save_rflags;
-
-	if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
-		__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
-		rflags = vmcs_readl(GUEST_RFLAGS);
-		if (to_vmx(vcpu)->rmode.vm86_active) {
-			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
-			save_rflags = to_vmx(vcpu)->rmode.save_rflags;
-			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
-		}
-		to_vmx(vcpu)->rflags = rflags;
-	}
-	return to_vmx(vcpu)->rflags;
-}
-
-static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
-{
-	unsigned long old_rflags = vmx_get_rflags(vcpu);
-
-	__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
-	to_vmx(vcpu)->rflags = rflags;
-	if (to_vmx(vcpu)->rmode.vm86_active) {
-		to_vmx(vcpu)->rmode.save_rflags = rflags;
-		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
-	}
-	vmcs_writel(GUEST_RFLAGS, rflags);
-
-	if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
-		to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
-}
-
-static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
-{
-	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
-	int ret = 0;
-
-	if (interruptibility & GUEST_INTR_STATE_STI)
-		ret |= KVM_X86_SHADOW_INT_STI;
-	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
-		ret |= KVM_X86_SHADOW_INT_MOV_SS;
-
-	return ret;
-}
-
-static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
-{
-	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
-	u32 interruptibility = interruptibility_old;
-
-	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
-
-	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
-		interruptibility |= GUEST_INTR_STATE_MOV_SS;
-	else if (mask & KVM_X86_SHADOW_INT_STI)
-		interruptibility |= GUEST_INTR_STATE_STI;
-
-	if ((interruptibility != interruptibility_old))
-		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
-}
-
-static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
-{
-	unsigned long rip;
-
-	rip = kvm_rip_read(vcpu);
-	rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
-	kvm_rip_write(vcpu, rip);
-
-	/* skipping an emulated instruction also counts */
-	vmx_set_interrupt_shadow(vcpu, 0);
-}
-
-static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
-					       unsigned long exit_qual)
-{
-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-	unsigned int nr = vcpu->arch.exception.nr;
-	u32 intr_info = nr | INTR_INFO_VALID_MASK;
-
-	if (vcpu->arch.exception.has_error_code) {
-		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
-		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
-	}
-
-	if (kvm_exception_is_soft(nr))
-		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
-	else
-		intr_info |= INTR_TYPE_HARD_EXCEPTION;
-
-	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
-	    vmx_get_nmi_mask(vcpu))
-		intr_info |= INTR_INFO_UNBLOCK_NMI;
-
-	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
-}
-
-/*
- * KVM wants to inject page-faults which it got to the guest. This function
- * checks whether in a nested guest, we need to inject them to L1 or L2.
- */
-static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
-{
-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-	unsigned int nr = vcpu->arch.exception.nr;
-	bool has_payload = vcpu->arch.exception.has_payload;
-	unsigned long payload = vcpu->arch.exception.payload;
-
-	if (nr == PF_VECTOR) {
-		if (vcpu->arch.exception.nested_apf) {
-			*exit_qual = vcpu->arch.apf.nested_apf_token;
-			return 1;
-		}
-		if (nested_vmx_is_page_fault_vmexit(vmcs12,
-						    vcpu->arch.exception.error_code)) {
-			*exit_qual = has_payload ? payload : vcpu->arch.cr2;
-			return 1;
-		}
-	} else if (vmcs12->exception_bitmap & (1u << nr)) {
-		if (nr == DB_VECTOR) {
-			if (!has_payload) {
-				payload = vcpu->arch.dr6;
-				payload &= ~(DR6_FIXED_1 | DR6_BT);
-				payload ^= DR6_RTM;
-			}
-			*exit_qual = payload;
-		} else
-			*exit_qual = 0;
-		return 1;
-	}
-
-	return 0;
-}
-
-static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
-{
-	/*
-	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
-	 * explicitly skip the instruction because if the HLT state is set,
-	 * then the instruction is already executing and RIP has already been
-	 * advanced.
-	 */
-	if (kvm_hlt_in_guest(vcpu->kvm) &&
-			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
-		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
-}
-
-static void vmx_queue_exception(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	unsigned nr = vcpu->arch.exception.nr;
-	bool has_error_code = vcpu->arch.exception.has_error_code;
-	u32 error_code = vcpu->arch.exception.error_code;
-	u32 intr_info = nr | INTR_INFO_VALID_MASK;
-
-	kvm_deliver_exception_payload(vcpu);
-
-	if (has_error_code) {
-		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
-		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
-	}
-
-	if (vmx->rmode.vm86_active) {
-		int inc_eip = 0;
-		if (kvm_exception_is_soft(nr))
-			inc_eip = vcpu->arch.event_exit_inst_len;
-		if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
-			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
-		return;
-	}
-
-	WARN_ON_ONCE(vmx->emulation_required);
-
-	if (kvm_exception_is_soft(nr)) {
-		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
-			     vmx->vcpu.arch.event_exit_inst_len);
-		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
-	} else
-		intr_info |= INTR_TYPE_HARD_EXCEPTION;
-
-	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
-
-	vmx_clear_hlt(vcpu);
-}
-
-static bool vmx_rdtscp_supported(void)
-{
-	return cpu_has_vmx_rdtscp();
-}
-
-static bool vmx_invpcid_supported(void)
-{
-	return cpu_has_vmx_invpcid();
-}
-
-/*
- * Swap MSR entry in host/guest MSR entry array.
- */
-static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
-{
-	struct shared_msr_entry tmp;
-
-	tmp = vmx->guest_msrs[to];
-	vmx->guest_msrs[to] = vmx->guest_msrs[from];
-	vmx->guest_msrs[from] = tmp;
-}
-
-/*
- * Set up the vmcs to automatically save and restore system
- * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
- * mode, as fiddling with msrs is very expensive.
- */
-static void setup_msrs(struct vcpu_vmx *vmx)
-{
-	int save_nmsrs, index;
-
-	save_nmsrs = 0;
-#ifdef CONFIG_X86_64
-	if (is_long_mode(&vmx->vcpu)) {
-		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
-		if (index >= 0)
-			move_msr_up(vmx, index, save_nmsrs++);
-		index = __find_msr_index(vmx, MSR_LSTAR);
-		if (index >= 0)
-			move_msr_up(vmx, index, save_nmsrs++);
-		index = __find_msr_index(vmx, MSR_CSTAR);
-		if (index >= 0)
-			move_msr_up(vmx, index, save_nmsrs++);
-		index = __find_msr_index(vmx, MSR_TSC_AUX);
-		if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
-			move_msr_up(vmx, index, save_nmsrs++);
-		/*
-		 * MSR_STAR is only needed on long mode guests, and only
-		 * if efer.sce is enabled.
-		 */
-		index = __find_msr_index(vmx, MSR_STAR);
-		if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
-			move_msr_up(vmx, index, save_nmsrs++);
-	}
-#endif
-	index = __find_msr_index(vmx, MSR_EFER);
-	if (index >= 0 && update_transition_efer(vmx, index))
-		move_msr_up(vmx, index, save_nmsrs++);
-
-	vmx->save_nmsrs = save_nmsrs;
-
-	if (cpu_has_vmx_msr_bitmap())
-		vmx_update_msr_bitmap(&vmx->vcpu);
-}
-
-static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
-{
-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-
-	if (is_guest_mode(vcpu) &&
-	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
-		return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
-
-	return vcpu->arch.tsc_offset;
-}
-
-/*
- * writes 'offset' into guest's timestamp counter offset register
- */
-static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
-{
-	if (is_guest_mode(vcpu)) {
-		/*
-		 * We're here if L1 chose not to trap WRMSR to TSC. According
-		 * to the spec, this should set L1's TSC; The offset that L1
-		 * set for L2 remains unchanged, and still needs to be added
-		 * to the newly set TSC to get L2's TSC.
-		 */
-		struct vmcs12 *vmcs12;
-		/* recalculate vmcs02.TSC_OFFSET: */
-		vmcs12 = get_vmcs12(vcpu);
-		vmcs_write64(TSC_OFFSET, offset +
-			(nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
-			 vmcs12->tsc_offset : 0));
-	} else {
-		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
-					   vmcs_read64(TSC_OFFSET), offset);
-		vmcs_write64(TSC_OFFSET, offset);
-	}
-}
-
-/*
- * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
- * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
- * all guests if the "nested" module option is off, and can also be disabled
- * for a single guest by disabling its VMX cpuid bit.
- */
-static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
-{
-	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
-}
-
-/*
- * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
- * returned for the various VMX controls MSRs when nested VMX is enabled.
- * The same values should also be used to verify that vmcs12 control fields are
- * valid during nested entry from L1 to L2.
- * Each of these control msrs has a low and high 32-bit half: A low bit is on
- * if the corresponding bit in the (32-bit) control field *must* be on, and a
- * bit in the high half is on if the corresponding bit in the control field
- * may be on. See also vmx_control_verify().
- */
-static void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, bool apicv)
-{
-	if (!nested) {
-		memset(msrs, 0, sizeof(*msrs));
-		return;
-	}
-
-	/*
-	 * Note that as a general rule, the high half of the MSRs (bits in
-	 * the control fields which may be 1) should be initialized by the
-	 * intersection of the underlying hardware's MSR (i.e., features which
-	 * can be supported) and the list of features we want to expose -
-	 * because they are known to be properly supported in our code.
-	 * Also, usually, the low half of the MSRs (bits which must be 1) can
-	 * be set to 0, meaning that L1 may turn off any of these bits. The
-	 * reason is that if one of these bits is necessary, it will appear
-	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
-	 * fields of vmcs01 and vmcs02, will turn these bits off - and
-	 * nested_vmx_exit_reflected() will not pass related exits to L1.
-	 * These rules have exceptions below.
-	 */
-
-	/* pin-based controls */
-	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
-		msrs->pinbased_ctls_low,
-		msrs->pinbased_ctls_high);
-	msrs->pinbased_ctls_low |=
-		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
-	msrs->pinbased_ctls_high &=
-		PIN_BASED_EXT_INTR_MASK |
-		PIN_BASED_NMI_EXITING |
-		PIN_BASED_VIRTUAL_NMIS |
-		(apicv ? PIN_BASED_POSTED_INTR : 0);
-	msrs->pinbased_ctls_high |=
-		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
-		PIN_BASED_VMX_PREEMPTION_TIMER;
-
-	/* exit controls */
-	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
-		msrs->exit_ctls_low,
-		msrs->exit_ctls_high);
-	msrs->exit_ctls_low =
-		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
-
-	msrs->exit_ctls_high &=
-#ifdef CONFIG_X86_64
-		VM_EXIT_HOST_ADDR_SPACE_SIZE |
-#endif
-		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
-	msrs->exit_ctls_high |=
-		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
-		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
-		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
-
-	/* We support free control of debug control saving. */
-	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
-
-	/* entry controls */
-	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
-		msrs->entry_ctls_low,
-		msrs->entry_ctls_high);
-	msrs->entry_ctls_low =
-		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
-	msrs->entry_ctls_high &=
-#ifdef CONFIG_X86_64
-		VM_ENTRY_IA32E_MODE |
-#endif
-		VM_ENTRY_LOAD_IA32_PAT;
-	msrs->entry_ctls_high |=
-		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
-
-	/* We support free control of debug control loading. */
-	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
-
-	/* cpu-based controls */
-	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
-		msrs->procbased_ctls_low,
-		msrs->procbased_ctls_high);
-	msrs->procbased_ctls_low =
-		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
-	msrs->procbased_ctls_high &=
-		CPU_BASED_VIRTUAL_INTR_PENDING |
-		CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
-		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
-		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
-		CPU_BASED_CR3_STORE_EXITING |
-#ifdef CONFIG_X86_64
-		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
-#endif
-		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
-		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
-		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
-		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
-		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
-	/*
-	 * We can allow some features even when not supported by the
-	 * hardware. For example, L1 can specify an MSR bitmap - and we
-	 * can use it to avoid exits to L1 - even when L0 runs L2
-	 * without MSR bitmaps.
-	 */
-	msrs->procbased_ctls_high |=
-		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
-		CPU_BASED_USE_MSR_BITMAPS;
-
-	/* We support free control of CR3 access interception. */
-	msrs->procbased_ctls_low &=
-		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
-
-	/*
-	 * secondary cpu-based controls.  Do not include those that
-	 * depend on CPUID bits, they are added later by vmx_cpuid_update.
-	 */
-	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
-		msrs->secondary_ctls_low,
-		msrs->secondary_ctls_high);
-	msrs->secondary_ctls_low = 0;
-	msrs->secondary_ctls_high &=
-		SECONDARY_EXEC_DESC |
-		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
-		SECONDARY_EXEC_APIC_REGISTER_VIRT |
-		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
-		SECONDARY_EXEC_WBINVD_EXITING;
-
-	/*
-	 * We can emulate "VMCS shadowing," even if the hardware
-	 * doesn't support it.
-	 */
-	msrs->secondary_ctls_high |=
-		SECONDARY_EXEC_SHADOW_VMCS;
-
-	if (enable_ept) {
-		/* nested EPT: emulate EPT also to L1 */
-		msrs->secondary_ctls_high |=
-			SECONDARY_EXEC_ENABLE_EPT;
-		msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
-			 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
-		if (cpu_has_vmx_ept_execute_only())
-			msrs->ept_caps |=
-				VMX_EPT_EXECUTE_ONLY_BIT;
-		msrs->ept_caps &= vmx_capability.ept;
-		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
-			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
-			VMX_EPT_1GB_PAGE_BIT;
-		if (enable_ept_ad_bits) {
-			msrs->secondary_ctls_high |=
-				SECONDARY_EXEC_ENABLE_PML;
-			msrs->ept_caps |= VMX_EPT_AD_BIT;
-		}
-	}
-
-	if (cpu_has_vmx_vmfunc()) {
-		msrs->secondary_ctls_high |=
-			SECONDARY_EXEC_ENABLE_VMFUNC;
-		/*
-		 * Advertise EPTP switching unconditionally
-		 * since we emulate it
-		 */
-		if (enable_ept)
-			msrs->vmfunc_controls =
-				VMX_VMFUNC_EPTP_SWITCHING;
-	}
-
-	/*
-	 * Old versions of KVM use the single-context version without
-	 * checking for support, so declare that it is supported even
-	 * though it is treated as global context.  The alternative is
-	 * not failing the single-context invvpid, and it is worse.
-	 */
-	if (enable_vpid) {
-		msrs->secondary_ctls_high |=
-			SECONDARY_EXEC_ENABLE_VPID;
-		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
-			VMX_VPID_EXTENT_SUPPORTED_MASK;
-	}
-
-	if (enable_unrestricted_guest)
-		msrs->secondary_ctls_high |=
-			SECONDARY_EXEC_UNRESTRICTED_GUEST;
-
-	if (flexpriority_enabled)
-		msrs->secondary_ctls_high |=
-			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
-
-	/* miscellaneous data */
-	rdmsr(MSR_IA32_VMX_MISC,
-		msrs->misc_low,
-		msrs->misc_high);
-	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
-	msrs->misc_low |=
-		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
-		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
-		VMX_MISC_ACTIVITY_HLT;
-	msrs->misc_high = 0;
-
-	/*
-	 * This MSR reports some information about VMX support. We
-	 * should return information about the VMX we emulate for the
-	 * guest, and the VMCS structure we give it - not about the
-	 * VMX support of the underlying hardware.
-	 */
-	msrs->basic =
-		VMCS12_REVISION |
-		VMX_BASIC_TRUE_CTLS |
-		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
-		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
-
-	if (cpu_has_vmx_basic_inout())
-		msrs->basic |= VMX_BASIC_INOUT;
-
-	/*
-	 * These MSRs specify bits which the guest must keep fixed on
-	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
-	 * We picked the standard core2 setting.
-	 */
-#define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
-#define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
-	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
-	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
-
-	/* These MSRs specify bits which the guest must keep fixed off. */
-	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
-	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
-
-	/* highest index: VMX_PREEMPTION_TIMER_VALUE */
-	msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
-}
-
-/*
- * if fixed0[i] == 1: val[i] must be 1
- * if fixed1[i] == 0: val[i] must be 0
- */
-static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
-{
-	return ((val & fixed1) | fixed0) == val;
-}
-
-static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
-{
-	return fixed_bits_valid(control, low, high);
-}
-
-static inline u64 vmx_control_msr(u32 low, u32 high)
-{
-	return low | ((u64)high << 32);
-}
-
-static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
-{
-	superset &= mask;
-	subset &= mask;
-
-	return (superset | subset) == superset;
-}
-
-static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
-{
-	const u64 feature_and_reserved =
-		/* feature (except bit 48; see below) */
-		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
-		/* reserved */
-		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
-	u64 vmx_basic = vmx->nested.msrs.basic;
-
-	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
-		return -EINVAL;
-
-	/*
-	 * KVM does not emulate a version of VMX that constrains physical
-	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
-	 */
-	if (data & BIT_ULL(48))
-		return -EINVAL;
-
-	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
-	    vmx_basic_vmcs_revision_id(data))
-		return -EINVAL;
-
-	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
-		return -EINVAL;
-
-	vmx->nested.msrs.basic = data;
-	return 0;
-}
-
-static int
-vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
-{
-	u64 supported;
-	u32 *lowp, *highp;
-
-	switch (msr_index) {
-	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
-		lowp = &vmx->nested.msrs.pinbased_ctls_low;
-		highp = &vmx->nested.msrs.pinbased_ctls_high;
-		break;
-	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
-		lowp = &vmx->nested.msrs.procbased_ctls_low;
-		highp = &vmx->nested.msrs.procbased_ctls_high;
-		break;
-	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
-		lowp = &vmx->nested.msrs.exit_ctls_low;
-		highp = &vmx->nested.msrs.exit_ctls_high;
-		break;
-	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
-		lowp = &vmx->nested.msrs.entry_ctls_low;
-		highp = &vmx->nested.msrs.entry_ctls_high;
-		break;
-	case MSR_IA32_VMX_PROCBASED_CTLS2:
-		lowp = &vmx->nested.msrs.secondary_ctls_low;
-		highp = &vmx->nested.msrs.secondary_ctls_high;
-		break;
-	default:
-		BUG();
-	}
-
-	supported = vmx_control_msr(*lowp, *highp);
-
-	/* Check must-be-1 bits are still 1. */
-	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
-		return -EINVAL;
-
-	/* Check must-be-0 bits are still 0. */
-	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
-		return -EINVAL;
-
-	*lowp = data;
-	*highp = data >> 32;
-	return 0;
-}
-
-static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
-{
-	const u64 feature_and_reserved_bits =
-		/* feature */
-		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
-		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
-		/* reserved */
-		GENMASK_ULL(13, 9) | BIT_ULL(31);
-	u64 vmx_misc;
-
-	vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
-				   vmx->nested.msrs.misc_high);
-
-	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
-		return -EINVAL;
-
-	if ((vmx->nested.msrs.pinbased_ctls_high &
-	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
-	    vmx_misc_preemption_timer_rate(data) !=
-	    vmx_misc_preemption_timer_rate(vmx_misc))
-		return -EINVAL;
-
-	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
-		return -EINVAL;
-
-	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
-		return -EINVAL;
-
-	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
-		return -EINVAL;
-
-	vmx->nested.msrs.misc_low = data;
-	vmx->nested.msrs.misc_high = data >> 32;
-
-	/*
-	 * If L1 has read-only VM-exit information fields, use the
-	 * less permissive vmx_vmwrite_bitmap to specify write
-	 * permissions for the shadow VMCS.
-	 */
-	if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
-		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
-
-	return 0;
-}
-
-static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
-{
-	u64 vmx_ept_vpid_cap;
-
-	vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
-					   vmx->nested.msrs.vpid_caps);
-
-	/* Every bit is either reserved or a feature bit. */
-	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
-		return -EINVAL;
-
-	vmx->nested.msrs.ept_caps = data;
-	vmx->nested.msrs.vpid_caps = data >> 32;
-	return 0;
-}
-
-static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
-{
-	u64 *msr;
-
-	switch (msr_index) {
-	case MSR_IA32_VMX_CR0_FIXED0:
-		msr = &vmx->nested.msrs.cr0_fixed0;
-		break;
-	case MSR_IA32_VMX_CR4_FIXED0:
-		msr = &vmx->nested.msrs.cr4_fixed0;
-		break;
-	default:
-		BUG();
-	}
-
-	/*
-	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
-	 * must be 1 in the restored value.
-	 */
-	if (!is_bitwise_subset(data, *msr, -1ULL))
-		return -EINVAL;
-
-	*msr = data;
-	return 0;
-}
-
-/*
- * Called when userspace is restoring VMX MSRs.
- *
- * Returns 0 on success, non-0 otherwise.
- */
-static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-
-	/*
-	 * Don't allow changes to the VMX capability MSRs while the vCPU
-	 * is in VMX operation.
-	 */
-	if (vmx->nested.vmxon)
-		return -EBUSY;
-
-	switch (msr_index) {
-	case MSR_IA32_VMX_BASIC:
-		return vmx_restore_vmx_basic(vmx, data);
-	case MSR_IA32_VMX_PINBASED_CTLS:
-	case MSR_IA32_VMX_PROCBASED_CTLS:
-	case MSR_IA32_VMX_EXIT_CTLS:
-	case MSR_IA32_VMX_ENTRY_CTLS:
-		/*
-		 * The "non-true" VMX capability MSRs are generated from the
-		 * "true" MSRs, so we do not support restoring them directly.
-		 *
-		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
-		 * should restore the "true" MSRs with the must-be-1 bits
-		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
-		 * DEFAULT SETTINGS".
-		 */
-		return -EINVAL;
-	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
-	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
-	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
-	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
-	case MSR_IA32_VMX_PROCBASED_CTLS2:
-		return vmx_restore_control_msr(vmx, msr_index, data);
-	case MSR_IA32_VMX_MISC:
-		return vmx_restore_vmx_misc(vmx, data);
-	case MSR_IA32_VMX_CR0_FIXED0:
-	case MSR_IA32_VMX_CR4_FIXED0:
-		return vmx_restore_fixed0_msr(vmx, msr_index, data);
-	case MSR_IA32_VMX_CR0_FIXED1:
-	case MSR_IA32_VMX_CR4_FIXED1:
-		/*
-		 * These MSRs are generated based on the vCPU's CPUID, so we
-		 * do not support restoring them directly.
-		 */
-		return -EINVAL;
-	case MSR_IA32_VMX_EPT_VPID_CAP:
-		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
-	case MSR_IA32_VMX_VMCS_ENUM:
-		vmx->nested.msrs.vmcs_enum = data;
-		return 0;
-	default:
-		/*
-		 * The rest of the VMX capability MSRs do not support restore.
-		 */
-		return -EINVAL;
-	}
-}
-
-/* Returns 0 on success, non-0 otherwise. */
-static int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
-{
-	switch (msr_index) {
-	case MSR_IA32_VMX_BASIC:
-		*pdata = msrs->basic;
-		break;
-	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
-	case MSR_IA32_VMX_PINBASED_CTLS:
-		*pdata = vmx_control_msr(
-			msrs->pinbased_ctls_low,
-			msrs->pinbased_ctls_high);
-		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
-			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
-		break;
-	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
-	case MSR_IA32_VMX_PROCBASED_CTLS:
-		*pdata = vmx_control_msr(
-			msrs->procbased_ctls_low,
-			msrs->procbased_ctls_high);
-		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
-			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
-		break;
-	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
-	case MSR_IA32_VMX_EXIT_CTLS:
-		*pdata = vmx_control_msr(
-			msrs->exit_ctls_low,
-			msrs->exit_ctls_high);
-		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
-			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
-		break;
-	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
-	case MSR_IA32_VMX_ENTRY_CTLS:
-		*pdata = vmx_control_msr(
-			msrs->entry_ctls_low,
-			msrs->entry_ctls_high);
-		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
-			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
-		break;
-	case MSR_IA32_VMX_MISC:
-		*pdata = vmx_control_msr(
-			msrs->misc_low,
-			msrs->misc_high);
-		break;
-	case MSR_IA32_VMX_CR0_FIXED0:
-		*pdata = msrs->cr0_fixed0;
-		break;
-	case MSR_IA32_VMX_CR0_FIXED1:
-		*pdata = msrs->cr0_fixed1;
-		break;
-	case MSR_IA32_VMX_CR4_FIXED0:
-		*pdata = msrs->cr4_fixed0;
-		break;
-	case MSR_IA32_VMX_CR4_FIXED1:
-		*pdata = msrs->cr4_fixed1;
-		break;
-	case MSR_IA32_VMX_VMCS_ENUM:
-		*pdata = msrs->vmcs_enum;
-		break;
-	case MSR_IA32_VMX_PROCBASED_CTLS2:
-		*pdata = vmx_control_msr(
-			msrs->secondary_ctls_low,
-			msrs->secondary_ctls_high);
-		break;
-	case MSR_IA32_VMX_EPT_VPID_CAP:
-		*pdata = msrs->ept_caps |
-			((u64)msrs->vpid_caps << 32);
-		break;
-	case MSR_IA32_VMX_VMFUNC:
-		*pdata = msrs->vmfunc_controls;
-		break;
-	default:
-		return 1;
-	}
-
-	return 0;
-}
-
-static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
-						 uint64_t val)
-{
-	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
-
-	return !(val & ~valid_bits);
-}
-
-static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
-{
-	switch (msr->index) {
-	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
-		if (!nested)
-			return 1;
-		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
-	default:
-		return 1;
-	}
-
-	return 0;
-}
-
-/*
- * Reads an msr value (of 'msr_index') into 'pdata'.
- * Returns 0 on success, non-0 otherwise.
- * Assumes vcpu_load() was already called.
- */
-static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	struct shared_msr_entry *msr;
-
-	switch (msr_info->index) {
-#ifdef CONFIG_X86_64
-	case MSR_FS_BASE:
-		msr_info->data = vmcs_readl(GUEST_FS_BASE);
-		break;
-	case MSR_GS_BASE:
-		msr_info->data = vmcs_readl(GUEST_GS_BASE);
-		break;
-	case MSR_KERNEL_GS_BASE:
-		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
-		break;
-#endif
-	case MSR_EFER:
-		return kvm_get_msr_common(vcpu, msr_info);
-	case MSR_IA32_SPEC_CTRL:
-		if (!msr_info->host_initiated &&
-		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
-			return 1;
-
-		msr_info->data = to_vmx(vcpu)->spec_ctrl;
-		break;
-	case MSR_IA32_ARCH_CAPABILITIES:
-		if (!msr_info->host_initiated &&
-		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
-			return 1;
-		msr_info->data = to_vmx(vcpu)->arch_capabilities;
-		break;
-	case MSR_IA32_SYSENTER_CS:
-		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
-		break;
-	case MSR_IA32_SYSENTER_EIP:
-		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
-		break;
-	case MSR_IA32_SYSENTER_ESP:
-		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
-		break;
-	case MSR_IA32_BNDCFGS:
-		if (!kvm_mpx_supported() ||
-		    (!msr_info->host_initiated &&
-		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
-			return 1;
-		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
-		break;
-	case MSR_IA32_MCG_EXT_CTL:
-		if (!msr_info->host_initiated &&
-		    !(vmx->msr_ia32_feature_control &
-		      FEATURE_CONTROL_LMCE))
-			return 1;
-		msr_info->data = vcpu->arch.mcg_ext_ctl;
-		break;
-	case MSR_IA32_FEATURE_CONTROL:
-		msr_info->data = vmx->msr_ia32_feature_control;
-		break;
-	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
-		if (!nested_vmx_allowed(vcpu))
-			return 1;
-		return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
-				       &msr_info->data);
-	case MSR_IA32_XSS:
-		if (!vmx_xsaves_supported())
-			return 1;
-		msr_info->data = vcpu->arch.ia32_xss;
-		break;
-	case MSR_TSC_AUX:
-		if (!msr_info->host_initiated &&
-		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
-			return 1;
-		/* Otherwise falls through */
-	default:
-		msr = find_msr_entry(vmx, msr_info->index);
-		if (msr) {
-			msr_info->data = msr->data;
-			break;
-		}
-		return kvm_get_msr_common(vcpu, msr_info);
-	}
-
-	return 0;
-}
-
-static void vmx_leave_nested(struct kvm_vcpu *vcpu);
-
-/*
- * Writes msr value into into the appropriate "register".
- * Returns 0 on success, non-0 otherwise.
- * Assumes vcpu_load() was already called.
- */
-static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	struct shared_msr_entry *msr;
-	int ret = 0;
-	u32 msr_index = msr_info->index;
-	u64 data = msr_info->data;
-
-	switch (msr_index) {
-	case MSR_EFER:
-		ret = kvm_set_msr_common(vcpu, msr_info);
-		break;
-#ifdef CONFIG_X86_64
-	case MSR_FS_BASE:
-		vmx_segment_cache_clear(vmx);
-		vmcs_writel(GUEST_FS_BASE, data);
-		break;
-	case MSR_GS_BASE:
-		vmx_segment_cache_clear(vmx);
-		vmcs_writel(GUEST_GS_BASE, data);
-		break;
-	case MSR_KERNEL_GS_BASE:
-		vmx_write_guest_kernel_gs_base(vmx, data);
-		break;
-#endif
-	case MSR_IA32_SYSENTER_CS:
-		vmcs_write32(GUEST_SYSENTER_CS, data);
-		break;
-	case MSR_IA32_SYSENTER_EIP:
-		vmcs_writel(GUEST_SYSENTER_EIP, data);
-		break;
-	case MSR_IA32_SYSENTER_ESP:
-		vmcs_writel(GUEST_SYSENTER_ESP, data);
-		break;
-	case MSR_IA32_BNDCFGS:
-		if (!kvm_mpx_supported() ||
-		    (!msr_info->host_initiated &&
-		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
-			return 1;
-		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
-		    (data & MSR_IA32_BNDCFGS_RSVD))
-			return 1;
-		vmcs_write64(GUEST_BNDCFGS, data);
-		break;
-	case MSR_IA32_SPEC_CTRL:
-		if (!msr_info->host_initiated &&
-		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
-			return 1;
-
-		/* The STIBP bit doesn't fault even if it's not advertised */
-		if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
-			return 1;
-
-		vmx->spec_ctrl = data;
-
-		if (!data)
-			break;
-
-		/*
-		 * For non-nested:
-		 * When it's written (to non-zero) for the first time, pass
-		 * it through.
-		 *
-		 * For nested:
-		 * The handling of the MSR bitmap for L2 guests is done in
-		 * nested_vmx_merge_msr_bitmap. We should not touch the
-		 * vmcs02.msr_bitmap here since it gets completely overwritten
-		 * in the merging. We update the vmcs01 here for L1 as well
-		 * since it will end up touching the MSR anyway now.
-		 */
-		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
-					      MSR_IA32_SPEC_CTRL,
-					      MSR_TYPE_RW);
-		break;
-	case MSR_IA32_PRED_CMD:
-		if (!msr_info->host_initiated &&
-		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
-			return 1;
-
-		if (data & ~PRED_CMD_IBPB)
-			return 1;
-
-		if (!data)
-			break;
-
-		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
-
-		/*
-		 * For non-nested:
-		 * When it's written (to non-zero) for the first time, pass
-		 * it through.
-		 *
-		 * For nested:
-		 * The handling of the MSR bitmap for L2 guests is done in
-		 * nested_vmx_merge_msr_bitmap. We should not touch the
-		 * vmcs02.msr_bitmap here since it gets completely overwritten
-		 * in the merging.
-		 */
-		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
-					      MSR_TYPE_W);
-		break;
-	case MSR_IA32_ARCH_CAPABILITIES:
-		if (!msr_info->host_initiated)
-			return 1;
-		vmx->arch_capabilities = data;
-		break;
-	case MSR_IA32_CR_PAT:
-		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
-			if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
-				return 1;
-			vmcs_write64(GUEST_IA32_PAT, data);
-			vcpu->arch.pat = data;
-			break;
-		}
-		ret = kvm_set_msr_common(vcpu, msr_info);
-		break;
-	case MSR_IA32_TSC_ADJUST:
-		ret = kvm_set_msr_common(vcpu, msr_info);
-		break;
-	case MSR_IA32_MCG_EXT_CTL:
-		if ((!msr_info->host_initiated &&
-		     !(to_vmx(vcpu)->msr_ia32_feature_control &
-		       FEATURE_CONTROL_LMCE)) ||
-		    (data & ~MCG_EXT_CTL_LMCE_EN))
-			return 1;
-		vcpu->arch.mcg_ext_ctl = data;
-		break;
-	case MSR_IA32_FEATURE_CONTROL:
-		if (!vmx_feature_control_msr_valid(vcpu, data) ||
-		    (to_vmx(vcpu)->msr_ia32_feature_control &
-		     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
-			return 1;
-		vmx->msr_ia32_feature_control = data;
-		if (msr_info->host_initiated && data == 0)
-			vmx_leave_nested(vcpu);
-		break;
-	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
-		if (!msr_info->host_initiated)
-			return 1; /* they are read-only */
-		if (!nested_vmx_allowed(vcpu))
-			return 1;
-		return vmx_set_vmx_msr(vcpu, msr_index, data);
-	case MSR_IA32_XSS:
-		if (!vmx_xsaves_supported())
-			return 1;
-		/*
-		 * The only supported bit as of Skylake is bit 8, but
-		 * it is not supported on KVM.
-		 */
-		if (data != 0)
-			return 1;
-		vcpu->arch.ia32_xss = data;
-		if (vcpu->arch.ia32_xss != host_xss)
-			add_atomic_switch_msr(vmx, MSR_IA32_XSS,
-				vcpu->arch.ia32_xss, host_xss, false);
-		else
-			clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
-		break;
-	case MSR_TSC_AUX:
-		if (!msr_info->host_initiated &&
-		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
-			return 1;
-		/* Check reserved bit, higher 32 bits should be zero */
-		if ((data >> 32) != 0)
-			return 1;
-		/* Otherwise falls through */
-	default:
-		msr = find_msr_entry(vmx, msr_index);
-		if (msr) {
-			u64 old_msr_data = msr->data;
-			msr->data = data;
-			if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
-				preempt_disable();
-				ret = kvm_set_shared_msr(msr->index, msr->data,
-							 msr->mask);
-				preempt_enable();
-				if (ret)
-					msr->data = old_msr_data;
-			}
-			break;
-		}
-		ret = kvm_set_msr_common(vcpu, msr_info);
-	}
-
-	return ret;
-}
-
-static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
-{
-	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
-	switch (reg) {
-	case VCPU_REGS_RSP:
-		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
-		break;
-	case VCPU_REGS_RIP:
-		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
-		break;
-	case VCPU_EXREG_PDPTR:
-		if (enable_ept)
-			ept_save_pdptrs(vcpu);
-		break;
-	default:
-		break;
-	}
-}
-
-static __init int cpu_has_kvm_support(void)
-{
-	return cpu_has_vmx();
-}
-
-static __init int vmx_disabled_by_bios(void)
-{
-	u64 msr;
-
-	rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
-	if (msr & FEATURE_CONTROL_LOCKED) {
-		/* launched w/ TXT and VMX disabled */
-		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
-			&& tboot_enabled())
-			return 1;
-		/* launched w/o TXT and VMX only enabled w/ TXT */
-		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
-			&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
-			&& !tboot_enabled()) {
-			printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
-				"activate TXT before enabling KVM\n");
-			return 1;
-		}
-		/* launched w/o TXT and VMX disabled */
-		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
-			&& !tboot_enabled())
-			return 1;
-	}
-
-	return 0;
-}
-
-static void kvm_cpu_vmxon(u64 addr)
-{
-	cr4_set_bits(X86_CR4_VMXE);
-	intel_pt_handle_vmx(1);
-
-	asm volatile ("vmxon %0" : : "m"(addr));
-}
-
-static int hardware_enable(void)
-{
-	int cpu = raw_smp_processor_id();
-	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
-	u64 old, test_bits;
-
-	if (cr4_read_shadow() & X86_CR4_VMXE)
-		return -EBUSY;
-
-	/*
-	 * This can happen if we hot-added a CPU but failed to allocate
-	 * VP assist page for it.
-	 */
-	if (static_branch_unlikely(&enable_evmcs) &&
-	    !hv_get_vp_assist_page(cpu))
-		return -EFAULT;
-
-	INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
-	INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
-	spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
-
-	/*
-	 * Now we can enable the vmclear operation in kdump
-	 * since the loaded_vmcss_on_cpu list on this cpu
-	 * has been initialized.
-	 *
-	 * Though the cpu is not in VMX operation now, there
-	 * is no problem to enable the vmclear operation
-	 * for the loaded_vmcss_on_cpu list is empty!
-	 */
-	crash_enable_local_vmclear(cpu);
-
-	rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
-
-	test_bits = FEATURE_CONTROL_LOCKED;
-	test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
-	if (tboot_enabled())
-		test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
-
-	if ((old & test_bits) != test_bits) {
-		/* enable and lock */
-		wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
-	}
-	kvm_cpu_vmxon(phys_addr);
-	if (enable_ept)
-		ept_sync_global();
-
-	return 0;
-}
-
-static void vmclear_local_loaded_vmcss(void)
-{
-	int cpu = raw_smp_processor_id();
-	struct loaded_vmcs *v, *n;
-
-	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
-				 loaded_vmcss_on_cpu_link)
-		__loaded_vmcs_clear(v);
-}
-
-
-/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
- * tricks.
- */
-static void kvm_cpu_vmxoff(void)
-{
-	asm volatile (__ex("vmxoff"));
-
-	intel_pt_handle_vmx(0);
-	cr4_clear_bits(X86_CR4_VMXE);
-}
-
-static void hardware_disable(void)
-{
-	vmclear_local_loaded_vmcss();
-	kvm_cpu_vmxoff();
-}
-
-static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
-				      u32 msr, u32 *result)
-{
-	u32 vmx_msr_low, vmx_msr_high;
-	u32 ctl = ctl_min | ctl_opt;
-
-	rdmsr(msr, vmx_msr_low, vmx_msr_high);
-
-	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
-	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
-
-	/* Ensure minimum (required) set of control bits are supported. */
-	if (ctl_min & ~ctl)
-		return -EIO;
-
-	*result = ctl;
-	return 0;
-}
-
-static __init bool allow_1_setting(u32 msr, u32 ctl)
-{
-	u32 vmx_msr_low, vmx_msr_high;
-
-	rdmsr(msr, vmx_msr_low, vmx_msr_high);
-	return vmx_msr_high & ctl;
-}
-
-static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
-{
-	u32 vmx_msr_low, vmx_msr_high;
-	u32 min, opt, min2, opt2;
-	u32 _pin_based_exec_control = 0;
-	u32 _cpu_based_exec_control = 0;
-	u32 _cpu_based_2nd_exec_control = 0;
-	u32 _vmexit_control = 0;
-	u32 _vmentry_control = 0;
-
-	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
-	min = CPU_BASED_HLT_EXITING |
-#ifdef CONFIG_X86_64
-	      CPU_BASED_CR8_LOAD_EXITING |
-	      CPU_BASED_CR8_STORE_EXITING |
-#endif
-	      CPU_BASED_CR3_LOAD_EXITING |
-	      CPU_BASED_CR3_STORE_EXITING |
-	      CPU_BASED_UNCOND_IO_EXITING |
-	      CPU_BASED_MOV_DR_EXITING |
-	      CPU_BASED_USE_TSC_OFFSETING |
-	      CPU_BASED_MWAIT_EXITING |
-	      CPU_BASED_MONITOR_EXITING |
-	      CPU_BASED_INVLPG_EXITING |
-	      CPU_BASED_RDPMC_EXITING;
-
-	opt = CPU_BASED_TPR_SHADOW |
-	      CPU_BASED_USE_MSR_BITMAPS |
-	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
-	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
-				&_cpu_based_exec_control) < 0)
-		return -EIO;
-#ifdef CONFIG_X86_64
-	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
-		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
-					   ~CPU_BASED_CR8_STORE_EXITING;
-#endif
-	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
-		min2 = 0;
-		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
-			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
-			SECONDARY_EXEC_WBINVD_EXITING |
-			SECONDARY_EXEC_ENABLE_VPID |
-			SECONDARY_EXEC_ENABLE_EPT |
-			SECONDARY_EXEC_UNRESTRICTED_GUEST |
-			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
-			SECONDARY_EXEC_DESC |
-			SECONDARY_EXEC_RDTSCP |
-			SECONDARY_EXEC_ENABLE_INVPCID |
-			SECONDARY_EXEC_APIC_REGISTER_VIRT |
-			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
-			SECONDARY_EXEC_SHADOW_VMCS |
-			SECONDARY_EXEC_XSAVES |
-			SECONDARY_EXEC_RDSEED_EXITING |
-			SECONDARY_EXEC_RDRAND_EXITING |
-			SECONDARY_EXEC_ENABLE_PML |
-			SECONDARY_EXEC_TSC_SCALING |
-			SECONDARY_EXEC_ENABLE_VMFUNC |
-			SECONDARY_EXEC_ENCLS_EXITING;
-		if (adjust_vmx_controls(min2, opt2,
-					MSR_IA32_VMX_PROCBASED_CTLS2,
-					&_cpu_based_2nd_exec_control) < 0)
-			return -EIO;
-	}
-#ifndef CONFIG_X86_64
-	if (!(_cpu_based_2nd_exec_control &
-				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
-		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
-#endif
-
-	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
-		_cpu_based_2nd_exec_control &= ~(
-				SECONDARY_EXEC_APIC_REGISTER_VIRT |
-				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
-				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
-
-	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
-		&vmx_capability.ept, &vmx_capability.vpid);
-
-	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
-		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
-		   enabled */
-		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
-					     CPU_BASED_CR3_STORE_EXITING |
-					     CPU_BASED_INVLPG_EXITING);
-	} else if (vmx_capability.ept) {
-		vmx_capability.ept = 0;
-		pr_warn_once("EPT CAP should not exist if not support "
-				"1-setting enable EPT VM-execution control\n");
-	}
-	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
-		vmx_capability.vpid) {
-		vmx_capability.vpid = 0;
-		pr_warn_once("VPID CAP should not exist if not support "
-				"1-setting enable VPID VM-execution control\n");
-	}
-
-	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
-#ifdef CONFIG_X86_64
-	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
-#endif
-	opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
-		VM_EXIT_CLEAR_BNDCFGS;
-	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
-				&_vmexit_control) < 0)
-		return -EIO;
-
-	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
-	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
-		 PIN_BASED_VMX_PREEMPTION_TIMER;
-	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
-				&_pin_based_exec_control) < 0)
-		return -EIO;
-
-	if (cpu_has_broken_vmx_preemption_timer())
-		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
-	if (!(_cpu_based_2nd_exec_control &
-		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
-		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
-
-	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
-	opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
-	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
-				&_vmentry_control) < 0)
-		return -EIO;
-
-	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
-
-	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
-	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
-		return -EIO;
-
-#ifdef CONFIG_X86_64
-	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
-	if (vmx_msr_high & (1u<<16))
-		return -EIO;
-#endif
-
-	/* Require Write-Back (WB) memory type for VMCS accesses. */
-	if (((vmx_msr_high >> 18) & 15) != 6)
-		return -EIO;
-
-	vmcs_conf->size = vmx_msr_high & 0x1fff;
-	vmcs_conf->order = get_order(vmcs_conf->size);
-	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
-
-	vmcs_conf->revision_id = vmx_msr_low;
-
-	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
-	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
-	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
-	vmcs_conf->vmexit_ctrl         = _vmexit_control;
-	vmcs_conf->vmentry_ctrl        = _vmentry_control;
-
-	if (static_branch_unlikely(&enable_evmcs))
-		evmcs_sanitize_exec_ctrls(vmcs_conf);
-
-	cpu_has_load_ia32_efer =
-		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
-				VM_ENTRY_LOAD_IA32_EFER)
-		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
-				   VM_EXIT_LOAD_IA32_EFER);
-
-	cpu_has_load_perf_global_ctrl =
-		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
-				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
-		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
-				   VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
-
-	/*
-	 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
-	 * but due to errata below it can't be used. Workaround is to use
-	 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
-	 *
-	 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
-	 *
-	 * AAK155             (model 26)
-	 * AAP115             (model 30)
-	 * AAT100             (model 37)
-	 * BC86,AAY89,BD102   (model 44)
-	 * BA97               (model 46)
-	 *
-	 */
-	if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
-		switch (boot_cpu_data.x86_model) {
-		case 26:
-		case 30:
-		case 37:
-		case 44:
-		case 46:
-			cpu_has_load_perf_global_ctrl = false;
-			printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
-					"does not work properly. Using workaround\n");
-			break;
-		default:
-			break;
-		}
-	}
-
-	if (boot_cpu_has(X86_FEATURE_XSAVES))
-		rdmsrl(MSR_IA32_XSS, host_xss);
-
-	return 0;
-}
-
-static struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu)
-{
-	int node = cpu_to_node(cpu);
-	struct page *pages;
-	struct vmcs *vmcs;
-
-	pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
-	if (!pages)
-		return NULL;
-	vmcs = page_address(pages);
-	memset(vmcs, 0, vmcs_config.size);
-
-	/* KVM supports Enlightened VMCS v1 only */
-	if (static_branch_unlikely(&enable_evmcs))
-		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
-	else
-		vmcs->hdr.revision_id = vmcs_config.revision_id;
-
-	if (shadow)
-		vmcs->hdr.shadow_vmcs = 1;
-	return vmcs;
-}
-
-static void free_vmcs(struct vmcs *vmcs)
-{
-	free_pages((unsigned long)vmcs, vmcs_config.order);
-}
-
-/*
- * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
- */
-static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
-{
-	if (!loaded_vmcs->vmcs)
-		return;
-	loaded_vmcs_clear(loaded_vmcs);
-	free_vmcs(loaded_vmcs->vmcs);
-	loaded_vmcs->vmcs = NULL;
-	if (loaded_vmcs->msr_bitmap)
-		free_page((unsigned long)loaded_vmcs->msr_bitmap);
-	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
-}
-
-static struct vmcs *alloc_vmcs(bool shadow)
-{
-	return alloc_vmcs_cpu(shadow, raw_smp_processor_id());
-}
-
-static int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
-{
-	loaded_vmcs->vmcs = alloc_vmcs(false);
-	if (!loaded_vmcs->vmcs)
-		return -ENOMEM;
-
-	loaded_vmcs->shadow_vmcs = NULL;
-	loaded_vmcs_init(loaded_vmcs);
-
-	if (cpu_has_vmx_msr_bitmap()) {
-		loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
-		if (!loaded_vmcs->msr_bitmap)
-			goto out_vmcs;
-		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
-
-		if (IS_ENABLED(CONFIG_HYPERV) &&
-		    static_branch_unlikely(&enable_evmcs) &&
-		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
-			struct hv_enlightened_vmcs *evmcs =
-				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
-
-			evmcs->hv_enlightenments_control.msr_bitmap = 1;
-		}
-	}
-
-	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
-
-	return 0;
-
-out_vmcs:
-	free_loaded_vmcs(loaded_vmcs);
-	return -ENOMEM;
-}
-
-static void free_kvm_area(void)
-{
-	int cpu;
-
-	for_each_possible_cpu(cpu) {
-		free_vmcs(per_cpu(vmxarea, cpu));
-		per_cpu(vmxarea, cpu) = NULL;
-	}
-}
-
-enum vmcs_field_width {
-	VMCS_FIELD_WIDTH_U16 = 0,
-	VMCS_FIELD_WIDTH_U64 = 1,
-	VMCS_FIELD_WIDTH_U32 = 2,
-	VMCS_FIELD_WIDTH_NATURAL_WIDTH = 3
-};
-
-static inline int vmcs_field_width(unsigned long field)
-{
-	if (0x1 & field)	/* the *_HIGH fields are all 32 bit */
-		return VMCS_FIELD_WIDTH_U32;
-	return (field >> 13) & 0x3 ;
-}
-
-static inline int vmcs_field_readonly(unsigned long field)
-{
-	return (((field >> 10) & 0x3) == 1);
-}
-
-static void init_vmcs_shadow_fields(void)
-{
-	int i, j;
-
-	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
-		u16 field = shadow_read_only_fields[i];
-		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
-		    (i + 1 == max_shadow_read_only_fields ||
-		     shadow_read_only_fields[i + 1] != field + 1))
-			pr_err("Missing field from shadow_read_only_field %x\n",
-			       field + 1);
-
-		clear_bit(field, vmx_vmread_bitmap);
-#ifdef CONFIG_X86_64
-		if (field & 1)
-			continue;
-#endif
-		if (j < i)
-			shadow_read_only_fields[j] = field;
-		j++;
-	}
-	max_shadow_read_only_fields = j;
-
-	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
-		u16 field = shadow_read_write_fields[i];
-		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
-		    (i + 1 == max_shadow_read_write_fields ||
-		     shadow_read_write_fields[i + 1] != field + 1))
-			pr_err("Missing field from shadow_read_write_field %x\n",
-			       field + 1);
-
-		/*
-		 * PML and the preemption timer can be emulated, but the
-		 * processor cannot vmwrite to fields that don't exist
-		 * on bare metal.
-		 */
-		switch (field) {
-		case GUEST_PML_INDEX:
-			if (!cpu_has_vmx_pml())
-				continue;
-			break;
-		case VMX_PREEMPTION_TIMER_VALUE:
-			if (!cpu_has_vmx_preemption_timer())
-				continue;
-			break;
-		case GUEST_INTR_STATUS:
-			if (!cpu_has_vmx_apicv())
-				continue;
-			break;
-		default:
-			break;
-		}
-
-		clear_bit(field, vmx_vmwrite_bitmap);
-		clear_bit(field, vmx_vmread_bitmap);
-#ifdef CONFIG_X86_64
-		if (field & 1)
-			continue;
-#endif
-		if (j < i)
-			shadow_read_write_fields[j] = field;
-		j++;
-	}
-	max_shadow_read_write_fields = j;
-}
-
-static __init int alloc_kvm_area(void)
-{
-	int cpu;
-
-	for_each_possible_cpu(cpu) {
-		struct vmcs *vmcs;
-
-		vmcs = alloc_vmcs_cpu(false, cpu);
-		if (!vmcs) {
-			free_kvm_area();
-			return -ENOMEM;
-		}
-
-		/*
-		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
-		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
-		 * revision_id reported by MSR_IA32_VMX_BASIC.
-		 *
-		 * However, even though not explictly documented by
-		 * TLFS, VMXArea passed as VMXON argument should
-		 * still be marked with revision_id reported by
-		 * physical CPU.
-		 */
-		if (static_branch_unlikely(&enable_evmcs))
-			vmcs->hdr.revision_id = vmcs_config.revision_id;
-
-		per_cpu(vmxarea, cpu) = vmcs;
-	}
-	return 0;
-}
-
-static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
-		struct kvm_segment *save)
-{
-	if (!emulate_invalid_guest_state) {
-		/*
-		 * CS and SS RPL should be equal during guest entry according
-		 * to VMX spec, but in reality it is not always so. Since vcpu
-		 * is in the middle of the transition from real mode to
-		 * protected mode it is safe to assume that RPL 0 is a good
-		 * default value.
-		 */
-		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
-			save->selector &= ~SEGMENT_RPL_MASK;
-		save->dpl = save->selector & SEGMENT_RPL_MASK;
-		save->s = 1;
-	}
-	vmx_set_segment(vcpu, save, seg);
-}
-
-static void enter_pmode(struct kvm_vcpu *vcpu)
-{
-	unsigned long flags;
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-
-	/*
-	 * Update real mode segment cache. It may be not up-to-date if sement
-	 * register was written while vcpu was in a guest mode.
-	 */
-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
-
-	vmx->rmode.vm86_active = 0;
-
-	vmx_segment_cache_clear(vmx);
-
-	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
-
-	flags = vmcs_readl(GUEST_RFLAGS);
-	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
-	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
-	vmcs_writel(GUEST_RFLAGS, flags);
-
-	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
-			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
-
-	update_exception_bitmap(vcpu);
-
-	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
-	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
-	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
-	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
-	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
-	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
-}
-
-static void fix_rmode_seg(int seg, struct kvm_segment *save)
-{
-	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
-	struct kvm_segment var = *save;
-
-	var.dpl = 0x3;
-	if (seg == VCPU_SREG_CS)
-		var.type = 0x3;
-
-	if (!emulate_invalid_guest_state) {
-		var.selector = var.base >> 4;
-		var.base = var.base & 0xffff0;
-		var.limit = 0xffff;
-		var.g = 0;
-		var.db = 0;
-		var.present = 1;
-		var.s = 1;
-		var.l = 0;
-		var.unusable = 0;
-		var.type = 0x3;
-		var.avl = 0;
-		if (save->base & 0xf)
-			printk_once(KERN_WARNING "kvm: segment base is not "
-					"paragraph aligned when entering "
-					"protected mode (seg=%d)", seg);
-	}
-
-	vmcs_write16(sf->selector, var.selector);
-	vmcs_writel(sf->base, var.base);
-	vmcs_write32(sf->limit, var.limit);
-	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
-}
-
-static void enter_rmode(struct kvm_vcpu *vcpu)
-{
-	unsigned long flags;
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
-
-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
-	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
-
-	vmx->rmode.vm86_active = 1;
-
-	/*
-	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
-	 * vcpu. Warn the user that an update is overdue.
-	 */
-	if (!kvm_vmx->tss_addr)
-		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
-			     "called before entering vcpu\n");
-
-	vmx_segment_cache_clear(vmx);
-
-	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
-	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
-	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
-
-	flags = vmcs_readl(GUEST_RFLAGS);
-	vmx->rmode.save_rflags = flags;
-
-	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
-
-	vmcs_writel(GUEST_RFLAGS, flags);
-	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
-	update_exception_bitmap(vcpu);
-
-	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
-	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
-	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
-	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
-	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
-	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
-
-	kvm_mmu_reset_context(vcpu);
-}
-
-static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
-
-	if (!msr)
-		return;
-
-	vcpu->arch.efer = efer;
-	if (efer & EFER_LMA) {
-		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
-		msr->data = efer;
-	} else {
-		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
-
-		msr->data = efer & ~EFER_LME;
-	}
-	setup_msrs(vmx);
-}
-
-#ifdef CONFIG_X86_64
-
-static void enter_lmode(struct kvm_vcpu *vcpu)
-{
-	u32 guest_tr_ar;
-
-	vmx_segment_cache_clear(to_vmx(vcpu));
-
-	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
-	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
-		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
-				     __func__);
-		vmcs_write32(GUEST_TR_AR_BYTES,
-			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
-			     | VMX_AR_TYPE_BUSY_64_TSS);
-	}
-	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
-}
-
-static void exit_lmode(struct kvm_vcpu *vcpu)
-{
-	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
-	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
-}
-
-#endif
-
-static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid,
-				bool invalidate_gpa)
-{
-	if (enable_ept && (invalidate_gpa || !enable_vpid)) {
-		if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
-			return;
-		ept_sync_context(construct_eptp(vcpu,
-						vcpu->arch.mmu->root_hpa));
-	} else {
-		vpid_sync_context(vpid);
-	}
-}
-
-static void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
-{
-	__vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa);
-}
-
-static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
-{
-	int vpid = to_vmx(vcpu)->vpid;
-
-	if (!vpid_sync_vcpu_addr(vpid, addr))
-		vpid_sync_context(vpid);
-
-	/*
-	 * If VPIDs are not supported or enabled, then the above is a no-op.
-	 * But we don't really need a TLB flush in that case anyway, because
-	 * each VM entry/exit includes an implicit flush when VPID is 0.
-	 */
-}
-
-static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
-{
-	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
-
-	vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
-	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
-}
-
-static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
-{
-	if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
-		vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
-	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
-}
-
-static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
-{
-	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
-
-	vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
-	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
-}
-
-static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
-{
-	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
-
-	if (!test_bit(VCPU_EXREG_PDPTR,
-		      (unsigned long *)&vcpu->arch.regs_dirty))
-		return;
-
-	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
-		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
-		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
-		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
-		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
-	}
-}
-
-static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
-{
-	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
-
-	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
-		mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
-		mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
-		mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
-		mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
-	}
-
-	__set_bit(VCPU_EXREG_PDPTR,
-		  (unsigned long *)&vcpu->arch.regs_avail);
-	__set_bit(VCPU_EXREG_PDPTR,
-		  (unsigned long *)&vcpu->arch.regs_dirty);
-}
-
-static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
-{
-	u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
-	u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-
-	if (to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
-		SECONDARY_EXEC_UNRESTRICTED_GUEST &&
-	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
-		fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
-
-	return fixed_bits_valid(val, fixed0, fixed1);
-}
-
-static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
-{
-	u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
-	u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
-
-	return fixed_bits_valid(val, fixed0, fixed1);
-}
-
-static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
-{
-	u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr4_fixed0;
-	u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr4_fixed1;
-
-	return fixed_bits_valid(val, fixed0, fixed1);
-}
-
-/* No difference in the restrictions on guest and host CR4 in VMX operation. */
-#define nested_guest_cr4_valid	nested_cr4_valid
-#define nested_host_cr4_valid	nested_cr4_valid
-
-static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
-
-static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
-					unsigned long cr0,
-					struct kvm_vcpu *vcpu)
-{
-	if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
-		vmx_decache_cr3(vcpu);
-	if (!(cr0 & X86_CR0_PG)) {
-		/* From paging/starting to nonpaging */
-		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
-			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
-			     (CPU_BASED_CR3_LOAD_EXITING |
-			      CPU_BASED_CR3_STORE_EXITING));
-		vcpu->arch.cr0 = cr0;
-		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
-	} else if (!is_paging(vcpu)) {
-		/* From nonpaging to paging */
-		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
-			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
-			     ~(CPU_BASED_CR3_LOAD_EXITING |
-			       CPU_BASED_CR3_STORE_EXITING));
-		vcpu->arch.cr0 = cr0;
-		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
-	}
-
-	if (!(cr0 & X86_CR0_WP))
-		*hw_cr0 &= ~X86_CR0_WP;
-}
-
-static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	unsigned long hw_cr0;
-
-	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
-	if (enable_unrestricted_guest)
-		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
-	else {
-		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
-
-		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
-			enter_pmode(vcpu);
-
-		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
-			enter_rmode(vcpu);
-	}
-
-#ifdef CONFIG_X86_64
-	if (vcpu->arch.efer & EFER_LME) {
-		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
-			enter_lmode(vcpu);
-		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
-			exit_lmode(vcpu);
-	}
-#endif
-
-	if (enable_ept && !enable_unrestricted_guest)
-		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
-
-	vmcs_writel(CR0_READ_SHADOW, cr0);
-	vmcs_writel(GUEST_CR0, hw_cr0);
-	vcpu->arch.cr0 = cr0;
-
-	/* depends on vcpu->arch.cr0 to be set to a new value */
-	vmx->emulation_required = emulation_required(vcpu);
-}
-
-static int get_ept_level(struct kvm_vcpu *vcpu)
-{
-	if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
-		return 5;
-	return 4;
-}
-
-static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
-{
-	u64 eptp = VMX_EPTP_MT_WB;
-
-	eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
-
-	if (enable_ept_ad_bits &&
-	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
-		eptp |= VMX_EPTP_AD_ENABLE_BIT;
-	eptp |= (root_hpa & PAGE_MASK);
-
-	return eptp;
-}
-
-static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
-{
-	struct kvm *kvm = vcpu->kvm;
-	unsigned long guest_cr3;
-	u64 eptp;
-
-	guest_cr3 = cr3;
-	if (enable_ept) {
-		eptp = construct_eptp(vcpu, cr3);
-		vmcs_write64(EPT_POINTER, eptp);
-
-		if (kvm_x86_ops->tlb_remote_flush) {
-			spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
-			to_vmx(vcpu)->ept_pointer = eptp;
-			to_kvm_vmx(kvm)->ept_pointers_match
-				= EPT_POINTERS_CHECK;
-			spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
-		}
-
-		if (enable_unrestricted_guest || is_paging(vcpu) ||
-		    is_guest_mode(vcpu))
-			guest_cr3 = kvm_read_cr3(vcpu);
-		else
-			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
-		ept_load_pdptrs(vcpu);
-	}
-
-	vmcs_writel(GUEST_CR3, guest_cr3);
-}
-
-static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
-{
-	/*
-	 * Pass through host's Machine Check Enable value to hw_cr4, which
-	 * is in force while we are in guest mode.  Do not let guests control
-	 * this bit, even if host CR4.MCE == 0.
-	 */
-	unsigned long hw_cr4;
-
-	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
-	if (enable_unrestricted_guest)
-		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
-	else if (to_vmx(vcpu)->rmode.vm86_active)
-		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
-	else
-		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
-
-	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
-		if (cr4 & X86_CR4_UMIP) {
-			vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
-				SECONDARY_EXEC_DESC);
-			hw_cr4 &= ~X86_CR4_UMIP;
-		} else if (!is_guest_mode(vcpu) ||
-			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC))
-			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
-					SECONDARY_EXEC_DESC);
-	}
-
-	if (cr4 & X86_CR4_VMXE) {
-		/*
-		 * To use VMXON (and later other VMX instructions), a guest
-		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
-		 * So basically the check on whether to allow nested VMX
-		 * is here.  We operate under the default treatment of SMM,
-		 * so VMX cannot be enabled under SMM.
-		 */
-		if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
-			return 1;
-	}
-
-	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
-		return 1;
-
-	vcpu->arch.cr4 = cr4;
-
-	if (!enable_unrestricted_guest) {
-		if (enable_ept) {
-			if (!is_paging(vcpu)) {
-				hw_cr4 &= ~X86_CR4_PAE;
-				hw_cr4 |= X86_CR4_PSE;
-			} else if (!(cr4 & X86_CR4_PAE)) {
-				hw_cr4 &= ~X86_CR4_PAE;
-			}
-		}
-
-		/*
-		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
-		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
-		 * to be manually disabled when guest switches to non-paging
-		 * mode.
-		 *
-		 * If !enable_unrestricted_guest, the CPU is always running
-		 * with CR0.PG=1 and CR4 needs to be modified.
-		 * If enable_unrestricted_guest, the CPU automatically
-		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
-		 */
-		if (!is_paging(vcpu))
-			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
-	}
-
-	vmcs_writel(CR4_READ_SHADOW, cr4);
-	vmcs_writel(GUEST_CR4, hw_cr4);
-	return 0;
-}
-
-static void vmx_get_segment(struct kvm_vcpu *vcpu,
-			    struct kvm_segment *var, int seg)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	u32 ar;
-
-	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
-		*var = vmx->rmode.segs[seg];
-		if (seg == VCPU_SREG_TR
-		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
-			return;
-		var->base = vmx_read_guest_seg_base(vmx, seg);
-		var->selector = vmx_read_guest_seg_selector(vmx, seg);
-		return;
-	}
-	var->base = vmx_read_guest_seg_base(vmx, seg);
-	var->limit = vmx_read_guest_seg_limit(vmx, seg);
-	var->selector = vmx_read_guest_seg_selector(vmx, seg);
-	ar = vmx_read_guest_seg_ar(vmx, seg);
-	var->unusable = (ar >> 16) & 1;
-	var->type = ar & 15;
-	var->s = (ar >> 4) & 1;
-	var->dpl = (ar >> 5) & 3;
-	/*
-	 * Some userspaces do not preserve unusable property. Since usable
-	 * segment has to be present according to VMX spec we can use present
-	 * property to amend userspace bug by making unusable segment always
-	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
-	 * segment as unusable.
-	 */
-	var->present = !var->unusable;
-	var->avl = (ar >> 12) & 1;
-	var->l = (ar >> 13) & 1;
-	var->db = (ar >> 14) & 1;
-	var->g = (ar >> 15) & 1;
-}
-
-static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
-{
-	struct kvm_segment s;
-
-	if (to_vmx(vcpu)->rmode.vm86_active) {
-		vmx_get_segment(vcpu, &s, seg);
-		return s.base;
-	}
-	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
-}
-
-static int vmx_get_cpl(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-
-	if (unlikely(vmx->rmode.vm86_active))
-		return 0;
-	else {
-		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
-		return VMX_AR_DPL(ar);
-	}
-}
-
-static u32 vmx_segment_access_rights(struct kvm_segment *var)
-{
-	u32 ar;
-
-	if (var->unusable || !var->present)
-		ar = 1 << 16;
-	else {
-		ar = var->type & 15;
-		ar |= (var->s & 1) << 4;
-		ar |= (var->dpl & 3) << 5;
-		ar |= (var->present & 1) << 7;
-		ar |= (var->avl & 1) << 12;
-		ar |= (var->l & 1) << 13;
-		ar |= (var->db & 1) << 14;
-		ar |= (var->g & 1) << 15;
-	}
-
-	return ar;
-}
-
-static void vmx_set_segment(struct kvm_vcpu *vcpu,
-			    struct kvm_segment *var, int seg)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
-
-	vmx_segment_cache_clear(vmx);
-
-	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
-		vmx->rmode.segs[seg] = *var;
-		if (seg == VCPU_SREG_TR)
-			vmcs_write16(sf->selector, var->selector);
-		else if (var->s)
-			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
-		goto out;
-	}
-
-	vmcs_writel(sf->base, var->base);
-	vmcs_write32(sf->limit, var->limit);
-	vmcs_write16(sf->selector, var->selector);
-
-	/*
-	 *   Fix the "Accessed" bit in AR field of segment registers for older
-	 * qemu binaries.
-	 *   IA32 arch specifies that at the time of processor reset the
-	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
-	 * is setting it to 0 in the userland code. This causes invalid guest
-	 * state vmexit when "unrestricted guest" mode is turned on.
-	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
-	 * tree. Newer qemu binaries with that qemu fix would not need this
-	 * kvm hack.
-	 */
-	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
-		var->type |= 0x1; /* Accessed */
-
-	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
-
-out:
-	vmx->emulation_required = emulation_required(vcpu);
-}
-
-static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
-{
-	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
-
-	*db = (ar >> 14) & 1;
-	*l = (ar >> 13) & 1;
-}
-
-static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
-{
-	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
-	dt->address = vmcs_readl(GUEST_IDTR_BASE);
-}
-
-static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
-{
-	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
-	vmcs_writel(GUEST_IDTR_BASE, dt->address);
-}
-
-static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
-{
-	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
-	dt->address = vmcs_readl(GUEST_GDTR_BASE);
-}
-
-static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
-{
-	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
-	vmcs_writel(GUEST_GDTR_BASE, dt->address);
-}
-
-static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
-{
-	struct kvm_segment var;
-	u32 ar;
-
-	vmx_get_segment(vcpu, &var, seg);
-	var.dpl = 0x3;
-	if (seg == VCPU_SREG_CS)
-		var.type = 0x3;
-	ar = vmx_segment_access_rights(&var);
-
-	if (var.base != (var.selector << 4))
-		return false;
-	if (var.limit != 0xffff)
-		return false;
-	if (ar != 0xf3)
-		return false;
-
-	return true;
-}
-
-static bool code_segment_valid(struct kvm_vcpu *vcpu)
-{
-	struct kvm_segment cs;
-	unsigned int cs_rpl;
-
-	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
-	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
-
-	if (cs.unusable)
-		return false;
-	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
-		return false;
-	if (!cs.s)
-		return false;
-	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
-		if (cs.dpl > cs_rpl)
-			return false;
-	} else {
-		if (cs.dpl != cs_rpl)
-			return false;
-	}
-	if (!cs.present)
-		return false;
-
-	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
-	return true;
-}
-
-static bool stack_segment_valid(struct kvm_vcpu *vcpu)
-{
-	struct kvm_segment ss;
-	unsigned int ss_rpl;
-
-	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
-	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
-
-	if (ss.unusable)
-		return true;
-	if (ss.type != 3 && ss.type != 7)
-		return false;
-	if (!ss.s)
-		return false;
-	if (ss.dpl != ss_rpl) /* DPL != RPL */
-		return false;
-	if (!ss.present)
-		return false;
-
-	return true;
-}
-
-static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
-{
-	struct kvm_segment var;
-	unsigned int rpl;
-
-	vmx_get_segment(vcpu, &var, seg);
-	rpl = var.selector & SEGMENT_RPL_MASK;
-
-	if (var.unusable)
-		return true;
-	if (!var.s)
-		return false;
-	if (!var.present)
-		return false;
-	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
-		if (var.dpl < rpl) /* DPL < RPL */
-			return false;
-	}
-
-	/* TODO: Add other members to kvm_segment_field to allow checking for other access
-	 * rights flags
-	 */
-	return true;
-}
-
-static bool tr_valid(struct kvm_vcpu *vcpu)
-{
-	struct kvm_segment tr;
-
-	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
-
-	if (tr.unusable)
-		return false;
-	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
-		return false;
-	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
-		return false;
-	if (!tr.present)
-		return false;
-
-	return true;
-}
-
-static bool ldtr_valid(struct kvm_vcpu *vcpu)
-{
-	struct kvm_segment ldtr;
-
-	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
-
-	if (ldtr.unusable)
-		return true;
-	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
-		return false;
-	if (ldtr.type != 2)
-		return false;
-	if (!ldtr.present)
-		return false;
-
-	return true;
-}
-
-static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
-{
-	struct kvm_segment cs, ss;
-
-	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
-	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
-
-	return ((cs.selector & SEGMENT_RPL_MASK) ==
-		 (ss.selector & SEGMENT_RPL_MASK));
-}
-
-/*
- * Check if guest state is valid. Returns true if valid, false if
- * not.
- * We assume that registers are always usable
- */
-static bool guest_state_valid(struct kvm_vcpu *vcpu)
-{
-	if (enable_unrestricted_guest)
-		return true;
-
-	/* real mode guest state checks */
-	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
-		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
-			return false;
-		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
-			return false;
-		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
-			return false;
-		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
-			return false;
-		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
-			return false;
-		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
-			return false;
-	} else {
-	/* protected mode guest state checks */
-		if (!cs_ss_rpl_check(vcpu))
-			return false;
-		if (!code_segment_valid(vcpu))
-			return false;
-		if (!stack_segment_valid(vcpu))
-			return false;
-		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
-			return false;
-		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
-			return false;
-		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
-			return false;
-		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
-			return false;
-		if (!tr_valid(vcpu))
-			return false;
-		if (!ldtr_valid(vcpu))
-			return false;
-	}
-	/* TODO:
-	 * - Add checks on RIP
-	 * - Add checks on RFLAGS
-	 */
-
-	return true;
-}
-
-static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
-{
-	return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
-}
-
-static int init_rmode_tss(struct kvm *kvm)
-{
-	gfn_t fn;
-	u16 data = 0;
-	int idx, r;
-
-	idx = srcu_read_lock(&kvm->srcu);
-	fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
-	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
-	if (r < 0)
-		goto out;
-	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
-	r = kvm_write_guest_page(kvm, fn++, &data,
-			TSS_IOPB_BASE_OFFSET, sizeof(u16));
-	if (r < 0)
-		goto out;
-	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
-	if (r < 0)
-		goto out;
-	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
-	if (r < 0)
-		goto out;
-	data = ~0;
-	r = kvm_write_guest_page(kvm, fn, &data,
-				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
-				 sizeof(u8));
-out:
-	srcu_read_unlock(&kvm->srcu, idx);
-	return r;
-}
-
-static int init_rmode_identity_map(struct kvm *kvm)
-{
-	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
-	int i, idx, r = 0;
-	kvm_pfn_t identity_map_pfn;
-	u32 tmp;
-
-	/* Protect kvm_vmx->ept_identity_pagetable_done. */
-	mutex_lock(&kvm->slots_lock);
-
-	if (likely(kvm_vmx->ept_identity_pagetable_done))
-		goto out2;
-
-	if (!kvm_vmx->ept_identity_map_addr)
-		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
-	identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
-
-	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
-				    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
-	if (r < 0)
-		goto out2;
-
-	idx = srcu_read_lock(&kvm->srcu);
-	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
-	if (r < 0)
-		goto out;
-	/* Set up identity-mapping pagetable for EPT in real mode */
-	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
-		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
-			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
-		r = kvm_write_guest_page(kvm, identity_map_pfn,
-				&tmp, i * sizeof(tmp), sizeof(tmp));
-		if (r < 0)
-			goto out;
-	}
-	kvm_vmx->ept_identity_pagetable_done = true;
-
-out:
-	srcu_read_unlock(&kvm->srcu, idx);
-
-out2:
-	mutex_unlock(&kvm->slots_lock);
-	return r;
-}
-
-static void seg_setup(int seg)
-{
-	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
-	unsigned int ar;
-
-	vmcs_write16(sf->selector, 0);
-	vmcs_writel(sf->base, 0);
-	vmcs_write32(sf->limit, 0xffff);
-	ar = 0x93;
-	if (seg == VCPU_SREG_CS)
-		ar |= 0x08; /* code segment */
-
-	vmcs_write32(sf->ar_bytes, ar);
-}
-
-static int alloc_apic_access_page(struct kvm *kvm)
-{
-	struct page *page;
-	int r = 0;
-
-	mutex_lock(&kvm->slots_lock);
-	if (kvm->arch.apic_access_page_done)
-		goto out;
-	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
-				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
-	if (r)
-		goto out;
-
-	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
-	if (is_error_page(page)) {
-		r = -EFAULT;
-		goto out;
-	}
-
-	/*
-	 * Do not pin the page in memory, so that memory hot-unplug
-	 * is able to migrate it.
-	 */
-	put_page(page);
-	kvm->arch.apic_access_page_done = true;
-out:
-	mutex_unlock(&kvm->slots_lock);
-	return r;
-}
-
-static int allocate_vpid(void)
-{
-	int vpid;
-
-	if (!enable_vpid)
-		return 0;
-	spin_lock(&vmx_vpid_lock);
-	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
-	if (vpid < VMX_NR_VPIDS)
-		__set_bit(vpid, vmx_vpid_bitmap);
-	else
-		vpid = 0;
-	spin_unlock(&vmx_vpid_lock);
-	return vpid;
-}
-
-static void free_vpid(int vpid)
-{
-	if (!enable_vpid || vpid == 0)
-		return;
-	spin_lock(&vmx_vpid_lock);
-	__clear_bit(vpid, vmx_vpid_bitmap);
-	spin_unlock(&vmx_vpid_lock);
-}
-
-static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
-							  u32 msr, int type)
-{
-	int f = sizeof(unsigned long);
-
-	if (!cpu_has_vmx_msr_bitmap())
-		return;
-
-	if (static_branch_unlikely(&enable_evmcs))
-		evmcs_touch_msr_bitmap();
-
-	/*
-	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
-	 * have the write-low and read-high bitmap offsets the wrong way round.
-	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
-	 */
-	if (msr <= 0x1fff) {
-		if (type & MSR_TYPE_R)
-			/* read-low */
-			__clear_bit(msr, msr_bitmap + 0x000 / f);
-
-		if (type & MSR_TYPE_W)
-			/* write-low */
-			__clear_bit(msr, msr_bitmap + 0x800 / f);
-
-	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
-		msr &= 0x1fff;
-		if (type & MSR_TYPE_R)
-			/* read-high */
-			__clear_bit(msr, msr_bitmap + 0x400 / f);
-
-		if (type & MSR_TYPE_W)
-			/* write-high */
-			__clear_bit(msr, msr_bitmap + 0xc00 / f);
-
-	}
-}
-
-static void __always_inline vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
-							 u32 msr, int type)
-{
-	int f = sizeof(unsigned long);
-
-	if (!cpu_has_vmx_msr_bitmap())
-		return;
-
-	if (static_branch_unlikely(&enable_evmcs))
-		evmcs_touch_msr_bitmap();
-
-	/*
-	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
-	 * have the write-low and read-high bitmap offsets the wrong way round.
-	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
-	 */
-	if (msr <= 0x1fff) {
-		if (type & MSR_TYPE_R)
-			/* read-low */
-			__set_bit(msr, msr_bitmap + 0x000 / f);
-
-		if (type & MSR_TYPE_W)
-			/* write-low */
-			__set_bit(msr, msr_bitmap + 0x800 / f);
-
-	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
-		msr &= 0x1fff;
-		if (type & MSR_TYPE_R)
-			/* read-high */
-			__set_bit(msr, msr_bitmap + 0x400 / f);
-
-		if (type & MSR_TYPE_W)
-			/* write-high */
-			__set_bit(msr, msr_bitmap + 0xc00 / f);
-
-	}
-}
-
-static void __always_inline vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
-			     			      u32 msr, int type, bool value)
-{
-	if (value)
-		vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
-	else
-		vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
-}
-
-/*
- * If a msr is allowed by L0, we should check whether it is allowed by L1.
- * The corresponding bit will be cleared unless both of L0 and L1 allow it.
- */
-static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
-					       unsigned long *msr_bitmap_nested,
-					       u32 msr, int type)
-{
-	int f = sizeof(unsigned long);
-
-	/*
-	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
-	 * have the write-low and read-high bitmap offsets the wrong way round.
-	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
-	 */
-	if (msr <= 0x1fff) {
-		if (type & MSR_TYPE_R &&
-		   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
-			/* read-low */
-			__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
-
-		if (type & MSR_TYPE_W &&
-		   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
-			/* write-low */
-			__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
-
-	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
-		msr &= 0x1fff;
-		if (type & MSR_TYPE_R &&
-		   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
-			/* read-high */
-			__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
-
-		if (type & MSR_TYPE_W &&
-		   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
-			/* write-high */
-			__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
-
-	}
-}
-
-static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
-{
-	u8 mode = 0;
-
-	if (cpu_has_secondary_exec_ctrls() &&
-	    (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
-	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
-		mode |= MSR_BITMAP_MODE_X2APIC;
-		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
-			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
-	}
-
-	return mode;
-}
-
-#define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
-
-static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
-					 u8 mode)
-{
-	int msr;
-
-	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
-		unsigned word = msr / BITS_PER_LONG;
-		msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
-		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
-	}
-
-	if (mode & MSR_BITMAP_MODE_X2APIC) {
-		/*
-		 * TPR reads and writes can be virtualized even if virtual interrupt
-		 * delivery is not in use.
-		 */
-		vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
-		if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
-			vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
-			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
-			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
-		}
-	}
-}
-
-static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
-	u8 mode = vmx_msr_bitmap_mode(vcpu);
-	u8 changed = mode ^ vmx->msr_bitmap_mode;
-
-	if (!changed)
-		return;
-
-	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
-		vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
-
-	vmx->msr_bitmap_mode = mode;
-}
-
-static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
-{
-	return enable_apicv;
-}
-
-static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
-{
-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-	gfn_t gfn;
-
-	/*
-	 * Don't need to mark the APIC access page dirty; it is never
-	 * written to by the CPU during APIC virtualization.
-	 */
-
-	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
-		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
-		kvm_vcpu_mark_page_dirty(vcpu, gfn);
-	}
-
-	if (nested_cpu_has_posted_intr(vmcs12)) {
-		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
-		kvm_vcpu_mark_page_dirty(vcpu, gfn);
-	}
-}
-
-
-static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	int max_irr;
-	void *vapic_page;
-	u16 status;
-
-	if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
-		return;
-
-	vmx->nested.pi_pending = false;
-	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
-		return;
-
-	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
-	if (max_irr != 256) {
-		vapic_page = kmap(vmx->nested.virtual_apic_page);
-		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
-			vapic_page, &max_irr);
-		kunmap(vmx->nested.virtual_apic_page);
-
-		status = vmcs_read16(GUEST_INTR_STATUS);
-		if ((u8)max_irr > ((u8)status & 0xff)) {
-			status &= ~0xff;
-			status |= (u8)max_irr;
-			vmcs_write16(GUEST_INTR_STATUS, status);
-		}
-	}
-
-	nested_mark_vmcs12_pages_dirty(vcpu);
-}
-
-static u8 vmx_get_rvi(void)
-{
-	return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
-}
-
-static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	void *vapic_page;
-	u32 vppr;
-	int rvi;
-
-	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
-		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
-		WARN_ON_ONCE(!vmx->nested.virtual_apic_page))
-		return false;
-
-	rvi = vmx_get_rvi();
-
-	vapic_page = kmap(vmx->nested.virtual_apic_page);
-	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
-	kunmap(vmx->nested.virtual_apic_page);
-
-	return ((rvi & 0xf0) > (vppr & 0xf0));
-}
-
-static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
-						     bool nested)
-{
-#ifdef CONFIG_SMP
-	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
-
-	if (vcpu->mode == IN_GUEST_MODE) {
-		/*
-		 * The vector of interrupt to be delivered to vcpu had
-		 * been set in PIR before this function.
-		 *
-		 * Following cases will be reached in this block, and
-		 * we always send a notification event in all cases as
-		 * explained below.
-		 *
-		 * Case 1: vcpu keeps in non-root mode. Sending a
-		 * notification event posts the interrupt to vcpu.
-		 *
-		 * Case 2: vcpu exits to root mode and is still
-		 * runnable. PIR will be synced to vIRR before the
-		 * next vcpu entry. Sending a notification event in
-		 * this case has no effect, as vcpu is not in root
-		 * mode.
-		 *
-		 * Case 3: vcpu exits to root mode and is blocked.
-		 * vcpu_block() has already synced PIR to vIRR and
-		 * never blocks vcpu if vIRR is not cleared. Therefore,
-		 * a blocked vcpu here does not wait for any requested
-		 * interrupts in PIR, and sending a notification event
-		 * which has no effect is safe here.
-		 */
-
-		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
-		return true;
-	}
-#endif
-	return false;
-}
-
-static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
-						int vector)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-
-	if (is_guest_mode(vcpu) &&
-	    vector == vmx->nested.posted_intr_nv) {
-		/*
-		 * If a posted intr is not recognized by hardware,
-		 * we will accomplish it in the next vmentry.
-		 */
-		vmx->nested.pi_pending = true;
-		kvm_make_request(KVM_REQ_EVENT, vcpu);
-		/* the PIR and ON have been set by L1. */
-		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
-			kvm_vcpu_kick(vcpu);
-		return 0;
-	}
-	return -1;
-}
-/*
- * Send interrupt to vcpu via posted interrupt way.
- * 1. If target vcpu is running(non-root mode), send posted interrupt
- * notification to vcpu and hardware will sync PIR to vIRR atomically.
- * 2. If target vcpu isn't running(root mode), kick it to pick up the
- * interrupt from PIR in next vmentry.
- */
-static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	int r;
-
-	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
-	if (!r)
-		return;
-
-	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
-		return;
-
-	/* If a previous notification has sent the IPI, nothing to do.  */
-	if (pi_test_and_set_on(&vmx->pi_desc))
-		return;
-
-	if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
-		kvm_vcpu_kick(vcpu);
-}
-
-/*
- * Set up the vmcs's constant host-state fields, i.e., host-state fields that
- * will not change in the lifetime of the guest.
- * Note that host-state that does change is set elsewhere. E.g., host-state
- * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
- */
-static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
-{
-	u32 low32, high32;
-	unsigned long tmpl;
-	struct desc_ptr dt;
-	unsigned long cr0, cr3, cr4;
-
-	cr0 = read_cr0();
-	WARN_ON(cr0 & X86_CR0_TS);
-	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
-
-	/*
-	 * Save the most likely value for this task's CR3 in the VMCS.
-	 * We can't use __get_current_cr3_fast() because we're not atomic.
-	 */
-	cr3 = __read_cr3();
-	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
-	vmx->loaded_vmcs->host_state.cr3 = cr3;
-
-	/* Save the most likely value for this task's CR4 in the VMCS. */
-	cr4 = cr4_read_shadow();
-	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
-	vmx->loaded_vmcs->host_state.cr4 = cr4;
-
-	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
-#ifdef CONFIG_X86_64
-	/*
-	 * Load null selectors, so we can avoid reloading them in
-	 * vmx_prepare_switch_to_host(), in case userspace uses
-	 * the null selectors too (the expected case).
-	 */
-	vmcs_write16(HOST_DS_SELECTOR, 0);
-	vmcs_write16(HOST_ES_SELECTOR, 0);
-#else
-	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
-	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
-#endif
-	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
-	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
-
-	store_idt(&dt);
-	vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
-	vmx->host_idt_base = dt.address;
-
-	vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
-
-	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
-	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
-	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
-	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
-
-	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
-		rdmsr(MSR_IA32_CR_PAT, low32, high32);
-		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
-	}
-
-	if (cpu_has_load_ia32_efer)
-		vmcs_write64(HOST_IA32_EFER, host_efer);
-}
-
-static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
-{
-	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
-	if (enable_ept)
-		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
-	if (is_guest_mode(&vmx->vcpu))
-		vmx->vcpu.arch.cr4_guest_owned_bits &=
-			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
-	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
-}
-
-static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
-{
-	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
-
-	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
-		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
-
-	if (!enable_vnmi)
-		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
-
-	/* Enable the preemption timer dynamically */
-	pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
-	return pin_based_exec_ctrl;
-}
-
-static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-
-	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
-	if (cpu_has_secondary_exec_ctrls()) {
-		if (kvm_vcpu_apicv_active(vcpu))
-			vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
-				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
-				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
-		else
-			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
-					SECONDARY_EXEC_APIC_REGISTER_VIRT |
-					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
-	}
-
-	if (cpu_has_vmx_msr_bitmap())
-		vmx_update_msr_bitmap(vcpu);
-}
-
-static u32 vmx_exec_control(struct vcpu_vmx *vmx)
-{
-	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
-
-	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
-		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
-
-	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
-		exec_control &= ~CPU_BASED_TPR_SHADOW;
-#ifdef CONFIG_X86_64
-		exec_control |= CPU_BASED_CR8_STORE_EXITING |
-				CPU_BASED_CR8_LOAD_EXITING;
-#endif
-	}
-	if (!enable_ept)
-		exec_control |= CPU_BASED_CR3_STORE_EXITING |
-				CPU_BASED_CR3_LOAD_EXITING  |
-				CPU_BASED_INVLPG_EXITING;
-	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
-		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
-				CPU_BASED_MONITOR_EXITING);
-	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
-		exec_control &= ~CPU_BASED_HLT_EXITING;
-	return exec_control;
-}
-
-static bool vmx_rdrand_supported(void)
-{
-	return vmcs_config.cpu_based_2nd_exec_ctrl &
-		SECONDARY_EXEC_RDRAND_EXITING;
-}
-
-static bool vmx_rdseed_supported(void)
-{
-	return vmcs_config.cpu_based_2nd_exec_ctrl &
-		SECONDARY_EXEC_RDSEED_EXITING;
-}
-
-static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
-{
-	struct kvm_vcpu *vcpu = &vmx->vcpu;
-
-	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
-
-	if (!cpu_need_virtualize_apic_accesses(vcpu))
-		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
-	if (vmx->vpid == 0)
-		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
-	if (!enable_ept) {
-		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
-		enable_unrestricted_guest = 0;
-	}
-	if (!enable_unrestricted_guest)
-		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
-	if (kvm_pause_in_guest(vmx->vcpu.kvm))
-		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
-	if (!kvm_vcpu_apicv_active(vcpu))
-		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
-				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
-	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
-
-	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
-	 * in vmx_set_cr4.  */
-	exec_control &= ~SECONDARY_EXEC_DESC;
-
-	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
-	   (handle_vmptrld).
-	   We can NOT enable shadow_vmcs here because we don't have yet
-	   a current VMCS12
-	*/
-	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
-
-	if (!enable_pml)
-		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
-
-	if (vmx_xsaves_supported()) {
-		/* Exposing XSAVES only when XSAVE is exposed */
-		bool xsaves_enabled =
-			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
-			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
-
-		if (!xsaves_enabled)
-			exec_control &= ~SECONDARY_EXEC_XSAVES;
-
-		if (nested) {
-			if (xsaves_enabled)
-				vmx->nested.msrs.secondary_ctls_high |=
-					SECONDARY_EXEC_XSAVES;
-			else
-				vmx->nested.msrs.secondary_ctls_high &=
-					~SECONDARY_EXEC_XSAVES;
-		}
-	}
-
-	if (vmx_rdtscp_supported()) {
-		bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
-		if (!rdtscp_enabled)
-			exec_control &= ~SECONDARY_EXEC_RDTSCP;
-
-		if (nested) {
-			if (rdtscp_enabled)
-				vmx->nested.msrs.secondary_ctls_high |=
-					SECONDARY_EXEC_RDTSCP;
-			else
-				vmx->nested.msrs.secondary_ctls_high &=
-					~SECONDARY_EXEC_RDTSCP;
-		}
-	}
-
-	if (vmx_invpcid_supported()) {
-		/* Exposing INVPCID only when PCID is exposed */
-		bool invpcid_enabled =
-			guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
-			guest_cpuid_has(vcpu, X86_FEATURE_PCID);
-
-		if (!invpcid_enabled) {
-			exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
-			guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
-		}
-
-		if (nested) {
-			if (invpcid_enabled)
-				vmx->nested.msrs.secondary_ctls_high |=
-					SECONDARY_EXEC_ENABLE_INVPCID;
-			else
-				vmx->nested.msrs.secondary_ctls_high &=
-					~SECONDARY_EXEC_ENABLE_INVPCID;
-		}
-	}
-
-	if (vmx_rdrand_supported()) {
-		bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
-		if (rdrand_enabled)
-			exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
-
-		if (nested) {
-			if (rdrand_enabled)
-				vmx->nested.msrs.secondary_ctls_high |=
-					SECONDARY_EXEC_RDRAND_EXITING;
-			else
-				vmx->nested.msrs.secondary_ctls_high &=
-					~SECONDARY_EXEC_RDRAND_EXITING;
-		}
-	}
-
-	if (vmx_rdseed_supported()) {
-		bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
-		if (rdseed_enabled)
-			exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
-
-		if (nested) {
-			if (rdseed_enabled)
-				vmx->nested.msrs.secondary_ctls_high |=
-					SECONDARY_EXEC_RDSEED_EXITING;
-			else
-				vmx->nested.msrs.secondary_ctls_high &=
-					~SECONDARY_EXEC_RDSEED_EXITING;
-		}
-	}
-
-	vmx->secondary_exec_control = exec_control;
-}
-
-static void ept_set_mmio_spte_mask(void)
-{
-	/*
-	 * EPT Misconfigurations can be generated if the value of bits 2:0
-	 * of an EPT paging-structure entry is 110b (write/execute).
-	 */
-	kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
-				   VMX_EPT_MISCONFIG_WX_VALUE);
-}
-
-#define VMX_XSS_EXIT_BITMAP 0
-/*
- * Sets up the vmcs for emulated real mode.
- */
-static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
-{
-	int i;
-
-	if (enable_shadow_vmcs) {
-		/*
-		 * At vCPU creation, "VMWRITE to any supported field
-		 * in the VMCS" is supported, so use the more
-		 * permissive vmx_vmread_bitmap to specify both read
-		 * and write permissions for the shadow VMCS.
-		 */
-		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
-		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
-	}
-	if (cpu_has_vmx_msr_bitmap())
-		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
-
-	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
-
-	/* Control */
-	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
-	vmx->hv_deadline_tsc = -1;
-
-	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
-
-	if (cpu_has_secondary_exec_ctrls()) {
-		vmx_compute_secondary_exec_control(vmx);
-		vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
-			     vmx->secondary_exec_control);
-	}
-
-	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
-		vmcs_write64(EOI_EXIT_BITMAP0, 0);
-		vmcs_write64(EOI_EXIT_BITMAP1, 0);
-		vmcs_write64(EOI_EXIT_BITMAP2, 0);
-		vmcs_write64(EOI_EXIT_BITMAP3, 0);
-
-		vmcs_write16(GUEST_INTR_STATUS, 0);
-
-		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
-		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
-	}
-
-	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
-		vmcs_write32(PLE_GAP, ple_gap);
-		vmx->ple_window = ple_window;
-		vmx->ple_window_dirty = true;
-	}
-
-	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
-	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
-	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
-
-	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
-	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
-	vmx_set_constant_host_state(vmx);
-	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
-	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
-
-	if (cpu_has_vmx_vmfunc())
-		vmcs_write64(VM_FUNCTION_CONTROL, 0);
-
-	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
-	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
-	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
-	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
-	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
-
-	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
-		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
-
-	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
-		u32 index = vmx_msr_index[i];
-		u32 data_low, data_high;
-		int j = vmx->nmsrs;
-
-		if (rdmsr_safe(index, &data_low, &data_high) < 0)
-			continue;
-		if (wrmsr_safe(index, data_low, data_high) < 0)
-			continue;
-		vmx->guest_msrs[j].index = i;
-		vmx->guest_msrs[j].data = 0;
-		vmx->guest_msrs[j].mask = -1ull;
-		++vmx->nmsrs;
-	}
-
-	vmx->arch_capabilities = kvm_get_arch_capabilities();
-
-	vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
-
-	/* 22.2.1, 20.8.1 */
-	vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
-
-	vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
-	vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
-
-	set_cr4_guest_host_mask(vmx);
-
-	if (vmx_xsaves_supported())
-		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
-
-	if (enable_pml) {
-		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
-		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
-	}
-
-	if (cpu_has_vmx_encls_vmexit())
-		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
-}
-
-static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	struct msr_data apic_base_msr;
-	u64 cr0;
-
-	vmx->rmode.vm86_active = 0;
-	vmx->spec_ctrl = 0;
-
-	vcpu->arch.microcode_version = 0x100000000ULL;
-	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
-	kvm_set_cr8(vcpu, 0);
-
-	if (!init_event) {
-		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
-				     MSR_IA32_APICBASE_ENABLE;
-		if (kvm_vcpu_is_reset_bsp(vcpu))
-			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
-		apic_base_msr.host_initiated = true;
-		kvm_set_apic_base(vcpu, &apic_base_msr);
-	}
-
-	vmx_segment_cache_clear(vmx);
-
-	seg_setup(VCPU_SREG_CS);
-	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
-	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
-
-	seg_setup(VCPU_SREG_DS);
-	seg_setup(VCPU_SREG_ES);
-	seg_setup(VCPU_SREG_FS);
-	seg_setup(VCPU_SREG_GS);
-	seg_setup(VCPU_SREG_SS);
-
-	vmcs_write16(GUEST_TR_SELECTOR, 0);
-	vmcs_writel(GUEST_TR_BASE, 0);
-	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
-	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
-
-	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
-	vmcs_writel(GUEST_LDTR_BASE, 0);
-	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
-	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
-
-	if (!init_event) {
-		vmcs_write32(GUEST_SYSENTER_CS, 0);
-		vmcs_writel(GUEST_SYSENTER_ESP, 0);
-		vmcs_writel(GUEST_SYSENTER_EIP, 0);
-		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
-	}
-
-	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
-	kvm_rip_write(vcpu, 0xfff0);
-
-	vmcs_writel(GUEST_GDTR_BASE, 0);
-	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
-
-	vmcs_writel(GUEST_IDTR_BASE, 0);
-	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
-
-	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
-	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
-	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
-	if (kvm_mpx_supported())
-		vmcs_write64(GUEST_BNDCFGS, 0);
-
-	setup_msrs(vmx);
-
-	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
-
-	if (cpu_has_vmx_tpr_shadow() && !init_event) {
-		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
-		if (cpu_need_tpr_shadow(vcpu))
-			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
-				     __pa(vcpu->arch.apic->regs));
-		vmcs_write32(TPR_THRESHOLD, 0);
-	}
-
-	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
-
-	if (vmx->vpid != 0)
-		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
-
-	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
-	vmx->vcpu.arch.cr0 = cr0;
-	vmx_set_cr0(vcpu, cr0); /* enter rmode */
-	vmx_set_cr4(vcpu, 0);
-	vmx_set_efer(vcpu, 0);
-
-	update_exception_bitmap(vcpu);
-
-	vpid_sync_context(vmx->vpid);
-	if (init_event)
-		vmx_clear_hlt(vcpu);
-}
-
-/*
- * In nested virtualization, check if L1 asked to exit on external interrupts.
- * For most existing hypervisors, this will always return true.
- */
-static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
-{
-	return get_vmcs12(vcpu)->pin_based_vm_exec_control &
-		PIN_BASED_EXT_INTR_MASK;
-}
-
-/*
- * In nested virtualization, check if L1 has set
- * VM_EXIT_ACK_INTR_ON_EXIT
- */
-static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
-{
-	return get_vmcs12(vcpu)->vm_exit_controls &
-		VM_EXIT_ACK_INTR_ON_EXIT;
-}
-
-static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
-{
-	return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
-}
-
-static void enable_irq_window(struct kvm_vcpu *vcpu)
-{
-	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
-		      CPU_BASED_VIRTUAL_INTR_PENDING);
-}
-
-static void enable_nmi_window(struct kvm_vcpu *vcpu)
-{
-	if (!enable_vnmi ||
-	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
-		enable_irq_window(vcpu);
-		return;
-	}
-
-	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
-		      CPU_BASED_VIRTUAL_NMI_PENDING);
-}
-
-static void vmx_inject_irq(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	uint32_t intr;
-	int irq = vcpu->arch.interrupt.nr;
-
-	trace_kvm_inj_virq(irq);
-
-	++vcpu->stat.irq_injections;
-	if (vmx->rmode.vm86_active) {
-		int inc_eip = 0;
-		if (vcpu->arch.interrupt.soft)
-			inc_eip = vcpu->arch.event_exit_inst_len;
-		if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
-			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
-		return;
-	}
-	intr = irq | INTR_INFO_VALID_MASK;
-	if (vcpu->arch.interrupt.soft) {
-		intr |= INTR_TYPE_SOFT_INTR;
-		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
-			     vmx->vcpu.arch.event_exit_inst_len);
-	} else
-		intr |= INTR_TYPE_EXT_INTR;
-	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
-
-	vmx_clear_hlt(vcpu);
-}
-
-static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-
-	if (!enable_vnmi) {
-		/*
-		 * Tracking the NMI-blocked state in software is built upon
-		 * finding the next open IRQ window. This, in turn, depends on
-		 * well-behaving guests: They have to keep IRQs disabled at
-		 * least as long as the NMI handler runs. Otherwise we may
-		 * cause NMI nesting, maybe breaking the guest. But as this is
-		 * highly unlikely, we can live with the residual risk.
-		 */
-		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
-		vmx->loaded_vmcs->vnmi_blocked_time = 0;
-	}
-
-	++vcpu->stat.nmi_injections;
-	vmx->loaded_vmcs->nmi_known_unmasked = false;
-
-	if (vmx->rmode.vm86_active) {
-		if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
-			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
-		return;
-	}
-
-	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
-			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
-
-	vmx_clear_hlt(vcpu);
-}
-
-static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	bool masked;
-
-	if (!enable_vnmi)
-		return vmx->loaded_vmcs->soft_vnmi_blocked;
-	if (vmx->loaded_vmcs->nmi_known_unmasked)
-		return false;
-	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
-	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
-	return masked;
-}
-
-static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-
-	if (!enable_vnmi) {
-		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
-			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
-			vmx->loaded_vmcs->vnmi_blocked_time = 0;
-		}
-	} else {
-		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
-		if (masked)
-			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
-				      GUEST_INTR_STATE_NMI);
-		else
-			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
-					GUEST_INTR_STATE_NMI);
-	}
-}
-
-static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
-{
-	if (to_vmx(vcpu)->nested.nested_run_pending)
-		return 0;
-
-	if (!enable_vnmi &&
-	    to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
-		return 0;
-
-	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
-		  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
-		   | GUEST_INTR_STATE_NMI));
-}
-
-static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
-{
-	return (!to_vmx(vcpu)->nested.nested_run_pending &&
-		vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
-		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
-			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
-}
-
-static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
-{
-	int ret;
-
-	if (enable_unrestricted_guest)
-		return 0;
-
-	ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
-				    PAGE_SIZE * 3);
-	if (ret)
-		return ret;
-	to_kvm_vmx(kvm)->tss_addr = addr;
-	return init_rmode_tss(kvm);
-}
-
-static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
-{
-	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
-	return 0;
-}
-
-static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
-{
-	switch (vec) {
-	case BP_VECTOR:
-		/*
-		 * Update instruction length as we may reinject the exception
-		 * from user space while in guest debugging mode.
-		 */
-		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
-			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
-		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
-			return false;
-		/* fall through */
-	case DB_VECTOR:
-		if (vcpu->guest_debug &
-			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
-			return false;
-		/* fall through */
-	case DE_VECTOR:
-	case OF_VECTOR:
-	case BR_VECTOR:
-	case UD_VECTOR:
-	case DF_VECTOR:
-	case SS_VECTOR:
-	case GP_VECTOR:
-	case MF_VECTOR:
-		return true;
-	break;
-	}
-	return false;
-}
-
-static int handle_rmode_exception(struct kvm_vcpu *vcpu,
-				  int vec, u32 err_code)
-{
-	/*
-	 * Instruction with address size override prefix opcode 0x67
-	 * Cause the #SS fault with 0 error code in VM86 mode.
-	 */
-	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
-		if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) {
-			if (vcpu->arch.halt_request) {
-				vcpu->arch.halt_request = 0;
-				return kvm_vcpu_halt(vcpu);
-			}
-			return 1;
-		}
-		return 0;
-	}
-
-	/*
-	 * Forward all other exceptions that are valid in real mode.
-	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
-	 *        the required debugging infrastructure rework.
-	 */
-	kvm_queue_exception(vcpu, vec);
-	return 1;
-}
-
-/*
- * Trigger machine check on the host. We assume all the MSRs are already set up
- * by the CPU and that we still run on the same CPU as the MCE occurred on.
- * We pass a fake environment to the machine check handler because we want
- * the guest to be always treated like user space, no matter what context
- * it used internally.
- */
-static void kvm_machine_check(void)
-{
-#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
-	struct pt_regs regs = {
-		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
-		.flags = X86_EFLAGS_IF,
-	};
-
-	do_machine_check(&regs, 0);
-#endif
-}
-
-static int handle_machine_check(struct kvm_vcpu *vcpu)
-{
-	/* already handled by vcpu_run */
-	return 1;
-}
-
-static int handle_exception(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	struct kvm_run *kvm_run = vcpu->run;
-	u32 intr_info, ex_no, error_code;
-	unsigned long cr2, rip, dr6;
-	u32 vect_info;
-	enum emulation_result er;
-
-	vect_info = vmx->idt_vectoring_info;
-	intr_info = vmx->exit_intr_info;
-
-	if (is_machine_check(intr_info))
-		return handle_machine_check(vcpu);
-
-	if (is_nmi(intr_info))
-		return 1;  /* already handled by vmx_vcpu_run() */
-
-	if (is_invalid_opcode(intr_info))
-		return handle_ud(vcpu);
-
-	error_code = 0;
-	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
-		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
-
-	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
-		WARN_ON_ONCE(!enable_vmware_backdoor);
-		er = kvm_emulate_instruction(vcpu,
-			EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
-		if (er == EMULATE_USER_EXIT)
-			return 0;
-		else if (er != EMULATE_DONE)
-			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
-		return 1;
-	}
-
-	/*
-	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
-	 * MMIO, it is better to report an internal error.
-	 * See the comments in vmx_handle_exit.
-	 */
-	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
-	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
-		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
-		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
-		vcpu->run->internal.ndata = 3;
-		vcpu->run->internal.data[0] = vect_info;
-		vcpu->run->internal.data[1] = intr_info;
-		vcpu->run->internal.data[2] = error_code;
-		return 0;
-	}
-
-	if (is_page_fault(intr_info)) {
-		cr2 = vmcs_readl(EXIT_QUALIFICATION);
-		/* EPT won't cause page fault directly */
-		WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
-		return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
-	}
-
-	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
-
-	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
-		return handle_rmode_exception(vcpu, ex_no, error_code);
-
-	switch (ex_no) {
-	case AC_VECTOR:
-		kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
-		return 1;
-	case DB_VECTOR:
-		dr6 = vmcs_readl(EXIT_QUALIFICATION);
-		if (!(vcpu->guest_debug &
-		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
-			vcpu->arch.dr6 &= ~15;
-			vcpu->arch.dr6 |= dr6 | DR6_RTM;
-			if (is_icebp(intr_info))
-				skip_emulated_instruction(vcpu);
-
-			kvm_queue_exception(vcpu, DB_VECTOR);
-			return 1;
-		}
-		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
-		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
-		/* fall through */
-	case BP_VECTOR:
-		/*
-		 * Update instruction length as we may reinject #BP from
-		 * user space while in guest debugging mode. Reading it for
-		 * #DB as well causes no harm, it is not used in that case.
-		 */
-		vmx->vcpu.arch.event_exit_inst_len =
-			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
-		kvm_run->exit_reason = KVM_EXIT_DEBUG;
-		rip = kvm_rip_read(vcpu);
-		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
-		kvm_run->debug.arch.exception = ex_no;
-		break;
-	default:
-		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
-		kvm_run->ex.exception = ex_no;
-		kvm_run->ex.error_code = error_code;
-		break;
-	}
-	return 0;
-}
-
-static int handle_external_interrupt(struct kvm_vcpu *vcpu)
-{
-	++vcpu->stat.irq_exits;
-	return 1;
-}
-
-static int handle_triple_fault(struct kvm_vcpu *vcpu)
-{
-	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
-	vcpu->mmio_needed = 0;
-	return 0;
-}
-
-static int handle_io(struct kvm_vcpu *vcpu)
-{
-	unsigned long exit_qualification;
-	int size, in, string;
-	unsigned port;
-
-	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
-	string = (exit_qualification & 16) != 0;
-
-	++vcpu->stat.io_exits;
-
-	if (string)
-		return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
-
-	port = exit_qualification >> 16;
-	size = (exit_qualification & 7) + 1;
-	in = (exit_qualification & 8) != 0;
-
-	return kvm_fast_pio(vcpu, size, port, in);
-}
-
-static void
-vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
-{
-	/*
-	 * Patch in the VMCALL instruction:
-	 */
-	hypercall[0] = 0x0f;
-	hypercall[1] = 0x01;
-	hypercall[2] = 0xc1;
-}
-
-/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
-static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
-{
-	if (is_guest_mode(vcpu)) {
-		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-		unsigned long orig_val = val;
-
-		/*
-		 * We get here when L2 changed cr0 in a way that did not change
-		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
-		 * but did change L0 shadowed bits. So we first calculate the
-		 * effective cr0 value that L1 would like to write into the
-		 * hardware. It consists of the L2-owned bits from the new
-		 * value combined with the L1-owned bits from L1's guest_cr0.
-		 */
-		val = (val & ~vmcs12->cr0_guest_host_mask) |
-			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
-
-		if (!nested_guest_cr0_valid(vcpu, val))
-			return 1;
-
-		if (kvm_set_cr0(vcpu, val))
-			return 1;
-		vmcs_writel(CR0_READ_SHADOW, orig_val);
-		return 0;
-	} else {
-		if (to_vmx(vcpu)->nested.vmxon &&
-		    !nested_host_cr0_valid(vcpu, val))
-			return 1;
-
-		return kvm_set_cr0(vcpu, val);
-	}
-}
-
-static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
-{
-	if (is_guest_mode(vcpu)) {
-		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-		unsigned long orig_val = val;
-
-		/* analogously to handle_set_cr0 */
-		val = (val & ~vmcs12->cr4_guest_host_mask) |
-			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
-		if (kvm_set_cr4(vcpu, val))
-			return 1;
-		vmcs_writel(CR4_READ_SHADOW, orig_val);
-		return 0;
-	} else
-		return kvm_set_cr4(vcpu, val);
-}
-
-static int handle_desc(struct kvm_vcpu *vcpu)
-{
-	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
-	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
-}
-
-static int handle_cr(struct kvm_vcpu *vcpu)
-{
-	unsigned long exit_qualification, val;
-	int cr;
-	int reg;
-	int err;
-	int ret;
-
-	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
-	cr = exit_qualification & 15;
-	reg = (exit_qualification >> 8) & 15;
-	switch ((exit_qualification >> 4) & 3) {
-	case 0: /* mov to cr */
-		val = kvm_register_readl(vcpu, reg);
-		trace_kvm_cr_write(cr, val);
-		switch (cr) {
-		case 0:
-			err = handle_set_cr0(vcpu, val);
-			return kvm_complete_insn_gp(vcpu, err);
-		case 3:
-			WARN_ON_ONCE(enable_unrestricted_guest);
-			err = kvm_set_cr3(vcpu, val);
-			return kvm_complete_insn_gp(vcpu, err);
-		case 4:
-			err = handle_set_cr4(vcpu, val);
-			return kvm_complete_insn_gp(vcpu, err);
-		case 8: {
-				u8 cr8_prev = kvm_get_cr8(vcpu);
-				u8 cr8 = (u8)val;
-				err = kvm_set_cr8(vcpu, cr8);
-				ret = kvm_complete_insn_gp(vcpu, err);
-				if (lapic_in_kernel(vcpu))
-					return ret;
-				if (cr8_prev <= cr8)
-					return ret;
-				/*
-				 * TODO: we might be squashing a
-				 * KVM_GUESTDBG_SINGLESTEP-triggered
-				 * KVM_EXIT_DEBUG here.
-				 */
-				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
-				return 0;
-			}
-		}
-		break;
-	case 2: /* clts */
-		WARN_ONCE(1, "Guest should always own CR0.TS");
-		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
-		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
-		return kvm_skip_emulated_instruction(vcpu);
-	case 1: /*mov from cr*/
-		switch (cr) {
-		case 3:
-			WARN_ON_ONCE(enable_unrestricted_guest);
-			val = kvm_read_cr3(vcpu);
-			kvm_register_write(vcpu, reg, val);
-			trace_kvm_cr_read(cr, val);
-			return kvm_skip_emulated_instruction(vcpu);
-		case 8:
-			val = kvm_get_cr8(vcpu);
-			kvm_register_write(vcpu, reg, val);
-			trace_kvm_cr_read(cr, val);
-			return kvm_skip_emulated_instruction(vcpu);
-		}
-		break;
-	case 3: /* lmsw */
-		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
-		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
-		kvm_lmsw(vcpu, val);
-
-		return kvm_skip_emulated_instruction(vcpu);
-	default:
-		break;
-	}
-	vcpu->run->exit_reason = 0;
-	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
-	       (int)(exit_qualification >> 4) & 3, cr);
-	return 0;
-}
-
-static int handle_dr(struct kvm_vcpu *vcpu)
-{
-	unsigned long exit_qualification;
-	int dr, dr7, reg;
-
-	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
-	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
-
-	/* First, if DR does not exist, trigger UD */
-	if (!kvm_require_dr(vcpu, dr))
-		return 1;
-
-	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
-	if (!kvm_require_cpl(vcpu, 0))
-		return 1;
-	dr7 = vmcs_readl(GUEST_DR7);
-	if (dr7 & DR7_GD) {
-		/*
-		 * As the vm-exit takes precedence over the debug trap, we
-		 * need to emulate the latter, either for the host or the
-		 * guest debugging itself.
-		 */
-		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
-			vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
-			vcpu->run->debug.arch.dr7 = dr7;
-			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
-			vcpu->run->debug.arch.exception = DB_VECTOR;
-			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
-			return 0;
-		} else {
-			vcpu->arch.dr6 &= ~15;
-			vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
-			kvm_queue_exception(vcpu, DB_VECTOR);
-			return 1;
-		}
-	}
-
-	if (vcpu->guest_debug == 0) {
-		vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
-				CPU_BASED_MOV_DR_EXITING);
-
-		/*
-		 * No more DR vmexits; force a reload of the debug registers
-		 * and reenter on this instruction.  The next vmexit will
-		 * retrieve the full state of the debug registers.
-		 */
-		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
-		return 1;
-	}
-
-	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
-	if (exit_qualification & TYPE_MOV_FROM_DR) {
-		unsigned long val;
-
-		if (kvm_get_dr(vcpu, dr, &val))
-			return 1;
-		kvm_register_write(vcpu, reg, val);
-	} else
-		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
-			return 1;
-
-	return kvm_skip_emulated_instruction(vcpu);
-}
-
-static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
-{
-	return vcpu->arch.dr6;
-}
-
-static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
-{
-}
-
-static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
-{
-	get_debugreg(vcpu->arch.db[0], 0);
-	get_debugreg(vcpu->arch.db[1], 1);
-	get_debugreg(vcpu->arch.db[2], 2);
-	get_debugreg(vcpu->arch.db[3], 3);
-	get_debugreg(vcpu->arch.dr6, 6);
-	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
-
-	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
-	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
-}
-
-static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
-{
-	vmcs_writel(GUEST_DR7, val);
-}
-
-static int handle_cpuid(struct kvm_vcpu *vcpu)
-{
-	return kvm_emulate_cpuid(vcpu);
-}
-
-static int handle_rdmsr(struct kvm_vcpu *vcpu)
-{
-	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
-	struct msr_data msr_info;
-
-	msr_info.index = ecx;
-	msr_info.host_initiated = false;
-	if (vmx_get_msr(vcpu, &msr_info)) {
-		trace_kvm_msr_read_ex(ecx);
-		kvm_inject_gp(vcpu, 0);
-		return 1;
-	}
-
-	trace_kvm_msr_read(ecx, msr_info.data);
-
-	/* FIXME: handling of bits 32:63 of rax, rdx */
-	vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
-	vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
-	return kvm_skip_emulated_instruction(vcpu);
-}
-
-static int handle_wrmsr(struct kvm_vcpu *vcpu)
-{
-	struct msr_data msr;
-	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
-	u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
-		| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
-
-	msr.data = data;
-	msr.index = ecx;
-	msr.host_initiated = false;
-	if (kvm_set_msr(vcpu, &msr) != 0) {
-		trace_kvm_msr_write_ex(ecx, data);
-		kvm_inject_gp(vcpu, 0);
-		return 1;
-	}
-
-	trace_kvm_msr_write(ecx, data);
-	return kvm_skip_emulated_instruction(vcpu);
-}
-
-static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
-{
-	kvm_apic_update_ppr(vcpu);
-	return 1;
-}
-
-static int handle_interrupt_window(struct kvm_vcpu *vcpu)
-{
-	vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
-			CPU_BASED_VIRTUAL_INTR_PENDING);
-
-	kvm_make_request(KVM_REQ_EVENT, vcpu);
-
-	++vcpu->stat.irq_window_exits;
-	return 1;
-}
-
-static int handle_halt(struct kvm_vcpu *vcpu)
-{
-	return kvm_emulate_halt(vcpu);
-}
-
-static int handle_vmcall(struct kvm_vcpu *vcpu)
-{
-	return kvm_emulate_hypercall(vcpu);
-}
-
-static int handle_invd(struct kvm_vcpu *vcpu)
-{
-	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
-}
-
-static int handle_invlpg(struct kvm_vcpu *vcpu)
-{
-	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
-
-	kvm_mmu_invlpg(vcpu, exit_qualification);
-	return kvm_skip_emulated_instruction(vcpu);
-}
-
-static int handle_rdpmc(struct kvm_vcpu *vcpu)
-{
-	int err;
-
-	err = kvm_rdpmc(vcpu);
-	return kvm_complete_insn_gp(vcpu, err);
-}
-
-static int handle_wbinvd(struct kvm_vcpu *vcpu)
-{
-	return kvm_emulate_wbinvd(vcpu);
-}
-
-static int handle_xsetbv(struct kvm_vcpu *vcpu)
-{
-	u64 new_bv = kvm_read_edx_eax(vcpu);
-	u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
-
-	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
-		return kvm_skip_emulated_instruction(vcpu);
-	return 1;
-}
-
-static int handle_xsaves(struct kvm_vcpu *vcpu)
-{
-	kvm_skip_emulated_instruction(vcpu);
-	WARN(1, "this should never happen\n");
-	return 1;
-}
-
-static int handle_xrstors(struct kvm_vcpu *vcpu)
-{
-	kvm_skip_emulated_instruction(vcpu);
-	WARN(1, "this should never happen\n");
-	return 1;
-}
-
-static int handle_apic_access(struct kvm_vcpu *vcpu)
-{
-	if (likely(fasteoi)) {
-		unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
-		int access_type, offset;
-
-		access_type = exit_qualification & APIC_ACCESS_TYPE;
-		offset = exit_qualification & APIC_ACCESS_OFFSET;
-		/*
-		 * Sane guest uses MOV to write EOI, with written value
-		 * not cared. So make a short-circuit here by avoiding
-		 * heavy instruction emulation.
-		 */
-		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
-		    (offset == APIC_EOI)) {
-			kvm_lapic_set_eoi(vcpu);
-			return kvm_skip_emulated_instruction(vcpu);
-		}
-	}
-	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
-}
-
-static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
-{
-	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
-	int vector = exit_qualification & 0xff;
-
-	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
-	kvm_apic_set_eoi_accelerated(vcpu, vector);
-	return 1;
-}
-
-static int handle_apic_write(struct kvm_vcpu *vcpu)
-{
-	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
-	u32 offset = exit_qualification & 0xfff;
-
-	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
-	kvm_apic_write_nodecode(vcpu, offset);
-	return 1;
-}
-
-static int handle_task_switch(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	unsigned long exit_qualification;
-	bool has_error_code = false;
-	u32 error_code = 0;
-	u16 tss_selector;
-	int reason, type, idt_v, idt_index;
-
-	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
-	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
-	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
-
-	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
-
-	reason = (u32)exit_qualification >> 30;
-	if (reason == TASK_SWITCH_GATE && idt_v) {
-		switch (type) {
-		case INTR_TYPE_NMI_INTR:
-			vcpu->arch.nmi_injected = false;
-			vmx_set_nmi_mask(vcpu, true);
-			break;
-		case INTR_TYPE_EXT_INTR:
-		case INTR_TYPE_SOFT_INTR:
-			kvm_clear_interrupt_queue(vcpu);
-			break;
-		case INTR_TYPE_HARD_EXCEPTION:
-			if (vmx->idt_vectoring_info &
-			    VECTORING_INFO_DELIVER_CODE_MASK) {
-				has_error_code = true;
-				error_code =
-					vmcs_read32(IDT_VECTORING_ERROR_CODE);
-			}
-			/* fall through */
-		case INTR_TYPE_SOFT_EXCEPTION:
-			kvm_clear_exception_queue(vcpu);
-			break;
-		default:
-			break;
-		}
-	}
-	tss_selector = exit_qualification;
-
-	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
-		       type != INTR_TYPE_EXT_INTR &&
-		       type != INTR_TYPE_NMI_INTR))
-		skip_emulated_instruction(vcpu);
-
-	if (kvm_task_switch(vcpu, tss_selector,
-			    type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
-			    has_error_code, error_code) == EMULATE_FAIL) {
-		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
-		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
-		vcpu->run->internal.ndata = 0;
-		return 0;
-	}
-
-	/*
-	 * TODO: What about debug traps on tss switch?
-	 *       Are we supposed to inject them and update dr6?
-	 */
-
-	return 1;
-}
-
-static int handle_ept_violation(struct kvm_vcpu *vcpu)
-{
-	unsigned long exit_qualification;
-	gpa_t gpa;
-	u64 error_code;
-
-	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
-
-	/*
-	 * EPT violation happened while executing iret from NMI,
-	 * "blocked by NMI" bit has to be set before next VM entry.
-	 * There are errata that may cause this bit to not be set:
-	 * AAK134, BY25.
-	 */
-	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
-			enable_vnmi &&
-			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
-		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
-
-	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
-	trace_kvm_page_fault(gpa, exit_qualification);
-
-	/* Is it a read fault? */
-	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
-		     ? PFERR_USER_MASK : 0;
-	/* Is it a write fault? */
-	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
-		      ? PFERR_WRITE_MASK : 0;
-	/* Is it a fetch fault? */
-	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
-		      ? PFERR_FETCH_MASK : 0;
-	/* ept page table entry is present? */
-	error_code |= (exit_qualification &
-		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
-			EPT_VIOLATION_EXECUTABLE))
-		      ? PFERR_PRESENT_MASK : 0;
-
-	error_code |= (exit_qualification & 0x100) != 0 ?
-	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
-
-	vcpu->arch.exit_qualification = exit_qualification;
-	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
-}
-
-static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
-{
-	gpa_t gpa;
-
-	/*
-	 * A nested guest cannot optimize MMIO vmexits, because we have an
-	 * nGPA here instead of the required GPA.
-	 */
-	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
-	if (!is_guest_mode(vcpu) &&
-	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
-		trace_kvm_fast_mmio(gpa);
-		/*
-		 * Doing kvm_skip_emulated_instruction() depends on undefined
-		 * behavior: Intel's manual doesn't mandate
-		 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
-		 * occurs and while on real hardware it was observed to be set,
-		 * other hypervisors (namely Hyper-V) don't set it, we end up
-		 * advancing IP with some random value. Disable fast mmio when
-		 * running nested and keep it for real hardware in hope that
-		 * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
-		 */
-		if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
-			return kvm_skip_emulated_instruction(vcpu);
-		else
-			return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) ==
-								EMULATE_DONE;
-	}
-
-	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
-}
-
-static int handle_nmi_window(struct kvm_vcpu *vcpu)
-{
-	WARN_ON_ONCE(!enable_vnmi);
-	vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
-			CPU_BASED_VIRTUAL_NMI_PENDING);
-	++vcpu->stat.nmi_window_exits;
-	kvm_make_request(KVM_REQ_EVENT, vcpu);
-
-	return 1;
-}
-
-static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	enum emulation_result err = EMULATE_DONE;
-	int ret = 1;
-	u32 cpu_exec_ctrl;
-	bool intr_window_requested;
-	unsigned count = 130;
-
-	/*
-	 * We should never reach the point where we are emulating L2
-	 * due to invalid guest state as that means we incorrectly
-	 * allowed a nested VMEntry with an invalid vmcs12.
-	 */
-	WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
-
-	cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
-	intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
-
-	while (vmx->emulation_required && count-- != 0) {
-		if (intr_window_requested && vmx_interrupt_allowed(vcpu))
-			return handle_interrupt_window(&vmx->vcpu);
-
-		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
-			return 1;
-
-		err = kvm_emulate_instruction(vcpu, 0);
-
-		if (err == EMULATE_USER_EXIT) {
-			++vcpu->stat.mmio_exits;
-			ret = 0;
-			goto out;
-		}
-
-		if (err != EMULATE_DONE)
-			goto emulation_error;
-
-		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
-		    vcpu->arch.exception.pending)
-			goto emulation_error;
-
-		if (vcpu->arch.halt_request) {
-			vcpu->arch.halt_request = 0;
-			ret = kvm_vcpu_halt(vcpu);
-			goto out;
-		}
-
-		if (signal_pending(current))
-			goto out;
-		if (need_resched())
-			schedule();
-	}
-
-out:
-	return ret;
-
-emulation_error:
-	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
-	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
-	vcpu->run->internal.ndata = 0;
-	return 0;
-}
-
-static void grow_ple_window(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	int old = vmx->ple_window;
-
-	vmx->ple_window = __grow_ple_window(old, ple_window,
-					    ple_window_grow,
-					    ple_window_max);
-
-	if (vmx->ple_window != old)
-		vmx->ple_window_dirty = true;
-
-	trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
-}
-
-static void shrink_ple_window(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	int old = vmx->ple_window;
-
-	vmx->ple_window = __shrink_ple_window(old, ple_window,
-					      ple_window_shrink,
-					      ple_window);
-
-	if (vmx->ple_window != old)
-		vmx->ple_window_dirty = true;
-
-	trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
-}
-
-/*
- * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
- */
-static void wakeup_handler(void)
-{
-	struct kvm_vcpu *vcpu;
-	int cpu = smp_processor_id();
-
-	spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
-	list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
-			blocked_vcpu_list) {
-		struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
-
-		if (pi_test_on(pi_desc) == 1)
-			kvm_vcpu_kick(vcpu);
-	}
-	spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
-}
-
-static void vmx_enable_tdp(void)
-{
-	kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
-		enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
-		enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
-		0ull, VMX_EPT_EXECUTABLE_MASK,
-		cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
-		VMX_EPT_RWX_MASK, 0ull);
-
-	ept_set_mmio_spte_mask();
-	kvm_enable_tdp();
-}
-
-static __init int hardware_setup(void)
-{
-	unsigned long host_bndcfgs;
-	int r = -ENOMEM, i;
-
-	rdmsrl_safe(MSR_EFER, &host_efer);
-
-	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
-		kvm_define_shared_msr(i, vmx_msr_index[i]);
-
-	for (i = 0; i < VMX_BITMAP_NR; i++) {
-		vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
-		if (!vmx_bitmap[i])
-			goto out;
-	}
-
-	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
-	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
-
-	if (setup_vmcs_config(&vmcs_config) < 0) {
-		r = -EIO;
-		goto out;
-	}
-
-	if (boot_cpu_has(X86_FEATURE_NX))
-		kvm_enable_efer_bits(EFER_NX);
-
-	if (boot_cpu_has(X86_FEATURE_MPX)) {
-		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
-		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
-	}
-
-	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
-		!(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
-		enable_vpid = 0;
-
-	if (!cpu_has_vmx_ept() ||
-	    !cpu_has_vmx_ept_4levels() ||
-	    !cpu_has_vmx_ept_mt_wb() ||
-	    !cpu_has_vmx_invept_global())
-		enable_ept = 0;
-
-	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
-		enable_ept_ad_bits = 0;
-
-	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
-		enable_unrestricted_guest = 0;
-
-	if (!cpu_has_vmx_flexpriority())
-		flexpriority_enabled = 0;
-
-	if (!cpu_has_virtual_nmis())
-		enable_vnmi = 0;
-
-	/*
-	 * set_apic_access_page_addr() is used to reload apic access
-	 * page upon invalidation.  No need to do anything if not
-	 * using the APIC_ACCESS_ADDR VMCS field.
-	 */
-	if (!flexpriority_enabled)
-		kvm_x86_ops->set_apic_access_page_addr = NULL;
-
-	if (!cpu_has_vmx_tpr_shadow())
-		kvm_x86_ops->update_cr8_intercept = NULL;
-
-	if (enable_ept && !cpu_has_vmx_ept_2m_page())
-		kvm_disable_largepages();
-
-#if IS_ENABLED(CONFIG_HYPERV)
-	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
-	    && enable_ept)
-		kvm_x86_ops->tlb_remote_flush = vmx_hv_remote_flush_tlb;
-#endif
-
-	if (!cpu_has_vmx_ple()) {
-		ple_gap = 0;
-		ple_window = 0;
-		ple_window_grow = 0;
-		ple_window_max = 0;
-		ple_window_shrink = 0;
-	}
-
-	if (!cpu_has_vmx_apicv()) {
-		enable_apicv = 0;
-		kvm_x86_ops->sync_pir_to_irr = NULL;
-	}
-
-	if (cpu_has_vmx_tsc_scaling()) {
-		kvm_has_tsc_control = true;
-		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
-		kvm_tsc_scaling_ratio_frac_bits = 48;
-	}
-
-	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
-
-	if (enable_ept)
-		vmx_enable_tdp();
-	else
-		kvm_disable_tdp();
-
-	if (!nested) {
-		kvm_x86_ops->get_nested_state = NULL;
-		kvm_x86_ops->set_nested_state = NULL;
-	}
-
-	/*
-	 * Only enable PML when hardware supports PML feature, and both EPT
-	 * and EPT A/D bit features are enabled -- PML depends on them to work.
-	 */
-	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
-		enable_pml = 0;
-
-	if (!enable_pml) {
-		kvm_x86_ops->slot_enable_log_dirty = NULL;
-		kvm_x86_ops->slot_disable_log_dirty = NULL;
-		kvm_x86_ops->flush_log_dirty = NULL;
-		kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
-	}
-
-	if (!cpu_has_vmx_preemption_timer())
-		kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
-
-	if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
-		u64 vmx_msr;
-
-		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
-		cpu_preemption_timer_multi =
-			 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
-	} else {
-		kvm_x86_ops->set_hv_timer = NULL;
-		kvm_x86_ops->cancel_hv_timer = NULL;
-	}
-
-	if (!cpu_has_vmx_shadow_vmcs())
-		enable_shadow_vmcs = 0;
-	if (enable_shadow_vmcs)
-		init_vmcs_shadow_fields();
-
-	kvm_set_posted_intr_wakeup_handler(wakeup_handler);
-	nested_vmx_setup_ctls_msrs(&vmcs_config.nested, enable_apicv);
-
-	kvm_mce_cap_supported |= MCG_LMCE_P;
-
-	return alloc_kvm_area();
-
-out:
-	for (i = 0; i < VMX_BITMAP_NR; i++)
-		free_page((unsigned long)vmx_bitmap[i]);
-
-    return r;
-}
-
-static __exit void hardware_unsetup(void)
-{
-	int i;
-
-	for (i = 0; i < VMX_BITMAP_NR; i++)
-		free_page((unsigned long)vmx_bitmap[i]);
-
-	free_kvm_area();
-}
-
-/*
- * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
- * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
- */
-static int handle_pause(struct kvm_vcpu *vcpu)
-{
-	if (!kvm_pause_in_guest(vcpu->kvm))
-		grow_ple_window(vcpu);
-
-	/*
-	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
-	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
-	 * never set PAUSE_EXITING and just set PLE if supported,
-	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
-	 */
-	kvm_vcpu_on_spin(vcpu, true);
-	return kvm_skip_emulated_instruction(vcpu);
-}
-
-static int handle_nop(struct kvm_vcpu *vcpu)
-{
-	return kvm_skip_emulated_instruction(vcpu);
-}
-
-static int handle_mwait(struct kvm_vcpu *vcpu)
-{
-	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
-	return handle_nop(vcpu);
-}
-
-static int handle_invalid_op(struct kvm_vcpu *vcpu)
-{
-	kvm_queue_exception(vcpu, UD_VECTOR);
-	return 1;
-}
-
-static int handle_monitor_trap(struct kvm_vcpu *vcpu)
-{
-	return 1;
-}
-
-static int handle_monitor(struct kvm_vcpu *vcpu)
-{
-	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
-	return handle_nop(vcpu);
-}
-
-/*
- * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
- * set the success or error code of an emulated VMX instruction (as specified
- * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
- * instruction.
- */
-static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
-{
-	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
-			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
-			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
-	return kvm_skip_emulated_instruction(vcpu);
-}
-
-static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
-{
-	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
-			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
-			    X86_EFLAGS_SF | X86_EFLAGS_OF))
-			| X86_EFLAGS_CF);
-	return kvm_skip_emulated_instruction(vcpu);
-}
-
-static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
-				u32 vm_instruction_error)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-
-	/*
-	 * failValid writes the error number to the current VMCS, which
-	 * can't be done if there isn't a current VMCS.
-	 */
-	if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
-		return nested_vmx_failInvalid(vcpu);
-
-	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
-			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
-			    X86_EFLAGS_SF | X86_EFLAGS_OF))
-			| X86_EFLAGS_ZF);
-	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
-	/*
-	 * We don't need to force a shadow sync because
-	 * VM_INSTRUCTION_ERROR is not shadowed
-	 */
-	return kvm_skip_emulated_instruction(vcpu);
-}
-
-static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
-{
-	/* TODO: not to reset guest simply here. */
-	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
-	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
-}
-
-static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
-{
-	struct vcpu_vmx *vmx =
-		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
-
-	vmx->nested.preemption_timer_expired = true;
-	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
-	kvm_vcpu_kick(&vmx->vcpu);
-
-	return HRTIMER_NORESTART;
-}
-
-/*
- * Decode the memory-address operand of a vmx instruction, as recorded on an
- * exit caused by such an instruction (run by a guest hypervisor).
- * On success, returns 0. When the operand is invalid, returns 1 and throws
- * #UD or #GP.
- */
-static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
-				 unsigned long exit_qualification,
-				 u32 vmx_instruction_info, bool wr, gva_t *ret)
-{
-	gva_t off;
-	bool exn;
-	struct kvm_segment s;
-
-	/*
-	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
-	 * Execution", on an exit, vmx_instruction_info holds most of the
-	 * addressing components of the operand. Only the displacement part
-	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
-	 * For how an actual address is calculated from all these components,
-	 * refer to Vol. 1, "Operand Addressing".
-	 */
-	int  scaling = vmx_instruction_info & 3;
-	int  addr_size = (vmx_instruction_info >> 7) & 7;
-	bool is_reg = vmx_instruction_info & (1u << 10);
-	int  seg_reg = (vmx_instruction_info >> 15) & 7;
-	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
-	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
-	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
-	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
-
-	if (is_reg) {
-		kvm_queue_exception(vcpu, UD_VECTOR);
-		return 1;
-	}
-
-	/* Addr = segment_base + offset */
-	/* offset = base + [index * scale] + displacement */
-	off = exit_qualification; /* holds the displacement */
-	if (base_is_valid)
-		off += kvm_register_read(vcpu, base_reg);
-	if (index_is_valid)
-		off += kvm_register_read(vcpu, index_reg)<<scaling;
-	vmx_get_segment(vcpu, &s, seg_reg);
-	*ret = s.base + off;
-
-	if (addr_size == 1) /* 32 bit */
-		*ret &= 0xffffffff;
-
-	/* Checks for #GP/#SS exceptions. */
-	exn = false;
-	if (is_long_mode(vcpu)) {
-		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
-		 * non-canonical form. This is the only check on the memory
-		 * destination for long mode!
-		 */
-		exn = is_noncanonical_address(*ret, vcpu);
-	} else if (is_protmode(vcpu)) {
-		/* Protected mode: apply checks for segment validity in the
-		 * following order:
-		 * - segment type check (#GP(0) may be thrown)
-		 * - usability check (#GP(0)/#SS(0))
-		 * - limit check (#GP(0)/#SS(0))
-		 */
-		if (wr)
-			/* #GP(0) if the destination operand is located in a
-			 * read-only data segment or any code segment.
-			 */
-			exn = ((s.type & 0xa) == 0 || (s.type & 8));
-		else
-			/* #GP(0) if the source operand is located in an
-			 * execute-only code segment
-			 */
-			exn = ((s.type & 0xa) == 8);
-		if (exn) {
-			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
-			return 1;
-		}
-		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
-		 */
-		exn = (s.unusable != 0);
-		/* Protected mode: #GP(0)/#SS(0) if the memory
-		 * operand is outside the segment limit.
-		 */
-		exn = exn || (off + sizeof(u64) > s.limit);
-	}
-	if (exn) {
-		kvm_queue_exception_e(vcpu,
-				      seg_reg == VCPU_SREG_SS ?
-						SS_VECTOR : GP_VECTOR,
-				      0);
-		return 1;
-	}
-
-	return 0;
-}
-
-static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
-{
-	gva_t gva;
-	struct x86_exception e;
-
-	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
-			vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
-		return 1;
-
-	if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
-		kvm_inject_page_fault(vcpu, &e);
-		return 1;
-	}
-
-	return 0;
-}
-
-/*
- * Allocate a shadow VMCS and associate it with the currently loaded
- * VMCS, unless such a shadow VMCS already exists. The newly allocated
- * VMCS is also VMCLEARed, so that it is ready for use.
- */
-static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
-
-	/*
-	 * We should allocate a shadow vmcs for vmcs01 only when L1
-	 * executes VMXON and free it when L1 executes VMXOFF.
-	 * As it is invalid to execute VMXON twice, we shouldn't reach
-	 * here when vmcs01 already have an allocated shadow vmcs.
-	 */
-	WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
-
-	if (!loaded_vmcs->shadow_vmcs) {
-		loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
-		if (loaded_vmcs->shadow_vmcs)
-			vmcs_clear(loaded_vmcs->shadow_vmcs);
-	}
-	return loaded_vmcs->shadow_vmcs;
-}
-
-static int enter_vmx_operation(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	int r;
-
-	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
-	if (r < 0)
-		goto out_vmcs02;
-
-	vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
-	if (!vmx->nested.cached_vmcs12)
-		goto out_cached_vmcs12;
-
-	vmx->nested.cached_shadow_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
-	if (!vmx->nested.cached_shadow_vmcs12)
-		goto out_cached_shadow_vmcs12;
-
-	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
-		goto out_shadow_vmcs;
-
-	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
-		     HRTIMER_MODE_REL_PINNED);
-	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
-
-	vmx->nested.vpid02 = allocate_vpid();
-
-	vmx->nested.vmcs02_initialized = false;
-	vmx->nested.vmxon = true;
-	return 0;
-
-out_shadow_vmcs:
-	kfree(vmx->nested.cached_shadow_vmcs12);
-
-out_cached_shadow_vmcs12:
-	kfree(vmx->nested.cached_vmcs12);
-
-out_cached_vmcs12:
-	free_loaded_vmcs(&vmx->nested.vmcs02);
-
-out_vmcs02:
-	return -ENOMEM;
-}
-
-/*
- * Emulate the VMXON instruction.
- * Currently, we just remember that VMX is active, and do not save or even
- * inspect the argument to VMXON (the so-called "VMXON pointer") because we
- * do not currently need to store anything in that guest-allocated memory
- * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
- * argument is different from the VMXON pointer (which the spec says they do).
- */
-static int handle_vmon(struct kvm_vcpu *vcpu)
-{
-	int ret;
-	gpa_t vmptr;
-	struct page *page;
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
-		| FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
-
-	/*
-	 * The Intel VMX Instruction Reference lists a bunch of bits that are
-	 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
-	 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
-	 * Otherwise, we should fail with #UD.  But most faulting conditions
-	 * have already been checked by hardware, prior to the VM-exit for
-	 * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
-	 * that bit set to 1 in non-root mode.
-	 */
-	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
-		kvm_queue_exception(vcpu, UD_VECTOR);
-		return 1;
-	}
-
-	/* CPL=0 must be checked manually. */
-	if (vmx_get_cpl(vcpu)) {
-		kvm_inject_gp(vcpu, 0);
-		return 1;
-	}
-
-	if (vmx->nested.vmxon)
-		return nested_vmx_failValid(vcpu,
-			VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
-
-	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
-			!= VMXON_NEEDED_FEATURES) {
-		kvm_inject_gp(vcpu, 0);
-		return 1;
-	}
-
-	if (nested_vmx_get_vmptr(vcpu, &vmptr))
-		return 1;
-
-	/*
-	 * SDM 3: 24.11.5
-	 * The first 4 bytes of VMXON region contain the supported
-	 * VMCS revision identifier
-	 *
-	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
-	 * which replaces physical address width with 32
-	 */
-	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
-		return nested_vmx_failInvalid(vcpu);
-
-	page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
-	if (is_error_page(page))
-		return nested_vmx_failInvalid(vcpu);
-
-	if (*(u32 *)kmap(page) != VMCS12_REVISION) {
-		kunmap(page);
-		kvm_release_page_clean(page);
-		return nested_vmx_failInvalid(vcpu);
-	}
-	kunmap(page);
-	kvm_release_page_clean(page);
-
-	vmx->nested.vmxon_ptr = vmptr;
-	ret = enter_vmx_operation(vcpu);
-	if (ret)
-		return ret;
-
-	return nested_vmx_succeed(vcpu);
-}
-
-/*
- * Intel's VMX Instruction Reference specifies a common set of prerequisites
- * for running VMX instructions (except VMXON, whose prerequisites are
- * slightly different). It also specifies what exception to inject otherwise.
- * Note that many of these exceptions have priority over VM exits, so they
- * don't have to be checked again here.
- */
-static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
-{
-	if (!to_vmx(vcpu)->nested.vmxon) {
-		kvm_queue_exception(vcpu, UD_VECTOR);
-		return 0;
-	}
-
-	if (vmx_get_cpl(vcpu)) {
-		kvm_inject_gp(vcpu, 0);
-		return 0;
-	}
-
-	return 1;
-}
-
-static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
-{
-	vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
-	vmcs_write64(VMCS_LINK_POINTER, -1ull);
-}
-
-static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-
-	if (!vmx->nested.hv_evmcs)
-		return;
-
-	kunmap(vmx->nested.hv_evmcs_page);
-	kvm_release_page_dirty(vmx->nested.hv_evmcs_page);
-	vmx->nested.hv_evmcs_vmptr = -1ull;
-	vmx->nested.hv_evmcs_page = NULL;
-	vmx->nested.hv_evmcs = NULL;
-}
-
-static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-
-	if (vmx->nested.current_vmptr == -1ull)
-		return;
-
-	if (enable_shadow_vmcs) {
-		/* copy to memory all shadowed fields in case
-		   they were modified */
-		copy_shadow_to_vmcs12(vmx);
-		vmx->nested.need_vmcs12_sync = false;
-		vmx_disable_shadow_vmcs(vmx);
-	}
-	vmx->nested.posted_intr_nv = -1;
-
-	/* Flush VMCS12 to guest memory */
-	kvm_vcpu_write_guest_page(vcpu,
-				  vmx->nested.current_vmptr >> PAGE_SHIFT,
-				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
-
-	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
-
-	vmx->nested.current_vmptr = -1ull;
-}
-
-/*
- * Free whatever needs to be freed from vmx->nested when L1 goes down, or
- * just stops using VMX.
- */
-static void free_nested(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-
-	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
-		return;
-
-	vmx->nested.vmxon = false;
-	vmx->nested.smm.vmxon = false;
-	free_vpid(vmx->nested.vpid02);
-	vmx->nested.posted_intr_nv = -1;
-	vmx->nested.current_vmptr = -1ull;
-	if (enable_shadow_vmcs) {
-		vmx_disable_shadow_vmcs(vmx);
-		vmcs_clear(vmx->vmcs01.shadow_vmcs);
-		free_vmcs(vmx->vmcs01.shadow_vmcs);
-		vmx->vmcs01.shadow_vmcs = NULL;
-	}
-	kfree(vmx->nested.cached_vmcs12);
-	kfree(vmx->nested.cached_shadow_vmcs12);
-	/* Unpin physical memory we referred to in the vmcs02 */
-	if (vmx->nested.apic_access_page) {
-		kvm_release_page_dirty(vmx->nested.apic_access_page);
-		vmx->nested.apic_access_page = NULL;
-	}
-	if (vmx->nested.virtual_apic_page) {
-		kvm_release_page_dirty(vmx->nested.virtual_apic_page);
-		vmx->nested.virtual_apic_page = NULL;
-	}
-	if (vmx->nested.pi_desc_page) {
-		kunmap(vmx->nested.pi_desc_page);
-		kvm_release_page_dirty(vmx->nested.pi_desc_page);
-		vmx->nested.pi_desc_page = NULL;
-		vmx->nested.pi_desc = NULL;
-	}
-
-	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
-
-	nested_release_evmcs(vcpu);
-
-	free_loaded_vmcs(&vmx->nested.vmcs02);
-}
-
-/* Emulate the VMXOFF instruction */
-static int handle_vmoff(struct kvm_vcpu *vcpu)
-{
-	if (!nested_vmx_check_permission(vcpu))
-		return 1;
-	free_nested(vcpu);
-	return nested_vmx_succeed(vcpu);
-}
-
-/* Emulate the VMCLEAR instruction */
-static int handle_vmclear(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	u32 zero = 0;
-	gpa_t vmptr;
-
-	if (!nested_vmx_check_permission(vcpu))
-		return 1;
-
-	if (nested_vmx_get_vmptr(vcpu, &vmptr))
-		return 1;
-
-	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
-		return nested_vmx_failValid(vcpu,
-			VMXERR_VMCLEAR_INVALID_ADDRESS);
-
-	if (vmptr == vmx->nested.vmxon_ptr)
-		return nested_vmx_failValid(vcpu,
-			VMXERR_VMCLEAR_VMXON_POINTER);
-
-	if (vmx->nested.hv_evmcs_page) {
-		if (vmptr == vmx->nested.hv_evmcs_vmptr)
-			nested_release_evmcs(vcpu);
-	} else {
-		if (vmptr == vmx->nested.current_vmptr)
-			nested_release_vmcs12(vcpu);
-
-		kvm_vcpu_write_guest(vcpu,
-				     vmptr + offsetof(struct vmcs12,
-						      launch_state),
-				     &zero, sizeof(zero));
-	}
-
-	return nested_vmx_succeed(vcpu);
-}
-
-static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
-
-/* Emulate the VMLAUNCH instruction */
-static int handle_vmlaunch(struct kvm_vcpu *vcpu)
-{
-	return nested_vmx_run(vcpu, true);
-}
-
-/* Emulate the VMRESUME instruction */
-static int handle_vmresume(struct kvm_vcpu *vcpu)
-{
-
-	return nested_vmx_run(vcpu, false);
-}
-
-/*
- * Read a vmcs12 field. Since these can have varying lengths and we return
- * one type, we chose the biggest type (u64) and zero-extend the return value
- * to that size. Note that the caller, handle_vmread, might need to use only
- * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
- * 64-bit fields are to be returned).
- */
-static inline int vmcs12_read_any(struct vmcs12 *vmcs12,
-				  unsigned long field, u64 *ret)
-{
-	short offset = vmcs_field_to_offset(field);
-	char *p;
-
-	if (offset < 0)
-		return offset;
-
-	p = (char *)vmcs12 + offset;
-
-	switch (vmcs_field_width(field)) {
-	case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
-		*ret = *((natural_width *)p);
-		return 0;
-	case VMCS_FIELD_WIDTH_U16:
-		*ret = *((u16 *)p);
-		return 0;
-	case VMCS_FIELD_WIDTH_U32:
-		*ret = *((u32 *)p);
-		return 0;
-	case VMCS_FIELD_WIDTH_U64:
-		*ret = *((u64 *)p);
-		return 0;
-	default:
-		WARN_ON(1);
-		return -ENOENT;
-	}
-}
-
-
-static inline int vmcs12_write_any(struct vmcs12 *vmcs12,
-				   unsigned long field, u64 field_value){
-	short offset = vmcs_field_to_offset(field);
-	char *p = (char *)vmcs12 + offset;
-	if (offset < 0)
-		return offset;
-
-	switch (vmcs_field_width(field)) {
-	case VMCS_FIELD_WIDTH_U16:
-		*(u16 *)p = field_value;
-		return 0;
-	case VMCS_FIELD_WIDTH_U32:
-		*(u32 *)p = field_value;
-		return 0;
-	case VMCS_FIELD_WIDTH_U64:
-		*(u64 *)p = field_value;
-		return 0;
-	case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
-		*(natural_width *)p = field_value;
-		return 0;
-	default:
-		WARN_ON(1);
-		return -ENOENT;
-	}
-
-}
-
-static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
-{
-	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
-	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
-
-	vmcs12->hdr.revision_id = evmcs->revision_id;
-
-	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
-	vmcs12->tpr_threshold = evmcs->tpr_threshold;
-	vmcs12->guest_rip = evmcs->guest_rip;
-
-	if (unlikely(!(evmcs->hv_clean_fields &
-		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
-		vmcs12->guest_rsp = evmcs->guest_rsp;
-		vmcs12->guest_rflags = evmcs->guest_rflags;
-		vmcs12->guest_interruptibility_info =
-			evmcs->guest_interruptibility_info;
-	}
-
-	if (unlikely(!(evmcs->hv_clean_fields &
-		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
-		vmcs12->cpu_based_vm_exec_control =
-			evmcs->cpu_based_vm_exec_control;
-	}
-
-	if (unlikely(!(evmcs->hv_clean_fields &
-		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
-		vmcs12->exception_bitmap = evmcs->exception_bitmap;
-	}
-
-	if (unlikely(!(evmcs->hv_clean_fields &
-		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
-		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
-	}
-
-	if (unlikely(!(evmcs->hv_clean_fields &
-		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
-		vmcs12->vm_entry_intr_info_field =
-			evmcs->vm_entry_intr_info_field;
-		vmcs12->vm_entry_exception_error_code =
-			evmcs->vm_entry_exception_error_code;
-		vmcs12->vm_entry_instruction_len =
-			evmcs->vm_entry_instruction_len;
-	}
-
-	if (unlikely(!(evmcs->hv_clean_fields &
-		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
-		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
-		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
-		vmcs12->host_cr0 = evmcs->host_cr0;
-		vmcs12->host_cr3 = evmcs->host_cr3;
-		vmcs12->host_cr4 = evmcs->host_cr4;
-		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
-		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
-		vmcs12->host_rip = evmcs->host_rip;
-		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
-		vmcs12->host_es_selector = evmcs->host_es_selector;
-		vmcs12->host_cs_selector = evmcs->host_cs_selector;
-		vmcs12->host_ss_selector = evmcs->host_ss_selector;
-		vmcs12->host_ds_selector = evmcs->host_ds_selector;
-		vmcs12->host_fs_selector = evmcs->host_fs_selector;
-		vmcs12->host_gs_selector = evmcs->host_gs_selector;
-		vmcs12->host_tr_selector = evmcs->host_tr_selector;
-	}
-
-	if (unlikely(!(evmcs->hv_clean_fields &
-		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
-		vmcs12->pin_based_vm_exec_control =
-			evmcs->pin_based_vm_exec_control;
-		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
-		vmcs12->secondary_vm_exec_control =
-			evmcs->secondary_vm_exec_control;
-	}
-
-	if (unlikely(!(evmcs->hv_clean_fields &
-		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
-		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
-		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
-	}
-
-	if (unlikely(!(evmcs->hv_clean_fields &
-		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
-		vmcs12->msr_bitmap = evmcs->msr_bitmap;
-	}
-
-	if (unlikely(!(evmcs->hv_clean_fields &
-		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
-		vmcs12->guest_es_base = evmcs->guest_es_base;
-		vmcs12->guest_cs_base = evmcs->guest_cs_base;
-		vmcs12->guest_ss_base = evmcs->guest_ss_base;
-		vmcs12->guest_ds_base = evmcs->guest_ds_base;
-		vmcs12->guest_fs_base = evmcs->guest_fs_base;
-		vmcs12->guest_gs_base = evmcs->guest_gs_base;
-		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
-		vmcs12->guest_tr_base = evmcs->guest_tr_base;
-		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
-		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
-		vmcs12->guest_es_limit = evmcs->guest_es_limit;
-		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
-		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
-		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
-		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
-		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
-		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
-		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
-		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
-		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
-		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
-		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
-		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
-		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
-		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
-		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
-		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
-		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
-		vmcs12->guest_es_selector = evmcs->guest_es_selector;
-		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
-		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
-		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
-		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
-		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
-		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
-		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
-	}
-
-	if (unlikely(!(evmcs->hv_clean_fields &
-		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
-		vmcs12->tsc_offset = evmcs->tsc_offset;
-		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
-		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
-	}
-
-	if (unlikely(!(evmcs->hv_clean_fields &
-		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
-		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
-		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
-		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
-		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
-		vmcs12->guest_cr0 = evmcs->guest_cr0;
-		vmcs12->guest_cr3 = evmcs->guest_cr3;
-		vmcs12->guest_cr4 = evmcs->guest_cr4;
-		vmcs12->guest_dr7 = evmcs->guest_dr7;
-	}
-
-	if (unlikely(!(evmcs->hv_clean_fields &
-		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
-		vmcs12->host_fs_base = evmcs->host_fs_base;
-		vmcs12->host_gs_base = evmcs->host_gs_base;
-		vmcs12->host_tr_base = evmcs->host_tr_base;
-		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
-		vmcs12->host_idtr_base = evmcs->host_idtr_base;
-		vmcs12->host_rsp = evmcs->host_rsp;
-	}
-
-	if (unlikely(!(evmcs->hv_clean_fields &
-		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
-		vmcs12->ept_pointer = evmcs->ept_pointer;
-		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
-	}
-
-	if (unlikely(!(evmcs->hv_clean_fields &
-		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
-		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
-		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
-		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
-		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
-		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
-		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
-		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
-		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
-		vmcs12->guest_pending_dbg_exceptions =
-			evmcs->guest_pending_dbg_exceptions;
-		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
-		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
-		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
-		vmcs12->guest_activity_state = evmcs->guest_activity_state;
-		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
-	}
-
-	/*
-	 * Not used?
-	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
-	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
-	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
-	 * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
-	 * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
-	 * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
-	 * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
-	 * vmcs12->page_fault_error_code_mask =
-	 *		evmcs->page_fault_error_code_mask;
-	 * vmcs12->page_fault_error_code_match =
-	 *		evmcs->page_fault_error_code_match;
-	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
-	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
-	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
-	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
-	 */
-
-	/*
-	 * Read only fields:
-	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
-	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
-	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
-	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
-	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
-	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
-	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
-	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
-	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
-	 * vmcs12->exit_qualification = evmcs->exit_qualification;
-	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
-	 *
-	 * Not present in struct vmcs12:
-	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
-	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
-	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
-	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
-	 */
-
-	return 0;
-}
-
-static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
-{
-	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
-	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
-
-	/*
-	 * Should not be changed by KVM:
-	 *
-	 * evmcs->host_es_selector = vmcs12->host_es_selector;
-	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
-	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
-	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
-	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
-	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
-	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
-	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
-	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
-	 * evmcs->host_cr0 = vmcs12->host_cr0;
-	 * evmcs->host_cr3 = vmcs12->host_cr3;
-	 * evmcs->host_cr4 = vmcs12->host_cr4;
-	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
-	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
-	 * evmcs->host_rip = vmcs12->host_rip;
-	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
-	 * evmcs->host_fs_base = vmcs12->host_fs_base;
-	 * evmcs->host_gs_base = vmcs12->host_gs_base;
-	 * evmcs->host_tr_base = vmcs12->host_tr_base;
-	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
-	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
-	 * evmcs->host_rsp = vmcs12->host_rsp;
-	 * sync_vmcs12() doesn't read these:
-	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
-	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
-	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
-	 * evmcs->ept_pointer = vmcs12->ept_pointer;
-	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
-	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
-	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
-	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
-	 * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
-	 * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
-	 * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
-	 * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
-	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
-	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
-	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
-	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
-	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
-	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
-	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
-	 * evmcs->page_fault_error_code_mask =
-	 *		vmcs12->page_fault_error_code_mask;
-	 * evmcs->page_fault_error_code_match =
-	 *		vmcs12->page_fault_error_code_match;
-	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
-	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
-	 * evmcs->tsc_offset = vmcs12->tsc_offset;
-	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
-	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
-	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
-	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
-	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
-	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
-	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
-	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
-	 *
-	 * Not present in struct vmcs12:
-	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
-	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
-	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
-	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
-	 */
-
-	evmcs->guest_es_selector = vmcs12->guest_es_selector;
-	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
-	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
-	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
-	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
-	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
-	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
-	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
-
-	evmcs->guest_es_limit = vmcs12->guest_es_limit;
-	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
-	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
-	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
-	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
-	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
-	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
-	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
-	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
-	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
-
-	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
-	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
-	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
-	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
-	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
-	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
-	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
-	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
-
-	evmcs->guest_es_base = vmcs12->guest_es_base;
-	evmcs->guest_cs_base = vmcs12->guest_cs_base;
-	evmcs->guest_ss_base = vmcs12->guest_ss_base;
-	evmcs->guest_ds_base = vmcs12->guest_ds_base;
-	evmcs->guest_fs_base = vmcs12->guest_fs_base;
-	evmcs->guest_gs_base = vmcs12->guest_gs_base;
-	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
-	evmcs->guest_tr_base = vmcs12->guest_tr_base;
-	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
-	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
-
-	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
-	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
-
-	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
-	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
-	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
-	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
-
-	evmcs->guest_pending_dbg_exceptions =
-		vmcs12->guest_pending_dbg_exceptions;
-	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
-	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
-
-	evmcs->guest_activity_state = vmcs12->guest_activity_state;
-	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
-
-	evmcs->guest_cr0 = vmcs12->guest_cr0;
-	evmcs->guest_cr3 = vmcs12->guest_cr3;
-	evmcs->guest_cr4 = vmcs12->guest_cr4;
-	evmcs->guest_dr7 = vmcs12->guest_dr7;
-
-	evmcs->guest_physical_address = vmcs12->guest_physical_address;
-
-	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
-	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
-	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
-	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
-	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
-	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
-	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
-	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
-
-	evmcs->exit_qualification = vmcs12->exit_qualification;
-
-	evmcs->guest_linear_address = vmcs12->guest_linear_address;
-	evmcs->guest_rsp = vmcs12->guest_rsp;
-	evmcs->guest_rflags = vmcs12->guest_rflags;
-
-	evmcs->guest_interruptibility_info =
-		vmcs12->guest_interruptibility_info;
-	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
-	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
-	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
-	evmcs->vm_entry_exception_error_code =
-		vmcs12->vm_entry_exception_error_code;
-	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
-
-	evmcs->guest_rip = vmcs12->guest_rip;
-
-	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
-
-	return 0;
-}
-
-/*
- * Copy the writable VMCS shadow fields back to the VMCS12, in case
- * they have been modified by the L1 guest. Note that the "read-only"
- * VM-exit information fields are actually writable if the vCPU is
- * configured to support "VMWRITE to any supported field in the VMCS."
- */
-static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
-{
-	const u16 *fields[] = {
-		shadow_read_write_fields,
-		shadow_read_only_fields
-	};
-	const int max_fields[] = {
-		max_shadow_read_write_fields,
-		max_shadow_read_only_fields
-	};
-	int i, q;
-	unsigned long field;
-	u64 field_value;
-	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
-
-	preempt_disable();
-
-	vmcs_load(shadow_vmcs);
-
-	for (q = 0; q < ARRAY_SIZE(fields); q++) {
-		for (i = 0; i < max_fields[q]; i++) {
-			field = fields[q][i];
-			field_value = __vmcs_readl(field);
-			vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
-		}
-		/*
-		 * Skip the VM-exit information fields if they are read-only.
-		 */
-		if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
-			break;
-	}
-
-	vmcs_clear(shadow_vmcs);
-	vmcs_load(vmx->loaded_vmcs->vmcs);
-
-	preempt_enable();
-}
-
-static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
-{
-	const u16 *fields[] = {
-		shadow_read_write_fields,
-		shadow_read_only_fields
-	};
-	const int max_fields[] = {
-		max_shadow_read_write_fields,
-		max_shadow_read_only_fields
-	};
-	int i, q;
-	unsigned long field;
-	u64 field_value = 0;
-	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
-
-	vmcs_load(shadow_vmcs);
-
-	for (q = 0; q < ARRAY_SIZE(fields); q++) {
-		for (i = 0; i < max_fields[q]; i++) {
-			field = fields[q][i];
-			vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
-			__vmcs_writel(field, field_value);
-		}
-	}
-
-	vmcs_clear(shadow_vmcs);
-	vmcs_load(vmx->loaded_vmcs->vmcs);
-}
-
-static int handle_vmread(struct kvm_vcpu *vcpu)
-{
-	unsigned long field;
-	u64 field_value;
-	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
-	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
-	gva_t gva = 0;
-	struct vmcs12 *vmcs12;
-
-	if (!nested_vmx_check_permission(vcpu))
-		return 1;
-
-	if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
-		return nested_vmx_failInvalid(vcpu);
-
-	if (!is_guest_mode(vcpu))
-		vmcs12 = get_vmcs12(vcpu);
-	else {
-		/*
-		 * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
-		 * to shadowed-field sets the ALU flags for VMfailInvalid.
-		 */
-		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
-			return nested_vmx_failInvalid(vcpu);
-		vmcs12 = get_shadow_vmcs12(vcpu);
-	}
-
-	/* Decode instruction info and find the field to read */
-	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
-	/* Read the field, zero-extended to a u64 field_value */
-	if (vmcs12_read_any(vmcs12, field, &field_value) < 0)
-		return nested_vmx_failValid(vcpu,
-			VMXERR_UNSUPPORTED_VMCS_COMPONENT);
-
-	/*
-	 * Now copy part of this value to register or memory, as requested.
-	 * Note that the number of bits actually copied is 32 or 64 depending
-	 * on the guest's mode (32 or 64 bit), not on the given field's length.
-	 */
-	if (vmx_instruction_info & (1u << 10)) {
-		kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
-			field_value);
-	} else {
-		if (get_vmx_mem_address(vcpu, exit_qualification,
-				vmx_instruction_info, true, &gva))
-			return 1;
-		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
-		kvm_write_guest_virt_system(vcpu, gva, &field_value,
-					    (is_long_mode(vcpu) ? 8 : 4), NULL);
-	}
-
-	return nested_vmx_succeed(vcpu);
-}
-
-
-static int handle_vmwrite(struct kvm_vcpu *vcpu)
-{
-	unsigned long field;
-	gva_t gva;
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
-	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
-
-	/* The value to write might be 32 or 64 bits, depending on L1's long
-	 * mode, and eventually we need to write that into a field of several
-	 * possible lengths. The code below first zero-extends the value to 64
-	 * bit (field_value), and then copies only the appropriate number of
-	 * bits into the vmcs12 field.
-	 */
-	u64 field_value = 0;
-	struct x86_exception e;
-	struct vmcs12 *vmcs12;
-
-	if (!nested_vmx_check_permission(vcpu))
-		return 1;
-
-	if (vmx->nested.current_vmptr == -1ull)
-		return nested_vmx_failInvalid(vcpu);
-
-	if (vmx_instruction_info & (1u << 10))
-		field_value = kvm_register_readl(vcpu,
-			(((vmx_instruction_info) >> 3) & 0xf));
-	else {
-		if (get_vmx_mem_address(vcpu, exit_qualification,
-				vmx_instruction_info, false, &gva))
-			return 1;
-		if (kvm_read_guest_virt(vcpu, gva, &field_value,
-					(is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
-			kvm_inject_page_fault(vcpu, &e);
-			return 1;
-		}
-	}
-
-
-	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
-	/*
-	 * If the vCPU supports "VMWRITE to any supported field in the
-	 * VMCS," then the "read-only" fields are actually read/write.
-	 */
-	if (vmcs_field_readonly(field) &&
-	    !nested_cpu_has_vmwrite_any_field(vcpu))
-		return nested_vmx_failValid(vcpu,
-			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
-
-	if (!is_guest_mode(vcpu))
-		vmcs12 = get_vmcs12(vcpu);
-	else {
-		/*
-		 * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
-		 * to shadowed-field sets the ALU flags for VMfailInvalid.
-		 */
-		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
-			return nested_vmx_failInvalid(vcpu);
-		vmcs12 = get_shadow_vmcs12(vcpu);
-	}
-
-	if (vmcs12_write_any(vmcs12, field, field_value) < 0)
-		return nested_vmx_failValid(vcpu,
-			VMXERR_UNSUPPORTED_VMCS_COMPONENT);
-
-	/*
-	 * Do not track vmcs12 dirty-state if in guest-mode
-	 * as we actually dirty shadow vmcs12 instead of vmcs12.
-	 */
-	if (!is_guest_mode(vcpu)) {
-		switch (field) {
-#define SHADOW_FIELD_RW(x) case x:
-#include "vmx_shadow_fields.h"
-			/*
-			 * The fields that can be updated by L1 without a vmexit are
-			 * always updated in the vmcs02, the others go down the slow
-			 * path of prepare_vmcs02.
-			 */
-			break;
-		default:
-			vmx->nested.dirty_vmcs12 = true;
-			break;
-		}
-	}
-
-	return nested_vmx_succeed(vcpu);
-}
-
-static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
-{
-	vmx->nested.current_vmptr = vmptr;
-	if (enable_shadow_vmcs) {
-		vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
-			      SECONDARY_EXEC_SHADOW_VMCS);
-		vmcs_write64(VMCS_LINK_POINTER,
-			     __pa(vmx->vmcs01.shadow_vmcs));
-		vmx->nested.need_vmcs12_sync = true;
-	}
-	vmx->nested.dirty_vmcs12 = true;
-}
-
-/* Emulate the VMPTRLD instruction */
-static int handle_vmptrld(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	gpa_t vmptr;
-
-	if (!nested_vmx_check_permission(vcpu))
-		return 1;
-
-	if (nested_vmx_get_vmptr(vcpu, &vmptr))
-		return 1;
-
-	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
-		return nested_vmx_failValid(vcpu,
-			VMXERR_VMPTRLD_INVALID_ADDRESS);
-
-	if (vmptr == vmx->nested.vmxon_ptr)
-		return nested_vmx_failValid(vcpu,
-			VMXERR_VMPTRLD_VMXON_POINTER);
-
-	/* Forbid normal VMPTRLD if Enlightened version was used */
-	if (vmx->nested.hv_evmcs)
-		return 1;
-
-	if (vmx->nested.current_vmptr != vmptr) {
-		struct vmcs12 *new_vmcs12;
-		struct page *page;
-		page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
-		if (is_error_page(page))
-			return nested_vmx_failInvalid(vcpu);
-
-		new_vmcs12 = kmap(page);
-		if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
-		    (new_vmcs12->hdr.shadow_vmcs &&
-		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
-			kunmap(page);
-			kvm_release_page_clean(page);
-			return nested_vmx_failValid(vcpu,
-				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
-		}
-
-		nested_release_vmcs12(vcpu);
-
-		/*
-		 * Load VMCS12 from guest memory since it is not already
-		 * cached.
-		 */
-		memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
-		kunmap(page);
-		kvm_release_page_clean(page);
-
-		set_current_vmptr(vmx, vmptr);
-	}
-
-	return nested_vmx_succeed(vcpu);
-}
-
-/*
- * This is an equivalent of the nested hypervisor executing the vmptrld
- * instruction.
- */
-static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
-						 bool from_launch)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	struct hv_vp_assist_page assist_page;
-
-	if (likely(!vmx->nested.enlightened_vmcs_enabled))
-		return 1;
-
-	if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page)))
-		return 1;
-
-	if (unlikely(!assist_page.enlighten_vmentry))
-		return 1;
-
-	if (unlikely(assist_page.current_nested_vmcs !=
-		     vmx->nested.hv_evmcs_vmptr)) {
-
-		if (!vmx->nested.hv_evmcs)
-			vmx->nested.current_vmptr = -1ull;
-
-		nested_release_evmcs(vcpu);
-
-		vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page(
-			vcpu, assist_page.current_nested_vmcs);
-
-		if (unlikely(is_error_page(vmx->nested.hv_evmcs_page)))
-			return 0;
-
-		vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page);
-
-		if (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION) {
-			nested_release_evmcs(vcpu);
-			return 0;
-		}
-
-		vmx->nested.dirty_vmcs12 = true;
-		/*
-		 * As we keep L2 state for one guest only 'hv_clean_fields' mask
-		 * can't be used when we switch between them. Reset it here for
-		 * simplicity.
-		 */
-		vmx->nested.hv_evmcs->hv_clean_fields &=
-			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
-		vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs;
-
-		/*
-		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
-		 * reloaded from guest's memory (read only fields, fields not
-		 * present in struct hv_enlightened_vmcs, ...). Make sure there
-		 * are no leftovers.
-		 */
-		if (from_launch)
-			memset(vmx->nested.cached_vmcs12, 0,
-			       sizeof(*vmx->nested.cached_vmcs12));
-
-	}
-	return 1;
-}
-
-/* Emulate the VMPTRST instruction */
-static int handle_vmptrst(struct kvm_vcpu *vcpu)
-{
-	unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
-	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
-	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
-	struct x86_exception e;
-	gva_t gva;
-
-	if (!nested_vmx_check_permission(vcpu))
-		return 1;
-
-	if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
-		return 1;
-
-	if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
-		return 1;
-	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
-	if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
-					sizeof(gpa_t), &e)) {
-		kvm_inject_page_fault(vcpu, &e);
-		return 1;
-	}
-	return nested_vmx_succeed(vcpu);
-}
-
-/* Emulate the INVEPT instruction */
-static int handle_invept(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	u32 vmx_instruction_info, types;
-	unsigned long type;
-	gva_t gva;
-	struct x86_exception e;
-	struct {
-		u64 eptp, gpa;
-	} operand;
-
-	if (!(vmx->nested.msrs.secondary_ctls_high &
-	      SECONDARY_EXEC_ENABLE_EPT) ||
-	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
-		kvm_queue_exception(vcpu, UD_VECTOR);
-		return 1;
-	}
-
-	if (!nested_vmx_check_permission(vcpu))
-		return 1;
-
-	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
-	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
-
-	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
-
-	if (type >= 32 || !(types & (1 << type)))
-		return nested_vmx_failValid(vcpu,
-				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
-
-	/* According to the Intel VMX instruction reference, the memory
-	 * operand is read even if it isn't needed (e.g., for type==global)
-	 */
-	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
-			vmx_instruction_info, false, &gva))
-		return 1;
-	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
-		kvm_inject_page_fault(vcpu, &e);
-		return 1;
-	}
-
-	switch (type) {
-	case VMX_EPT_EXTENT_GLOBAL:
-	/*
-	 * TODO: track mappings and invalidate
-	 * single context requests appropriately
-	 */
-	case VMX_EPT_EXTENT_CONTEXT:
-		kvm_mmu_sync_roots(vcpu);
-		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
-		break;
-	default:
-		BUG_ON(1);
-		break;
-	}
-
-	return nested_vmx_succeed(vcpu);
-}
-
-static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-
-	return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
-}
-
-static int handle_invvpid(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	u32 vmx_instruction_info;
-	unsigned long type, types;
-	gva_t gva;
-	struct x86_exception e;
-	struct {
-		u64 vpid;
-		u64 gla;
-	} operand;
-	u16 vpid02;
-
-	if (!(vmx->nested.msrs.secondary_ctls_high &
-	      SECONDARY_EXEC_ENABLE_VPID) ||
-			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
-		kvm_queue_exception(vcpu, UD_VECTOR);
-		return 1;
-	}
-
-	if (!nested_vmx_check_permission(vcpu))
-		return 1;
-
-	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
-	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
-
-	types = (vmx->nested.msrs.vpid_caps &
-			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
-
-	if (type >= 32 || !(types & (1 << type)))
-		return nested_vmx_failValid(vcpu,
-			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
-
-	/* according to the intel vmx instruction reference, the memory
-	 * operand is read even if it isn't needed (e.g., for type==global)
-	 */
-	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
-			vmx_instruction_info, false, &gva))
-		return 1;
-	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
-		kvm_inject_page_fault(vcpu, &e);
-		return 1;
-	}
-	if (operand.vpid >> 16)
-		return nested_vmx_failValid(vcpu,
-			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
-
-	vpid02 = nested_get_vpid02(vcpu);
-	switch (type) {
-	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
-		if (!operand.vpid ||
-		    is_noncanonical_address(operand.gla, vcpu))
-			return nested_vmx_failValid(vcpu,
-				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
-		if (cpu_has_vmx_invvpid_individual_addr()) {
-			__invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
-				vpid02, operand.gla);
-		} else
-			__vmx_flush_tlb(vcpu, vpid02, false);
-		break;
-	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
-	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
-		if (!operand.vpid)
-			return nested_vmx_failValid(vcpu,
-				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
-		__vmx_flush_tlb(vcpu, vpid02, false);
-		break;
-	case VMX_VPID_EXTENT_ALL_CONTEXT:
-		__vmx_flush_tlb(vcpu, vpid02, false);
-		break;
-	default:
-		WARN_ON_ONCE(1);
-		return kvm_skip_emulated_instruction(vcpu);
-	}
-
-	return nested_vmx_succeed(vcpu);
-}
-
-static int handle_invpcid(struct kvm_vcpu *vcpu)
-{
-	u32 vmx_instruction_info;
-	unsigned long type;
-	bool pcid_enabled;
-	gva_t gva;
-	struct x86_exception e;
-	unsigned i;
-	unsigned long roots_to_free = 0;
-	struct {
-		u64 pcid;
-		u64 gla;
-	} operand;
-
-	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
-		kvm_queue_exception(vcpu, UD_VECTOR);
-		return 1;
-	}
-
-	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
-	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
-
-	if (type > 3) {
-		kvm_inject_gp(vcpu, 0);
-		return 1;
-	}
-
-	/* According to the Intel instruction reference, the memory operand
-	 * is read even if it isn't needed (e.g., for type==all)
-	 */
-	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
-				vmx_instruction_info, false, &gva))
-		return 1;
-
-	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
-		kvm_inject_page_fault(vcpu, &e);
-		return 1;
-	}
-
-	if (operand.pcid >> 12 != 0) {
-		kvm_inject_gp(vcpu, 0);
-		return 1;
-	}
-
-	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
-
-	switch (type) {
-	case INVPCID_TYPE_INDIV_ADDR:
-		if ((!pcid_enabled && (operand.pcid != 0)) ||
-		    is_noncanonical_address(operand.gla, vcpu)) {
-			kvm_inject_gp(vcpu, 0);
-			return 1;
-		}
-		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
-		return kvm_skip_emulated_instruction(vcpu);
-
-	case INVPCID_TYPE_SINGLE_CTXT:
-		if (!pcid_enabled && (operand.pcid != 0)) {
-			kvm_inject_gp(vcpu, 0);
-			return 1;
-		}
-
-		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
-			kvm_mmu_sync_roots(vcpu);
-			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
-		}
-
-		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
-			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
-			    == operand.pcid)
-				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
-
-		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
-		/*
-		 * If neither the current cr3 nor any of the prev_roots use the
-		 * given PCID, then nothing needs to be done here because a
-		 * resync will happen anyway before switching to any other CR3.
-		 */
-
-		return kvm_skip_emulated_instruction(vcpu);
-
-	case INVPCID_TYPE_ALL_NON_GLOBAL:
-		/*
-		 * Currently, KVM doesn't mark global entries in the shadow
-		 * page tables, so a non-global flush just degenerates to a
-		 * global flush. If needed, we could optimize this later by
-		 * keeping track of global entries in shadow page tables.
-		 */
-
-		/* fall-through */
-	case INVPCID_TYPE_ALL_INCL_GLOBAL:
-		kvm_mmu_unload(vcpu);
-		return kvm_skip_emulated_instruction(vcpu);
-
-	default:
-		BUG(); /* We have already checked above that type <= 3 */
-	}
-}
-
-static int handle_pml_full(struct kvm_vcpu *vcpu)
-{
-	unsigned long exit_qualification;
-
-	trace_kvm_pml_full(vcpu->vcpu_id);
-
-	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
-
-	/*
-	 * PML buffer FULL happened while executing iret from NMI,
-	 * "blocked by NMI" bit has to be set before next VM entry.
-	 */
-	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
-			enable_vnmi &&
-			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
-		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
-				GUEST_INTR_STATE_NMI);
-
-	/*
-	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
-	 * here.., and there's no userspace involvement needed for PML.
-	 */
-	return 1;
-}
-
-static int handle_preemption_timer(struct kvm_vcpu *vcpu)
-{
-	if (!to_vmx(vcpu)->req_immediate_exit)
-		kvm_lapic_expired_hv_timer(vcpu);
-	return 1;
-}
-
-static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	int maxphyaddr = cpuid_maxphyaddr(vcpu);
-
-	/* Check for memory type validity */
-	switch (address & VMX_EPTP_MT_MASK) {
-	case VMX_EPTP_MT_UC:
-		if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
-			return false;
-		break;
-	case VMX_EPTP_MT_WB:
-		if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
-			return false;
-		break;
-	default:
-		return false;
-	}
-
-	/* only 4 levels page-walk length are valid */
-	if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
-		return false;
-
-	/* Reserved bits should not be set */
-	if (address >> maxphyaddr || ((address >> 7) & 0x1f))
-		return false;
-
-	/* AD, if set, should be supported */
-	if (address & VMX_EPTP_AD_ENABLE_BIT) {
-		if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
-			return false;
-	}
-
-	return true;
-}
-
-static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
-				     struct vmcs12 *vmcs12)
-{
-	u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
-	u64 address;
-	bool accessed_dirty;
-	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
-
-	if (!nested_cpu_has_eptp_switching(vmcs12) ||
-	    !nested_cpu_has_ept(vmcs12))
-		return 1;
-
-	if (index >= VMFUNC_EPTP_ENTRIES)
-		return 1;
-
-
-	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
-				     &address, index * 8, 8))
-		return 1;
-
-	accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
-
-	/*
-	 * If the (L2) guest does a vmfunc to the currently
-	 * active ept pointer, we don't have to do anything else
-	 */
-	if (vmcs12->ept_pointer != address) {
-		if (!valid_ept_address(vcpu, address))
-			return 1;
-
-		kvm_mmu_unload(vcpu);
-		mmu->ept_ad = accessed_dirty;
-		mmu->mmu_role.base.ad_disabled = !accessed_dirty;
-		vmcs12->ept_pointer = address;
-		/*
-		 * TODO: Check what's the correct approach in case
-		 * mmu reload fails. Currently, we just let the next
-		 * reload potentially fail
-		 */
-		kvm_mmu_reload(vcpu);
-	}
-
-	return 0;
-}
-
-static int handle_vmfunc(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	struct vmcs12 *vmcs12;
-	u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
-
-	/*
-	 * VMFUNC is only supported for nested guests, but we always enable the
-	 * secondary control for simplicity; for non-nested mode, fake that we
-	 * didn't by injecting #UD.
-	 */
-	if (!is_guest_mode(vcpu)) {
-		kvm_queue_exception(vcpu, UD_VECTOR);
-		return 1;
-	}
-
-	vmcs12 = get_vmcs12(vcpu);
-	if ((vmcs12->vm_function_control & (1 << function)) == 0)
-		goto fail;
-
-	switch (function) {
-	case 0:
-		if (nested_vmx_eptp_switching(vcpu, vmcs12))
-			goto fail;
-		break;
-	default:
-		goto fail;
-	}
-	return kvm_skip_emulated_instruction(vcpu);
-
-fail:
-	nested_vmx_vmexit(vcpu, vmx->exit_reason,
-			  vmcs_read32(VM_EXIT_INTR_INFO),
-			  vmcs_readl(EXIT_QUALIFICATION));
-	return 1;
-}
-
-static int handle_encls(struct kvm_vcpu *vcpu)
-{
-	/*
-	 * SGX virtualization is not yet supported.  There is no software
-	 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
-	 * to prevent the guest from executing ENCLS.
-	 */
-	kvm_queue_exception(vcpu, UD_VECTOR);
-	return 1;
-}
-
-/*
- * The exit handlers return 1 if the exit was handled fully and guest execution
- * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
- * to be done to userspace and return 0.
- */
-static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
-	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
-	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
-	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
-	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
-	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
-	[EXIT_REASON_CR_ACCESS]               = handle_cr,
-	[EXIT_REASON_DR_ACCESS]               = handle_dr,
-	[EXIT_REASON_CPUID]                   = handle_cpuid,
-	[EXIT_REASON_MSR_READ]                = handle_rdmsr,
-	[EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
-	[EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
-	[EXIT_REASON_HLT]                     = handle_halt,
-	[EXIT_REASON_INVD]		      = handle_invd,
-	[EXIT_REASON_INVLPG]		      = handle_invlpg,
-	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
-	[EXIT_REASON_VMCALL]                  = handle_vmcall,
-	[EXIT_REASON_VMCLEAR]	              = handle_vmclear,
-	[EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
-	[EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
-	[EXIT_REASON_VMPTRST]                 = handle_vmptrst,
-	[EXIT_REASON_VMREAD]                  = handle_vmread,
-	[EXIT_REASON_VMRESUME]                = handle_vmresume,
-	[EXIT_REASON_VMWRITE]                 = handle_vmwrite,
-	[EXIT_REASON_VMOFF]                   = handle_vmoff,
-	[EXIT_REASON_VMON]                    = handle_vmon,
-	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
-	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
-	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
-	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
-	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
-	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
-	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
-	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
-	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
-	[EXIT_REASON_LDTR_TR]		      = handle_desc,
-	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
-	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
-	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
-	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
-	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
-	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
-	[EXIT_REASON_INVEPT]                  = handle_invept,
-	[EXIT_REASON_INVVPID]                 = handle_invvpid,
-	[EXIT_REASON_RDRAND]                  = handle_invalid_op,
-	[EXIT_REASON_RDSEED]                  = handle_invalid_op,
-	[EXIT_REASON_XSAVES]                  = handle_xsaves,
-	[EXIT_REASON_XRSTORS]                 = handle_xrstors,
-	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
-	[EXIT_REASON_INVPCID]                 = handle_invpcid,
-	[EXIT_REASON_VMFUNC]                  = handle_vmfunc,
-	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
-	[EXIT_REASON_ENCLS]		      = handle_encls,
-};
-
-static const int kvm_vmx_max_exit_handlers =
-	ARRAY_SIZE(kvm_vmx_exit_handlers);
-
-static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
-				       struct vmcs12 *vmcs12)
-{
-	unsigned long exit_qualification;
-	gpa_t bitmap, last_bitmap;
-	unsigned int port;
-	int size;
-	u8 b;
-
-	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
-		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
-
-	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
-
-	port = exit_qualification >> 16;
-	size = (exit_qualification & 7) + 1;
-
-	last_bitmap = (gpa_t)-1;
-	b = -1;
-
-	while (size > 0) {
-		if (port < 0x8000)
-			bitmap = vmcs12->io_bitmap_a;
-		else if (port < 0x10000)
-			bitmap = vmcs12->io_bitmap_b;
-		else
-			return true;
-		bitmap += (port & 0x7fff) / 8;
-
-		if (last_bitmap != bitmap)
-			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
-				return true;
-		if (b & (1 << (port & 7)))
-			return true;
-
-		port++;
-		size--;
-		last_bitmap = bitmap;
-	}
-
-	return false;
-}
-
-/*
- * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
- * rather than handle it ourselves in L0. I.e., check whether L1 expressed
- * disinterest in the current event (read or write a specific MSR) by using an
- * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
- */
-static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
-	struct vmcs12 *vmcs12, u32 exit_reason)
-{
-	u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
-	gpa_t bitmap;
-
-	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
-		return true;
-
-	/*
-	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
-	 * for the four combinations of read/write and low/high MSR numbers.
-	 * First we need to figure out which of the four to use:
-	 */
-	bitmap = vmcs12->msr_bitmap;
-	if (exit_reason == EXIT_REASON_MSR_WRITE)
-		bitmap += 2048;
-	if (msr_index >= 0xc0000000) {
-		msr_index -= 0xc0000000;
-		bitmap += 1024;
-	}
-
-	/* Then read the msr_index'th bit from this bitmap: */
-	if (msr_index < 1024*8) {
-		unsigned char b;
-		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
-			return true;
-		return 1 & (b >> (msr_index & 7));
-	} else
-		return true; /* let L1 handle the wrong parameter */
-}
-
-/*
- * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
- * rather than handle it ourselves in L0. I.e., check if L1 wanted to
- * intercept (via guest_host_mask etc.) the current event.
- */
-static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
-	struct vmcs12 *vmcs12)
-{
-	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
-	int cr = exit_qualification & 15;
-	int reg;
-	unsigned long val;
-
-	switch ((exit_qualification >> 4) & 3) {
-	case 0: /* mov to cr */
-		reg = (exit_qualification >> 8) & 15;
-		val = kvm_register_readl(vcpu, reg);
-		switch (cr) {
-		case 0:
-			if (vmcs12->cr0_guest_host_mask &
-			    (val ^ vmcs12->cr0_read_shadow))
-				return true;
-			break;
-		case 3:
-			if ((vmcs12->cr3_target_count >= 1 &&
-					vmcs12->cr3_target_value0 == val) ||
-				(vmcs12->cr3_target_count >= 2 &&
-					vmcs12->cr3_target_value1 == val) ||
-				(vmcs12->cr3_target_count >= 3 &&
-					vmcs12->cr3_target_value2 == val) ||
-				(vmcs12->cr3_target_count >= 4 &&
-					vmcs12->cr3_target_value3 == val))
-				return false;
-			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
-				return true;
-			break;
-		case 4:
-			if (vmcs12->cr4_guest_host_mask &
-			    (vmcs12->cr4_read_shadow ^ val))
-				return true;
-			break;
-		case 8:
-			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
-				return true;
-			break;
-		}
-		break;
-	case 2: /* clts */
-		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
-		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
-			return true;
-		break;
-	case 1: /* mov from cr */
-		switch (cr) {
-		case 3:
-			if (vmcs12->cpu_based_vm_exec_control &
-			    CPU_BASED_CR3_STORE_EXITING)
-				return true;
-			break;
-		case 8:
-			if (vmcs12->cpu_based_vm_exec_control &
-			    CPU_BASED_CR8_STORE_EXITING)
-				return true;
-			break;
-		}
-		break;
-	case 3: /* lmsw */
-		/*
-		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
-		 * cr0. Other attempted changes are ignored, with no exit.
-		 */
-		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
-		if (vmcs12->cr0_guest_host_mask & 0xe &
-		    (val ^ vmcs12->cr0_read_shadow))
-			return true;
-		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
-		    !(vmcs12->cr0_read_shadow & 0x1) &&
-		    (val & 0x1))
-			return true;
-		break;
-	}
-	return false;
-}
-
-static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
-	struct vmcs12 *vmcs12, gpa_t bitmap)
-{
-	u32 vmx_instruction_info;
-	unsigned long field;
-	u8 b;
-
-	if (!nested_cpu_has_shadow_vmcs(vmcs12))
-		return true;
-
-	/* Decode instruction info and find the field to access */
-	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
-	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
-
-	/* Out-of-range fields always cause a VM exit from L2 to L1 */
-	if (field >> 15)
-		return true;
-
-	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
-		return true;
-
-	return 1 & (b >> (field & 7));
-}
-
-/*
- * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
- * should handle it ourselves in L0 (and then continue L2). Only call this
- * when in is_guest_mode (L2).
- */
-static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
-{
-	u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-
-	if (vmx->nested.nested_run_pending)
-		return false;
-
-	if (unlikely(vmx->fail)) {
-		pr_info_ratelimited("%s failed vm entry %x\n", __func__,
-				    vmcs_read32(VM_INSTRUCTION_ERROR));
-		return true;
-	}
-
-	/*
-	 * The host physical addresses of some pages of guest memory
-	 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
-	 * Page). The CPU may write to these pages via their host
-	 * physical address while L2 is running, bypassing any
-	 * address-translation-based dirty tracking (e.g. EPT write
-	 * protection).
-	 *
-	 * Mark them dirty on every exit from L2 to prevent them from
-	 * getting out of sync with dirty tracking.
-	 */
-	nested_mark_vmcs12_pages_dirty(vcpu);
-
-	trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
-				vmcs_readl(EXIT_QUALIFICATION),
-				vmx->idt_vectoring_info,
-				intr_info,
-				vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
-				KVM_ISA_VMX);
-
-	switch (exit_reason) {
-	case EXIT_REASON_EXCEPTION_NMI:
-		if (is_nmi(intr_info))
-			return false;
-		else if (is_page_fault(intr_info))
-			return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
-		else if (is_debug(intr_info) &&
-			 vcpu->guest_debug &
-			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
-			return false;
-		else if (is_breakpoint(intr_info) &&
-			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
-			return false;
-		return vmcs12->exception_bitmap &
-				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
-	case EXIT_REASON_EXTERNAL_INTERRUPT:
-		return false;
-	case EXIT_REASON_TRIPLE_FAULT:
-		return true;
-	case EXIT_REASON_PENDING_INTERRUPT:
-		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
-	case EXIT_REASON_NMI_WINDOW:
-		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
-	case EXIT_REASON_TASK_SWITCH:
-		return true;
-	case EXIT_REASON_CPUID:
-		return true;
-	case EXIT_REASON_HLT:
-		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
-	case EXIT_REASON_INVD:
-		return true;
-	case EXIT_REASON_INVLPG:
-		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
-	case EXIT_REASON_RDPMC:
-		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
-	case EXIT_REASON_RDRAND:
-		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
-	case EXIT_REASON_RDSEED:
-		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
-	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
-		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
-	case EXIT_REASON_VMREAD:
-		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
-			vmcs12->vmread_bitmap);
-	case EXIT_REASON_VMWRITE:
-		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
-			vmcs12->vmwrite_bitmap);
-	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
-	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
-	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
-	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
-	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
-		/*
-		 * VMX instructions trap unconditionally. This allows L1 to
-		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
-		 */
-		return true;
-	case EXIT_REASON_CR_ACCESS:
-		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
-	case EXIT_REASON_DR_ACCESS:
-		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
-	case EXIT_REASON_IO_INSTRUCTION:
-		return nested_vmx_exit_handled_io(vcpu, vmcs12);
-	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
-		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
-	case EXIT_REASON_MSR_READ:
-	case EXIT_REASON_MSR_WRITE:
-		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
-	case EXIT_REASON_INVALID_STATE:
-		return true;
-	case EXIT_REASON_MWAIT_INSTRUCTION:
-		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
-	case EXIT_REASON_MONITOR_TRAP_FLAG:
-		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
-	case EXIT_REASON_MONITOR_INSTRUCTION:
-		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
-	case EXIT_REASON_PAUSE_INSTRUCTION:
-		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
-			nested_cpu_has2(vmcs12,
-				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
-	case EXIT_REASON_MCE_DURING_VMENTRY:
-		return false;
-	case EXIT_REASON_TPR_BELOW_THRESHOLD:
-		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
-	case EXIT_REASON_APIC_ACCESS:
-	case EXIT_REASON_APIC_WRITE:
-	case EXIT_REASON_EOI_INDUCED:
-		/*
-		 * The controls for "virtualize APIC accesses," "APIC-
-		 * register virtualization," and "virtual-interrupt
-		 * delivery" only come from vmcs12.
-		 */
-		return true;
-	case EXIT_REASON_EPT_VIOLATION:
-		/*
-		 * L0 always deals with the EPT violation. If nested EPT is
-		 * used, and the nested mmu code discovers that the address is
-		 * missing in the guest EPT table (EPT12), the EPT violation
-		 * will be injected with nested_ept_inject_page_fault()
-		 */
-		return false;
-	case EXIT_REASON_EPT_MISCONFIG:
-		/*
-		 * L2 never uses directly L1's EPT, but rather L0's own EPT
-		 * table (shadow on EPT) or a merged EPT table that L0 built
-		 * (EPT on EPT). So any problems with the structure of the
-		 * table is L0's fault.
-		 */
-		return false;
-	case EXIT_REASON_INVPCID:
-		return
-			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
-			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
-	case EXIT_REASON_WBINVD:
-		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
-	case EXIT_REASON_XSETBV:
-		return true;
-	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
-		/*
-		 * This should never happen, since it is not possible to
-		 * set XSS to a non-zero value---neither in L1 nor in L2.
-		 * If if it were, XSS would have to be checked against
-		 * the XSS exit bitmap in vmcs12.
-		 */
-		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
-	case EXIT_REASON_PREEMPTION_TIMER:
-		return false;
-	case EXIT_REASON_PML_FULL:
-		/* We emulate PML support to L1. */
-		return false;
-	case EXIT_REASON_VMFUNC:
-		/* VM functions are emulated through L2->L0 vmexits. */
-		return false;
-	case EXIT_REASON_ENCLS:
-		/* SGX is never exposed to L1 */
-		return false;
-	default:
-		return true;
-	}
-}
-
-static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
-{
-	u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
-
-	/*
-	 * At this point, the exit interruption info in exit_intr_info
-	 * is only valid for EXCEPTION_NMI exits.  For EXTERNAL_INTERRUPT
-	 * we need to query the in-kernel LAPIC.
-	 */
-	WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
-	if ((exit_intr_info &
-	     (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
-	    (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
-		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-		vmcs12->vm_exit_intr_error_code =
-			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
-	}
-
-	nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
-			  vmcs_readl(EXIT_QUALIFICATION));
-	return 1;
-}
-
-static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
-{
-	*info1 = vmcs_readl(EXIT_QUALIFICATION);
-	*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
-}
-
-static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
-{
-	if (vmx->pml_pg) {
-		__free_page(vmx->pml_pg);
-		vmx->pml_pg = NULL;
-	}
-}
-
-static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	u64 *pml_buf;
-	u16 pml_idx;
-
-	pml_idx = vmcs_read16(GUEST_PML_INDEX);
-
-	/* Do nothing if PML buffer is empty */
-	if (pml_idx == (PML_ENTITY_NUM - 1))
-		return;
-
-	/* PML index always points to next available PML buffer entity */
-	if (pml_idx >= PML_ENTITY_NUM)
-		pml_idx = 0;
-	else
-		pml_idx++;
-
-	pml_buf = page_address(vmx->pml_pg);
-	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
-		u64 gpa;
-
-		gpa = pml_buf[pml_idx];
-		WARN_ON(gpa & (PAGE_SIZE - 1));
-		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
-	}
-
-	/* reset PML index */
-	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
-}
-
-/*
- * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
- * Called before reporting dirty_bitmap to userspace.
- */
-static void kvm_flush_pml_buffers(struct kvm *kvm)
-{
-	int i;
-	struct kvm_vcpu *vcpu;
-	/*
-	 * We only need to kick vcpu out of guest mode here, as PML buffer
-	 * is flushed at beginning of all VMEXITs, and it's obvious that only
-	 * vcpus running in guest are possible to have unflushed GPAs in PML
-	 * buffer.
-	 */
-	kvm_for_each_vcpu(i, vcpu, kvm)
-		kvm_vcpu_kick(vcpu);
-}
-
-static void vmx_dump_sel(char *name, uint32_t sel)
-{
-	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
-	       name, vmcs_read16(sel),
-	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
-	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
-	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
-}
-
-static void vmx_dump_dtsel(char *name, uint32_t limit)
-{
-	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
-	       name, vmcs_read32(limit),
-	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
-}
-
-static void dump_vmcs(void)
-{
-	u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
-	u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
-	u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
-	u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
-	u32 secondary_exec_control = 0;
-	unsigned long cr4 = vmcs_readl(GUEST_CR4);
-	u64 efer = vmcs_read64(GUEST_IA32_EFER);
-	int i, n;
-
-	if (cpu_has_secondary_exec_ctrls())
-		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
-
-	pr_err("*** Guest State ***\n");
-	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
-	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
-	       vmcs_readl(CR0_GUEST_HOST_MASK));
-	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
-	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
-	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
-	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
-	    (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
-	{
-		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
-		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
-		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
-		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
-	}
-	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
-	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
-	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
-	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
-	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
-	       vmcs_readl(GUEST_SYSENTER_ESP),
-	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
-	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
-	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
-	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
-	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
-	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
-	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
-	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
-	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
-	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
-	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
-	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
-	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
-		pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
-		       efer, vmcs_read64(GUEST_IA32_PAT));
-	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
-	       vmcs_read64(GUEST_IA32_DEBUGCTL),
-	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
-	if (cpu_has_load_perf_global_ctrl &&
-	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
-		pr_err("PerfGlobCtl = 0x%016llx\n",
-		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
-	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
-		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
-	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
-	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
-	       vmcs_read32(GUEST_ACTIVITY_STATE));
-	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
-		pr_err("InterruptStatus = %04x\n",
-		       vmcs_read16(GUEST_INTR_STATUS));
-
-	pr_err("*** Host State ***\n");
-	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
-	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
-	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
-	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
-	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
-	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
-	       vmcs_read16(HOST_TR_SELECTOR));
-	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
-	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
-	       vmcs_readl(HOST_TR_BASE));
-	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
-	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
-	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
-	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
-	       vmcs_readl(HOST_CR4));
-	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
-	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
-	       vmcs_read32(HOST_IA32_SYSENTER_CS),
-	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
-	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
-		pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
-		       vmcs_read64(HOST_IA32_EFER),
-		       vmcs_read64(HOST_IA32_PAT));
-	if (cpu_has_load_perf_global_ctrl &&
-	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
-		pr_err("PerfGlobCtl = 0x%016llx\n",
-		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
-
-	pr_err("*** Control State ***\n");
-	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
-	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
-	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
-	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
-	       vmcs_read32(EXCEPTION_BITMAP),
-	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
-	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
-	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
-	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
-	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
-	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
-	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
-	       vmcs_read32(VM_EXIT_INTR_INFO),
-	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
-	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
-	pr_err("        reason=%08x qualification=%016lx\n",
-	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
-	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
-	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
-	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
-	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
-	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
-		pr_err("TSC Multiplier = 0x%016llx\n",
-		       vmcs_read64(TSC_MULTIPLIER));
-	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
-		pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
-	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
-		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
-	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
-		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
-	n = vmcs_read32(CR3_TARGET_COUNT);
-	for (i = 0; i + 1 < n; i += 4)
-		pr_err("CR3 target%u=%016lx target%u=%016lx\n",
-		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
-		       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
-	if (i < n)
-		pr_err("CR3 target%u=%016lx\n",
-		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
-	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
-		pr_err("PLE Gap=%08x Window=%08x\n",
-		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
-	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
-		pr_err("Virtual processor ID = 0x%04x\n",
-		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
-}
-
-/*
- * The guest has exited.  See if we can fix it or if we need userspace
- * assistance.
- */
-static int vmx_handle_exit(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	u32 exit_reason = vmx->exit_reason;
-	u32 vectoring_info = vmx->idt_vectoring_info;
-
-	trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
-
-	/*
-	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
-	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
-	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
-	 * mode as if vcpus is in root mode, the PML buffer must has been
-	 * flushed already.
-	 */
-	if (enable_pml)
-		vmx_flush_pml_buffer(vcpu);
-
-	/* If guest state is invalid, start emulating */
-	if (vmx->emulation_required)
-		return handle_invalid_guest_state(vcpu);
-
-	if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
-		return nested_vmx_reflect_vmexit(vcpu, exit_reason);
-
-	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
-		dump_vmcs();
-		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
-		vcpu->run->fail_entry.hardware_entry_failure_reason
-			= exit_reason;
-		return 0;
-	}
-
-	if (unlikely(vmx->fail)) {
-		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
-		vcpu->run->fail_entry.hardware_entry_failure_reason
-			= vmcs_read32(VM_INSTRUCTION_ERROR);
-		return 0;
-	}
-
-	/*
-	 * Note:
-	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
-	 * delivery event since it indicates guest is accessing MMIO.
-	 * The vm-exit can be triggered again after return to guest that
-	 * will cause infinite loop.
-	 */
-	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
-			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
-			exit_reason != EXIT_REASON_EPT_VIOLATION &&
-			exit_reason != EXIT_REASON_PML_FULL &&
-			exit_reason != EXIT_REASON_TASK_SWITCH)) {
-		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
-		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
-		vcpu->run->internal.ndata = 3;
-		vcpu->run->internal.data[0] = vectoring_info;
-		vcpu->run->internal.data[1] = exit_reason;
-		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
-		if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
-			vcpu->run->internal.ndata++;
-			vcpu->run->internal.data[3] =
-				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
-		}
-		return 0;
-	}
-
-	if (unlikely(!enable_vnmi &&
-		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
-		if (vmx_interrupt_allowed(vcpu)) {
-			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
-		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
-			   vcpu->arch.nmi_pending) {
-			/*
-			 * This CPU don't support us in finding the end of an
-			 * NMI-blocked window if the guest runs with IRQs
-			 * disabled. So we pull the trigger after 1 s of
-			 * futile waiting, but inform the user about this.
-			 */
-			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
-			       "state on VCPU %d after 1 s timeout\n",
-			       __func__, vcpu->vcpu_id);
-			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
-		}
-	}
-
-	if (exit_reason < kvm_vmx_max_exit_handlers
-	    && kvm_vmx_exit_handlers[exit_reason])
-		return kvm_vmx_exit_handlers[exit_reason](vcpu);
-	else {
-		vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
-				exit_reason);
-		kvm_queue_exception(vcpu, UD_VECTOR);
-		return 1;
-	}
-}
-
-/*
- * Software based L1D cache flush which is used when microcode providing
- * the cache control MSR is not loaded.
- *
- * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
- * flush it is required to read in 64 KiB because the replacement algorithm
- * is not exactly LRU. This could be sized at runtime via topology
- * information but as all relevant affected CPUs have 32KiB L1D cache size
- * there is no point in doing so.
- */
-static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
-{
-	int size = PAGE_SIZE << L1D_CACHE_ORDER;
-
-	/*
-	 * This code is only executed when the the flush mode is 'cond' or
-	 * 'always'
-	 */
-	if (static_branch_likely(&vmx_l1d_flush_cond)) {
-		bool flush_l1d;
-
-		/*
-		 * Clear the per-vcpu flush bit, it gets set again
-		 * either from vcpu_run() or from one of the unsafe
-		 * VMEXIT handlers.
-		 */
-		flush_l1d = vcpu->arch.l1tf_flush_l1d;
-		vcpu->arch.l1tf_flush_l1d = false;
-
-		/*
-		 * Clear the per-cpu flush bit, it gets set again from
-		 * the interrupt handlers.
-		 */
-		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
-		kvm_clear_cpu_l1tf_flush_l1d();
-
-		if (!flush_l1d)
-			return;
-	}
-
-	vcpu->stat.l1d_flush++;
-
-	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
-		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
-		return;
-	}
-
-	asm volatile(
-		/* First ensure the pages are in the TLB */
-		"xorl	%%eax, %%eax\n"
-		".Lpopulate_tlb:\n\t"
-		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
-		"addl	$4096, %%eax\n\t"
-		"cmpl	%%eax, %[size]\n\t"
-		"jne	.Lpopulate_tlb\n\t"
-		"xorl	%%eax, %%eax\n\t"
-		"cpuid\n\t"
-		/* Now fill the cache */
-		"xorl	%%eax, %%eax\n"
-		".Lfill_cache:\n"
-		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
-		"addl	$64, %%eax\n\t"
-		"cmpl	%%eax, %[size]\n\t"
-		"jne	.Lfill_cache\n\t"
-		"lfence\n"
-		:: [flush_pages] "r" (vmx_l1d_flush_pages),
-		    [size] "r" (size)
-		: "eax", "ebx", "ecx", "edx");
-}
-
-static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
-{
-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-
-	if (is_guest_mode(vcpu) &&
-		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
-		return;
-
-	if (irr == -1 || tpr < irr) {
-		vmcs_write32(TPR_THRESHOLD, 0);
-		return;
-	}
-
-	vmcs_write32(TPR_THRESHOLD, irr);
-}
-
-static void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
-{
-	u32 sec_exec_control;
-
-	if (!lapic_in_kernel(vcpu))
-		return;
-
-	if (!flexpriority_enabled &&
-	    !cpu_has_vmx_virtualize_x2apic_mode())
-		return;
-
-	/* Postpone execution until vmcs01 is the current VMCS. */
-	if (is_guest_mode(vcpu)) {
-		to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true;
-		return;
-	}
-
-	sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
-	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
-			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
-
-	switch (kvm_get_apic_mode(vcpu)) {
-	case LAPIC_MODE_INVALID:
-		WARN_ONCE(true, "Invalid local APIC state");
-	case LAPIC_MODE_DISABLED:
-		break;
-	case LAPIC_MODE_XAPIC:
-		if (flexpriority_enabled) {
-			sec_exec_control |=
-				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
-			vmx_flush_tlb(vcpu, true);
-		}
-		break;
-	case LAPIC_MODE_X2APIC:
-		if (cpu_has_vmx_virtualize_x2apic_mode())
-			sec_exec_control |=
-				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
-		break;
-	}
-	vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
-
-	vmx_update_msr_bitmap(vcpu);
-}
-
-static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
-{
-	if (!is_guest_mode(vcpu)) {
-		vmcs_write64(APIC_ACCESS_ADDR, hpa);
-		vmx_flush_tlb(vcpu, true);
-	}
-}
-
-static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
-{
-	u16 status;
-	u8 old;
-
-	if (max_isr == -1)
-		max_isr = 0;
-
-	status = vmcs_read16(GUEST_INTR_STATUS);
-	old = status >> 8;
-	if (max_isr != old) {
-		status &= 0xff;
-		status |= max_isr << 8;
-		vmcs_write16(GUEST_INTR_STATUS, status);
-	}
-}
-
-static void vmx_set_rvi(int vector)
-{
-	u16 status;
-	u8 old;
-
-	if (vector == -1)
-		vector = 0;
-
-	status = vmcs_read16(GUEST_INTR_STATUS);
-	old = (u8)status & 0xff;
-	if ((u8)vector != old) {
-		status &= ~0xff;
-		status |= (u8)vector;
-		vmcs_write16(GUEST_INTR_STATUS, status);
-	}
-}
-
-static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
-{
-	/*
-	 * When running L2, updating RVI is only relevant when
-	 * vmcs12 virtual-interrupt-delivery enabled.
-	 * However, it can be enabled only when L1 also
-	 * intercepts external-interrupts and in that case
-	 * we should not update vmcs02 RVI but instead intercept
-	 * interrupt. Therefore, do nothing when running L2.
-	 */
-	if (!is_guest_mode(vcpu))
-		vmx_set_rvi(max_irr);
-}
-
-static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	int max_irr;
-	bool max_irr_updated;
-
-	WARN_ON(!vcpu->arch.apicv_active);
-	if (pi_test_on(&vmx->pi_desc)) {
-		pi_clear_on(&vmx->pi_desc);
-		/*
-		 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
-		 * But on x86 this is just a compiler barrier anyway.
-		 */
-		smp_mb__after_atomic();
-		max_irr_updated =
-			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
-
-		/*
-		 * If we are running L2 and L1 has a new pending interrupt
-		 * which can be injected, we should re-evaluate
-		 * what should be done with this new L1 interrupt.
-		 * If L1 intercepts external-interrupts, we should
-		 * exit from L2 to L1. Otherwise, interrupt should be
-		 * delivered directly to L2.
-		 */
-		if (is_guest_mode(vcpu) && max_irr_updated) {
-			if (nested_exit_on_intr(vcpu))
-				kvm_vcpu_exiting_guest_mode(vcpu);
-			else
-				kvm_make_request(KVM_REQ_EVENT, vcpu);
-		}
-	} else {
-		max_irr = kvm_lapic_find_highest_irr(vcpu);
-	}
-	vmx_hwapic_irr_update(vcpu, max_irr);
-	return max_irr;
-}
-
-static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
-{
-	u8 rvi = vmx_get_rvi();
-	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
-
-	return ((rvi & 0xf0) > (vppr & 0xf0));
-}
-
-static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
-{
-	if (!kvm_vcpu_apicv_active(vcpu))
-		return;
-
-	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
-	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
-	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
-	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
-}
-
-static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-
-	pi_clear_on(&vmx->pi_desc);
-	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
-}
-
-static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
-{
-	u32 exit_intr_info = 0;
-	u16 basic_exit_reason = (u16)vmx->exit_reason;
-
-	if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
-	      || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
-		return;
-
-	if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
-		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
-	vmx->exit_intr_info = exit_intr_info;
-
-	/* if exit due to PF check for async PF */
-	if (is_page_fault(exit_intr_info))
-		vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
-
-	/* Handle machine checks before interrupts are enabled */
-	if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
-	    is_machine_check(exit_intr_info))
-		kvm_machine_check();
-
-	/* We need to handle NMIs before interrupts are enabled */
-	if (is_nmi(exit_intr_info)) {
-		kvm_before_interrupt(&vmx->vcpu);
-		asm("int $2");
-		kvm_after_interrupt(&vmx->vcpu);
-	}
-}
-
-static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
-{
-	u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
-
-	if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
-			== (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
-		unsigned int vector;
-		unsigned long entry;
-		gate_desc *desc;
-		struct vcpu_vmx *vmx = to_vmx(vcpu);
-#ifdef CONFIG_X86_64
-		unsigned long tmp;
-#endif
-
-		vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
-		desc = (gate_desc *)vmx->host_idt_base + vector;
-		entry = gate_offset(desc);
-		asm volatile(
-#ifdef CONFIG_X86_64
-			"mov %%" _ASM_SP ", %[sp]\n\t"
-			"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
-			"push $%c[ss]\n\t"
-			"push %[sp]\n\t"
-#endif
-			"pushf\n\t"
-			__ASM_SIZE(push) " $%c[cs]\n\t"
-			CALL_NOSPEC
-			:
-#ifdef CONFIG_X86_64
-			[sp]"=&r"(tmp),
-#endif
-			ASM_CALL_CONSTRAINT
-			:
-			THUNK_TARGET(entry),
-			[ss]"i"(__KERNEL_DS),
-			[cs]"i"(__KERNEL_CS)
-			);
-	}
-}
-STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
-
-static bool vmx_has_emulated_msr(int index)
-{
-	switch (index) {
-	case MSR_IA32_SMBASE:
-		/*
-		 * We cannot do SMM unless we can run the guest in big
-		 * real mode.
-		 */
-		return enable_unrestricted_guest || emulate_invalid_guest_state;
-	case MSR_AMD64_VIRT_SPEC_CTRL:
-		/* This is AMD only.  */
-		return false;
-	default:
-		return true;
-	}
-}
-
-static bool vmx_mpx_supported(void)
-{
-	return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
-		(vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
-}
-
-static bool vmx_xsaves_supported(void)
-{
-	return vmcs_config.cpu_based_2nd_exec_ctrl &
-		SECONDARY_EXEC_XSAVES;
-}
-
-static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
-{
-	u32 exit_intr_info;
-	bool unblock_nmi;
-	u8 vector;
-	bool idtv_info_valid;
-
-	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
-
-	if (enable_vnmi) {
-		if (vmx->loaded_vmcs->nmi_known_unmasked)
-			return;
-		/*
-		 * Can't use vmx->exit_intr_info since we're not sure what
-		 * the exit reason is.
-		 */
-		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
-		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
-		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
-		/*
-		 * SDM 3: 27.7.1.2 (September 2008)
-		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
-		 * a guest IRET fault.
-		 * SDM 3: 23.2.2 (September 2008)
-		 * Bit 12 is undefined in any of the following cases:
-		 *  If the VM exit sets the valid bit in the IDT-vectoring
-		 *   information field.
-		 *  If the VM exit is due to a double fault.
-		 */
-		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
-		    vector != DF_VECTOR && !idtv_info_valid)
-			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
-				      GUEST_INTR_STATE_NMI);
-		else
-			vmx->loaded_vmcs->nmi_known_unmasked =
-				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
-				  & GUEST_INTR_STATE_NMI);
-	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
-		vmx->loaded_vmcs->vnmi_blocked_time +=
-			ktime_to_ns(ktime_sub(ktime_get(),
-					      vmx->loaded_vmcs->entry_time));
-}
-
-static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
-				      u32 idt_vectoring_info,
-				      int instr_len_field,
-				      int error_code_field)
-{
-	u8 vector;
-	int type;
-	bool idtv_info_valid;
-
-	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
-
-	vcpu->arch.nmi_injected = false;
-	kvm_clear_exception_queue(vcpu);
-	kvm_clear_interrupt_queue(vcpu);
-
-	if (!idtv_info_valid)
-		return;
-
-	kvm_make_request(KVM_REQ_EVENT, vcpu);
-
-	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
-	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
-
-	switch (type) {
-	case INTR_TYPE_NMI_INTR:
-		vcpu->arch.nmi_injected = true;
-		/*
-		 * SDM 3: 27.7.1.2 (September 2008)
-		 * Clear bit "block by NMI" before VM entry if a NMI
-		 * delivery faulted.
-		 */
-		vmx_set_nmi_mask(vcpu, false);
-		break;
-	case INTR_TYPE_SOFT_EXCEPTION:
-		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
-		/* fall through */
-	case INTR_TYPE_HARD_EXCEPTION:
-		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
-			u32 err = vmcs_read32(error_code_field);
-			kvm_requeue_exception_e(vcpu, vector, err);
-		} else
-			kvm_requeue_exception(vcpu, vector);
-		break;
-	case INTR_TYPE_SOFT_INTR:
-		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
-		/* fall through */
-	case INTR_TYPE_EXT_INTR:
-		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
-		break;
-	default:
-		break;
-	}
-}
-
-static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
-{
-	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
-				  VM_EXIT_INSTRUCTION_LEN,
-				  IDT_VECTORING_ERROR_CODE);
-}
-
-static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
-{
-	__vmx_complete_interrupts(vcpu,
-				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
-				  VM_ENTRY_INSTRUCTION_LEN,
-				  VM_ENTRY_EXCEPTION_ERROR_CODE);
-
-	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
-}
-
-static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
-{
-	int i, nr_msrs;
-	struct perf_guest_switch_msr *msrs;
-
-	msrs = perf_guest_get_msrs(&nr_msrs);
-
-	if (!msrs)
-		return;
-
-	for (i = 0; i < nr_msrs; i++)
-		if (msrs[i].host == msrs[i].guest)
-			clear_atomic_switch_msr(vmx, msrs[i].msr);
-		else
-			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
-					msrs[i].host, false);
-}
-
-static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val)
-{
-	vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val);
-	if (!vmx->loaded_vmcs->hv_timer_armed)
-		vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
-			      PIN_BASED_VMX_PREEMPTION_TIMER);
-	vmx->loaded_vmcs->hv_timer_armed = true;
-}
-
-static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	u64 tscl;
-	u32 delta_tsc;
-
-	if (vmx->req_immediate_exit) {
-		vmx_arm_hv_timer(vmx, 0);
-		return;
-	}
-
-	if (vmx->hv_deadline_tsc != -1) {
-		tscl = rdtsc();
-		if (vmx->hv_deadline_tsc > tscl)
-			/* set_hv_timer ensures the delta fits in 32-bits */
-			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
-				cpu_preemption_timer_multi);
-		else
-			delta_tsc = 0;
-
-		vmx_arm_hv_timer(vmx, delta_tsc);
-		return;
-	}
-
-	if (vmx->loaded_vmcs->hv_timer_armed)
-		vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
-				PIN_BASED_VMX_PREEMPTION_TIMER);
-	vmx->loaded_vmcs->hv_timer_armed = false;
-}
-
-static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	unsigned long cr3, cr4, evmcs_rsp;
-
-	/* Record the guest's net vcpu time for enforced NMI injections. */
-	if (unlikely(!enable_vnmi &&
-		     vmx->loaded_vmcs->soft_vnmi_blocked))
-		vmx->loaded_vmcs->entry_time = ktime_get();
-
-	/* Don't enter VMX if guest state is invalid, let the exit handler
-	   start emulation until we arrive back to a valid state */
-	if (vmx->emulation_required)
-		return;
-
-	if (vmx->ple_window_dirty) {
-		vmx->ple_window_dirty = false;
-		vmcs_write32(PLE_WINDOW, vmx->ple_window);
-	}
-
-	if (vmx->nested.need_vmcs12_sync) {
-		/*
-		 * hv_evmcs may end up being not mapped after migration (when
-		 * L2 was running), map it here to make sure vmcs12 changes are
-		 * properly reflected.
-		 */
-		if (vmx->nested.enlightened_vmcs_enabled &&
-		    !vmx->nested.hv_evmcs)
-			nested_vmx_handle_enlightened_vmptrld(vcpu, false);
-
-		if (vmx->nested.hv_evmcs) {
-			copy_vmcs12_to_enlightened(vmx);
-			/* All fields are clean */
-			vmx->nested.hv_evmcs->hv_clean_fields |=
-				HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
-		} else {
-			copy_vmcs12_to_shadow(vmx);
-		}
-		vmx->nested.need_vmcs12_sync = false;
-	}
-
-	if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
-		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
-	if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
-		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
-
-	cr3 = __get_current_cr3_fast();
-	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
-		vmcs_writel(HOST_CR3, cr3);
-		vmx->loaded_vmcs->host_state.cr3 = cr3;
-	}
-
-	cr4 = cr4_read_shadow();
-	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
-		vmcs_writel(HOST_CR4, cr4);
-		vmx->loaded_vmcs->host_state.cr4 = cr4;
-	}
-
-	/* When single-stepping over STI and MOV SS, we must clear the
-	 * corresponding interruptibility bits in the guest state. Otherwise
-	 * vmentry fails as it then expects bit 14 (BS) in pending debug
-	 * exceptions being set, but that's not correct for the guest debugging
-	 * case. */
-	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
-		vmx_set_interrupt_shadow(vcpu, 0);
-
-	if (static_cpu_has(X86_FEATURE_PKU) &&
-	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
-	    vcpu->arch.pkru != vmx->host_pkru)
-		__write_pkru(vcpu->arch.pkru);
-
-	atomic_switch_perf_msrs(vmx);
-
-	vmx_update_hv_timer(vcpu);
-
-	/*
-	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
-	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
-	 * is no need to worry about the conditional branch over the wrmsr
-	 * being speculatively taken.
-	 */
-	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
-
-	vmx->__launched = vmx->loaded_vmcs->launched;
-
-	evmcs_rsp = static_branch_unlikely(&enable_evmcs) ?
-		(unsigned long)&current_evmcs->host_rsp : 0;
-
-	if (static_branch_unlikely(&vmx_l1d_should_flush))
-		vmx_l1d_flush(vcpu);
-
-	asm(
-		/* Store host registers */
-		"push %%" _ASM_DX "; push %%" _ASM_BP ";"
-		"push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
-		"push %%" _ASM_CX " \n\t"
-		"cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
-		"je 1f \n\t"
-		"mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
-		/* Avoid VMWRITE when Enlightened VMCS is in use */
-		"test %%" _ASM_SI ", %%" _ASM_SI " \n\t"
-		"jz 2f \n\t"
-		"mov %%" _ASM_SP ", (%%" _ASM_SI ") \n\t"
-		"jmp 1f \n\t"
-		"2: \n\t"
-		__ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t"
-		"1: \n\t"
-		/* Reload cr2 if changed */
-		"mov %c[cr2](%0), %%" _ASM_AX " \n\t"
-		"mov %%cr2, %%" _ASM_DX " \n\t"
-		"cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
-		"je 3f \n\t"
-		"mov %%" _ASM_AX", %%cr2 \n\t"
-		"3: \n\t"
-		/* Check if vmlaunch of vmresume is needed */
-		"cmpl $0, %c[launched](%0) \n\t"
-		/* Load guest registers.  Don't clobber flags. */
-		"mov %c[rax](%0), %%" _ASM_AX " \n\t"
-		"mov %c[rbx](%0), %%" _ASM_BX " \n\t"
-		"mov %c[rdx](%0), %%" _ASM_DX " \n\t"
-		"mov %c[rsi](%0), %%" _ASM_SI " \n\t"
-		"mov %c[rdi](%0), %%" _ASM_DI " \n\t"
-		"mov %c[rbp](%0), %%" _ASM_BP " \n\t"
-#ifdef CONFIG_X86_64
-		"mov %c[r8](%0),  %%r8  \n\t"
-		"mov %c[r9](%0),  %%r9  \n\t"
-		"mov %c[r10](%0), %%r10 \n\t"
-		"mov %c[r11](%0), %%r11 \n\t"
-		"mov %c[r12](%0), %%r12 \n\t"
-		"mov %c[r13](%0), %%r13 \n\t"
-		"mov %c[r14](%0), %%r14 \n\t"
-		"mov %c[r15](%0), %%r15 \n\t"
-#endif
-		"mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
-
-		/* Enter guest mode */
-		"jne 1f \n\t"
-		__ex("vmlaunch") "\n\t"
-		"jmp 2f \n\t"
-		"1: " __ex("vmresume") "\n\t"
-		"2: "
-		/* Save guest registers, load host registers, keep flags */
-		"mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
-		"pop %0 \n\t"
-		"setbe %c[fail](%0)\n\t"
-		"mov %%" _ASM_AX ", %c[rax](%0) \n\t"
-		"mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
-		__ASM_SIZE(pop) " %c[rcx](%0) \n\t"
-		"mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
-		"mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
-		"mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
-		"mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
-#ifdef CONFIG_X86_64
-		"mov %%r8,  %c[r8](%0) \n\t"
-		"mov %%r9,  %c[r9](%0) \n\t"
-		"mov %%r10, %c[r10](%0) \n\t"
-		"mov %%r11, %c[r11](%0) \n\t"
-		"mov %%r12, %c[r12](%0) \n\t"
-		"mov %%r13, %c[r13](%0) \n\t"
-		"mov %%r14, %c[r14](%0) \n\t"
-		"mov %%r15, %c[r15](%0) \n\t"
-		/*
-		* Clear host registers marked as clobbered to prevent
-		* speculative use.
-		*/
-		"xor %%r8d,  %%r8d \n\t"
-		"xor %%r9d,  %%r9d \n\t"
-		"xor %%r10d, %%r10d \n\t"
-		"xor %%r11d, %%r11d \n\t"
-		"xor %%r12d, %%r12d \n\t"
-		"xor %%r13d, %%r13d \n\t"
-		"xor %%r14d, %%r14d \n\t"
-		"xor %%r15d, %%r15d \n\t"
-#endif
-		"mov %%cr2, %%" _ASM_AX "   \n\t"
-		"mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
-
-		"xor %%eax, %%eax \n\t"
-		"xor %%ebx, %%ebx \n\t"
-		"xor %%esi, %%esi \n\t"
-		"xor %%edi, %%edi \n\t"
-		"pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
-		".pushsection .rodata \n\t"
-		".global vmx_return \n\t"
-		"vmx_return: " _ASM_PTR " 2b \n\t"
-		".popsection"
-	      : : "c"(vmx), "d"((unsigned long)HOST_RSP), "S"(evmcs_rsp),
-		[launched]"i"(offsetof(struct vcpu_vmx, __launched)),
-		[fail]"i"(offsetof(struct vcpu_vmx, fail)),
-		[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
-		[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
-		[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
-		[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
-		[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
-		[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
-		[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
-		[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
-#ifdef CONFIG_X86_64
-		[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
-		[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
-		[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
-		[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
-		[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
-		[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
-		[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
-		[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
-#endif
-		[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
-		[wordsize]"i"(sizeof(ulong))
-	      : "cc", "memory"
-#ifdef CONFIG_X86_64
-		, "rax", "rbx", "rdi"
-		, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
-#else
-		, "eax", "ebx", "edi"
-#endif
-	      );
-
-	/*
-	 * We do not use IBRS in the kernel. If this vCPU has used the
-	 * SPEC_CTRL MSR it may have left it on; save the value and
-	 * turn it off. This is much more efficient than blindly adding
-	 * it to the atomic save/restore list. Especially as the former
-	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
-	 *
-	 * For non-nested case:
-	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
-	 * save it.
-	 *
-	 * For nested case:
-	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
-	 * save it.
-	 */
-	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
-		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
-
-	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
-
-	/* Eliminate branch target predictions from guest mode */
-	vmexit_fill_RSB();
-
-	/* All fields are clean at this point */
-	if (static_branch_unlikely(&enable_evmcs))
-		current_evmcs->hv_clean_fields |=
-			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
-
-	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
-	if (vmx->host_debugctlmsr)
-		update_debugctlmsr(vmx->host_debugctlmsr);
-
-#ifndef CONFIG_X86_64
-	/*
-	 * The sysexit path does not restore ds/es, so we must set them to
-	 * a reasonable value ourselves.
-	 *
-	 * We can't defer this to vmx_prepare_switch_to_host() since that
-	 * function may be executed in interrupt context, which saves and
-	 * restore segments around it, nullifying its effect.
-	 */
-	loadsegment(ds, __USER_DS);
-	loadsegment(es, __USER_DS);
-#endif
-
-	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
-				  | (1 << VCPU_EXREG_RFLAGS)
-				  | (1 << VCPU_EXREG_PDPTR)
-				  | (1 << VCPU_EXREG_SEGMENTS)
-				  | (1 << VCPU_EXREG_CR3));
-	vcpu->arch.regs_dirty = 0;
-
-	/*
-	 * eager fpu is enabled if PKEY is supported and CR4 is switched
-	 * back on host, so it is safe to read guest PKRU from current
-	 * XSAVE.
-	 */
-	if (static_cpu_has(X86_FEATURE_PKU) &&
-	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
-		vcpu->arch.pkru = __read_pkru();
-		if (vcpu->arch.pkru != vmx->host_pkru)
-			__write_pkru(vmx->host_pkru);
-	}
-
-	vmx->nested.nested_run_pending = 0;
-	vmx->idt_vectoring_info = 0;
-
-	vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
-	if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
-		return;
-
-	vmx->loaded_vmcs->launched = 1;
-	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
-
-	vmx_complete_atomic_exit(vmx);
-	vmx_recover_nmi_blocking(vmx);
-	vmx_complete_interrupts(vmx);
-}
-STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
-
-static struct kvm *vmx_vm_alloc(void)
-{
-	struct kvm_vmx *kvm_vmx = vzalloc(sizeof(struct kvm_vmx));
-	return &kvm_vmx->kvm;
-}
-
-static void vmx_vm_free(struct kvm *kvm)
-{
-	vfree(to_kvm_vmx(kvm));
-}
-
-static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	int cpu;
-
-	if (vmx->loaded_vmcs == vmcs)
-		return;
-
-	cpu = get_cpu();
-	vmx_vcpu_put(vcpu);
-	vmx->loaded_vmcs = vmcs;
-	vmx_vcpu_load(vcpu, cpu);
-	put_cpu();
-
-	vm_entry_controls_reset_shadow(vmx);
-	vm_exit_controls_reset_shadow(vmx);
-	vmx_segment_cache_clear(vmx);
-}
-
-/*
- * Ensure that the current vmcs of the logical processor is the
- * vmcs01 of the vcpu before calling free_nested().
- */
-static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
-{
-	vcpu_load(vcpu);
-	vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
-	free_nested(vcpu);
-	vcpu_put(vcpu);
-}
-
-static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-
-	if (enable_pml)
-		vmx_destroy_pml_buffer(vmx);
-	free_vpid(vmx->vpid);
-	leave_guest_mode(vcpu);
-	vmx_free_vcpu_nested(vcpu);
-	free_loaded_vmcs(vmx->loaded_vmcs);
-	kfree(vmx->guest_msrs);
-	kvm_vcpu_uninit(vcpu);
-	kmem_cache_free(kvm_vcpu_cache, vmx);
-}
-
-static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
-{
-	int err;
-	struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
-	unsigned long *msr_bitmap;
-	int cpu;
-
-	if (!vmx)
-		return ERR_PTR(-ENOMEM);
-
-	vmx->vpid = allocate_vpid();
-
-	err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
-	if (err)
-		goto free_vcpu;
-
-	err = -ENOMEM;
-
-	/*
-	 * If PML is turned on, failure on enabling PML just results in failure
-	 * of creating the vcpu, therefore we can simplify PML logic (by
-	 * avoiding dealing with cases, such as enabling PML partially on vcpus
-	 * for the guest, etc.
-	 */
-	if (enable_pml) {
-		vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
-		if (!vmx->pml_pg)
-			goto uninit_vcpu;
-	}
-
-	vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
-	BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
-		     > PAGE_SIZE);
-
-	if (!vmx->guest_msrs)
-		goto free_pml;
-
-	err = alloc_loaded_vmcs(&vmx->vmcs01);
-	if (err < 0)
-		goto free_msrs;
-
-	msr_bitmap = vmx->vmcs01.msr_bitmap;
-	vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
-	vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
-	vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
-	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
-	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
-	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
-	vmx->msr_bitmap_mode = 0;
-
-	vmx->loaded_vmcs = &vmx->vmcs01;
-	cpu = get_cpu();
-	vmx_vcpu_load(&vmx->vcpu, cpu);
-	vmx->vcpu.cpu = cpu;
-	vmx_vcpu_setup(vmx);
-	vmx_vcpu_put(&vmx->vcpu);
-	put_cpu();
-	if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
-		err = alloc_apic_access_page(kvm);
-		if (err)
-			goto free_vmcs;
-	}
-
-	if (enable_ept && !enable_unrestricted_guest) {
-		err = init_rmode_identity_map(kvm);
-		if (err)
-			goto free_vmcs;
-	}
-
-	if (nested)
-		nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
-					   kvm_vcpu_apicv_active(&vmx->vcpu));
-
-	vmx->nested.posted_intr_nv = -1;
-	vmx->nested.current_vmptr = -1ull;
-
-	vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
-
-	/*
-	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
-	 * or POSTED_INTR_WAKEUP_VECTOR.
-	 */
-	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
-	vmx->pi_desc.sn = 1;
-
-	return &vmx->vcpu;
-
-free_vmcs:
-	free_loaded_vmcs(vmx->loaded_vmcs);
-free_msrs:
-	kfree(vmx->guest_msrs);
-free_pml:
-	vmx_destroy_pml_buffer(vmx);
-uninit_vcpu:
-	kvm_vcpu_uninit(&vmx->vcpu);
-free_vcpu:
-	free_vpid(vmx->vpid);
-	kmem_cache_free(kvm_vcpu_cache, vmx);
-	return ERR_PTR(err);
-}
-
-#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n"
-#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n"
-
-static int vmx_vm_init(struct kvm *kvm)
-{
-	spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
-
-	if (!ple_gap)
-		kvm->arch.pause_in_guest = true;
-
-	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
-		switch (l1tf_mitigation) {
-		case L1TF_MITIGATION_OFF:
-		case L1TF_MITIGATION_FLUSH_NOWARN:
-			/* 'I explicitly don't care' is set */
-			break;
-		case L1TF_MITIGATION_FLUSH:
-		case L1TF_MITIGATION_FLUSH_NOSMT:
-		case L1TF_MITIGATION_FULL:
-			/*
-			 * Warn upon starting the first VM in a potentially
-			 * insecure environment.
-			 */
-			if (cpu_smt_control == CPU_SMT_ENABLED)
-				pr_warn_once(L1TF_MSG_SMT);
-			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
-				pr_warn_once(L1TF_MSG_L1D);
-			break;
-		case L1TF_MITIGATION_FULL_FORCE:
-			/* Flush is enforced */
-			break;
-		}
-	}
-	return 0;
-}
-
-static void __init vmx_check_processor_compat(void *rtn)
-{
-	struct vmcs_config vmcs_conf;
-
-	*(int *)rtn = 0;
-	if (setup_vmcs_config(&vmcs_conf) < 0)
-		*(int *)rtn = -EIO;
-	nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, enable_apicv);
-	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
-		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
-				smp_processor_id());
-		*(int *)rtn = -EIO;
-	}
-}
-
-static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
-{
-	u8 cache;
-	u64 ipat = 0;
-
-	/* For VT-d and EPT combination
-	 * 1. MMIO: always map as UC
-	 * 2. EPT with VT-d:
-	 *   a. VT-d without snooping control feature: can't guarantee the
-	 *	result, try to trust guest.
-	 *   b. VT-d with snooping control feature: snooping control feature of
-	 *	VT-d engine can guarantee the cache correctness. Just set it
-	 *	to WB to keep consistent with host. So the same as item 3.
-	 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
-	 *    consistent with host MTRR
-	 */
-	if (is_mmio) {
-		cache = MTRR_TYPE_UNCACHABLE;
-		goto exit;
-	}
-
-	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
-		ipat = VMX_EPT_IPAT_BIT;
-		cache = MTRR_TYPE_WRBACK;
-		goto exit;
-	}
-
-	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
-		ipat = VMX_EPT_IPAT_BIT;
-		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
-			cache = MTRR_TYPE_WRBACK;
-		else
-			cache = MTRR_TYPE_UNCACHABLE;
-		goto exit;
-	}
-
-	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
-
-exit:
-	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
-}
-
-static int vmx_get_lpage_level(void)
-{
-	if (enable_ept && !cpu_has_vmx_ept_1g_page())
-		return PT_DIRECTORY_LEVEL;
-	else
-		/* For shadow and EPT supported 1GB page */
-		return PT_PDPE_LEVEL;
-}
-
-static void vmcs_set_secondary_exec_control(u32 new_ctl)
-{
-	/*
-	 * These bits in the secondary execution controls field
-	 * are dynamic, the others are mostly based on the hypervisor
-	 * architecture and the guest's CPUID.  Do not touch the
-	 * dynamic bits.
-	 */
-	u32 mask =
-		SECONDARY_EXEC_SHADOW_VMCS |
-		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
-		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
-		SECONDARY_EXEC_DESC;
-
-	u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
-
-	vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
-		     (new_ctl & ~mask) | (cur_ctl & mask));
-}
-
-/*
- * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
- * (indicating "allowed-1") if they are supported in the guest's CPUID.
- */
-static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	struct kvm_cpuid_entry2 *entry;
-
-	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
-	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
-
-#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
-	if (entry && (entry->_reg & (_cpuid_mask)))			\
-		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
-} while (0)
-
-	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
-	cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
-	cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
-	cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
-	cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
-	cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
-	cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
-	cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
-	cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
-	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
-	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
-	cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
-	cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
-	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
-	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
-
-	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
-	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
-	cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
-	cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
-	cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
-	cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
-
-#undef cr4_fixed1_update
-}
-
-static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-
-	if (kvm_mpx_supported()) {
-		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
-
-		if (mpx_enabled) {
-			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
-			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
-		} else {
-			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
-			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
-		}
-	}
-}
-
-static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-
-	if (cpu_has_secondary_exec_ctrls()) {
-		vmx_compute_secondary_exec_control(vmx);
-		vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
-	}
-
-	if (nested_vmx_allowed(vcpu))
-		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
-			FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
-	else
-		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
-			~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
-
-	if (nested_vmx_allowed(vcpu)) {
-		nested_vmx_cr_fixed1_bits_update(vcpu);
-		nested_vmx_entry_exit_ctls_update(vcpu);
-	}
-}
-
-static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
-{
-	if (func == 1 && nested)
-		entry->ecx |= bit(X86_FEATURE_VMX);
-}
-
-static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
-		struct x86_exception *fault)
-{
-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	u32 exit_reason;
-	unsigned long exit_qualification = vcpu->arch.exit_qualification;
-
-	if (vmx->nested.pml_full) {
-		exit_reason = EXIT_REASON_PML_FULL;
-		vmx->nested.pml_full = false;
-		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
-	} else if (fault->error_code & PFERR_RSVD_MASK)
-		exit_reason = EXIT_REASON_EPT_MISCONFIG;
-	else
-		exit_reason = EXIT_REASON_EPT_VIOLATION;
-
-	nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
-	vmcs12->guest_physical_address = fault->address;
-}
-
-static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
-{
-	return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
-}
-
-/* Callbacks for nested_ept_init_mmu_context: */
-
-static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
-{
-	/* return the page table to be shadowed - in our case, EPT12 */
-	return get_vmcs12(vcpu)->ept_pointer;
-}
-
-static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
-{
-	WARN_ON(mmu_is_nested(vcpu));
-
-	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
-	kvm_init_shadow_ept_mmu(vcpu,
-			to_vmx(vcpu)->nested.msrs.ept_caps &
-			VMX_EPT_EXECUTE_ONLY_BIT,
-			nested_ept_ad_enabled(vcpu),
-			nested_ept_get_cr3(vcpu));
-	vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
-	vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
-	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
-	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
-
-	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
-}
-
-static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
-{
-	vcpu->arch.mmu = &vcpu->arch.root_mmu;
-	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
-}
-
-static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
-					    u16 error_code)
-{
-	bool inequality, bit;
-
-	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
-	inequality =
-		(error_code & vmcs12->page_fault_error_code_mask) !=
-		 vmcs12->page_fault_error_code_match;
-	return inequality ^ bit;
-}
-
-static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
-		struct x86_exception *fault)
-{
-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-
-	WARN_ON(!is_guest_mode(vcpu));
-
-	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
-		!to_vmx(vcpu)->nested.nested_run_pending) {
-		vmcs12->vm_exit_intr_error_code = fault->error_code;
-		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
-				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
-				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
-				  fault->address);
-	} else {
-		kvm_inject_page_fault(vcpu, fault);
-	}
-}
-
-static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
-						 struct vmcs12 *vmcs12);
-
-static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
-{
-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	struct page *page;
-	u64 hpa;
-
-	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
-		/*
-		 * Translate L1 physical address to host physical
-		 * address for vmcs02. Keep the page pinned, so this
-		 * physical address remains valid. We keep a reference
-		 * to it so we can release it later.
-		 */
-		if (vmx->nested.apic_access_page) { /* shouldn't happen */
-			kvm_release_page_dirty(vmx->nested.apic_access_page);
-			vmx->nested.apic_access_page = NULL;
-		}
-		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
-		/*
-		 * If translation failed, no matter: This feature asks
-		 * to exit when accessing the given address, and if it
-		 * can never be accessed, this feature won't do
-		 * anything anyway.
-		 */
-		if (!is_error_page(page)) {
-			vmx->nested.apic_access_page = page;
-			hpa = page_to_phys(vmx->nested.apic_access_page);
-			vmcs_write64(APIC_ACCESS_ADDR, hpa);
-		} else {
-			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
-					SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
-		}
-	}
-
-	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
-		if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
-			kvm_release_page_dirty(vmx->nested.virtual_apic_page);
-			vmx->nested.virtual_apic_page = NULL;
-		}
-		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
-
-		/*
-		 * If translation failed, VM entry will fail because
-		 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
-		 * Failing the vm entry is _not_ what the processor
-		 * does but it's basically the only possibility we
-		 * have.  We could still enter the guest if CR8 load
-		 * exits are enabled, CR8 store exits are enabled, and
-		 * virtualize APIC access is disabled; in this case
-		 * the processor would never use the TPR shadow and we
-		 * could simply clear the bit from the execution
-		 * control.  But such a configuration is useless, so
-		 * let's keep the code simple.
-		 */
-		if (!is_error_page(page)) {
-			vmx->nested.virtual_apic_page = page;
-			hpa = page_to_phys(vmx->nested.virtual_apic_page);
-			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
-		}
-	}
-
-	if (nested_cpu_has_posted_intr(vmcs12)) {
-		if (vmx->nested.pi_desc_page) { /* shouldn't happen */
-			kunmap(vmx->nested.pi_desc_page);
-			kvm_release_page_dirty(vmx->nested.pi_desc_page);
-			vmx->nested.pi_desc_page = NULL;
-		}
-		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
-		if (is_error_page(page))
-			return;
-		vmx->nested.pi_desc_page = page;
-		vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
-		vmx->nested.pi_desc =
-			(struct pi_desc *)((void *)vmx->nested.pi_desc +
-			(unsigned long)(vmcs12->posted_intr_desc_addr &
-			(PAGE_SIZE - 1)));
-		vmcs_write64(POSTED_INTR_DESC_ADDR,
-			page_to_phys(vmx->nested.pi_desc_page) +
-			(unsigned long)(vmcs12->posted_intr_desc_addr &
-			(PAGE_SIZE - 1)));
-	}
-	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
-		vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
-			      CPU_BASED_USE_MSR_BITMAPS);
-	else
-		vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
-				CPU_BASED_USE_MSR_BITMAPS);
-}
-
-static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
-{
-	u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-
-	/*
-	 * A timer value of zero is architecturally guaranteed to cause
-	 * a VMExit prior to executing any instructions in the guest.
-	 */
-	if (preemption_timeout == 0) {
-		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
-		return;
-	}
-
-	if (vcpu->arch.virtual_tsc_khz == 0)
-		return;
-
-	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
-	preemption_timeout *= 1000000;
-	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
-	hrtimer_start(&vmx->nested.preemption_timer,
-		      ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
-}
-
-static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
-					       struct vmcs12 *vmcs12)
-{
-	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
-		return 0;
-
-	if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
-	    !page_address_valid(vcpu, vmcs12->io_bitmap_b))
-		return -EINVAL;
-
-	return 0;
-}
-
-static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
-						struct vmcs12 *vmcs12)
-{
-	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
-		return 0;
-
-	if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
-		return -EINVAL;
-
-	return 0;
-}
-
-static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
-						struct vmcs12 *vmcs12)
-{
-	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
-		return 0;
-
-	if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
-		return -EINVAL;
-
-	return 0;
-}
-
-/*
- * Merge L0's and L1's MSR bitmap, return false to indicate that
- * we do not use the hardware.
- */
-static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
-						 struct vmcs12 *vmcs12)
-{
-	int msr;
-	struct page *page;
-	unsigned long *msr_bitmap_l1;
-	unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
-	/*
-	 * pred_cmd & spec_ctrl are trying to verify two things:
-	 *
-	 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
-	 *    ensures that we do not accidentally generate an L02 MSR bitmap
-	 *    from the L12 MSR bitmap that is too permissive.
-	 * 2. That L1 or L2s have actually used the MSR. This avoids
-	 *    unnecessarily merging of the bitmap if the MSR is unused. This
-	 *    works properly because we only update the L01 MSR bitmap lazily.
-	 *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
-	 *    updated to reflect this when L1 (or its L2s) actually write to
-	 *    the MSR.
-	 */
-	bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
-	bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
-
-	/* Nothing to do if the MSR bitmap is not in use.  */
-	if (!cpu_has_vmx_msr_bitmap() ||
-	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
-		return false;
-
-	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
-	    !pred_cmd && !spec_ctrl)
-		return false;
-
-	page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
-	if (is_error_page(page))
-		return false;
-
-	msr_bitmap_l1 = (unsigned long *)kmap(page);
-	if (nested_cpu_has_apic_reg_virt(vmcs12)) {
-		/*
-		 * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
-		 * just lets the processor take the value from the virtual-APIC page;
-		 * take those 256 bits directly from the L1 bitmap.
-		 */
-		for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
-			unsigned word = msr / BITS_PER_LONG;
-			msr_bitmap_l0[word] = msr_bitmap_l1[word];
-			msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
-		}
-	} else {
-		for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
-			unsigned word = msr / BITS_PER_LONG;
-			msr_bitmap_l0[word] = ~0;
-			msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
-		}
-	}
-
-	nested_vmx_disable_intercept_for_msr(
-		msr_bitmap_l1, msr_bitmap_l0,
-		X2APIC_MSR(APIC_TASKPRI),
-		MSR_TYPE_W);
-
-	if (nested_cpu_has_vid(vmcs12)) {
-		nested_vmx_disable_intercept_for_msr(
-			msr_bitmap_l1, msr_bitmap_l0,
-			X2APIC_MSR(APIC_EOI),
-			MSR_TYPE_W);
-		nested_vmx_disable_intercept_for_msr(
-			msr_bitmap_l1, msr_bitmap_l0,
-			X2APIC_MSR(APIC_SELF_IPI),
-			MSR_TYPE_W);
-	}
-
-	if (spec_ctrl)
-		nested_vmx_disable_intercept_for_msr(
-					msr_bitmap_l1, msr_bitmap_l0,
-					MSR_IA32_SPEC_CTRL,
-					MSR_TYPE_R | MSR_TYPE_W);
-
-	if (pred_cmd)
-		nested_vmx_disable_intercept_for_msr(
-					msr_bitmap_l1, msr_bitmap_l0,
-					MSR_IA32_PRED_CMD,
-					MSR_TYPE_W);
-
-	kunmap(page);
-	kvm_release_page_clean(page);
-
-	return true;
-}
-
-static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
-				       struct vmcs12 *vmcs12)
-{
-	struct vmcs12 *shadow;
-	struct page *page;
-
-	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
-	    vmcs12->vmcs_link_pointer == -1ull)
-		return;
-
-	shadow = get_shadow_vmcs12(vcpu);
-	page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
-
-	memcpy(shadow, kmap(page), VMCS12_SIZE);
-
-	kunmap(page);
-	kvm_release_page_clean(page);
-}
-
-static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
-					      struct vmcs12 *vmcs12)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-
-	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
-	    vmcs12->vmcs_link_pointer == -1ull)
-		return;
-
-	kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
-			get_shadow_vmcs12(vcpu), VMCS12_SIZE);
-}
-
-static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
-					  struct vmcs12 *vmcs12)
-{
-	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
-	    !page_address_valid(vcpu, vmcs12->apic_access_addr))
-		return -EINVAL;
-	else
-		return 0;
-}
-
-static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
-					   struct vmcs12 *vmcs12)
-{
-	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
-	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
-	    !nested_cpu_has_vid(vmcs12) &&
-	    !nested_cpu_has_posted_intr(vmcs12))
-		return 0;
-
-	/*
-	 * If virtualize x2apic mode is enabled,
-	 * virtualize apic access must be disabled.
-	 */
-	if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
-	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
-		return -EINVAL;
-
-	/*
-	 * If virtual interrupt delivery is enabled,
-	 * we must exit on external interrupts.
-	 */
-	if (nested_cpu_has_vid(vmcs12) &&
-	   !nested_exit_on_intr(vcpu))
-		return -EINVAL;
-
-	/*
-	 * bits 15:8 should be zero in posted_intr_nv,
-	 * the descriptor address has been already checked
-	 * in nested_get_vmcs12_pages.
-	 *
-	 * bits 5:0 of posted_intr_desc_addr should be zero.
-	 */
-	if (nested_cpu_has_posted_intr(vmcs12) &&
-	   (!nested_cpu_has_vid(vmcs12) ||
-	    !nested_exit_intr_ack_set(vcpu) ||
-	    (vmcs12->posted_intr_nv & 0xff00) ||
-	    (vmcs12->posted_intr_desc_addr & 0x3f) ||
-	    (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
-		return -EINVAL;
-
-	/* tpr shadow is needed by all apicv features. */
-	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
-		return -EINVAL;
-
-	return 0;
-}
-
-static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
-				       unsigned long count_field,
-				       unsigned long addr_field)
-{
-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-	int maxphyaddr;
-	u64 count, addr;
-
-	if (vmcs12_read_any(vmcs12, count_field, &count) ||
-	    vmcs12_read_any(vmcs12, addr_field, &addr)) {
-		WARN_ON(1);
-		return -EINVAL;
-	}
-	if (count == 0)
-		return 0;
-	maxphyaddr = cpuid_maxphyaddr(vcpu);
-	if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
-	    (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
-		pr_debug_ratelimited(
-			"nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
-			addr_field, maxphyaddr, count, addr);
-		return -EINVAL;
-	}
-	return 0;
-}
-
-static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
-						struct vmcs12 *vmcs12)
-{
-	if (vmcs12->vm_exit_msr_load_count == 0 &&
-	    vmcs12->vm_exit_msr_store_count == 0 &&
-	    vmcs12->vm_entry_msr_load_count == 0)
-		return 0; /* Fast path */
-	if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
-					VM_EXIT_MSR_LOAD_ADDR) ||
-	    nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
-					VM_EXIT_MSR_STORE_ADDR) ||
-	    nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
-					VM_ENTRY_MSR_LOAD_ADDR))
-		return -EINVAL;
-	return 0;
-}
-
-static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
-					 struct vmcs12 *vmcs12)
-{
-	if (!nested_cpu_has_pml(vmcs12))
-		return 0;
-
-	if (!nested_cpu_has_ept(vmcs12) ||
-	    !page_address_valid(vcpu, vmcs12->pml_address))
-		return -EINVAL;
-
-	return 0;
-}
-
-static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
-						 struct vmcs12 *vmcs12)
-{
-	if (!nested_cpu_has_shadow_vmcs(vmcs12))
-		return 0;
-
-	if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
-	    !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
-		return -EINVAL;
-
-	return 0;
-}
-
-static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
-				       struct vmx_msr_entry *e)
-{
-	/* x2APIC MSR accesses are not allowed */
-	if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
-		return -EINVAL;
-	if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
-	    e->index == MSR_IA32_UCODE_REV)
-		return -EINVAL;
-	if (e->reserved != 0)
-		return -EINVAL;
-	return 0;
-}
-
-static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
-				     struct vmx_msr_entry *e)
-{
-	if (e->index == MSR_FS_BASE ||
-	    e->index == MSR_GS_BASE ||
-	    e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
-	    nested_vmx_msr_check_common(vcpu, e))
-		return -EINVAL;
-	return 0;
-}
-
-static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
-				      struct vmx_msr_entry *e)
-{
-	if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
-	    nested_vmx_msr_check_common(vcpu, e))
-		return -EINVAL;
-	return 0;
-}
-
-/*
- * Load guest's/host's msr at nested entry/exit.
- * return 0 for success, entry index for failure.
- */
-static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
-{
-	u32 i;
-	struct vmx_msr_entry e;
-	struct msr_data msr;
-
-	msr.host_initiated = false;
-	for (i = 0; i < count; i++) {
-		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
-					&e, sizeof(e))) {
-			pr_debug_ratelimited(
-				"%s cannot read MSR entry (%u, 0x%08llx)\n",
-				__func__, i, gpa + i * sizeof(e));
-			goto fail;
-		}
-		if (nested_vmx_load_msr_check(vcpu, &e)) {
-			pr_debug_ratelimited(
-				"%s check failed (%u, 0x%x, 0x%x)\n",
-				__func__, i, e.index, e.reserved);
-			goto fail;
-		}
-		msr.index = e.index;
-		msr.data = e.value;
-		if (kvm_set_msr(vcpu, &msr)) {
-			pr_debug_ratelimited(
-				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
-				__func__, i, e.index, e.value);
-			goto fail;
-		}
-	}
-	return 0;
-fail:
-	return i + 1;
-}
-
-static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
-{
-	u32 i;
-	struct vmx_msr_entry e;
-
-	for (i = 0; i < count; i++) {
-		struct msr_data msr_info;
-		if (kvm_vcpu_read_guest(vcpu,
-					gpa + i * sizeof(e),
-					&e, 2 * sizeof(u32))) {
-			pr_debug_ratelimited(
-				"%s cannot read MSR entry (%u, 0x%08llx)\n",
-				__func__, i, gpa + i * sizeof(e));
-			return -EINVAL;
-		}
-		if (nested_vmx_store_msr_check(vcpu, &e)) {
-			pr_debug_ratelimited(
-				"%s check failed (%u, 0x%x, 0x%x)\n",
-				__func__, i, e.index, e.reserved);
-			return -EINVAL;
-		}
-		msr_info.host_initiated = false;
-		msr_info.index = e.index;
-		if (kvm_get_msr(vcpu, &msr_info)) {
-			pr_debug_ratelimited(
-				"%s cannot read MSR (%u, 0x%x)\n",
-				__func__, i, e.index);
-			return -EINVAL;
-		}
-		if (kvm_vcpu_write_guest(vcpu,
-					 gpa + i * sizeof(e) +
-					     offsetof(struct vmx_msr_entry, value),
-					 &msr_info.data, sizeof(msr_info.data))) {
-			pr_debug_ratelimited(
-				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
-				__func__, i, e.index, msr_info.data);
-			return -EINVAL;
-		}
-	}
-	return 0;
-}
-
-static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
-{
-	unsigned long invalid_mask;
-
-	invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
-	return (val & invalid_mask) == 0;
-}
-
-/*
- * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
- * emulating VM entry into a guest with EPT enabled.
- * Returns 0 on success, 1 on failure. Invalid state exit qualification code
- * is assigned to entry_failure_code on failure.
- */
-static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
-			       u32 *entry_failure_code)
-{
-	if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
-		if (!nested_cr3_valid(vcpu, cr3)) {
-			*entry_failure_code = ENTRY_FAIL_DEFAULT;
-			return 1;
-		}
-
-		/*
-		 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
-		 * must not be dereferenced.
-		 */
-		if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
-		    !nested_ept) {
-			if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
-				*entry_failure_code = ENTRY_FAIL_PDPTE;
-				return 1;
-			}
-		}
-	}
-
-	if (!nested_ept)
-		kvm_mmu_new_cr3(vcpu, cr3, false);
-
-	vcpu->arch.cr3 = cr3;
-	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
-
-	kvm_init_mmu(vcpu, false);
-
-	return 0;
-}
-
-/*
- * Returns if KVM is able to config CPU to tag TLB entries
- * populated by L2 differently than TLB entries populated
- * by L1.
- *
- * If L1 uses EPT, then TLB entries are tagged with different EPTP.
- *
- * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
- * with different VPID (L1 entries are tagged with vmx->vpid
- * while L2 entries are tagged with vmx->nested.vpid02).
- */
-static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
-{
-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-
-	return nested_cpu_has_ept(vmcs12) ||
-	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
-}
-
-static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
-{
-	if (vmx->nested.nested_run_pending &&
-	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
-		return vmcs12->guest_ia32_efer;
-	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
-		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
-	else
-		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
-}
-
-static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
-{
-	/*
-	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
-	 * according to L0's settings (vmcs12 is irrelevant here).  Host
-	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
-	 * will be set as needed prior to VMLAUNCH/VMRESUME.
-	 */
-	if (vmx->nested.vmcs02_initialized)
-		return;
-	vmx->nested.vmcs02_initialized = true;
-
-	/*
-	 * We don't care what the EPTP value is we just need to guarantee
-	 * it's valid so we don't get a false positive when doing early
-	 * consistency checks.
-	 */
-	if (enable_ept && nested_early_check)
-		vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
-
-	/* All VMFUNCs are currently emulated through L0 vmexits.  */
-	if (cpu_has_vmx_vmfunc())
-		vmcs_write64(VM_FUNCTION_CONTROL, 0);
-
-	if (cpu_has_vmx_posted_intr())
-		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
-
-	if (cpu_has_vmx_msr_bitmap())
-		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
-
-	if (enable_pml)
-		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
-
-	/*
-	 * Set the MSR load/store lists to match L0's settings.  Only the
-	 * addresses are constant (for vmcs02), the counts can change based
-	 * on L2's behavior, e.g. switching to/from long mode.
-	 */
-	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
-	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
-	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
-
-	vmx_set_constant_host_state(vmx);
-}
-
-static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx,
-				      struct vmcs12 *vmcs12)
-{
-	prepare_vmcs02_constant_state(vmx);
-
-	vmcs_write64(VMCS_LINK_POINTER, -1ull);
-
-	if (enable_vpid) {
-		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
-			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
-		else
-			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
-	}
-}
-
-static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
-{
-	u32 exec_control, vmcs12_exec_ctrl;
-	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
-
-	if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
-		prepare_vmcs02_early_full(vmx, vmcs12);
-
-	/*
-	 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
-	 * entry, but only if the current (host) sp changed from the value
-	 * we wrote last (vmx->host_rsp).  This cache is no longer relevant
-	 * if we switch vmcs, and rather than hold a separate cache per vmcs,
-	 * here we just force the write to happen on entry.  host_rsp will
-	 * also be written unconditionally by nested_vmx_check_vmentry_hw()
-	 * if we are doing early consistency checks via hardware.
-	 */
-	vmx->host_rsp = 0;
-
-	/*
-	 * PIN CONTROLS
-	 */
-	exec_control = vmcs12->pin_based_vm_exec_control;
-
-	/* Preemption timer setting is computed directly in vmx_vcpu_run.  */
-	exec_control |= vmcs_config.pin_based_exec_ctrl;
-	exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
-	vmx->loaded_vmcs->hv_timer_armed = false;
-
-	/* Posted interrupts setting is only taken from vmcs12.  */
-	if (nested_cpu_has_posted_intr(vmcs12)) {
-		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
-		vmx->nested.pi_pending = false;
-	} else {
-		exec_control &= ~PIN_BASED_POSTED_INTR;
-	}
-	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
-
-	/*
-	 * EXEC CONTROLS
-	 */
-	exec_control = vmx_exec_control(vmx); /* L0's desires */
-	exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
-	exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
-	exec_control &= ~CPU_BASED_TPR_SHADOW;
-	exec_control |= vmcs12->cpu_based_vm_exec_control;
-
-	/*
-	 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
-	 * nested_get_vmcs12_pages can't fix it up, the illegal value
-	 * will result in a VM entry failure.
-	 */
-	if (exec_control & CPU_BASED_TPR_SHADOW) {
-		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
-		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
-	} else {
-#ifdef CONFIG_X86_64
-		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
-				CPU_BASED_CR8_STORE_EXITING;
-#endif
-	}
-
-	/*
-	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
-	 * for I/O port accesses.
-	 */
-	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
-	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
-	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
-
-	/*
-	 * SECONDARY EXEC CONTROLS
-	 */
-	if (cpu_has_secondary_exec_ctrls()) {
-		exec_control = vmx->secondary_exec_control;
-
-		/* Take the following fields only from vmcs12 */
-		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
-				  SECONDARY_EXEC_ENABLE_INVPCID |
-				  SECONDARY_EXEC_RDTSCP |
-				  SECONDARY_EXEC_XSAVES |
-				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
-				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
-				  SECONDARY_EXEC_ENABLE_VMFUNC);
-		if (nested_cpu_has(vmcs12,
-				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
-			vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
-				~SECONDARY_EXEC_ENABLE_PML;
-			exec_control |= vmcs12_exec_ctrl;
-		}
-
-		/* VMCS shadowing for L2 is emulated for now */
-		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
-
-		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
-			vmcs_write16(GUEST_INTR_STATUS,
-				vmcs12->guest_intr_status);
-
-		/*
-		 * Write an illegal value to APIC_ACCESS_ADDR. Later,
-		 * nested_get_vmcs12_pages will either fix it up or
-		 * remove the VM execution control.
-		 */
-		if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
-			vmcs_write64(APIC_ACCESS_ADDR, -1ull);
-
-		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
-			vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
-
-		vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
-	}
-
-	/*
-	 * ENTRY CONTROLS
-	 *
-	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
-	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
-	 * on the related bits (if supported by the CPU) in the hope that
-	 * we can avoid VMWrites during vmx_set_efer().
-	 */
-	exec_control = (vmcs12->vm_entry_controls | vmcs_config.vmentry_ctrl) &
-			~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
-	if (cpu_has_load_ia32_efer) {
-		if (guest_efer & EFER_LMA)
-			exec_control |= VM_ENTRY_IA32E_MODE;
-		if (guest_efer != host_efer)
-			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
-	}
-	vm_entry_controls_init(vmx, exec_control);
-
-	/*
-	 * EXIT CONTROLS
-	 *
-	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
-	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
-	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
-	 */
-	exec_control = vmcs_config.vmexit_ctrl;
-	if (cpu_has_load_ia32_efer && guest_efer != host_efer)
-		exec_control |= VM_EXIT_LOAD_IA32_EFER;
-	vm_exit_controls_init(vmx, exec_control);
-
-	/*
-	 * Conceptually we want to copy the PML address and index from
-	 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
-	 * since we always flush the log on each vmexit and never change
-	 * the PML address (once set), this happens to be equivalent to
-	 * simply resetting the index in vmcs02.
-	 */
-	if (enable_pml)
-		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
-
-	/*
-	 * Interrupt/Exception Fields
-	 */
-	if (vmx->nested.nested_run_pending) {
-		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
-			     vmcs12->vm_entry_intr_info_field);
-		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
-			     vmcs12->vm_entry_exception_error_code);
-		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
-			     vmcs12->vm_entry_instruction_len);
-		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
-			     vmcs12->guest_interruptibility_info);
-		vmx->loaded_vmcs->nmi_known_unmasked =
-			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
-	} else {
-		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
-	}
-}
-
-static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
-{
-	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
-
-	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
-			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
-		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
-		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
-		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
-		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
-		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
-		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
-		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
-		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
-		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
-		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
-		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
-		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
-		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
-		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
-		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
-		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
-		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
-		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
-		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
-		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
-		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
-		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
-		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
-		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
-		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
-		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
-		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
-		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
-		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
-		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
-		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
-		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
-		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
-		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
-	}
-
-	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
-			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
-		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
-		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
-			    vmcs12->guest_pending_dbg_exceptions);
-		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
-		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
-
-		/*
-		 * L1 may access the L2's PDPTR, so save them to construct
-		 * vmcs12
-		 */
-		if (enable_ept) {
-			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
-			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
-			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
-			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
-		}
-	}
-
-	if (nested_cpu_has_xsaves(vmcs12))
-		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
-
-	/*
-	 * Whether page-faults are trapped is determined by a combination of
-	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
-	 * If enable_ept, L0 doesn't care about page faults and we should
-	 * set all of these to L1's desires. However, if !enable_ept, L0 does
-	 * care about (at least some) page faults, and because it is not easy
-	 * (if at all possible?) to merge L0 and L1's desires, we simply ask
-	 * to exit on each and every L2 page fault. This is done by setting
-	 * MASK=MATCH=0 and (see below) EB.PF=1.
-	 * Note that below we don't need special code to set EB.PF beyond the
-	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
-	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
-	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
-	 */
-	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
-		enable_ept ? vmcs12->page_fault_error_code_mask : 0);
-	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
-		enable_ept ? vmcs12->page_fault_error_code_match : 0);
-
-	if (cpu_has_vmx_apicv()) {
-		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
-		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
-		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
-		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
-	}
-
-	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
-	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
-
-	set_cr4_guest_host_mask(vmx);
-
-	if (kvm_mpx_supported()) {
-		if (vmx->nested.nested_run_pending &&
-			(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
-			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
-		else
-			vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
-	}
-}
-
-/*
- * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
- * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
- * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
- * guest in a way that will both be appropriate to L1's requests, and our
- * needs. In addition to modifying the active vmcs (which is vmcs02), this
- * function also has additional necessary side-effects, like setting various
- * vcpu->arch fields.
- * Returns 0 on success, 1 on failure. Invalid state exit qualification code
- * is assigned to entry_failure_code on failure.
- */
-static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
-			  u32 *entry_failure_code)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
-
-	if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) {
-		prepare_vmcs02_full(vmx, vmcs12);
-		vmx->nested.dirty_vmcs12 = false;
-	}
-
-	/*
-	 * First, the fields that are shadowed.  This must be kept in sync
-	 * with vmx_shadow_fields.h.
-	 */
-	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
-			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
-		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
-		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
-	}
-
-	if (vmx->nested.nested_run_pending &&
-	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
-		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
-		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
-	} else {
-		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
-		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
-	}
-	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
-
-	vmx->nested.preemption_timer_expired = false;
-	if (nested_cpu_has_preemption_timer(vmcs12))
-		vmx_start_preemption_timer(vcpu);
-
-	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
-	 * bitwise-or of what L1 wants to trap for L2, and what we want to
-	 * trap. Note that CR0.TS also needs updating - we do this later.
-	 */
-	update_exception_bitmap(vcpu);
-	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
-	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
-
-	if (vmx->nested.nested_run_pending &&
-	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
-		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
-		vcpu->arch.pat = vmcs12->guest_ia32_pat;
-	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
-		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
-	}
-
-	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
-
-	if (kvm_has_tsc_control)
-		decache_tsc_multiplier(vmx);
-
-	if (enable_vpid) {
-		/*
-		 * There is no direct mapping between vpid02 and vpid12, the
-		 * vpid02 is per-vCPU for L0 and reused while the value of
-		 * vpid12 is changed w/ one invvpid during nested vmentry.
-		 * The vpid12 is allocated by L1 for L2, so it will not
-		 * influence global bitmap(for vpid01 and vpid02 allocation)
-		 * even if spawn a lot of nested vCPUs.
-		 */
-		if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
-			if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
-				vmx->nested.last_vpid = vmcs12->virtual_processor_id;
-				__vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
-			}
-		} else {
-			/*
-			 * If L1 use EPT, then L0 needs to execute INVEPT on
-			 * EPTP02 instead of EPTP01. Therefore, delay TLB
-			 * flush until vmcs02->eptp is fully updated by
-			 * KVM_REQ_LOAD_CR3. Note that this assumes
-			 * KVM_REQ_TLB_FLUSH is evaluated after
-			 * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
-			 */
-			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
-		}
-	}
-
-	if (nested_cpu_has_ept(vmcs12))
-		nested_ept_init_mmu_context(vcpu);
-	else if (nested_cpu_has2(vmcs12,
-				 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
-		vmx_flush_tlb(vcpu, true);
-
-	/*
-	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
-	 * bits which we consider mandatory enabled.
-	 * The CR0_READ_SHADOW is what L2 should have expected to read given
-	 * the specifications by L1; It's not enough to take
-	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
-	 * have more bits than L1 expected.
-	 */
-	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
-	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
-
-	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
-	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
-
-	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
-	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
-	vmx_set_efer(vcpu, vcpu->arch.efer);
-
-	/*
-	 * Guest state is invalid and unrestricted guest is disabled,
-	 * which means L1 attempted VMEntry to L2 with invalid state.
-	 * Fail the VMEntry.
-	 */
-	if (vmx->emulation_required) {
-		*entry_failure_code = ENTRY_FAIL_DEFAULT;
-		return 1;
-	}
-
-	/* Shadow page tables on either EPT or shadow page tables. */
-	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
-				entry_failure_code))
-		return 1;
-
-	if (!enable_ept)
-		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
-
-	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
-	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
-	return 0;
-}
-
-static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
-{
-	if (!nested_cpu_has_nmi_exiting(vmcs12) &&
-	    nested_cpu_has_virtual_nmis(vmcs12))
-		return -EINVAL;
-
-	if (!nested_cpu_has_virtual_nmis(vmcs12) &&
-	    nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
-		return -EINVAL;
-
-	return 0;
-}
-
-static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	bool ia32e;
-
-	if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
-	    vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
-	if (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id)
-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
-	if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
-	if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
-	if (nested_vmx_check_apic_access_controls(vcpu, vmcs12))
-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
-	if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
-	if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
-	if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
-	if (nested_vmx_check_pml_controls(vcpu, vmcs12))
-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
-	if (nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12))
-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
-	if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
-				vmx->nested.msrs.procbased_ctls_low,
-				vmx->nested.msrs.procbased_ctls_high) ||
-	    (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
-	     !vmx_control_verify(vmcs12->secondary_vm_exec_control,
-				 vmx->nested.msrs.secondary_ctls_low,
-				 vmx->nested.msrs.secondary_ctls_high)) ||
-	    !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
-				vmx->nested.msrs.pinbased_ctls_low,
-				vmx->nested.msrs.pinbased_ctls_high) ||
-	    !vmx_control_verify(vmcs12->vm_exit_controls,
-				vmx->nested.msrs.exit_ctls_low,
-				vmx->nested.msrs.exit_ctls_high) ||
-	    !vmx_control_verify(vmcs12->vm_entry_controls,
-				vmx->nested.msrs.entry_ctls_low,
-				vmx->nested.msrs.entry_ctls_high))
-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
-	if (nested_vmx_check_nmi_controls(vmcs12))
-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
-	if (nested_cpu_has_vmfunc(vmcs12)) {
-		if (vmcs12->vm_function_control &
-		    ~vmx->nested.msrs.vmfunc_controls)
-			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
-		if (nested_cpu_has_eptp_switching(vmcs12)) {
-			if (!nested_cpu_has_ept(vmcs12) ||
-			    !page_address_valid(vcpu, vmcs12->eptp_list_address))
-				return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-		}
-	}
-
-	if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
-	if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
-	    !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
-	    !nested_cr3_valid(vcpu, vmcs12->host_cr3))
-		return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
-
-	/*
-	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
-	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
-	 * the values of the LMA and LME bits in the field must each be that of
-	 * the host address-space size VM-exit control.
-	 */
-	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
-		ia32e = (vmcs12->vm_exit_controls &
-			 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
-		if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
-		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
-		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
-			return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
-	}
-
-	/*
-	 * From the Intel SDM, volume 3:
-	 * Fields relevant to VM-entry event injection must be set properly.
-	 * These fields are the VM-entry interruption-information field, the
-	 * VM-entry exception error code, and the VM-entry instruction length.
-	 */
-	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
-		u32 intr_info = vmcs12->vm_entry_intr_info_field;
-		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
-		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
-		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
-		bool should_have_error_code;
-		bool urg = nested_cpu_has2(vmcs12,
-					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
-		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
-
-		/* VM-entry interruption-info field: interruption type */
-		if (intr_type == INTR_TYPE_RESERVED ||
-		    (intr_type == INTR_TYPE_OTHER_EVENT &&
-		     !nested_cpu_supports_monitor_trap_flag(vcpu)))
-			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
-		/* VM-entry interruption-info field: vector */
-		if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
-		    (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
-		    (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
-			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
-		/* VM-entry interruption-info field: deliver error code */
-		should_have_error_code =
-			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
-			x86_exception_has_error_code(vector);
-		if (has_error_code != should_have_error_code)
-			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
-		/* VM-entry exception error code */
-		if (has_error_code &&
-		    vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
-			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
-		/* VM-entry interruption-info field: reserved bits */
-		if (intr_info & INTR_INFO_RESVD_BITS_MASK)
-			return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
-		/* VM-entry instruction length */
-		switch (intr_type) {
-		case INTR_TYPE_SOFT_EXCEPTION:
-		case INTR_TYPE_SOFT_INTR:
-		case INTR_TYPE_PRIV_SW_EXCEPTION:
-			if ((vmcs12->vm_entry_instruction_len > 15) ||
-			    (vmcs12->vm_entry_instruction_len == 0 &&
-			     !nested_cpu_has_zero_length_injection(vcpu)))
-				return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-		}
-	}
-
-	if (nested_cpu_has_ept(vmcs12) &&
-	    !valid_ept_address(vcpu, vmcs12->ept_pointer))
-		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
-	return 0;
-}
-
-static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
-					  struct vmcs12 *vmcs12)
-{
-	int r;
-	struct page *page;
-	struct vmcs12 *shadow;
-
-	if (vmcs12->vmcs_link_pointer == -1ull)
-		return 0;
-
-	if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
-		return -EINVAL;
-
-	page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
-	if (is_error_page(page))
-		return -EINVAL;
-
-	r = 0;
-	shadow = kmap(page);
-	if (shadow->hdr.revision_id != VMCS12_REVISION ||
-	    shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
-		r = -EINVAL;
-	kunmap(page);
-	kvm_release_page_clean(page);
-	return r;
-}
-
-static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
-				  u32 *exit_qual)
-{
-	bool ia32e;
-
-	*exit_qual = ENTRY_FAIL_DEFAULT;
-
-	if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
-	    !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
-		return 1;
-
-	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
-		*exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
-		return 1;
-	}
-
-	/*
-	 * If the load IA32_EFER VM-entry control is 1, the following checks
-	 * are performed on the field for the IA32_EFER MSR:
-	 * - Bits reserved in the IA32_EFER MSR must be 0.
-	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
-	 *   the IA-32e mode guest VM-exit control. It must also be identical
-	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
-	 *   CR0.PG) is 1.
-	 */
-	if (to_vmx(vcpu)->nested.nested_run_pending &&
-	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
-		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
-		if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
-		    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
-		    ((vmcs12->guest_cr0 & X86_CR0_PG) &&
-		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
-			return 1;
-	}
-
-	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
-		(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
-		(vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
-			return 1;
-
-	return 0;
-}
-
-static int __noclone nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	unsigned long cr3, cr4;
-
-	if (!nested_early_check)
-		return 0;
-
-	if (vmx->msr_autoload.host.nr)
-		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
-	if (vmx->msr_autoload.guest.nr)
-		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
-
-	preempt_disable();
-
-	vmx_prepare_switch_to_guest(vcpu);
-
-	/*
-	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
-	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
-	 * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
-	 * there is no need to preserve other bits or save/restore the field.
-	 */
-	vmcs_writel(GUEST_RFLAGS, 0);
-
-	vmcs_writel(HOST_RIP, vmx_early_consistency_check_return);
-
-	cr3 = __get_current_cr3_fast();
-	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
-		vmcs_writel(HOST_CR3, cr3);
-		vmx->loaded_vmcs->host_state.cr3 = cr3;
-	}
-
-	cr4 = cr4_read_shadow();
-	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
-		vmcs_writel(HOST_CR4, cr4);
-		vmx->loaded_vmcs->host_state.cr4 = cr4;
-	}
-
-	vmx->__launched = vmx->loaded_vmcs->launched;
-
-	asm(
-		/* Set HOST_RSP */
-		__ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t"
-		"mov %%" _ASM_SP ", %c[host_rsp](%0)\n\t"
-
-		/* Check if vmlaunch of vmresume is needed */
-		"cmpl $0, %c[launched](%0)\n\t"
-		"je 1f\n\t"
-		__ex("vmresume") "\n\t"
-		"jmp 2f\n\t"
-		"1: " __ex("vmlaunch") "\n\t"
-		"jmp 2f\n\t"
-		"2: "
-
-		/* Set vmx->fail accordingly */
-		"setbe %c[fail](%0)\n\t"
-
-		".pushsection .rodata\n\t"
-		".global vmx_early_consistency_check_return\n\t"
-		"vmx_early_consistency_check_return: " _ASM_PTR " 2b\n\t"
-		".popsection"
-	      :
-	      : "c"(vmx), "d"((unsigned long)HOST_RSP),
-		[launched]"i"(offsetof(struct vcpu_vmx, __launched)),
-		[fail]"i"(offsetof(struct vcpu_vmx, fail)),
-		[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp))
-	      : "rax", "cc", "memory"
-	);
-
-	vmcs_writel(HOST_RIP, vmx_return);
-
-	preempt_enable();
-
-	if (vmx->msr_autoload.host.nr)
-		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
-	if (vmx->msr_autoload.guest.nr)
-		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
-
-	if (vmx->fail) {
-		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
-			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
-		vmx->fail = 0;
-		return 1;
-	}
-
-	/*
-	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
-	 */
-	local_irq_enable();
-	if (hw_breakpoint_active())
-		set_debugreg(__this_cpu_read(cpu_dr7), 7);
-
-	/*
-	 * A non-failing VMEntry means we somehow entered guest mode with
-	 * an illegal RIP, and that's just the tip of the iceberg.  There
-	 * is no telling what memory has been modified or what state has
-	 * been exposed to unknown code.  Hitting this all but guarantees
-	 * a (very critical) hardware issue.
-	 */
-	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
-		VMX_EXIT_REASONS_FAILED_VMENTRY));
-
-	return 0;
-}
-STACK_FRAME_NON_STANDARD(nested_vmx_check_vmentry_hw);
-
-static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
-				   struct vmcs12 *vmcs12);
-
-/*
- * If from_vmentry is false, this is being called from state restore (either RSM
- * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
-+ *
-+ * Returns:
-+ *   0 - success, i.e. proceed with actual VMEnter
-+ *   1 - consistency check VMExit
-+ *  -1 - consistency check VMFail
- */
-static int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
-					  bool from_vmentry)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-	bool evaluate_pending_interrupts;
-	u32 exit_reason = EXIT_REASON_INVALID_STATE;
-	u32 exit_qual;
-
-	evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
-		(CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
-	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
-		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
-
-	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
-		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
-	if (kvm_mpx_supported() &&
-		!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
-		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
-
-	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
-
-	prepare_vmcs02_early(vmx, vmcs12);
-
-	if (from_vmentry) {
-		nested_get_vmcs12_pages(vcpu);
-
-		if (nested_vmx_check_vmentry_hw(vcpu)) {
-			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
-			return -1;
-		}
-
-		if (check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
-			goto vmentry_fail_vmexit;
-	}
-
-	enter_guest_mode(vcpu);
-	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
-		vcpu->arch.tsc_offset += vmcs12->tsc_offset;
-
-	if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
-		goto vmentry_fail_vmexit_guest_mode;
-
-	if (from_vmentry) {
-		exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
-		exit_qual = nested_vmx_load_msr(vcpu,
-						vmcs12->vm_entry_msr_load_addr,
-						vmcs12->vm_entry_msr_load_count);
-		if (exit_qual)
-			goto vmentry_fail_vmexit_guest_mode;
-	} else {
-		/*
-		 * The MMU is not initialized to point at the right entities yet and
-		 * "get pages" would need to read data from the guest (i.e. we will
-		 * need to perform gpa to hpa translation). Request a call
-		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
-		 * have already been set at vmentry time and should not be reset.
-		 */
-		kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
-	}
-
-	/*
-	 * If L1 had a pending IRQ/NMI until it executed
-	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
-	 * disallowed (e.g. interrupts disabled), L0 needs to
-	 * evaluate if this pending event should cause an exit from L2
-	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
-	 * intercept EXTERNAL_INTERRUPT).
-	 *
-	 * Usually this would be handled by the processor noticing an
-	 * IRQ/NMI window request, or checking RVI during evaluation of
-	 * pending virtual interrupts.  However, this setting was done
-	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
-	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
-	 */
-	if (unlikely(evaluate_pending_interrupts))
-		kvm_make_request(KVM_REQ_EVENT, vcpu);
-
-	/*
-	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
-	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
-	 * returned as far as L1 is concerned. It will only return (and set
-	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
-	 */
-	return 0;
-
-	/*
-	 * A failed consistency check that leads to a VMExit during L1's
-	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
-	 * 26.7 "VM-entry failures during or after loading guest state".
-	 */
-vmentry_fail_vmexit_guest_mode:
-	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
-		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
-	leave_guest_mode(vcpu);
-
-vmentry_fail_vmexit:
-	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
-
-	if (!from_vmentry)
-		return 1;
-
-	load_vmcs12_host_state(vcpu, vmcs12);
-	vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
-	vmcs12->exit_qualification = exit_qual;
-	if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
-		vmx->nested.need_vmcs12_sync = true;
-	return 1;
-}
-
-/*
- * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
- * for running an L2 nested guest.
- */
-static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
-{
-	struct vmcs12 *vmcs12;
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
-	int ret;
-
-	if (!nested_vmx_check_permission(vcpu))
-		return 1;
-
-	if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true))
-		return 1;
-
-	if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
-		return nested_vmx_failInvalid(vcpu);
-
-	vmcs12 = get_vmcs12(vcpu);
-
-	/*
-	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
-	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
-	 * rather than RFLAGS.ZF, and no error number is stored to the
-	 * VM-instruction error field.
-	 */
-	if (vmcs12->hdr.shadow_vmcs)
-		return nested_vmx_failInvalid(vcpu);
-
-	if (vmx->nested.hv_evmcs) {
-		copy_enlightened_to_vmcs12(vmx);
-		/* Enlightened VMCS doesn't have launch state */
-		vmcs12->launch_state = !launch;
-	} else if (enable_shadow_vmcs) {
-		copy_shadow_to_vmcs12(vmx);
-	}
-
-	/*
-	 * The nested entry process starts with enforcing various prerequisites
-	 * on vmcs12 as required by the Intel SDM, and act appropriately when
-	 * they fail: As the SDM explains, some conditions should cause the
-	 * instruction to fail, while others will cause the instruction to seem
-	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
-	 * To speed up the normal (success) code path, we should avoid checking
-	 * for misconfigurations which will anyway be caught by the processor
-	 * when using the merged vmcs02.
-	 */
-	if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
-		return nested_vmx_failValid(vcpu,
-			VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
-
-	if (vmcs12->launch_state == launch)
-		return nested_vmx_failValid(vcpu,
-			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
-			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
-
-	ret = check_vmentry_prereqs(vcpu, vmcs12);
-	if (ret)
-		return nested_vmx_failValid(vcpu, ret);
-
-	/*
-	 * We're finally done with prerequisite checking, and can start with
-	 * the nested entry.
-	 */
-	vmx->nested.nested_run_pending = 1;
-	ret = nested_vmx_enter_non_root_mode(vcpu, true);
-	vmx->nested.nested_run_pending = !ret;
-	if (ret > 0)
-		return 1;
-	else if (ret)
-		return nested_vmx_failValid(vcpu,
-			VMXERR_ENTRY_INVALID_CONTROL_FIELD);
-
-	/* Hide L1D cache contents from the nested guest.  */
-	vmx->vcpu.arch.l1tf_flush_l1d = true;
-
-	/*
-	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
-	 * also be used as part of restoring nVMX state for
-	 * snapshot restore (migration).
-	 *
-	 * In this flow, it is assumed that vmcs12 cache was
-	 * trasferred as part of captured nVMX state and should
-	 * therefore not be read from guest memory (which may not
-	 * exist on destination host yet).
-	 */
-	nested_cache_shadow_vmcs12(vcpu, vmcs12);
-
-	/*
-	 * If we're entering a halted L2 vcpu and the L2 vcpu won't be woken
-	 * by event injection, halt vcpu.
-	 */
-	if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
-	    !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK)) {
-		vmx->nested.nested_run_pending = 0;
-		return kvm_vcpu_halt(vcpu);
-	}
-	return 1;
-}
-
-/*
- * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
- * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
- * This function returns the new value we should put in vmcs12.guest_cr0.
- * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
- *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
- *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
- *     didn't trap the bit, because if L1 did, so would L0).
- *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
- *     been modified by L2, and L1 knows it. So just leave the old value of
- *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
- *     isn't relevant, because if L0 traps this bit it can set it to anything.
- *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
- *     changed these bits, and therefore they need to be updated, but L0
- *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
- *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
- */
-static inline unsigned long
-vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
-{
-	return
-	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
-	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
-	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
-			vcpu->arch.cr0_guest_owned_bits));
-}
-
-static inline unsigned long
-vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
-{
-	return
-	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
-	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
-	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
-			vcpu->arch.cr4_guest_owned_bits));
-}
-
-static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
-				       struct vmcs12 *vmcs12)
-{
-	u32 idt_vectoring;
-	unsigned int nr;
-
-	if (vcpu->arch.exception.injected) {
-		nr = vcpu->arch.exception.nr;
-		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
-
-		if (kvm_exception_is_soft(nr)) {
-			vmcs12->vm_exit_instruction_len =
-				vcpu->arch.event_exit_inst_len;
-			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
-		} else
-			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
-
-		if (vcpu->arch.exception.has_error_code) {
-			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
-			vmcs12->idt_vectoring_error_code =
-				vcpu->arch.exception.error_code;
-		}
-
-		vmcs12->idt_vectoring_info_field = idt_vectoring;
-	} else if (vcpu->arch.nmi_injected) {
-		vmcs12->idt_vectoring_info_field =
-			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
-	} else if (vcpu->arch.interrupt.injected) {
-		nr = vcpu->arch.interrupt.nr;
-		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
-
-		if (vcpu->arch.interrupt.soft) {
-			idt_vectoring |= INTR_TYPE_SOFT_INTR;
-			vmcs12->vm_entry_instruction_len =
-				vcpu->arch.event_exit_inst_len;
-		} else
-			idt_vectoring |= INTR_TYPE_EXT_INTR;
-
-		vmcs12->idt_vectoring_info_field = idt_vectoring;
-	}
-}
-
-static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	unsigned long exit_qual;
-	bool block_nested_events =
-	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
-
-	if (vcpu->arch.exception.pending &&
-		nested_vmx_check_exception(vcpu, &exit_qual)) {
-		if (block_nested_events)
-			return -EBUSY;
-		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
-		return 0;
-	}
-
-	if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
-	    vmx->nested.preemption_timer_expired) {
-		if (block_nested_events)
-			return -EBUSY;
-		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
-		return 0;
-	}
-
-	if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
-		if (block_nested_events)
-			return -EBUSY;
-		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
-				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
-				  INTR_INFO_VALID_MASK, 0);
-		/*
-		 * The NMI-triggered VM exit counts as injection:
-		 * clear this one and block further NMIs.
-		 */
-		vcpu->arch.nmi_pending = 0;
-		vmx_set_nmi_mask(vcpu, true);
-		return 0;
-	}
-
-	if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
-	    nested_exit_on_intr(vcpu)) {
-		if (block_nested_events)
-			return -EBUSY;
-		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
-		return 0;
-	}
-
-	vmx_complete_nested_posted_interrupt(vcpu);
-	return 0;
-}
-
-static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
-{
-	to_vmx(vcpu)->req_immediate_exit = true;
-}
-
-static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
-{
-	ktime_t remaining =
-		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
-	u64 value;
-
-	if (ktime_to_ns(remaining) <= 0)
-		return 0;
-
-	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
-	do_div(value, 1000000);
-	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
-}
-
-/*
- * Update the guest state fields of vmcs12 to reflect changes that
- * occurred while L2 was running. (The "IA-32e mode guest" bit of the
- * VM-entry controls is also updated, since this is really a guest
- * state bit.)
- */
-static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
-{
-	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
-	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
-
-	vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
-	vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
-	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
-
-	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
-	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
-	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
-	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
-	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
-	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
-	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
-	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
-	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
-	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
-	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
-	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
-	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
-	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
-	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
-	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
-	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
-	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
-	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
-	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
-	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
-	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
-	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
-	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
-	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
-	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
-	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
-	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
-	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
-	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
-	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
-	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
-	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
-	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
-	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
-	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
-
-	vmcs12->guest_interruptibility_info =
-		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
-	vmcs12->guest_pending_dbg_exceptions =
-		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
-	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
-		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
-	else
-		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
-
-	if (nested_cpu_has_preemption_timer(vmcs12)) {
-		if (vmcs12->vm_exit_controls &
-		    VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
-			vmcs12->vmx_preemption_timer_value =
-				vmx_get_preemption_timer_value(vcpu);
-		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
-	}
-
-	/*
-	 * In some cases (usually, nested EPT), L2 is allowed to change its
-	 * own CR3 without exiting. If it has changed it, we must keep it.
-	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
-	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
-	 *
-	 * Additionally, restore L2's PDPTR to vmcs12.
-	 */
-	if (enable_ept) {
-		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
-		vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
-		vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
-		vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
-		vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
-	}
-
-	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
-
-	if (nested_cpu_has_vid(vmcs12))
-		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
-
-	vmcs12->vm_entry_controls =
-		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
-		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
-
-	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
-		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
-		vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
-	}
-
-	/* TODO: These cannot have changed unless we have MSR bitmaps and
-	 * the relevant bit asks not to trap the change */
-	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
-		vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
-	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
-		vmcs12->guest_ia32_efer = vcpu->arch.efer;
-	vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
-	vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
-	vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
-	if (kvm_mpx_supported())
-		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
-}
-
-/*
- * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
- * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
- * and this function updates it to reflect the changes to the guest state while
- * L2 was running (and perhaps made some exits which were handled directly by L0
- * without going back to L1), and to reflect the exit reason.
- * Note that we do not have to copy here all VMCS fields, just those that
- * could have changed by the L2 guest or the exit - i.e., the guest-state and
- * exit-information fields only. Other fields are modified by L1 with VMWRITE,
- * which already writes to vmcs12 directly.
- */
-static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
-			   u32 exit_reason, u32 exit_intr_info,
-			   unsigned long exit_qualification)
-{
-	/* update guest state fields: */
-	sync_vmcs12(vcpu, vmcs12);
-
-	/* update exit information fields: */
-
-	vmcs12->vm_exit_reason = exit_reason;
-	vmcs12->exit_qualification = exit_qualification;
-	vmcs12->vm_exit_intr_info = exit_intr_info;
-
-	vmcs12->idt_vectoring_info_field = 0;
-	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
-	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
-
-	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
-		vmcs12->launch_state = 1;
-
-		/* vm_entry_intr_info_field is cleared on exit. Emulate this
-		 * instead of reading the real value. */
-		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
-
-		/*
-		 * Transfer the event that L0 or L1 may wanted to inject into
-		 * L2 to IDT_VECTORING_INFO_FIELD.
-		 */
-		vmcs12_save_pending_event(vcpu, vmcs12);
-	}
-
-	/*
-	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
-	 * preserved above and would only end up incorrectly in L1.
-	 */
-	vcpu->arch.nmi_injected = false;
-	kvm_clear_exception_queue(vcpu);
-	kvm_clear_interrupt_queue(vcpu);
-}
-
-/*
- * A part of what we need to when the nested L2 guest exits and we want to
- * run its L1 parent, is to reset L1's guest state to the host state specified
- * in vmcs12.
- * This function is to be called not only on normal nested exit, but also on
- * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
- * Failures During or After Loading Guest State").
- * This function should be called when the active VMCS is L1's (vmcs01).
- */
-static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
-				   struct vmcs12 *vmcs12)
-{
-	struct kvm_segment seg;
-	u32 entry_failure_code;
-
-	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
-		vcpu->arch.efer = vmcs12->host_ia32_efer;
-	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
-		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
-	else
-		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
-	vmx_set_efer(vcpu, vcpu->arch.efer);
-
-	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
-	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
-	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
-	vmx_set_interrupt_shadow(vcpu, 0);
-
-	/*
-	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
-	 * actually changed, because vmx_set_cr0 refers to efer set above.
-	 *
-	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
-	 * (KVM doesn't change it);
-	 */
-	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
-	vmx_set_cr0(vcpu, vmcs12->host_cr0);
-
-	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
-	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
-	vmx_set_cr4(vcpu, vmcs12->host_cr4);
-
-	nested_ept_uninit_mmu_context(vcpu);
-
-	/*
-	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
-	 * couldn't have changed.
-	 */
-	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
-		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
-
-	if (!enable_ept)
-		vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
-
-	/*
-	 * If vmcs01 doesn't use VPID, CPU flushes TLB on every
-	 * VMEntry/VMExit. Thus, no need to flush TLB.
-	 *
-	 * If vmcs12 doesn't use VPID, L1 expects TLB to be
-	 * flushed on every VMEntry/VMExit.
-	 *
-	 * Otherwise, we can preserve TLB entries as long as we are
-	 * able to tag L1 TLB entries differently than L2 TLB entries.
-	 *
-	 * If vmcs12 uses EPT, we need to execute this flush on EPTP01
-	 * and therefore we request the TLB flush to happen only after VMCS EPTP
-	 * has been set by KVM_REQ_LOAD_CR3.
-	 */
-	if (enable_vpid &&
-	    (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
-		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
-	}
-
-	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
-	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
-	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
-	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
-	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
-	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
-	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
-
-	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
-	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
-		vmcs_write64(GUEST_BNDCFGS, 0);
-
-	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
-		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
-		vcpu->arch.pat = vmcs12->host_ia32_pat;
-	}
-	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
-		vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
-			vmcs12->host_ia32_perf_global_ctrl);
-
-	/* Set L1 segment info according to Intel SDM
-	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
-	seg = (struct kvm_segment) {
-		.base = 0,
-		.limit = 0xFFFFFFFF,
-		.selector = vmcs12->host_cs_selector,
-		.type = 11,
-		.present = 1,
-		.s = 1,
-		.g = 1
-	};
-	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
-		seg.l = 1;
-	else
-		seg.db = 1;
-	vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
-	seg = (struct kvm_segment) {
-		.base = 0,
-		.limit = 0xFFFFFFFF,
-		.type = 3,
-		.present = 1,
-		.s = 1,
-		.db = 1,
-		.g = 1
-	};
-	seg.selector = vmcs12->host_ds_selector;
-	vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
-	seg.selector = vmcs12->host_es_selector;
-	vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
-	seg.selector = vmcs12->host_ss_selector;
-	vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
-	seg.selector = vmcs12->host_fs_selector;
-	seg.base = vmcs12->host_fs_base;
-	vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
-	seg.selector = vmcs12->host_gs_selector;
-	seg.base = vmcs12->host_gs_base;
-	vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
-	seg = (struct kvm_segment) {
-		.base = vmcs12->host_tr_base,
-		.limit = 0x67,
-		.selector = vmcs12->host_tr_selector,
-		.type = 11,
-		.present = 1
-	};
-	vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
-
-	kvm_set_dr(vcpu, 7, 0x400);
-	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
-
-	if (cpu_has_vmx_msr_bitmap())
-		vmx_update_msr_bitmap(vcpu);
-
-	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
-				vmcs12->vm_exit_msr_load_count))
-		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
-}
-
-static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
-{
-	struct shared_msr_entry *efer_msr;
-	unsigned int i;
-
-	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
-		return vmcs_read64(GUEST_IA32_EFER);
-
-	if (cpu_has_load_ia32_efer)
-		return host_efer;
-
-	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
-		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
-			return vmx->msr_autoload.guest.val[i].value;
-	}
-
-	efer_msr = find_msr_entry(vmx, MSR_EFER);
-	if (efer_msr)
-		return efer_msr->data;
-
-	return host_efer;
-}
-
-static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
-{
-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	struct vmx_msr_entry g, h;
-	struct msr_data msr;
-	gpa_t gpa;
-	u32 i, j;
-
-	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
-
-	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
-		/*
-		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
-		 * as vmcs01.GUEST_DR7 contains a userspace defined value
-		 * and vcpu->arch.dr7 is not squirreled away before the
-		 * nested VMENTER (not worth adding a variable in nested_vmx).
-		 */
-		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
-			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
-		else
-			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
-	}
-
-	/*
-	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
-	 * handle a variety of side effects to KVM's software model.
-	 */
-	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
-
-	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
-	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
-
-	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
-	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
-
-	nested_ept_uninit_mmu_context(vcpu);
-	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
-	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
-
-	/*
-	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
-	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
-	 * VMFail, like everything else we just need to ensure our
-	 * software model is up-to-date.
-	 */
-	ept_save_pdptrs(vcpu);
-
-	kvm_mmu_reset_context(vcpu);
-
-	if (cpu_has_vmx_msr_bitmap())
-		vmx_update_msr_bitmap(vcpu);
-
-	/*
-	 * This nasty bit of open coding is a compromise between blindly
-	 * loading L1's MSRs using the exit load lists (incorrect emulation
-	 * of VMFail), leaving the nested VM's MSRs in the software model
-	 * (incorrect behavior) and snapshotting the modified MSRs (too
-	 * expensive since the lists are unbound by hardware).  For each
-	 * MSR that was (prematurely) loaded from the nested VMEntry load
-	 * list, reload it from the exit load list if it exists and differs
-	 * from the guest value.  The intent is to stuff host state as
-	 * silently as possible, not to fully process the exit load list.
-	 */
-	msr.host_initiated = false;
-	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
-		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
-		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
-			pr_debug_ratelimited(
-				"%s read MSR index failed (%u, 0x%08llx)\n",
-				__func__, i, gpa);
-			goto vmabort;
-		}
-
-		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
-			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
-			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
-				pr_debug_ratelimited(
-					"%s read MSR failed (%u, 0x%08llx)\n",
-					__func__, j, gpa);
-				goto vmabort;
-			}
-			if (h.index != g.index)
-				continue;
-			if (h.value == g.value)
-				break;
-
-			if (nested_vmx_load_msr_check(vcpu, &h)) {
-				pr_debug_ratelimited(
-					"%s check failed (%u, 0x%x, 0x%x)\n",
-					__func__, j, h.index, h.reserved);
-				goto vmabort;
-			}
-
-			msr.index = h.index;
-			msr.data = h.value;
-			if (kvm_set_msr(vcpu, &msr)) {
-				pr_debug_ratelimited(
-					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
-					__func__, j, h.index, h.value);
-				goto vmabort;
-			}
-		}
-	}
-
-	return;
-
-vmabort:
-	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
-}
-
-/*
- * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
- * and modify vmcs12 to make it see what it would expect to see there if
- * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
- */
-static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
-			      u32 exit_intr_info,
-			      unsigned long exit_qualification)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-
-	/* trying to cancel vmlaunch/vmresume is a bug */
-	WARN_ON_ONCE(vmx->nested.nested_run_pending);
-
-	leave_guest_mode(vcpu);
-
-	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
-		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
-
-	if (likely(!vmx->fail)) {
-		if (exit_reason == -1)
-			sync_vmcs12(vcpu, vmcs12);
-		else
-			prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
-				       exit_qualification);
-
-		/*
-		 * Must happen outside of sync_vmcs12() as it will
-		 * also be used to capture vmcs12 cache as part of
-		 * capturing nVMX state for snapshot (migration).
-		 *
-		 * Otherwise, this flush will dirty guest memory at a
-		 * point it is already assumed by user-space to be
-		 * immutable.
-		 */
-		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
-
-		if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
-					 vmcs12->vm_exit_msr_store_count))
-			nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
-	} else {
-		/*
-		 * The only expected VM-instruction error is "VM entry with
-		 * invalid control field(s)." Anything else indicates a
-		 * problem with L0.  And we should never get here with a
-		 * VMFail of any type if early consistency checks are enabled.
-		 */
-		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
-			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
-		WARN_ON_ONCE(nested_early_check);
-	}
-
-	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
-
-	/* Update any VMCS fields that might have changed while L2 ran */
-	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
-	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
-	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
-
-	if (kvm_has_tsc_control)
-		decache_tsc_multiplier(vmx);
-
-	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
-		vmx->nested.change_vmcs01_virtual_apic_mode = false;
-		vmx_set_virtual_apic_mode(vcpu);
-	} else if (!nested_cpu_has_ept(vmcs12) &&
-		   nested_cpu_has2(vmcs12,
-				   SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
-		vmx_flush_tlb(vcpu, true);
-	}
-
-	/* This is needed for same reason as it was needed in prepare_vmcs02 */
-	vmx->host_rsp = 0;
-
-	/* Unpin physical memory we referred to in vmcs02 */
-	if (vmx->nested.apic_access_page) {
-		kvm_release_page_dirty(vmx->nested.apic_access_page);
-		vmx->nested.apic_access_page = NULL;
-	}
-	if (vmx->nested.virtual_apic_page) {
-		kvm_release_page_dirty(vmx->nested.virtual_apic_page);
-		vmx->nested.virtual_apic_page = NULL;
-	}
-	if (vmx->nested.pi_desc_page) {
-		kunmap(vmx->nested.pi_desc_page);
-		kvm_release_page_dirty(vmx->nested.pi_desc_page);
-		vmx->nested.pi_desc_page = NULL;
-		vmx->nested.pi_desc = NULL;
-	}
-
-	/*
-	 * We are now running in L2, mmu_notifier will force to reload the
-	 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
-	 */
-	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
-
-	if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
-		vmx->nested.need_vmcs12_sync = true;
-
-	/* in case we halted in L2 */
-	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
-
-	if (likely(!vmx->fail)) {
-		/*
-		 * TODO: SDM says that with acknowledge interrupt on
-		 * exit, bit 31 of the VM-exit interrupt information
-		 * (valid interrupt) is always set to 1 on
-		 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
-		 * need kvm_cpu_has_interrupt().  See the commit
-		 * message for details.
-		 */
-		if (nested_exit_intr_ack_set(vcpu) &&
-		    exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
-		    kvm_cpu_has_interrupt(vcpu)) {
-			int irq = kvm_cpu_get_interrupt(vcpu);
-			WARN_ON(irq < 0);
-			vmcs12->vm_exit_intr_info = irq |
-				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
-		}
-
-		if (exit_reason != -1)
-			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
-						       vmcs12->exit_qualification,
-						       vmcs12->idt_vectoring_info_field,
-						       vmcs12->vm_exit_intr_info,
-						       vmcs12->vm_exit_intr_error_code,
-						       KVM_ISA_VMX);
-
-		load_vmcs12_host_state(vcpu, vmcs12);
-
-		return;
-	}
-
-	/*
-	 * After an early L2 VM-entry failure, we're now back
-	 * in L1 which thinks it just finished a VMLAUNCH or
-	 * VMRESUME instruction, so we need to set the failure
-	 * flag and the VM-instruction error field of the VMCS
-	 * accordingly, and skip the emulated instruction.
-	 */
-	(void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
-
-	/*
-	 * Restore L1's host state to KVM's software model.  We're here
-	 * because a consistency check was caught by hardware, which
-	 * means some amount of guest state has been propagated to KVM's
-	 * model and needs to be unwound to the host's state.
-	 */
-	nested_vmx_restore_host_state(vcpu);
-
-	vmx->fail = 0;
-}
-
-/*
- * Forcibly leave nested mode in order to be able to reset the VCPU later on.
- */
-static void vmx_leave_nested(struct kvm_vcpu *vcpu)
-{
-	if (is_guest_mode(vcpu)) {
-		to_vmx(vcpu)->nested.nested_run_pending = 0;
-		nested_vmx_vmexit(vcpu, -1, 0, 0);
-	}
-	free_nested(vcpu);
-}
-
-static int vmx_check_intercept(struct kvm_vcpu *vcpu,
-			       struct x86_instruction_info *info,
-			       enum x86_intercept_stage stage)
-{
-	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
-
-	/*
-	 * RDPID causes #UD if disabled through secondary execution controls.
-	 * Because it is marked as EmulateOnUD, we need to intercept it here.
-	 */
-	if (info->intercept == x86_intercept_rdtscp &&
-	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
-		ctxt->exception.vector = UD_VECTOR;
-		ctxt->exception.error_code_valid = false;
-		return X86EMUL_PROPAGATE_FAULT;
-	}
-
-	/* TODO: check more intercepts... */
-	return X86EMUL_CONTINUE;
-}
-
-#ifdef CONFIG_X86_64
-/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
-static inline int u64_shl_div_u64(u64 a, unsigned int shift,
-				  u64 divisor, u64 *result)
-{
-	u64 low = a << shift, high = a >> (64 - shift);
-
-	/* To avoid the overflow on divq */
-	if (high >= divisor)
-		return 1;
-
-	/* Low hold the result, high hold rem which is discarded */
-	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
-	    "rm" (divisor), "0" (low), "1" (high));
-	*result = low;
-
-	return 0;
-}
-
-static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
-{
-	struct vcpu_vmx *vmx;
-	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
-
-	if (kvm_mwait_in_guest(vcpu->kvm))
-		return -EOPNOTSUPP;
-
-	vmx = to_vmx(vcpu);
-	tscl = rdtsc();
-	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
-	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
-	lapic_timer_advance_cycles = nsec_to_cycles(vcpu, lapic_timer_advance_ns);
-
-	if (delta_tsc > lapic_timer_advance_cycles)
-		delta_tsc -= lapic_timer_advance_cycles;
-	else
-		delta_tsc = 0;
-
-	/* Convert to host delta tsc if tsc scaling is enabled */
-	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
-			u64_shl_div_u64(delta_tsc,
-				kvm_tsc_scaling_ratio_frac_bits,
-				vcpu->arch.tsc_scaling_ratio,
-				&delta_tsc))
-		return -ERANGE;
-
-	/*
-	 * If the delta tsc can't fit in the 32 bit after the multi shift,
-	 * we can't use the preemption timer.
-	 * It's possible that it fits on later vmentries, but checking
-	 * on every vmentry is costly so we just use an hrtimer.
-	 */
-	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
-		return -ERANGE;
-
-	vmx->hv_deadline_tsc = tscl + delta_tsc;
-	return delta_tsc == 0;
-}
-
-static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
-{
-	to_vmx(vcpu)->hv_deadline_tsc = -1;
-}
-#endif
-
-static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
-{
-	if (!kvm_pause_in_guest(vcpu->kvm))
-		shrink_ple_window(vcpu);
-}
-
-static void vmx_slot_enable_log_dirty(struct kvm *kvm,
-				     struct kvm_memory_slot *slot)
-{
-	kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
-	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
-}
-
-static void vmx_slot_disable_log_dirty(struct kvm *kvm,
-				       struct kvm_memory_slot *slot)
-{
-	kvm_mmu_slot_set_dirty(kvm, slot);
-}
-
-static void vmx_flush_log_dirty(struct kvm *kvm)
-{
-	kvm_flush_pml_buffers(kvm);
-}
-
-static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
-{
-	struct vmcs12 *vmcs12;
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	gpa_t gpa;
-	struct page *page = NULL;
-	u64 *pml_address;
-
-	if (is_guest_mode(vcpu)) {
-		WARN_ON_ONCE(vmx->nested.pml_full);
-
-		/*
-		 * Check if PML is enabled for the nested guest.
-		 * Whether eptp bit 6 is set is already checked
-		 * as part of A/D emulation.
-		 */
-		vmcs12 = get_vmcs12(vcpu);
-		if (!nested_cpu_has_pml(vmcs12))
-			return 0;
-
-		if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
-			vmx->nested.pml_full = true;
-			return 1;
-		}
-
-		gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
-
-		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
-		if (is_error_page(page))
-			return 0;
-
-		pml_address = kmap(page);
-		pml_address[vmcs12->guest_pml_index--] = gpa;
-		kunmap(page);
-		kvm_release_page_clean(page);
-	}
-
-	return 0;
-}
-
-static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
-					   struct kvm_memory_slot *memslot,
-					   gfn_t offset, unsigned long mask)
-{
-	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
-}
-
-static void __pi_post_block(struct kvm_vcpu *vcpu)
-{
-	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
-	struct pi_desc old, new;
-	unsigned int dest;
-
-	do {
-		old.control = new.control = pi_desc->control;
-		WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
-		     "Wakeup handler not enabled while the VCPU is blocked\n");
-
-		dest = cpu_physical_id(vcpu->cpu);
-
-		if (x2apic_enabled())
-			new.ndst = dest;
-		else
-			new.ndst = (dest << 8) & 0xFF00;
-
-		/* set 'NV' to 'notification vector' */
-		new.nv = POSTED_INTR_VECTOR;
-	} while (cmpxchg64(&pi_desc->control, old.control,
-			   new.control) != old.control);
-
-	if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
-		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
-		list_del(&vcpu->blocked_vcpu_list);
-		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
-		vcpu->pre_pcpu = -1;
-	}
-}
-
-/*
- * This routine does the following things for vCPU which is going
- * to be blocked if VT-d PI is enabled.
- * - Store the vCPU to the wakeup list, so when interrupts happen
- *   we can find the right vCPU to wake up.
- * - Change the Posted-interrupt descriptor as below:
- *      'NDST' <-- vcpu->pre_pcpu
- *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
- * - If 'ON' is set during this process, which means at least one
- *   interrupt is posted for this vCPU, we cannot block it, in
- *   this case, return 1, otherwise, return 0.
- *
- */
-static int pi_pre_block(struct kvm_vcpu *vcpu)
-{
-	unsigned int dest;
-	struct pi_desc old, new;
-	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
-
-	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
-		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
-		!kvm_vcpu_apicv_active(vcpu))
-		return 0;
-
-	WARN_ON(irqs_disabled());
-	local_irq_disable();
-	if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
-		vcpu->pre_pcpu = vcpu->cpu;
-		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
-		list_add_tail(&vcpu->blocked_vcpu_list,
-			      &per_cpu(blocked_vcpu_on_cpu,
-				       vcpu->pre_pcpu));
-		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
-	}
-
-	do {
-		old.control = new.control = pi_desc->control;
-
-		WARN((pi_desc->sn == 1),
-		     "Warning: SN field of posted-interrupts "
-		     "is set before blocking\n");
-
-		/*
-		 * Since vCPU can be preempted during this process,
-		 * vcpu->cpu could be different with pre_pcpu, we
-		 * need to set pre_pcpu as the destination of wakeup
-		 * notification event, then we can find the right vCPU
-		 * to wakeup in wakeup handler if interrupts happen
-		 * when the vCPU is in blocked state.
-		 */
-		dest = cpu_physical_id(vcpu->pre_pcpu);
-
-		if (x2apic_enabled())
-			new.ndst = dest;
-		else
-			new.ndst = (dest << 8) & 0xFF00;
-
-		/* set 'NV' to 'wakeup vector' */
-		new.nv = POSTED_INTR_WAKEUP_VECTOR;
-	} while (cmpxchg64(&pi_desc->control, old.control,
-			   new.control) != old.control);
-
-	/* We should not block the vCPU if an interrupt is posted for it.  */
-	if (pi_test_on(pi_desc) == 1)
-		__pi_post_block(vcpu);
-
-	local_irq_enable();
-	return (vcpu->pre_pcpu == -1);
-}
-
-static int vmx_pre_block(struct kvm_vcpu *vcpu)
-{
-	if (pi_pre_block(vcpu))
-		return 1;
-
-	if (kvm_lapic_hv_timer_in_use(vcpu))
-		kvm_lapic_switch_to_sw_timer(vcpu);
-
-	return 0;
-}
-
-static void pi_post_block(struct kvm_vcpu *vcpu)
-{
-	if (vcpu->pre_pcpu == -1)
-		return;
-
-	WARN_ON(irqs_disabled());
-	local_irq_disable();
-	__pi_post_block(vcpu);
-	local_irq_enable();
-}
-
-static void vmx_post_block(struct kvm_vcpu *vcpu)
-{
-	if (kvm_x86_ops->set_hv_timer)
-		kvm_lapic_switch_to_hv_timer(vcpu);
-
-	pi_post_block(vcpu);
-}
-
-/*
- * vmx_update_pi_irte - set IRTE for Posted-Interrupts
- *
- * @kvm: kvm
- * @host_irq: host irq of the interrupt
- * @guest_irq: gsi of the interrupt
- * @set: set or unset PI
- * returns 0 on success, < 0 on failure
- */
-static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
-			      uint32_t guest_irq, bool set)
-{
-	struct kvm_kernel_irq_routing_entry *e;
-	struct kvm_irq_routing_table *irq_rt;
-	struct kvm_lapic_irq irq;
-	struct kvm_vcpu *vcpu;
-	struct vcpu_data vcpu_info;
-	int idx, ret = 0;
-
-	if (!kvm_arch_has_assigned_device(kvm) ||
-		!irq_remapping_cap(IRQ_POSTING_CAP) ||
-		!kvm_vcpu_apicv_active(kvm->vcpus[0]))
-		return 0;
-
-	idx = srcu_read_lock(&kvm->irq_srcu);
-	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
-	if (guest_irq >= irq_rt->nr_rt_entries ||
-	    hlist_empty(&irq_rt->map[guest_irq])) {
-		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
-			     guest_irq, irq_rt->nr_rt_entries);
-		goto out;
-	}
-
-	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
-		if (e->type != KVM_IRQ_ROUTING_MSI)
-			continue;
-		/*
-		 * VT-d PI cannot support posting multicast/broadcast
-		 * interrupts to a vCPU, we still use interrupt remapping
-		 * for these kind of interrupts.
-		 *
-		 * For lowest-priority interrupts, we only support
-		 * those with single CPU as the destination, e.g. user
-		 * configures the interrupts via /proc/irq or uses
-		 * irqbalance to make the interrupts single-CPU.
-		 *
-		 * We will support full lowest-priority interrupt later.
-		 */
-
-		kvm_set_msi_irq(kvm, e, &irq);
-		if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
-			/*
-			 * Make sure the IRTE is in remapped mode if
-			 * we don't handle it in posted mode.
-			 */
-			ret = irq_set_vcpu_affinity(host_irq, NULL);
-			if (ret < 0) {
-				printk(KERN_INFO
-				   "failed to back to remapped mode, irq: %u\n",
-				   host_irq);
-				goto out;
-			}
-
-			continue;
-		}
-
-		vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
-		vcpu_info.vector = irq.vector;
-
-		trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
-				vcpu_info.vector, vcpu_info.pi_desc_addr, set);
-
-		if (set)
-			ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
-		else
-			ret = irq_set_vcpu_affinity(host_irq, NULL);
-
-		if (ret < 0) {
-			printk(KERN_INFO "%s: failed to update PI IRTE\n",
-					__func__);
-			goto out;
-		}
-	}
-
-	ret = 0;
-out:
-	srcu_read_unlock(&kvm->irq_srcu, idx);
-	return ret;
-}
-
-static void vmx_setup_mce(struct kvm_vcpu *vcpu)
-{
-	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
-		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
-			FEATURE_CONTROL_LMCE;
-	else
-		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
-			~FEATURE_CONTROL_LMCE;
-}
-
-static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
-{
-	/* we need a nested vmexit to enter SMM, postpone if run is pending */
-	if (to_vmx(vcpu)->nested.nested_run_pending)
-		return 0;
-	return 1;
-}
-
-static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-
-	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
-	if (vmx->nested.smm.guest_mode)
-		nested_vmx_vmexit(vcpu, -1, 0, 0);
-
-	vmx->nested.smm.vmxon = vmx->nested.vmxon;
-	vmx->nested.vmxon = false;
-	vmx_clear_hlt(vcpu);
-	return 0;
-}
-
-static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	int ret;
-
-	if (vmx->nested.smm.vmxon) {
-		vmx->nested.vmxon = true;
-		vmx->nested.smm.vmxon = false;
-	}
-
-	if (vmx->nested.smm.guest_mode) {
-		vcpu->arch.hflags &= ~HF_SMM_MASK;
-		ret = nested_vmx_enter_non_root_mode(vcpu, false);
-		vcpu->arch.hflags |= HF_SMM_MASK;
-		if (ret)
-			return ret;
-
-		vmx->nested.smm.guest_mode = false;
-	}
-	return 0;
-}
-
-static int enable_smi_window(struct kvm_vcpu *vcpu)
-{
-	return 0;
-}
-
-static inline int vmx_has_valid_vmcs12(struct kvm_vcpu *vcpu)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-
-	/*
-	 * In case we do two consecutive get/set_nested_state()s while L2 was
-	 * running hv_evmcs may end up not being mapped (we map it from
-	 * nested_vmx_run()/vmx_vcpu_run()). Check is_guest_mode() as we always
-	 * have vmcs12 if it is true.
-	 */
-	return is_guest_mode(vcpu) || vmx->nested.current_vmptr != -1ull ||
-		vmx->nested.hv_evmcs;
-}
-
-static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
-				struct kvm_nested_state __user *user_kvm_nested_state,
-				u32 user_data_size)
-{
-	struct vcpu_vmx *vmx;
-	struct vmcs12 *vmcs12;
-	struct kvm_nested_state kvm_state = {
-		.flags = 0,
-		.format = 0,
-		.size = sizeof(kvm_state),
-		.vmx.vmxon_pa = -1ull,
-		.vmx.vmcs_pa = -1ull,
-	};
-
-	if (!vcpu)
-		return kvm_state.size + 2 * VMCS12_SIZE;
-
-	vmx = to_vmx(vcpu);
-	vmcs12 = get_vmcs12(vcpu);
-
-	if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled)
-		kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
-
-	if (nested_vmx_allowed(vcpu) &&
-	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
-		kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
-		kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
-
-		if (vmx_has_valid_vmcs12(vcpu)) {
-			kvm_state.size += VMCS12_SIZE;
-
-			if (is_guest_mode(vcpu) &&
-			    nested_cpu_has_shadow_vmcs(vmcs12) &&
-			    vmcs12->vmcs_link_pointer != -1ull)
-				kvm_state.size += VMCS12_SIZE;
-		}
-
-		if (vmx->nested.smm.vmxon)
-			kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
-
-		if (vmx->nested.smm.guest_mode)
-			kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
-
-		if (is_guest_mode(vcpu)) {
-			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
-
-			if (vmx->nested.nested_run_pending)
-				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
-		}
-	}
-
-	if (user_data_size < kvm_state.size)
-		goto out;
-
-	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
-		return -EFAULT;
-
-	if (!vmx_has_valid_vmcs12(vcpu))
-		goto out;
-
-	/*
-	 * When running L2, the authoritative vmcs12 state is in the
-	 * vmcs02. When running L1, the authoritative vmcs12 state is
-	 * in the shadow or enlightened vmcs linked to vmcs01, unless
-	 * need_vmcs12_sync is set, in which case, the authoritative
-	 * vmcs12 state is in the vmcs12 already.
-	 */
-	if (is_guest_mode(vcpu)) {
-		sync_vmcs12(vcpu, vmcs12);
-	} else if (!vmx->nested.need_vmcs12_sync) {
-		if (vmx->nested.hv_evmcs)
-			copy_enlightened_to_vmcs12(vmx);
-		else if (enable_shadow_vmcs)
-			copy_shadow_to_vmcs12(vmx);
-	}
-
-	if (copy_to_user(user_kvm_nested_state->data, vmcs12, sizeof(*vmcs12)))
-		return -EFAULT;
-
-	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
-	    vmcs12->vmcs_link_pointer != -1ull) {
-		if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
-				 get_shadow_vmcs12(vcpu), sizeof(*vmcs12)))
-			return -EFAULT;
-	}
-
-out:
-	return kvm_state.size;
-}
-
-static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
-				struct kvm_nested_state __user *user_kvm_nested_state,
-				struct kvm_nested_state *kvm_state)
-{
-	struct vcpu_vmx *vmx = to_vmx(vcpu);
-	struct vmcs12 *vmcs12;
-	u32 exit_qual;
-	int ret;
-
-	if (kvm_state->format != 0)
-		return -EINVAL;
-
-	if (kvm_state->flags & KVM_STATE_NESTED_EVMCS)
-		nested_enable_evmcs(vcpu, NULL);
-
-	if (!nested_vmx_allowed(vcpu))
-		return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
-
-	if (kvm_state->vmx.vmxon_pa == -1ull) {
-		if (kvm_state->vmx.smm.flags)
-			return -EINVAL;
-
-		if (kvm_state->vmx.vmcs_pa != -1ull)
-			return -EINVAL;
-
-		vmx_leave_nested(vcpu);
-		return 0;
-	}
-
-	if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
-		return -EINVAL;
-
-	if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
-	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
-		return -EINVAL;
-
-	if (kvm_state->vmx.smm.flags &
-	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
-		return -EINVAL;
-
-	/*
-	 * SMM temporarily disables VMX, so we cannot be in guest mode,
-	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
-	 * must be zero.
-	 */
-	if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
-		return -EINVAL;
-
-	if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
-	    !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
-		return -EINVAL;
-
-	vmx_leave_nested(vcpu);
-	if (kvm_state->vmx.vmxon_pa == -1ull)
-		return 0;
-
-	vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
-	ret = enter_vmx_operation(vcpu);
-	if (ret)
-		return ret;
-
-	/* Empty 'VMXON' state is permitted */
-	if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12))
-		return 0;
-
-	if (kvm_state->vmx.vmcs_pa != -1ull) {
-		if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
-		    !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
-			return -EINVAL;
-
-		set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
-	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
-		/*
-		 * Sync eVMCS upon entry as we may not have
-		 * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
-		 */
-		vmx->nested.need_vmcs12_sync = true;
-	} else {
-		return -EINVAL;
-	}
-
-	if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
-		vmx->nested.smm.vmxon = true;
-		vmx->nested.vmxon = false;
-
-		if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
-			vmx->nested.smm.guest_mode = true;
-	}
-
-	vmcs12 = get_vmcs12(vcpu);
-	if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
-		return -EFAULT;
-
-	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
-		return -EINVAL;
-
-	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
-		return 0;
-
-	vmx->nested.nested_run_pending =
-		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
-
-	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
-	    vmcs12->vmcs_link_pointer != -1ull) {
-		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
-		if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12))
-			return -EINVAL;
-
-		if (copy_from_user(shadow_vmcs12,
-				   user_kvm_nested_state->data + VMCS12_SIZE,
-				   sizeof(*vmcs12)))
-			return -EFAULT;
-
-		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
-		    !shadow_vmcs12->hdr.shadow_vmcs)
-			return -EINVAL;
-	}
-
-	if (check_vmentry_prereqs(vcpu, vmcs12) ||
-	    check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
-		return -EINVAL;
-
-	vmx->nested.dirty_vmcs12 = true;
-	ret = nested_vmx_enter_non_root_mode(vcpu, false);
-	if (ret)
-		return -EINVAL;
-
-	return 0;
-}
-
-static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
-	.cpu_has_kvm_support = cpu_has_kvm_support,
-	.disabled_by_bios = vmx_disabled_by_bios,
-	.hardware_setup = hardware_setup,
-	.hardware_unsetup = hardware_unsetup,
-	.check_processor_compatibility = vmx_check_processor_compat,
-	.hardware_enable = hardware_enable,
-	.hardware_disable = hardware_disable,
-	.cpu_has_accelerated_tpr = report_flexpriority,
-	.has_emulated_msr = vmx_has_emulated_msr,
-
-	.vm_init = vmx_vm_init,
-	.vm_alloc = vmx_vm_alloc,
-	.vm_free = vmx_vm_free,
-
-	.vcpu_create = vmx_create_vcpu,
-	.vcpu_free = vmx_free_vcpu,
-	.vcpu_reset = vmx_vcpu_reset,
-
-	.prepare_guest_switch = vmx_prepare_switch_to_guest,
-	.vcpu_load = vmx_vcpu_load,
-	.vcpu_put = vmx_vcpu_put,
-
-	.update_bp_intercept = update_exception_bitmap,
-	.get_msr_feature = vmx_get_msr_feature,
-	.get_msr = vmx_get_msr,
-	.set_msr = vmx_set_msr,
-	.get_segment_base = vmx_get_segment_base,
-	.get_segment = vmx_get_segment,
-	.set_segment = vmx_set_segment,
-	.get_cpl = vmx_get_cpl,
-	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
-	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
-	.decache_cr3 = vmx_decache_cr3,
-	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
-	.set_cr0 = vmx_set_cr0,
-	.set_cr3 = vmx_set_cr3,
-	.set_cr4 = vmx_set_cr4,
-	.set_efer = vmx_set_efer,
-	.get_idt = vmx_get_idt,
-	.set_idt = vmx_set_idt,
-	.get_gdt = vmx_get_gdt,
-	.set_gdt = vmx_set_gdt,
-	.get_dr6 = vmx_get_dr6,
-	.set_dr6 = vmx_set_dr6,
-	.set_dr7 = vmx_set_dr7,
-	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
-	.cache_reg = vmx_cache_reg,
-	.get_rflags = vmx_get_rflags,
-	.set_rflags = vmx_set_rflags,
-
-	.tlb_flush = vmx_flush_tlb,
-	.tlb_flush_gva = vmx_flush_tlb_gva,
-
-	.run = vmx_vcpu_run,
-	.handle_exit = vmx_handle_exit,
-	.skip_emulated_instruction = skip_emulated_instruction,
-	.set_interrupt_shadow = vmx_set_interrupt_shadow,
-	.get_interrupt_shadow = vmx_get_interrupt_shadow,
-	.patch_hypercall = vmx_patch_hypercall,
-	.set_irq = vmx_inject_irq,
-	.set_nmi = vmx_inject_nmi,
-	.queue_exception = vmx_queue_exception,
-	.cancel_injection = vmx_cancel_injection,
-	.interrupt_allowed = vmx_interrupt_allowed,
-	.nmi_allowed = vmx_nmi_allowed,
-	.get_nmi_mask = vmx_get_nmi_mask,
-	.set_nmi_mask = vmx_set_nmi_mask,
-	.enable_nmi_window = enable_nmi_window,
-	.enable_irq_window = enable_irq_window,
-	.update_cr8_intercept = update_cr8_intercept,
-	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
-	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
-	.get_enable_apicv = vmx_get_enable_apicv,
-	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
-	.load_eoi_exitmap = vmx_load_eoi_exitmap,
-	.apicv_post_state_restore = vmx_apicv_post_state_restore,
-	.hwapic_irr_update = vmx_hwapic_irr_update,
-	.hwapic_isr_update = vmx_hwapic_isr_update,
-	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
-	.sync_pir_to_irr = vmx_sync_pir_to_irr,
-	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
-
-	.set_tss_addr = vmx_set_tss_addr,
-	.set_identity_map_addr = vmx_set_identity_map_addr,
-	.get_tdp_level = get_ept_level,
-	.get_mt_mask = vmx_get_mt_mask,
-
-	.get_exit_info = vmx_get_exit_info,
-
-	.get_lpage_level = vmx_get_lpage_level,
-
-	.cpuid_update = vmx_cpuid_update,
-
-	.rdtscp_supported = vmx_rdtscp_supported,
-	.invpcid_supported = vmx_invpcid_supported,
-
-	.set_supported_cpuid = vmx_set_supported_cpuid,
-
-	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
-
-	.read_l1_tsc_offset = vmx_read_l1_tsc_offset,
-	.write_tsc_offset = vmx_write_tsc_offset,
-
-	.set_tdp_cr3 = vmx_set_cr3,
-
-	.check_intercept = vmx_check_intercept,
-	.handle_external_intr = vmx_handle_external_intr,
-	.mpx_supported = vmx_mpx_supported,
-	.xsaves_supported = vmx_xsaves_supported,
-	.umip_emulated = vmx_umip_emulated,
-
-	.check_nested_events = vmx_check_nested_events,
-	.request_immediate_exit = vmx_request_immediate_exit,
-
-	.sched_in = vmx_sched_in,
-
-	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
-	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
-	.flush_log_dirty = vmx_flush_log_dirty,
-	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
-	.write_log_dirty = vmx_write_pml_buffer,
-
-	.pre_block = vmx_pre_block,
-	.post_block = vmx_post_block,
-
-	.pmu_ops = &intel_pmu_ops,
-
-	.update_pi_irte = vmx_update_pi_irte,
-
-#ifdef CONFIG_X86_64
-	.set_hv_timer = vmx_set_hv_timer,
-	.cancel_hv_timer = vmx_cancel_hv_timer,
-#endif
-
-	.setup_mce = vmx_setup_mce,
-
-	.get_nested_state = vmx_get_nested_state,
-	.set_nested_state = vmx_set_nested_state,
-	.get_vmcs12_pages = nested_get_vmcs12_pages,
-
-	.smi_allowed = vmx_smi_allowed,
-	.pre_enter_smm = vmx_pre_enter_smm,
-	.pre_leave_smm = vmx_pre_leave_smm,
-	.enable_smi_window = enable_smi_window,
-
-	.nested_enable_evmcs = nested_enable_evmcs,
-};
-
-static void vmx_cleanup_l1d_flush(void)
-{
-	if (vmx_l1d_flush_pages) {
-		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
-		vmx_l1d_flush_pages = NULL;
-	}
-	/* Restore state so sysfs ignores VMX */
-	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
-}
-
-static void vmx_exit(void)
-{
-#ifdef CONFIG_KEXEC_CORE
-	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
-	synchronize_rcu();
-#endif
-
-	kvm_exit();
-
-#if IS_ENABLED(CONFIG_HYPERV)
-	if (static_branch_unlikely(&enable_evmcs)) {
-		int cpu;
-		struct hv_vp_assist_page *vp_ap;
-		/*
-		 * Reset everything to support using non-enlightened VMCS
-		 * access later (e.g. when we reload the module with
-		 * enlightened_vmcs=0)
-		 */
-		for_each_online_cpu(cpu) {
-			vp_ap =	hv_get_vp_assist_page(cpu);
-
-			if (!vp_ap)
-				continue;
-
-			vp_ap->current_nested_vmcs = 0;
-			vp_ap->enlighten_vmentry = 0;
-		}
-
-		static_branch_disable(&enable_evmcs);
-	}
-#endif
-	vmx_cleanup_l1d_flush();
-}
-module_exit(vmx_exit);
-
-static int __init vmx_init(void)
-{
-	int r;
-
-#if IS_ENABLED(CONFIG_HYPERV)
-	/*
-	 * Enlightened VMCS usage should be recommended and the host needs
-	 * to support eVMCS v1 or above. We can also disable eVMCS support
-	 * with module parameter.
-	 */
-	if (enlightened_vmcs &&
-	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
-	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
-	    KVM_EVMCS_VERSION) {
-		int cpu;
-
-		/* Check that we have assist pages on all online CPUs */
-		for_each_online_cpu(cpu) {
-			if (!hv_get_vp_assist_page(cpu)) {
-				enlightened_vmcs = false;
-				break;
-			}
-		}
-
-		if (enlightened_vmcs) {
-			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
-			static_branch_enable(&enable_evmcs);
-		}
-	} else {
-		enlightened_vmcs = false;
-	}
-#endif
-
-	r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
-		     __alignof__(struct vcpu_vmx), THIS_MODULE);
-	if (r)
-		return r;
-
-	/*
-	 * Must be called after kvm_init() so enable_ept is properly set
-	 * up. Hand the parameter mitigation value in which was stored in
-	 * the pre module init parser. If no parameter was given, it will
-	 * contain 'auto' which will be turned into the default 'cond'
-	 * mitigation mode.
-	 */
-	if (boot_cpu_has(X86_BUG_L1TF)) {
-		r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
-		if (r) {
-			vmx_exit();
-			return r;
-		}
-	}
-
-#ifdef CONFIG_KEXEC_CORE
-	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
-			   crash_vmclear_local_loaded_vmcss);
-#endif
-	vmx_check_vmcs12_offsets();
-
-	return 0;
-}
-module_init(vmx_init);
diff --git a/arch/x86/kvm/vmx/capabilities.h b/arch/x86/kvm/vmx/capabilities.h
new file mode 100644
index 000000000000..854e144131c6
--- /dev/null
+++ b/arch/x86/kvm/vmx/capabilities.h
@@ -0,0 +1,343 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __KVM_X86_VMX_CAPS_H
+#define __KVM_X86_VMX_CAPS_H
+
+#include "lapic.h"
+
+extern bool __read_mostly enable_vpid;
+extern bool __read_mostly flexpriority_enabled;
+extern bool __read_mostly enable_ept;
+extern bool __read_mostly enable_unrestricted_guest;
+extern bool __read_mostly enable_ept_ad_bits;
+extern bool __read_mostly enable_pml;
+extern int __read_mostly pt_mode;
+
+#define PT_MODE_SYSTEM		0
+#define PT_MODE_HOST_GUEST	1
+
+struct nested_vmx_msrs {
+	/*
+	 * We only store the "true" versions of the VMX capability MSRs. We
+	 * generate the "non-true" versions by setting the must-be-1 bits
+	 * according to the SDM.
+	 */
+	u32 procbased_ctls_low;
+	u32 procbased_ctls_high;
+	u32 secondary_ctls_low;
+	u32 secondary_ctls_high;
+	u32 pinbased_ctls_low;
+	u32 pinbased_ctls_high;
+	u32 exit_ctls_low;
+	u32 exit_ctls_high;
+	u32 entry_ctls_low;
+	u32 entry_ctls_high;
+	u32 misc_low;
+	u32 misc_high;
+	u32 ept_caps;
+	u32 vpid_caps;
+	u64 basic;
+	u64 cr0_fixed0;
+	u64 cr0_fixed1;
+	u64 cr4_fixed0;
+	u64 cr4_fixed1;
+	u64 vmcs_enum;
+	u64 vmfunc_controls;
+};
+
+struct vmcs_config {
+	int size;
+	int order;
+	u32 basic_cap;
+	u32 revision_id;
+	u32 pin_based_exec_ctrl;
+	u32 cpu_based_exec_ctrl;
+	u32 cpu_based_2nd_exec_ctrl;
+	u32 vmexit_ctrl;
+	u32 vmentry_ctrl;
+	struct nested_vmx_msrs nested;
+};
+extern struct vmcs_config vmcs_config;
+
+struct vmx_capability {
+	u32 ept;
+	u32 vpid;
+};
+extern struct vmx_capability vmx_capability;
+
+static inline bool cpu_has_vmx_basic_inout(void)
+{
+	return	(((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
+}
+
+static inline bool cpu_has_virtual_nmis(void)
+{
+	return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
+}
+
+static inline bool cpu_has_vmx_preemption_timer(void)
+{
+	return vmcs_config.pin_based_exec_ctrl &
+		PIN_BASED_VMX_PREEMPTION_TIMER;
+}
+
+static inline bool cpu_has_vmx_posted_intr(void)
+{
+	return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
+		vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
+}
+
+static inline bool cpu_has_load_ia32_efer(void)
+{
+	return (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_EFER) &&
+	       (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_EFER);
+}
+
+static inline bool cpu_has_load_perf_global_ctrl(void)
+{
+	return (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
+	       (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
+}
+
+static inline bool vmx_mpx_supported(void)
+{
+	return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
+		(vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
+}
+
+static inline bool cpu_has_vmx_tpr_shadow(void)
+{
+	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
+}
+
+static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
+{
+	return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
+}
+
+static inline bool cpu_has_vmx_msr_bitmap(void)
+{
+	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
+}
+
+static inline bool cpu_has_secondary_exec_ctrls(void)
+{
+	return vmcs_config.cpu_based_exec_ctrl &
+		CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
+}
+
+static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
+{
+	return vmcs_config.cpu_based_2nd_exec_ctrl &
+		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+}
+
+static inline bool cpu_has_vmx_ept(void)
+{
+	return vmcs_config.cpu_based_2nd_exec_ctrl &
+		SECONDARY_EXEC_ENABLE_EPT;
+}
+
+static inline bool vmx_umip_emulated(void)
+{
+	return vmcs_config.cpu_based_2nd_exec_ctrl &
+		SECONDARY_EXEC_DESC;
+}
+
+static inline bool cpu_has_vmx_rdtscp(void)
+{
+	return vmcs_config.cpu_based_2nd_exec_ctrl &
+		SECONDARY_EXEC_RDTSCP;
+}
+
+static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
+{
+	return vmcs_config.cpu_based_2nd_exec_ctrl &
+		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
+}
+
+static inline bool cpu_has_vmx_vpid(void)
+{
+	return vmcs_config.cpu_based_2nd_exec_ctrl &
+		SECONDARY_EXEC_ENABLE_VPID;
+}
+
+static inline bool cpu_has_vmx_wbinvd_exit(void)
+{
+	return vmcs_config.cpu_based_2nd_exec_ctrl &
+		SECONDARY_EXEC_WBINVD_EXITING;
+}
+
+static inline bool cpu_has_vmx_unrestricted_guest(void)
+{
+	return vmcs_config.cpu_based_2nd_exec_ctrl &
+		SECONDARY_EXEC_UNRESTRICTED_GUEST;
+}
+
+static inline bool cpu_has_vmx_apic_register_virt(void)
+{
+	return vmcs_config.cpu_based_2nd_exec_ctrl &
+		SECONDARY_EXEC_APIC_REGISTER_VIRT;
+}
+
+static inline bool cpu_has_vmx_virtual_intr_delivery(void)
+{
+	return vmcs_config.cpu_based_2nd_exec_ctrl &
+		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
+}
+
+static inline bool cpu_has_vmx_ple(void)
+{
+	return vmcs_config.cpu_based_2nd_exec_ctrl &
+		SECONDARY_EXEC_PAUSE_LOOP_EXITING;
+}
+
+static inline bool vmx_rdrand_supported(void)
+{
+	return vmcs_config.cpu_based_2nd_exec_ctrl &
+		SECONDARY_EXEC_RDRAND_EXITING;
+}
+
+static inline bool cpu_has_vmx_invpcid(void)
+{
+	return vmcs_config.cpu_based_2nd_exec_ctrl &
+		SECONDARY_EXEC_ENABLE_INVPCID;
+}
+
+static inline bool cpu_has_vmx_vmfunc(void)
+{
+	return vmcs_config.cpu_based_2nd_exec_ctrl &
+		SECONDARY_EXEC_ENABLE_VMFUNC;
+}
+
+static inline bool cpu_has_vmx_shadow_vmcs(void)
+{
+	u64 vmx_msr;
+
+	/* check if the cpu supports writing r/o exit information fields */
+	rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
+	if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
+		return false;
+
+	return vmcs_config.cpu_based_2nd_exec_ctrl &
+		SECONDARY_EXEC_SHADOW_VMCS;
+}
+
+static inline bool cpu_has_vmx_encls_vmexit(void)
+{
+	return vmcs_config.cpu_based_2nd_exec_ctrl &
+		SECONDARY_EXEC_ENCLS_EXITING;
+}
+
+static inline bool vmx_rdseed_supported(void)
+{
+	return vmcs_config.cpu_based_2nd_exec_ctrl &
+		SECONDARY_EXEC_RDSEED_EXITING;
+}
+
+static inline bool cpu_has_vmx_pml(void)
+{
+	return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
+}
+
+static inline bool vmx_xsaves_supported(void)
+{
+	return vmcs_config.cpu_based_2nd_exec_ctrl &
+		SECONDARY_EXEC_XSAVES;
+}
+
+static inline bool cpu_has_vmx_tsc_scaling(void)
+{
+	return vmcs_config.cpu_based_2nd_exec_ctrl &
+		SECONDARY_EXEC_TSC_SCALING;
+}
+
+static inline bool cpu_has_vmx_apicv(void)
+{
+	return cpu_has_vmx_apic_register_virt() &&
+		cpu_has_vmx_virtual_intr_delivery() &&
+		cpu_has_vmx_posted_intr();
+}
+
+static inline bool cpu_has_vmx_flexpriority(void)
+{
+	return cpu_has_vmx_tpr_shadow() &&
+		cpu_has_vmx_virtualize_apic_accesses();
+}
+
+static inline bool cpu_has_vmx_ept_execute_only(void)
+{
+	return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
+}
+
+static inline bool cpu_has_vmx_ept_4levels(void)
+{
+	return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
+}
+
+static inline bool cpu_has_vmx_ept_5levels(void)
+{
+	return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
+}
+
+static inline bool cpu_has_vmx_ept_mt_wb(void)
+{
+	return vmx_capability.ept & VMX_EPTP_WB_BIT;
+}
+
+static inline bool cpu_has_vmx_ept_2m_page(void)
+{
+	return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
+}
+
+static inline bool cpu_has_vmx_ept_1g_page(void)
+{
+	return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
+}
+
+static inline bool cpu_has_vmx_ept_ad_bits(void)
+{
+	return vmx_capability.ept & VMX_EPT_AD_BIT;
+}
+
+static inline bool cpu_has_vmx_invept_context(void)
+{
+	return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
+}
+
+static inline bool cpu_has_vmx_invept_global(void)
+{
+	return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
+}
+
+static inline bool cpu_has_vmx_invvpid(void)
+{
+	return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
+}
+
+static inline bool cpu_has_vmx_invvpid_individual_addr(void)
+{
+	return vmx_capability.vpid & VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT;
+}
+
+static inline bool cpu_has_vmx_invvpid_single(void)
+{
+	return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
+}
+
+static inline bool cpu_has_vmx_invvpid_global(void)
+{
+	return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
+}
+
+static inline bool cpu_has_vmx_intel_pt(void)
+{
+	u64 vmx_msr;
+
+	rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
+	return (vmx_msr & MSR_IA32_VMX_MISC_INTEL_PT) &&
+		(vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_PT_USE_GPA) &&
+		(vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_IA32_RTIT_CTL) &&
+		(vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_RTIT_CTL);
+}
+
+#endif /* __KVM_X86_VMX_CAPS_H */
diff --git a/arch/x86/kvm/vmx_evmcs.h b/arch/x86/kvm/vmx/evmcs.c
index 210a884090ad..95bc2247478d 100644
--- a/arch/x86/kvm/vmx_evmcs.h
+++ b/arch/x86/kvm/vmx/evmcs.c
@@ -1,20 +1,22 @@
-/* SPDX-License-Identifier: GPL-2.0 */
-#ifndef __KVM_X86_VMX_EVMCS_H
-#define __KVM_X86_VMX_EVMCS_H
+// SPDX-License-Identifier: GPL-2.0
 
-#include <asm/hyperv-tlfs.h>
+#include <linux/errno.h>
+#include <linux/smp.h>
+
+#include "evmcs.h"
+#include "vmcs.h"
+#include "vmx.h"
+
+DEFINE_STATIC_KEY_FALSE(enable_evmcs);
+
+#if IS_ENABLED(CONFIG_HYPERV)
 
 #define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
 #define EVMCS1_OFFSET(x) offsetof(struct hv_enlightened_vmcs, x)
 #define EVMCS1_FIELD(number, name, clean_field)[ROL16(number, 6)] = \
 		{EVMCS1_OFFSET(name), clean_field}
 
-struct evmcs_field {
-	u16 offset;
-	u16 clean_field;
-};
-
-static const struct evmcs_field vmcs_field_to_evmcs_1[] = {
+const struct evmcs_field vmcs_field_to_evmcs_1[] = {
 	/* 64 bit rw */
 	EVMCS1_FIELD(GUEST_RIP, guest_rip,
 		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
@@ -298,27 +300,53 @@ static const struct evmcs_field vmcs_field_to_evmcs_1[] = {
 	EVMCS1_FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id,
 		     HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT),
 };
+const unsigned int nr_evmcs_1_fields = ARRAY_SIZE(vmcs_field_to_evmcs_1);
 
-static __always_inline int get_evmcs_offset(unsigned long field,
-					    u16 *clean_field)
+void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf)
 {
-	unsigned int index = ROL16(field, 6);
-	const struct evmcs_field *evmcs_field;
+	vmcs_conf->pin_based_exec_ctrl &= ~EVMCS1_UNSUPPORTED_PINCTRL;
+	vmcs_conf->cpu_based_2nd_exec_ctrl &= ~EVMCS1_UNSUPPORTED_2NDEXEC;
 
-	if (unlikely(index >= ARRAY_SIZE(vmcs_field_to_evmcs_1))) {
-		WARN_ONCE(1, "KVM: accessing unsupported EVMCS field %lx\n",
-			  field);
-		return -ENOENT;
-	}
+	vmcs_conf->vmexit_ctrl &= ~EVMCS1_UNSUPPORTED_VMEXIT_CTRL;
+	vmcs_conf->vmentry_ctrl &= ~EVMCS1_UNSUPPORTED_VMENTRY_CTRL;
 
-	evmcs_field = &vmcs_field_to_evmcs_1[index];
+}
+#endif
 
-	if (clean_field)
-		*clean_field = evmcs_field->clean_field;
+uint16_t nested_get_evmcs_version(struct kvm_vcpu *vcpu)
+{
+       struct vcpu_vmx *vmx = to_vmx(vcpu);
+       /*
+        * vmcs_version represents the range of supported Enlightened VMCS
+        * versions: lower 8 bits is the minimal version, higher 8 bits is the
+        * maximum supported version. KVM supports versions from 1 to
+        * KVM_EVMCS_VERSION.
+        */
+       if (vmx->nested.enlightened_vmcs_enabled)
+               return (KVM_EVMCS_VERSION << 8) | 1;
 
-	return evmcs_field->offset;
+       return 0;
 }
 
-#undef ROL16
+int nested_enable_evmcs(struct kvm_vcpu *vcpu,
+			uint16_t *vmcs_version)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (vmcs_version)
+		*vmcs_version = nested_get_evmcs_version(vcpu);
+
+	/* We don't support disabling the feature for simplicity. */
+	if (vmx->nested.enlightened_vmcs_enabled)
+		return 0;
 
-#endif /* __KVM_X86_VMX_EVMCS_H */
+	vmx->nested.enlightened_vmcs_enabled = true;
+
+	vmx->nested.msrs.pinbased_ctls_high &= ~EVMCS1_UNSUPPORTED_PINCTRL;
+	vmx->nested.msrs.entry_ctls_high &= ~EVMCS1_UNSUPPORTED_VMENTRY_CTRL;
+	vmx->nested.msrs.exit_ctls_high &= ~EVMCS1_UNSUPPORTED_VMEXIT_CTRL;
+	vmx->nested.msrs.secondary_ctls_high &= ~EVMCS1_UNSUPPORTED_2NDEXEC;
+	vmx->nested.msrs.vmfunc_controls &= ~EVMCS1_UNSUPPORTED_VMFUNC;
+
+	return 0;
+}
diff --git a/arch/x86/kvm/vmx/evmcs.h b/arch/x86/kvm/vmx/evmcs.h
new file mode 100644
index 000000000000..e0fcef85b332
--- /dev/null
+++ b/arch/x86/kvm/vmx/evmcs.h
@@ -0,0 +1,202 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __KVM_X86_VMX_EVMCS_H
+#define __KVM_X86_VMX_EVMCS_H
+
+#include <linux/jump_label.h>
+
+#include <asm/hyperv-tlfs.h>
+#include <asm/mshyperv.h>
+#include <asm/vmx.h>
+
+#include "capabilities.h"
+#include "vmcs.h"
+
+struct vmcs_config;
+
+DECLARE_STATIC_KEY_FALSE(enable_evmcs);
+
+#define current_evmcs ((struct hv_enlightened_vmcs *)this_cpu_read(current_vmcs))
+
+#define KVM_EVMCS_VERSION 1
+
+/*
+ * Enlightened VMCSv1 doesn't support these:
+ *
+ *	POSTED_INTR_NV                  = 0x00000002,
+ *	GUEST_INTR_STATUS               = 0x00000810,
+ *	APIC_ACCESS_ADDR		= 0x00002014,
+ *	POSTED_INTR_DESC_ADDR           = 0x00002016,
+ *	EOI_EXIT_BITMAP0                = 0x0000201c,
+ *	EOI_EXIT_BITMAP1                = 0x0000201e,
+ *	EOI_EXIT_BITMAP2                = 0x00002020,
+ *	EOI_EXIT_BITMAP3                = 0x00002022,
+ *	GUEST_PML_INDEX			= 0x00000812,
+ *	PML_ADDRESS			= 0x0000200e,
+ *	VM_FUNCTION_CONTROL             = 0x00002018,
+ *	EPTP_LIST_ADDRESS               = 0x00002024,
+ *	VMREAD_BITMAP                   = 0x00002026,
+ *	VMWRITE_BITMAP                  = 0x00002028,
+ *
+ *	TSC_MULTIPLIER                  = 0x00002032,
+ *	PLE_GAP                         = 0x00004020,
+ *	PLE_WINDOW                      = 0x00004022,
+ *	VMX_PREEMPTION_TIMER_VALUE      = 0x0000482E,
+ *      GUEST_IA32_PERF_GLOBAL_CTRL     = 0x00002808,
+ *      HOST_IA32_PERF_GLOBAL_CTRL      = 0x00002c04,
+ *
+ * Currently unsupported in KVM:
+ *	GUEST_IA32_RTIT_CTL		= 0x00002814,
+ */
+#define EVMCS1_UNSUPPORTED_PINCTRL (PIN_BASED_POSTED_INTR | \
+				    PIN_BASED_VMX_PREEMPTION_TIMER)
+#define EVMCS1_UNSUPPORTED_2NDEXEC					\
+	(SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |				\
+	 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |			\
+	 SECONDARY_EXEC_APIC_REGISTER_VIRT |				\
+	 SECONDARY_EXEC_ENABLE_PML |					\
+	 SECONDARY_EXEC_ENABLE_VMFUNC |					\
+	 SECONDARY_EXEC_SHADOW_VMCS |					\
+	 SECONDARY_EXEC_TSC_SCALING |					\
+	 SECONDARY_EXEC_PAUSE_LOOP_EXITING)
+#define EVMCS1_UNSUPPORTED_VMEXIT_CTRL (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
+#define EVMCS1_UNSUPPORTED_VMENTRY_CTRL (VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
+#define EVMCS1_UNSUPPORTED_VMFUNC (VMX_VMFUNC_EPTP_SWITCHING)
+
+#if IS_ENABLED(CONFIG_HYPERV)
+
+struct evmcs_field {
+	u16 offset;
+	u16 clean_field;
+};
+
+extern const struct evmcs_field vmcs_field_to_evmcs_1[];
+extern const unsigned int nr_evmcs_1_fields;
+
+#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
+
+static __always_inline int get_evmcs_offset(unsigned long field,
+					    u16 *clean_field)
+{
+	unsigned int index = ROL16(field, 6);
+	const struct evmcs_field *evmcs_field;
+
+	if (unlikely(index >= nr_evmcs_1_fields)) {
+		WARN_ONCE(1, "KVM: accessing unsupported EVMCS field %lx\n",
+			  field);
+		return -ENOENT;
+	}
+
+	evmcs_field = &vmcs_field_to_evmcs_1[index];
+
+	if (clean_field)
+		*clean_field = evmcs_field->clean_field;
+
+	return evmcs_field->offset;
+}
+
+#undef ROL16
+
+static inline void evmcs_write64(unsigned long field, u64 value)
+{
+	u16 clean_field;
+	int offset = get_evmcs_offset(field, &clean_field);
+
+	if (offset < 0)
+		return;
+
+	*(u64 *)((char *)current_evmcs + offset) = value;
+
+	current_evmcs->hv_clean_fields &= ~clean_field;
+}
+
+static inline void evmcs_write32(unsigned long field, u32 value)
+{
+	u16 clean_field;
+	int offset = get_evmcs_offset(field, &clean_field);
+
+	if (offset < 0)
+		return;
+
+	*(u32 *)((char *)current_evmcs + offset) = value;
+	current_evmcs->hv_clean_fields &= ~clean_field;
+}
+
+static inline void evmcs_write16(unsigned long field, u16 value)
+{
+	u16 clean_field;
+	int offset = get_evmcs_offset(field, &clean_field);
+
+	if (offset < 0)
+		return;
+
+	*(u16 *)((char *)current_evmcs + offset) = value;
+	current_evmcs->hv_clean_fields &= ~clean_field;
+}
+
+static inline u64 evmcs_read64(unsigned long field)
+{
+	int offset = get_evmcs_offset(field, NULL);
+
+	if (offset < 0)
+		return 0;
+
+	return *(u64 *)((char *)current_evmcs + offset);
+}
+
+static inline u32 evmcs_read32(unsigned long field)
+{
+	int offset = get_evmcs_offset(field, NULL);
+
+	if (offset < 0)
+		return 0;
+
+	return *(u32 *)((char *)current_evmcs + offset);
+}
+
+static inline u16 evmcs_read16(unsigned long field)
+{
+	int offset = get_evmcs_offset(field, NULL);
+
+	if (offset < 0)
+		return 0;
+
+	return *(u16 *)((char *)current_evmcs + offset);
+}
+
+static inline void evmcs_touch_msr_bitmap(void)
+{
+	if (unlikely(!current_evmcs))
+		return;
+
+	if (current_evmcs->hv_enlightenments_control.msr_bitmap)
+		current_evmcs->hv_clean_fields &=
+			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
+}
+
+static inline void evmcs_load(u64 phys_addr)
+{
+	struct hv_vp_assist_page *vp_ap =
+		hv_get_vp_assist_page(smp_processor_id());
+
+	vp_ap->current_nested_vmcs = phys_addr;
+	vp_ap->enlighten_vmentry = 1;
+}
+
+void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf);
+#else /* !IS_ENABLED(CONFIG_HYPERV) */
+static inline void evmcs_write64(unsigned long field, u64 value) {}
+static inline void evmcs_write32(unsigned long field, u32 value) {}
+static inline void evmcs_write16(unsigned long field, u16 value) {}
+static inline u64 evmcs_read64(unsigned long field) { return 0; }
+static inline u32 evmcs_read32(unsigned long field) { return 0; }
+static inline u16 evmcs_read16(unsigned long field) { return 0; }
+static inline void evmcs_load(u64 phys_addr) {}
+static inline void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) {}
+static inline void evmcs_touch_msr_bitmap(void) {}
+#endif /* IS_ENABLED(CONFIG_HYPERV) */
+
+uint16_t nested_get_evmcs_version(struct kvm_vcpu *vcpu);
+int nested_enable_evmcs(struct kvm_vcpu *vcpu,
+			uint16_t *vmcs_version);
+
+#endif /* __KVM_X86_VMX_EVMCS_H */
diff --git a/arch/x86/kvm/vmx/nested.c b/arch/x86/kvm/vmx/nested.c
new file mode 100644
index 000000000000..3170e291215d
--- /dev/null
+++ b/arch/x86/kvm/vmx/nested.c
@@ -0,0 +1,5721 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#include <linux/frame.h>
+#include <linux/percpu.h>
+
+#include <asm/debugreg.h>
+#include <asm/mmu_context.h>
+
+#include "cpuid.h"
+#include "hyperv.h"
+#include "mmu.h"
+#include "nested.h"
+#include "trace.h"
+#include "x86.h"
+
+static bool __read_mostly enable_shadow_vmcs = 1;
+module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
+
+static bool __read_mostly nested_early_check = 0;
+module_param(nested_early_check, bool, S_IRUGO);
+
+/*
+ * Hyper-V requires all of these, so mark them as supported even though
+ * they are just treated the same as all-context.
+ */
+#define VMX_VPID_EXTENT_SUPPORTED_MASK		\
+	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
+	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
+	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
+	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
+
+#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
+
+enum {
+	VMX_VMREAD_BITMAP,
+	VMX_VMWRITE_BITMAP,
+	VMX_BITMAP_NR
+};
+static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
+
+#define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
+#define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
+
+static u16 shadow_read_only_fields[] = {
+#define SHADOW_FIELD_RO(x) x,
+#include "vmcs_shadow_fields.h"
+};
+static int max_shadow_read_only_fields =
+	ARRAY_SIZE(shadow_read_only_fields);
+
+static u16 shadow_read_write_fields[] = {
+#define SHADOW_FIELD_RW(x) x,
+#include "vmcs_shadow_fields.h"
+};
+static int max_shadow_read_write_fields =
+	ARRAY_SIZE(shadow_read_write_fields);
+
+void init_vmcs_shadow_fields(void)
+{
+	int i, j;
+
+	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
+	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
+
+	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
+		u16 field = shadow_read_only_fields[i];
+
+		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
+		    (i + 1 == max_shadow_read_only_fields ||
+		     shadow_read_only_fields[i + 1] != field + 1))
+			pr_err("Missing field from shadow_read_only_field %x\n",
+			       field + 1);
+
+		clear_bit(field, vmx_vmread_bitmap);
+#ifdef CONFIG_X86_64
+		if (field & 1)
+			continue;
+#endif
+		if (j < i)
+			shadow_read_only_fields[j] = field;
+		j++;
+	}
+	max_shadow_read_only_fields = j;
+
+	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
+		u16 field = shadow_read_write_fields[i];
+
+		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
+		    (i + 1 == max_shadow_read_write_fields ||
+		     shadow_read_write_fields[i + 1] != field + 1))
+			pr_err("Missing field from shadow_read_write_field %x\n",
+			       field + 1);
+
+		/*
+		 * PML and the preemption timer can be emulated, but the
+		 * processor cannot vmwrite to fields that don't exist
+		 * on bare metal.
+		 */
+		switch (field) {
+		case GUEST_PML_INDEX:
+			if (!cpu_has_vmx_pml())
+				continue;
+			break;
+		case VMX_PREEMPTION_TIMER_VALUE:
+			if (!cpu_has_vmx_preemption_timer())
+				continue;
+			break;
+		case GUEST_INTR_STATUS:
+			if (!cpu_has_vmx_apicv())
+				continue;
+			break;
+		default:
+			break;
+		}
+
+		clear_bit(field, vmx_vmwrite_bitmap);
+		clear_bit(field, vmx_vmread_bitmap);
+#ifdef CONFIG_X86_64
+		if (field & 1)
+			continue;
+#endif
+		if (j < i)
+			shadow_read_write_fields[j] = field;
+		j++;
+	}
+	max_shadow_read_write_fields = j;
+}
+
+/*
+ * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
+ * set the success or error code of an emulated VMX instruction (as specified
+ * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
+ * instruction.
+ */
+static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
+{
+	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
+			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
+			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
+	return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
+{
+	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
+			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
+			    X86_EFLAGS_SF | X86_EFLAGS_OF))
+			| X86_EFLAGS_CF);
+	return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
+				u32 vm_instruction_error)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	/*
+	 * failValid writes the error number to the current VMCS, which
+	 * can't be done if there isn't a current VMCS.
+	 */
+	if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
+		return nested_vmx_failInvalid(vcpu);
+
+	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
+			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
+			    X86_EFLAGS_SF | X86_EFLAGS_OF))
+			| X86_EFLAGS_ZF);
+	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
+	/*
+	 * We don't need to force a shadow sync because
+	 * VM_INSTRUCTION_ERROR is not shadowed
+	 */
+	return kvm_skip_emulated_instruction(vcpu);
+}
+
+static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
+{
+	/* TODO: not to reset guest simply here. */
+	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
+}
+
+static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
+{
+	vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
+	vmcs_write64(VMCS_LINK_POINTER, -1ull);
+}
+
+static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (!vmx->nested.hv_evmcs)
+		return;
+
+	kunmap(vmx->nested.hv_evmcs_page);
+	kvm_release_page_dirty(vmx->nested.hv_evmcs_page);
+	vmx->nested.hv_evmcs_vmptr = -1ull;
+	vmx->nested.hv_evmcs_page = NULL;
+	vmx->nested.hv_evmcs = NULL;
+}
+
+/*
+ * Free whatever needs to be freed from vmx->nested when L1 goes down, or
+ * just stops using VMX.
+ */
+static void free_nested(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
+		return;
+
+	vmx->nested.vmxon = false;
+	vmx->nested.smm.vmxon = false;
+	free_vpid(vmx->nested.vpid02);
+	vmx->nested.posted_intr_nv = -1;
+	vmx->nested.current_vmptr = -1ull;
+	if (enable_shadow_vmcs) {
+		vmx_disable_shadow_vmcs(vmx);
+		vmcs_clear(vmx->vmcs01.shadow_vmcs);
+		free_vmcs(vmx->vmcs01.shadow_vmcs);
+		vmx->vmcs01.shadow_vmcs = NULL;
+	}
+	kfree(vmx->nested.cached_vmcs12);
+	kfree(vmx->nested.cached_shadow_vmcs12);
+	/* Unpin physical memory we referred to in the vmcs02 */
+	if (vmx->nested.apic_access_page) {
+		kvm_release_page_dirty(vmx->nested.apic_access_page);
+		vmx->nested.apic_access_page = NULL;
+	}
+	if (vmx->nested.virtual_apic_page) {
+		kvm_release_page_dirty(vmx->nested.virtual_apic_page);
+		vmx->nested.virtual_apic_page = NULL;
+	}
+	if (vmx->nested.pi_desc_page) {
+		kunmap(vmx->nested.pi_desc_page);
+		kvm_release_page_dirty(vmx->nested.pi_desc_page);
+		vmx->nested.pi_desc_page = NULL;
+		vmx->nested.pi_desc = NULL;
+	}
+
+	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
+
+	nested_release_evmcs(vcpu);
+
+	free_loaded_vmcs(&vmx->nested.vmcs02);
+}
+
+static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	int cpu;
+
+	if (vmx->loaded_vmcs == vmcs)
+		return;
+
+	cpu = get_cpu();
+	vmx_vcpu_put(vcpu);
+	vmx->loaded_vmcs = vmcs;
+	vmx_vcpu_load(vcpu, cpu);
+	put_cpu();
+
+	vm_entry_controls_reset_shadow(vmx);
+	vm_exit_controls_reset_shadow(vmx);
+	vmx_segment_cache_clear(vmx);
+}
+
+/*
+ * Ensure that the current vmcs of the logical processor is the
+ * vmcs01 of the vcpu before calling free_nested().
+ */
+void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
+{
+	vcpu_load(vcpu);
+	vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
+	free_nested(vcpu);
+	vcpu_put(vcpu);
+}
+
+static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
+		struct x86_exception *fault)
+{
+	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	u32 exit_reason;
+	unsigned long exit_qualification = vcpu->arch.exit_qualification;
+
+	if (vmx->nested.pml_full) {
+		exit_reason = EXIT_REASON_PML_FULL;
+		vmx->nested.pml_full = false;
+		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
+	} else if (fault->error_code & PFERR_RSVD_MASK)
+		exit_reason = EXIT_REASON_EPT_MISCONFIG;
+	else
+		exit_reason = EXIT_REASON_EPT_VIOLATION;
+
+	nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
+	vmcs12->guest_physical_address = fault->address;
+}
+
+static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
+{
+	WARN_ON(mmu_is_nested(vcpu));
+
+	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
+	kvm_init_shadow_ept_mmu(vcpu,
+			to_vmx(vcpu)->nested.msrs.ept_caps &
+			VMX_EPT_EXECUTE_ONLY_BIT,
+			nested_ept_ad_enabled(vcpu),
+			nested_ept_get_cr3(vcpu));
+	vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
+	vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
+	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
+	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
+
+	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
+}
+
+static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
+{
+	vcpu->arch.mmu = &vcpu->arch.root_mmu;
+	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
+}
+
+static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
+					    u16 error_code)
+{
+	bool inequality, bit;
+
+	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
+	inequality =
+		(error_code & vmcs12->page_fault_error_code_mask) !=
+		 vmcs12->page_fault_error_code_match;
+	return inequality ^ bit;
+}
+
+
+/*
+ * KVM wants to inject page-faults which it got to the guest. This function
+ * checks whether in a nested guest, we need to inject them to L1 or L2.
+ */
+static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
+{
+	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+	unsigned int nr = vcpu->arch.exception.nr;
+	bool has_payload = vcpu->arch.exception.has_payload;
+	unsigned long payload = vcpu->arch.exception.payload;
+
+	if (nr == PF_VECTOR) {
+		if (vcpu->arch.exception.nested_apf) {
+			*exit_qual = vcpu->arch.apf.nested_apf_token;
+			return 1;
+		}
+		if (nested_vmx_is_page_fault_vmexit(vmcs12,
+						    vcpu->arch.exception.error_code)) {
+			*exit_qual = has_payload ? payload : vcpu->arch.cr2;
+			return 1;
+		}
+	} else if (vmcs12->exception_bitmap & (1u << nr)) {
+		if (nr == DB_VECTOR) {
+			if (!has_payload) {
+				payload = vcpu->arch.dr6;
+				payload &= ~(DR6_FIXED_1 | DR6_BT);
+				payload ^= DR6_RTM;
+			}
+			*exit_qual = payload;
+		} else
+			*exit_qual = 0;
+		return 1;
+	}
+
+	return 0;
+}
+
+
+static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
+		struct x86_exception *fault)
+{
+	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+	WARN_ON(!is_guest_mode(vcpu));
+
+	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
+		!to_vmx(vcpu)->nested.nested_run_pending) {
+		vmcs12->vm_exit_intr_error_code = fault->error_code;
+		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
+				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
+				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
+				  fault->address);
+	} else {
+		kvm_inject_page_fault(vcpu, fault);
+	}
+}
+
+static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
+{
+	return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
+}
+
+static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
+					       struct vmcs12 *vmcs12)
+{
+	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
+		return 0;
+
+	if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
+	    !page_address_valid(vcpu, vmcs12->io_bitmap_b))
+		return -EINVAL;
+
+	return 0;
+}
+
+static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
+						struct vmcs12 *vmcs12)
+{
+	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
+		return 0;
+
+	if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
+		return -EINVAL;
+
+	return 0;
+}
+
+static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
+						struct vmcs12 *vmcs12)
+{
+	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
+		return 0;
+
+	if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
+		return -EINVAL;
+
+	return 0;
+}
+
+/*
+ * Check if MSR is intercepted for L01 MSR bitmap.
+ */
+static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
+{
+	unsigned long *msr_bitmap;
+	int f = sizeof(unsigned long);
+
+	if (!cpu_has_vmx_msr_bitmap())
+		return true;
+
+	msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
+
+	if (msr <= 0x1fff) {
+		return !!test_bit(msr, msr_bitmap + 0x800 / f);
+	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+		msr &= 0x1fff;
+		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
+	}
+
+	return true;
+}
+
+/*
+ * If a msr is allowed by L0, we should check whether it is allowed by L1.
+ * The corresponding bit will be cleared unless both of L0 and L1 allow it.
+ */
+static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
+					       unsigned long *msr_bitmap_nested,
+					       u32 msr, int type)
+{
+	int f = sizeof(unsigned long);
+
+	/*
+	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
+	 * have the write-low and read-high bitmap offsets the wrong way round.
+	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
+	 */
+	if (msr <= 0x1fff) {
+		if (type & MSR_TYPE_R &&
+		   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
+			/* read-low */
+			__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
+
+		if (type & MSR_TYPE_W &&
+		   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
+			/* write-low */
+			__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
+
+	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+		msr &= 0x1fff;
+		if (type & MSR_TYPE_R &&
+		   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
+			/* read-high */
+			__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
+
+		if (type & MSR_TYPE_W &&
+		   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
+			/* write-high */
+			__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
+
+	}
+}
+
+/*
+ * Merge L0's and L1's MSR bitmap, return false to indicate that
+ * we do not use the hardware.
+ */
+static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
+						 struct vmcs12 *vmcs12)
+{
+	int msr;
+	struct page *page;
+	unsigned long *msr_bitmap_l1;
+	unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
+	/*
+	 * pred_cmd & spec_ctrl are trying to verify two things:
+	 *
+	 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
+	 *    ensures that we do not accidentally generate an L02 MSR bitmap
+	 *    from the L12 MSR bitmap that is too permissive.
+	 * 2. That L1 or L2s have actually used the MSR. This avoids
+	 *    unnecessarily merging of the bitmap if the MSR is unused. This
+	 *    works properly because we only update the L01 MSR bitmap lazily.
+	 *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
+	 *    updated to reflect this when L1 (or its L2s) actually write to
+	 *    the MSR.
+	 */
+	bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
+	bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
+
+	/* Nothing to do if the MSR bitmap is not in use.  */
+	if (!cpu_has_vmx_msr_bitmap() ||
+	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
+		return false;
+
+	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
+	    !pred_cmd && !spec_ctrl)
+		return false;
+
+	page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
+	if (is_error_page(page))
+		return false;
+
+	msr_bitmap_l1 = (unsigned long *)kmap(page);
+	if (nested_cpu_has_apic_reg_virt(vmcs12)) {
+		/*
+		 * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
+		 * just lets the processor take the value from the virtual-APIC page;
+		 * take those 256 bits directly from the L1 bitmap.
+		 */
+		for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
+			unsigned word = msr / BITS_PER_LONG;
+			msr_bitmap_l0[word] = msr_bitmap_l1[word];
+			msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
+		}
+	} else {
+		for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
+			unsigned word = msr / BITS_PER_LONG;
+			msr_bitmap_l0[word] = ~0;
+			msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
+		}
+	}
+
+	nested_vmx_disable_intercept_for_msr(
+		msr_bitmap_l1, msr_bitmap_l0,
+		X2APIC_MSR(APIC_TASKPRI),
+		MSR_TYPE_W);
+
+	if (nested_cpu_has_vid(vmcs12)) {
+		nested_vmx_disable_intercept_for_msr(
+			msr_bitmap_l1, msr_bitmap_l0,
+			X2APIC_MSR(APIC_EOI),
+			MSR_TYPE_W);
+		nested_vmx_disable_intercept_for_msr(
+			msr_bitmap_l1, msr_bitmap_l0,
+			X2APIC_MSR(APIC_SELF_IPI),
+			MSR_TYPE_W);
+	}
+
+	if (spec_ctrl)
+		nested_vmx_disable_intercept_for_msr(
+					msr_bitmap_l1, msr_bitmap_l0,
+					MSR_IA32_SPEC_CTRL,
+					MSR_TYPE_R | MSR_TYPE_W);
+
+	if (pred_cmd)
+		nested_vmx_disable_intercept_for_msr(
+					msr_bitmap_l1, msr_bitmap_l0,
+					MSR_IA32_PRED_CMD,
+					MSR_TYPE_W);
+
+	kunmap(page);
+	kvm_release_page_clean(page);
+
+	return true;
+}
+
+static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
+				       struct vmcs12 *vmcs12)
+{
+	struct vmcs12 *shadow;
+	struct page *page;
+
+	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
+	    vmcs12->vmcs_link_pointer == -1ull)
+		return;
+
+	shadow = get_shadow_vmcs12(vcpu);
+	page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
+
+	memcpy(shadow, kmap(page), VMCS12_SIZE);
+
+	kunmap(page);
+	kvm_release_page_clean(page);
+}
+
+static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
+					      struct vmcs12 *vmcs12)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
+	    vmcs12->vmcs_link_pointer == -1ull)
+		return;
+
+	kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
+			get_shadow_vmcs12(vcpu), VMCS12_SIZE);
+}
+
+/*
+ * In nested virtualization, check if L1 has set
+ * VM_EXIT_ACK_INTR_ON_EXIT
+ */
+static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
+{
+	return get_vmcs12(vcpu)->vm_exit_controls &
+		VM_EXIT_ACK_INTR_ON_EXIT;
+}
+
+static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
+{
+	return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
+}
+
+static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
+					  struct vmcs12 *vmcs12)
+{
+	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
+	    !page_address_valid(vcpu, vmcs12->apic_access_addr))
+		return -EINVAL;
+	else
+		return 0;
+}
+
+static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
+					   struct vmcs12 *vmcs12)
+{
+	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
+	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
+	    !nested_cpu_has_vid(vmcs12) &&
+	    !nested_cpu_has_posted_intr(vmcs12))
+		return 0;
+
+	/*
+	 * If virtualize x2apic mode is enabled,
+	 * virtualize apic access must be disabled.
+	 */
+	if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
+	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
+		return -EINVAL;
+
+	/*
+	 * If virtual interrupt delivery is enabled,
+	 * we must exit on external interrupts.
+	 */
+	if (nested_cpu_has_vid(vmcs12) &&
+	   !nested_exit_on_intr(vcpu))
+		return -EINVAL;
+
+	/*
+	 * bits 15:8 should be zero in posted_intr_nv,
+	 * the descriptor address has been already checked
+	 * in nested_get_vmcs12_pages.
+	 *
+	 * bits 5:0 of posted_intr_desc_addr should be zero.
+	 */
+	if (nested_cpu_has_posted_intr(vmcs12) &&
+	   (!nested_cpu_has_vid(vmcs12) ||
+	    !nested_exit_intr_ack_set(vcpu) ||
+	    (vmcs12->posted_intr_nv & 0xff00) ||
+	    (vmcs12->posted_intr_desc_addr & 0x3f) ||
+	    (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
+		return -EINVAL;
+
+	/* tpr shadow is needed by all apicv features. */
+	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
+		return -EINVAL;
+
+	return 0;
+}
+
+static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
+				       u32 count, u64 addr)
+{
+	int maxphyaddr;
+
+	if (count == 0)
+		return 0;
+	maxphyaddr = cpuid_maxphyaddr(vcpu);
+	if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
+	    (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
+		return -EINVAL;
+
+	return 0;
+}
+
+static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
+						     struct vmcs12 *vmcs12)
+{
+	if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_load_count,
+					vmcs12->vm_exit_msr_load_addr) ||
+	    nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_store_count,
+					vmcs12->vm_exit_msr_store_addr))
+		return -EINVAL;
+
+	return 0;
+}
+
+static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
+                                                      struct vmcs12 *vmcs12)
+{
+	if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_entry_msr_load_count,
+                                        vmcs12->vm_entry_msr_load_addr))
+                return -EINVAL;
+
+	return 0;
+}
+
+static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
+					 struct vmcs12 *vmcs12)
+{
+	if (!nested_cpu_has_pml(vmcs12))
+		return 0;
+
+	if (!nested_cpu_has_ept(vmcs12) ||
+	    !page_address_valid(vcpu, vmcs12->pml_address))
+		return -EINVAL;
+
+	return 0;
+}
+
+static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
+							struct vmcs12 *vmcs12)
+{
+	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
+	    !nested_cpu_has_ept(vmcs12))
+		return -EINVAL;
+	return 0;
+}
+
+static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
+							 struct vmcs12 *vmcs12)
+{
+	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
+	    !nested_cpu_has_ept(vmcs12))
+		return -EINVAL;
+	return 0;
+}
+
+static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
+						 struct vmcs12 *vmcs12)
+{
+	if (!nested_cpu_has_shadow_vmcs(vmcs12))
+		return 0;
+
+	if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
+	    !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
+		return -EINVAL;
+
+	return 0;
+}
+
+static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
+				       struct vmx_msr_entry *e)
+{
+	/* x2APIC MSR accesses are not allowed */
+	if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
+		return -EINVAL;
+	if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
+	    e->index == MSR_IA32_UCODE_REV)
+		return -EINVAL;
+	if (e->reserved != 0)
+		return -EINVAL;
+	return 0;
+}
+
+static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
+				     struct vmx_msr_entry *e)
+{
+	if (e->index == MSR_FS_BASE ||
+	    e->index == MSR_GS_BASE ||
+	    e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
+	    nested_vmx_msr_check_common(vcpu, e))
+		return -EINVAL;
+	return 0;
+}
+
+static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
+				      struct vmx_msr_entry *e)
+{
+	if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
+	    nested_vmx_msr_check_common(vcpu, e))
+		return -EINVAL;
+	return 0;
+}
+
+/*
+ * Load guest's/host's msr at nested entry/exit.
+ * return 0 for success, entry index for failure.
+ */
+static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
+{
+	u32 i;
+	struct vmx_msr_entry e;
+	struct msr_data msr;
+
+	msr.host_initiated = false;
+	for (i = 0; i < count; i++) {
+		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
+					&e, sizeof(e))) {
+			pr_debug_ratelimited(
+				"%s cannot read MSR entry (%u, 0x%08llx)\n",
+				__func__, i, gpa + i * sizeof(e));
+			goto fail;
+		}
+		if (nested_vmx_load_msr_check(vcpu, &e)) {
+			pr_debug_ratelimited(
+				"%s check failed (%u, 0x%x, 0x%x)\n",
+				__func__, i, e.index, e.reserved);
+			goto fail;
+		}
+		msr.index = e.index;
+		msr.data = e.value;
+		if (kvm_set_msr(vcpu, &msr)) {
+			pr_debug_ratelimited(
+				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
+				__func__, i, e.index, e.value);
+			goto fail;
+		}
+	}
+	return 0;
+fail:
+	return i + 1;
+}
+
+static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
+{
+	u32 i;
+	struct vmx_msr_entry e;
+
+	for (i = 0; i < count; i++) {
+		struct msr_data msr_info;
+		if (kvm_vcpu_read_guest(vcpu,
+					gpa + i * sizeof(e),
+					&e, 2 * sizeof(u32))) {
+			pr_debug_ratelimited(
+				"%s cannot read MSR entry (%u, 0x%08llx)\n",
+				__func__, i, gpa + i * sizeof(e));
+			return -EINVAL;
+		}
+		if (nested_vmx_store_msr_check(vcpu, &e)) {
+			pr_debug_ratelimited(
+				"%s check failed (%u, 0x%x, 0x%x)\n",
+				__func__, i, e.index, e.reserved);
+			return -EINVAL;
+		}
+		msr_info.host_initiated = false;
+		msr_info.index = e.index;
+		if (kvm_get_msr(vcpu, &msr_info)) {
+			pr_debug_ratelimited(
+				"%s cannot read MSR (%u, 0x%x)\n",
+				__func__, i, e.index);
+			return -EINVAL;
+		}
+		if (kvm_vcpu_write_guest(vcpu,
+					 gpa + i * sizeof(e) +
+					     offsetof(struct vmx_msr_entry, value),
+					 &msr_info.data, sizeof(msr_info.data))) {
+			pr_debug_ratelimited(
+				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
+				__func__, i, e.index, msr_info.data);
+			return -EINVAL;
+		}
+	}
+	return 0;
+}
+
+static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
+{
+	unsigned long invalid_mask;
+
+	invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
+	return (val & invalid_mask) == 0;
+}
+
+/*
+ * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
+ * emulating VM entry into a guest with EPT enabled.
+ * Returns 0 on success, 1 on failure. Invalid state exit qualification code
+ * is assigned to entry_failure_code on failure.
+ */
+static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
+			       u32 *entry_failure_code)
+{
+	if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
+		if (!nested_cr3_valid(vcpu, cr3)) {
+			*entry_failure_code = ENTRY_FAIL_DEFAULT;
+			return 1;
+		}
+
+		/*
+		 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
+		 * must not be dereferenced.
+		 */
+		if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
+		    !nested_ept) {
+			if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
+				*entry_failure_code = ENTRY_FAIL_PDPTE;
+				return 1;
+			}
+		}
+	}
+
+	if (!nested_ept)
+		kvm_mmu_new_cr3(vcpu, cr3, false);
+
+	vcpu->arch.cr3 = cr3;
+	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
+
+	kvm_init_mmu(vcpu, false);
+
+	return 0;
+}
+
+/*
+ * Returns if KVM is able to config CPU to tag TLB entries
+ * populated by L2 differently than TLB entries populated
+ * by L1.
+ *
+ * If L1 uses EPT, then TLB entries are tagged with different EPTP.
+ *
+ * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
+ * with different VPID (L1 entries are tagged with vmx->vpid
+ * while L2 entries are tagged with vmx->nested.vpid02).
+ */
+static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
+{
+	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+	return nested_cpu_has_ept(vmcs12) ||
+	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
+}
+
+static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
+}
+
+
+static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
+{
+	return fixed_bits_valid(control, low, high);
+}
+
+static inline u64 vmx_control_msr(u32 low, u32 high)
+{
+	return low | ((u64)high << 32);
+}
+
+static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
+{
+	superset &= mask;
+	subset &= mask;
+
+	return (superset | subset) == superset;
+}
+
+static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
+{
+	const u64 feature_and_reserved =
+		/* feature (except bit 48; see below) */
+		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
+		/* reserved */
+		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
+	u64 vmx_basic = vmx->nested.msrs.basic;
+
+	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
+		return -EINVAL;
+
+	/*
+	 * KVM does not emulate a version of VMX that constrains physical
+	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
+	 */
+	if (data & BIT_ULL(48))
+		return -EINVAL;
+
+	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
+	    vmx_basic_vmcs_revision_id(data))
+		return -EINVAL;
+
+	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
+		return -EINVAL;
+
+	vmx->nested.msrs.basic = data;
+	return 0;
+}
+
+static int
+vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
+{
+	u64 supported;
+	u32 *lowp, *highp;
+
+	switch (msr_index) {
+	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
+		lowp = &vmx->nested.msrs.pinbased_ctls_low;
+		highp = &vmx->nested.msrs.pinbased_ctls_high;
+		break;
+	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
+		lowp = &vmx->nested.msrs.procbased_ctls_low;
+		highp = &vmx->nested.msrs.procbased_ctls_high;
+		break;
+	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
+		lowp = &vmx->nested.msrs.exit_ctls_low;
+		highp = &vmx->nested.msrs.exit_ctls_high;
+		break;
+	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
+		lowp = &vmx->nested.msrs.entry_ctls_low;
+		highp = &vmx->nested.msrs.entry_ctls_high;
+		break;
+	case MSR_IA32_VMX_PROCBASED_CTLS2:
+		lowp = &vmx->nested.msrs.secondary_ctls_low;
+		highp = &vmx->nested.msrs.secondary_ctls_high;
+		break;
+	default:
+		BUG();
+	}
+
+	supported = vmx_control_msr(*lowp, *highp);
+
+	/* Check must-be-1 bits are still 1. */
+	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
+		return -EINVAL;
+
+	/* Check must-be-0 bits are still 0. */
+	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
+		return -EINVAL;
+
+	*lowp = data;
+	*highp = data >> 32;
+	return 0;
+}
+
+static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
+{
+	const u64 feature_and_reserved_bits =
+		/* feature */
+		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
+		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
+		/* reserved */
+		GENMASK_ULL(13, 9) | BIT_ULL(31);
+	u64 vmx_misc;
+
+	vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
+				   vmx->nested.msrs.misc_high);
+
+	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
+		return -EINVAL;
+
+	if ((vmx->nested.msrs.pinbased_ctls_high &
+	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
+	    vmx_misc_preemption_timer_rate(data) !=
+	    vmx_misc_preemption_timer_rate(vmx_misc))
+		return -EINVAL;
+
+	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
+		return -EINVAL;
+
+	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
+		return -EINVAL;
+
+	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
+		return -EINVAL;
+
+	vmx->nested.msrs.misc_low = data;
+	vmx->nested.msrs.misc_high = data >> 32;
+
+	/*
+	 * If L1 has read-only VM-exit information fields, use the
+	 * less permissive vmx_vmwrite_bitmap to specify write
+	 * permissions for the shadow VMCS.
+	 */
+	if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
+		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
+
+	return 0;
+}
+
+static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
+{
+	u64 vmx_ept_vpid_cap;
+
+	vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
+					   vmx->nested.msrs.vpid_caps);
+
+	/* Every bit is either reserved or a feature bit. */
+	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
+		return -EINVAL;
+
+	vmx->nested.msrs.ept_caps = data;
+	vmx->nested.msrs.vpid_caps = data >> 32;
+	return 0;
+}
+
+static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
+{
+	u64 *msr;
+
+	switch (msr_index) {
+	case MSR_IA32_VMX_CR0_FIXED0:
+		msr = &vmx->nested.msrs.cr0_fixed0;
+		break;
+	case MSR_IA32_VMX_CR4_FIXED0:
+		msr = &vmx->nested.msrs.cr4_fixed0;
+		break;
+	default:
+		BUG();
+	}
+
+	/*
+	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
+	 * must be 1 in the restored value.
+	 */
+	if (!is_bitwise_subset(data, *msr, -1ULL))
+		return -EINVAL;
+
+	*msr = data;
+	return 0;
+}
+
+/*
+ * Called when userspace is restoring VMX MSRs.
+ *
+ * Returns 0 on success, non-0 otherwise.
+ */
+int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	/*
+	 * Don't allow changes to the VMX capability MSRs while the vCPU
+	 * is in VMX operation.
+	 */
+	if (vmx->nested.vmxon)
+		return -EBUSY;
+
+	switch (msr_index) {
+	case MSR_IA32_VMX_BASIC:
+		return vmx_restore_vmx_basic(vmx, data);
+	case MSR_IA32_VMX_PINBASED_CTLS:
+	case MSR_IA32_VMX_PROCBASED_CTLS:
+	case MSR_IA32_VMX_EXIT_CTLS:
+	case MSR_IA32_VMX_ENTRY_CTLS:
+		/*
+		 * The "non-true" VMX capability MSRs are generated from the
+		 * "true" MSRs, so we do not support restoring them directly.
+		 *
+		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
+		 * should restore the "true" MSRs with the must-be-1 bits
+		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
+		 * DEFAULT SETTINGS".
+		 */
+		return -EINVAL;
+	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
+	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
+	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
+	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
+	case MSR_IA32_VMX_PROCBASED_CTLS2:
+		return vmx_restore_control_msr(vmx, msr_index, data);
+	case MSR_IA32_VMX_MISC:
+		return vmx_restore_vmx_misc(vmx, data);
+	case MSR_IA32_VMX_CR0_FIXED0:
+	case MSR_IA32_VMX_CR4_FIXED0:
+		return vmx_restore_fixed0_msr(vmx, msr_index, data);
+	case MSR_IA32_VMX_CR0_FIXED1:
+	case MSR_IA32_VMX_CR4_FIXED1:
+		/*
+		 * These MSRs are generated based on the vCPU's CPUID, so we
+		 * do not support restoring them directly.
+		 */
+		return -EINVAL;
+	case MSR_IA32_VMX_EPT_VPID_CAP:
+		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
+	case MSR_IA32_VMX_VMCS_ENUM:
+		vmx->nested.msrs.vmcs_enum = data;
+		return 0;
+	default:
+		/*
+		 * The rest of the VMX capability MSRs do not support restore.
+		 */
+		return -EINVAL;
+	}
+}
+
+/* Returns 0 on success, non-0 otherwise. */
+int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
+{
+	switch (msr_index) {
+	case MSR_IA32_VMX_BASIC:
+		*pdata = msrs->basic;
+		break;
+	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
+	case MSR_IA32_VMX_PINBASED_CTLS:
+		*pdata = vmx_control_msr(
+			msrs->pinbased_ctls_low,
+			msrs->pinbased_ctls_high);
+		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
+			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+		break;
+	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
+	case MSR_IA32_VMX_PROCBASED_CTLS:
+		*pdata = vmx_control_msr(
+			msrs->procbased_ctls_low,
+			msrs->procbased_ctls_high);
+		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
+			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+		break;
+	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
+	case MSR_IA32_VMX_EXIT_CTLS:
+		*pdata = vmx_control_msr(
+			msrs->exit_ctls_low,
+			msrs->exit_ctls_high);
+		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
+			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
+		break;
+	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
+	case MSR_IA32_VMX_ENTRY_CTLS:
+		*pdata = vmx_control_msr(
+			msrs->entry_ctls_low,
+			msrs->entry_ctls_high);
+		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
+			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
+		break;
+	case MSR_IA32_VMX_MISC:
+		*pdata = vmx_control_msr(
+			msrs->misc_low,
+			msrs->misc_high);
+		break;
+	case MSR_IA32_VMX_CR0_FIXED0:
+		*pdata = msrs->cr0_fixed0;
+		break;
+	case MSR_IA32_VMX_CR0_FIXED1:
+		*pdata = msrs->cr0_fixed1;
+		break;
+	case MSR_IA32_VMX_CR4_FIXED0:
+		*pdata = msrs->cr4_fixed0;
+		break;
+	case MSR_IA32_VMX_CR4_FIXED1:
+		*pdata = msrs->cr4_fixed1;
+		break;
+	case MSR_IA32_VMX_VMCS_ENUM:
+		*pdata = msrs->vmcs_enum;
+		break;
+	case MSR_IA32_VMX_PROCBASED_CTLS2:
+		*pdata = vmx_control_msr(
+			msrs->secondary_ctls_low,
+			msrs->secondary_ctls_high);
+		break;
+	case MSR_IA32_VMX_EPT_VPID_CAP:
+		*pdata = msrs->ept_caps |
+			((u64)msrs->vpid_caps << 32);
+		break;
+	case MSR_IA32_VMX_VMFUNC:
+		*pdata = msrs->vmfunc_controls;
+		break;
+	default:
+		return 1;
+	}
+
+	return 0;
+}
+
+/*
+ * Copy the writable VMCS shadow fields back to the VMCS12, in case
+ * they have been modified by the L1 guest. Note that the "read-only"
+ * VM-exit information fields are actually writable if the vCPU is
+ * configured to support "VMWRITE to any supported field in the VMCS."
+ */
+static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
+{
+	const u16 *fields[] = {
+		shadow_read_write_fields,
+		shadow_read_only_fields
+	};
+	const int max_fields[] = {
+		max_shadow_read_write_fields,
+		max_shadow_read_only_fields
+	};
+	int i, q;
+	unsigned long field;
+	u64 field_value;
+	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
+
+	preempt_disable();
+
+	vmcs_load(shadow_vmcs);
+
+	for (q = 0; q < ARRAY_SIZE(fields); q++) {
+		for (i = 0; i < max_fields[q]; i++) {
+			field = fields[q][i];
+			field_value = __vmcs_readl(field);
+			vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
+		}
+		/*
+		 * Skip the VM-exit information fields if they are read-only.
+		 */
+		if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
+			break;
+	}
+
+	vmcs_clear(shadow_vmcs);
+	vmcs_load(vmx->loaded_vmcs->vmcs);
+
+	preempt_enable();
+}
+
+static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
+{
+	const u16 *fields[] = {
+		shadow_read_write_fields,
+		shadow_read_only_fields
+	};
+	const int max_fields[] = {
+		max_shadow_read_write_fields,
+		max_shadow_read_only_fields
+	};
+	int i, q;
+	unsigned long field;
+	u64 field_value = 0;
+	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
+
+	vmcs_load(shadow_vmcs);
+
+	for (q = 0; q < ARRAY_SIZE(fields); q++) {
+		for (i = 0; i < max_fields[q]; i++) {
+			field = fields[q][i];
+			vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
+			__vmcs_writel(field, field_value);
+		}
+	}
+
+	vmcs_clear(shadow_vmcs);
+	vmcs_load(vmx->loaded_vmcs->vmcs);
+}
+
+static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
+{
+	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
+	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
+
+	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
+	vmcs12->tpr_threshold = evmcs->tpr_threshold;
+	vmcs12->guest_rip = evmcs->guest_rip;
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
+		vmcs12->guest_rsp = evmcs->guest_rsp;
+		vmcs12->guest_rflags = evmcs->guest_rflags;
+		vmcs12->guest_interruptibility_info =
+			evmcs->guest_interruptibility_info;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
+		vmcs12->cpu_based_vm_exec_control =
+			evmcs->cpu_based_vm_exec_control;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
+		vmcs12->exception_bitmap = evmcs->exception_bitmap;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
+		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
+		vmcs12->vm_entry_intr_info_field =
+			evmcs->vm_entry_intr_info_field;
+		vmcs12->vm_entry_exception_error_code =
+			evmcs->vm_entry_exception_error_code;
+		vmcs12->vm_entry_instruction_len =
+			evmcs->vm_entry_instruction_len;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
+		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
+		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
+		vmcs12->host_cr0 = evmcs->host_cr0;
+		vmcs12->host_cr3 = evmcs->host_cr3;
+		vmcs12->host_cr4 = evmcs->host_cr4;
+		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
+		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
+		vmcs12->host_rip = evmcs->host_rip;
+		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
+		vmcs12->host_es_selector = evmcs->host_es_selector;
+		vmcs12->host_cs_selector = evmcs->host_cs_selector;
+		vmcs12->host_ss_selector = evmcs->host_ss_selector;
+		vmcs12->host_ds_selector = evmcs->host_ds_selector;
+		vmcs12->host_fs_selector = evmcs->host_fs_selector;
+		vmcs12->host_gs_selector = evmcs->host_gs_selector;
+		vmcs12->host_tr_selector = evmcs->host_tr_selector;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
+		vmcs12->pin_based_vm_exec_control =
+			evmcs->pin_based_vm_exec_control;
+		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
+		vmcs12->secondary_vm_exec_control =
+			evmcs->secondary_vm_exec_control;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
+		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
+		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
+		vmcs12->msr_bitmap = evmcs->msr_bitmap;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
+		vmcs12->guest_es_base = evmcs->guest_es_base;
+		vmcs12->guest_cs_base = evmcs->guest_cs_base;
+		vmcs12->guest_ss_base = evmcs->guest_ss_base;
+		vmcs12->guest_ds_base = evmcs->guest_ds_base;
+		vmcs12->guest_fs_base = evmcs->guest_fs_base;
+		vmcs12->guest_gs_base = evmcs->guest_gs_base;
+		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
+		vmcs12->guest_tr_base = evmcs->guest_tr_base;
+		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
+		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
+		vmcs12->guest_es_limit = evmcs->guest_es_limit;
+		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
+		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
+		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
+		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
+		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
+		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
+		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
+		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
+		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
+		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
+		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
+		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
+		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
+		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
+		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
+		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
+		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
+		vmcs12->guest_es_selector = evmcs->guest_es_selector;
+		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
+		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
+		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
+		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
+		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
+		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
+		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
+		vmcs12->tsc_offset = evmcs->tsc_offset;
+		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
+		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
+		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
+		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
+		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
+		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
+		vmcs12->guest_cr0 = evmcs->guest_cr0;
+		vmcs12->guest_cr3 = evmcs->guest_cr3;
+		vmcs12->guest_cr4 = evmcs->guest_cr4;
+		vmcs12->guest_dr7 = evmcs->guest_dr7;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
+		vmcs12->host_fs_base = evmcs->host_fs_base;
+		vmcs12->host_gs_base = evmcs->host_gs_base;
+		vmcs12->host_tr_base = evmcs->host_tr_base;
+		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
+		vmcs12->host_idtr_base = evmcs->host_idtr_base;
+		vmcs12->host_rsp = evmcs->host_rsp;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
+		vmcs12->ept_pointer = evmcs->ept_pointer;
+		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
+	}
+
+	if (unlikely(!(evmcs->hv_clean_fields &
+		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
+		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
+		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
+		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
+		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
+		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
+		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
+		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
+		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
+		vmcs12->guest_pending_dbg_exceptions =
+			evmcs->guest_pending_dbg_exceptions;
+		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
+		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
+		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
+		vmcs12->guest_activity_state = evmcs->guest_activity_state;
+		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
+	}
+
+	/*
+	 * Not used?
+	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
+	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
+	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
+	 * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
+	 * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
+	 * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
+	 * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
+	 * vmcs12->page_fault_error_code_mask =
+	 *		evmcs->page_fault_error_code_mask;
+	 * vmcs12->page_fault_error_code_match =
+	 *		evmcs->page_fault_error_code_match;
+	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
+	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
+	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
+	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
+	 */
+
+	/*
+	 * Read only fields:
+	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
+	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
+	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
+	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
+	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
+	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
+	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
+	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
+	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
+	 * vmcs12->exit_qualification = evmcs->exit_qualification;
+	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
+	 *
+	 * Not present in struct vmcs12:
+	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
+	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
+	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
+	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
+	 */
+
+	return 0;
+}
+
+static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
+{
+	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
+	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
+
+	/*
+	 * Should not be changed by KVM:
+	 *
+	 * evmcs->host_es_selector = vmcs12->host_es_selector;
+	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
+	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
+	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
+	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
+	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
+	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
+	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
+	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
+	 * evmcs->host_cr0 = vmcs12->host_cr0;
+	 * evmcs->host_cr3 = vmcs12->host_cr3;
+	 * evmcs->host_cr4 = vmcs12->host_cr4;
+	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
+	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
+	 * evmcs->host_rip = vmcs12->host_rip;
+	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
+	 * evmcs->host_fs_base = vmcs12->host_fs_base;
+	 * evmcs->host_gs_base = vmcs12->host_gs_base;
+	 * evmcs->host_tr_base = vmcs12->host_tr_base;
+	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
+	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
+	 * evmcs->host_rsp = vmcs12->host_rsp;
+	 * sync_vmcs12() doesn't read these:
+	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
+	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
+	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
+	 * evmcs->ept_pointer = vmcs12->ept_pointer;
+	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
+	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
+	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
+	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
+	 * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
+	 * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
+	 * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
+	 * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
+	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
+	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
+	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
+	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
+	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
+	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
+	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
+	 * evmcs->page_fault_error_code_mask =
+	 *		vmcs12->page_fault_error_code_mask;
+	 * evmcs->page_fault_error_code_match =
+	 *		vmcs12->page_fault_error_code_match;
+	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
+	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
+	 * evmcs->tsc_offset = vmcs12->tsc_offset;
+	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
+	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
+	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
+	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
+	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
+	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
+	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
+	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
+	 *
+	 * Not present in struct vmcs12:
+	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
+	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
+	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
+	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
+	 */
+
+	evmcs->guest_es_selector = vmcs12->guest_es_selector;
+	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
+	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
+	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
+	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
+	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
+	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
+	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
+
+	evmcs->guest_es_limit = vmcs12->guest_es_limit;
+	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
+	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
+	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
+	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
+	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
+	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
+	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
+	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
+	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
+
+	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
+	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
+	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
+	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
+	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
+	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
+	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
+	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
+
+	evmcs->guest_es_base = vmcs12->guest_es_base;
+	evmcs->guest_cs_base = vmcs12->guest_cs_base;
+	evmcs->guest_ss_base = vmcs12->guest_ss_base;
+	evmcs->guest_ds_base = vmcs12->guest_ds_base;
+	evmcs->guest_fs_base = vmcs12->guest_fs_base;
+	evmcs->guest_gs_base = vmcs12->guest_gs_base;
+	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
+	evmcs->guest_tr_base = vmcs12->guest_tr_base;
+	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
+	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
+
+	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
+	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
+
+	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
+	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
+	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
+	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
+
+	evmcs->guest_pending_dbg_exceptions =
+		vmcs12->guest_pending_dbg_exceptions;
+	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
+	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
+
+	evmcs->guest_activity_state = vmcs12->guest_activity_state;
+	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
+
+	evmcs->guest_cr0 = vmcs12->guest_cr0;
+	evmcs->guest_cr3 = vmcs12->guest_cr3;
+	evmcs->guest_cr4 = vmcs12->guest_cr4;
+	evmcs->guest_dr7 = vmcs12->guest_dr7;
+
+	evmcs->guest_physical_address = vmcs12->guest_physical_address;
+
+	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
+	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
+	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
+	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
+	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
+	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
+	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
+	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
+
+	evmcs->exit_qualification = vmcs12->exit_qualification;
+
+	evmcs->guest_linear_address = vmcs12->guest_linear_address;
+	evmcs->guest_rsp = vmcs12->guest_rsp;
+	evmcs->guest_rflags = vmcs12->guest_rflags;
+
+	evmcs->guest_interruptibility_info =
+		vmcs12->guest_interruptibility_info;
+	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
+	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
+	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
+	evmcs->vm_entry_exception_error_code =
+		vmcs12->vm_entry_exception_error_code;
+	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
+
+	evmcs->guest_rip = vmcs12->guest_rip;
+
+	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
+
+	return 0;
+}
+
+/*
+ * This is an equivalent of the nested hypervisor executing the vmptrld
+ * instruction.
+ */
+static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
+						 bool from_launch)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct hv_vp_assist_page assist_page;
+
+	if (likely(!vmx->nested.enlightened_vmcs_enabled))
+		return 1;
+
+	if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page)))
+		return 1;
+
+	if (unlikely(!assist_page.enlighten_vmentry))
+		return 1;
+
+	if (unlikely(assist_page.current_nested_vmcs !=
+		     vmx->nested.hv_evmcs_vmptr)) {
+
+		if (!vmx->nested.hv_evmcs)
+			vmx->nested.current_vmptr = -1ull;
+
+		nested_release_evmcs(vcpu);
+
+		vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page(
+			vcpu, assist_page.current_nested_vmcs);
+
+		if (unlikely(is_error_page(vmx->nested.hv_evmcs_page)))
+			return 0;
+
+		vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page);
+
+		/*
+		 * Currently, KVM only supports eVMCS version 1
+		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
+		 * value to first u32 field of eVMCS which should specify eVMCS
+		 * VersionNumber.
+		 *
+		 * Guest should be aware of supported eVMCS versions by host by
+		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
+		 * expected to set this CPUID leaf according to the value
+		 * returned in vmcs_version from nested_enable_evmcs().
+		 *
+		 * However, it turns out that Microsoft Hyper-V fails to comply
+		 * to their own invented interface: When Hyper-V use eVMCS, it
+		 * just sets first u32 field of eVMCS to revision_id specified
+		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
+		 * which is one of the supported versions specified in
+		 * CPUID.0x4000000A.EAX[0:15].
+		 *
+		 * To overcome Hyper-V bug, we accept here either a supported
+		 * eVMCS version or VMCS12 revision_id as valid values for first
+		 * u32 field of eVMCS.
+		 */
+		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
+		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
+			nested_release_evmcs(vcpu);
+			return 0;
+		}
+
+		vmx->nested.dirty_vmcs12 = true;
+		/*
+		 * As we keep L2 state for one guest only 'hv_clean_fields' mask
+		 * can't be used when we switch between them. Reset it here for
+		 * simplicity.
+		 */
+		vmx->nested.hv_evmcs->hv_clean_fields &=
+			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
+		vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs;
+
+		/*
+		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
+		 * reloaded from guest's memory (read only fields, fields not
+		 * present in struct hv_enlightened_vmcs, ...). Make sure there
+		 * are no leftovers.
+		 */
+		if (from_launch) {
+			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+			memset(vmcs12, 0, sizeof(*vmcs12));
+			vmcs12->hdr.revision_id = VMCS12_REVISION;
+		}
+
+	}
+	return 1;
+}
+
+void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	/*
+	 * hv_evmcs may end up being not mapped after migration (when
+	 * L2 was running), map it here to make sure vmcs12 changes are
+	 * properly reflected.
+	 */
+	if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
+		nested_vmx_handle_enlightened_vmptrld(vcpu, false);
+
+	if (vmx->nested.hv_evmcs) {
+		copy_vmcs12_to_enlightened(vmx);
+		/* All fields are clean */
+		vmx->nested.hv_evmcs->hv_clean_fields |=
+			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
+	} else {
+		copy_vmcs12_to_shadow(vmx);
+	}
+
+	vmx->nested.need_vmcs12_sync = false;
+}
+
+static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
+{
+	struct vcpu_vmx *vmx =
+		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
+
+	vmx->nested.preemption_timer_expired = true;
+	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
+	kvm_vcpu_kick(&vmx->vcpu);
+
+	return HRTIMER_NORESTART;
+}
+
+static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
+{
+	u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	/*
+	 * A timer value of zero is architecturally guaranteed to cause
+	 * a VMExit prior to executing any instructions in the guest.
+	 */
+	if (preemption_timeout == 0) {
+		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
+		return;
+	}
+
+	if (vcpu->arch.virtual_tsc_khz == 0)
+		return;
+
+	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
+	preemption_timeout *= 1000000;
+	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
+	hrtimer_start(&vmx->nested.preemption_timer,
+		      ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
+}
+
+static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
+{
+	if (vmx->nested.nested_run_pending &&
+	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
+		return vmcs12->guest_ia32_efer;
+	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
+		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
+	else
+		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
+}
+
+static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
+{
+	/*
+	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
+	 * according to L0's settings (vmcs12 is irrelevant here).  Host
+	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
+	 * will be set as needed prior to VMLAUNCH/VMRESUME.
+	 */
+	if (vmx->nested.vmcs02_initialized)
+		return;
+	vmx->nested.vmcs02_initialized = true;
+
+	/*
+	 * We don't care what the EPTP value is we just need to guarantee
+	 * it's valid so we don't get a false positive when doing early
+	 * consistency checks.
+	 */
+	if (enable_ept && nested_early_check)
+		vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
+
+	/* All VMFUNCs are currently emulated through L0 vmexits.  */
+	if (cpu_has_vmx_vmfunc())
+		vmcs_write64(VM_FUNCTION_CONTROL, 0);
+
+	if (cpu_has_vmx_posted_intr())
+		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
+
+	if (cpu_has_vmx_msr_bitmap())
+		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
+
+	if (enable_pml)
+		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
+
+	/*
+	 * Set the MSR load/store lists to match L0's settings.  Only the
+	 * addresses are constant (for vmcs02), the counts can change based
+	 * on L2's behavior, e.g. switching to/from long mode.
+	 */
+	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
+	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
+	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
+
+	vmx_set_constant_host_state(vmx);
+}
+
+static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx,
+				      struct vmcs12 *vmcs12)
+{
+	prepare_vmcs02_constant_state(vmx);
+
+	vmcs_write64(VMCS_LINK_POINTER, -1ull);
+
+	if (enable_vpid) {
+		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
+			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
+		else
+			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
+	}
+}
+
+static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
+{
+	u32 exec_control, vmcs12_exec_ctrl;
+	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
+
+	if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
+		prepare_vmcs02_early_full(vmx, vmcs12);
+
+	/*
+	 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
+	 * entry, but only if the current (host) sp changed from the value
+	 * we wrote last (vmx->host_rsp).  This cache is no longer relevant
+	 * if we switch vmcs, and rather than hold a separate cache per vmcs,
+	 * here we just force the write to happen on entry.  host_rsp will
+	 * also be written unconditionally by nested_vmx_check_vmentry_hw()
+	 * if we are doing early consistency checks via hardware.
+	 */
+	vmx->host_rsp = 0;
+
+	/*
+	 * PIN CONTROLS
+	 */
+	exec_control = vmcs12->pin_based_vm_exec_control;
+
+	/* Preemption timer setting is computed directly in vmx_vcpu_run.  */
+	exec_control |= vmcs_config.pin_based_exec_ctrl;
+	exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
+	vmx->loaded_vmcs->hv_timer_armed = false;
+
+	/* Posted interrupts setting is only taken from vmcs12.  */
+	if (nested_cpu_has_posted_intr(vmcs12)) {
+		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
+		vmx->nested.pi_pending = false;
+	} else {
+		exec_control &= ~PIN_BASED_POSTED_INTR;
+	}
+	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
+
+	/*
+	 * EXEC CONTROLS
+	 */
+	exec_control = vmx_exec_control(vmx); /* L0's desires */
+	exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
+	exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
+	exec_control &= ~CPU_BASED_TPR_SHADOW;
+	exec_control |= vmcs12->cpu_based_vm_exec_control;
+
+	/*
+	 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
+	 * nested_get_vmcs12_pages can't fix it up, the illegal value
+	 * will result in a VM entry failure.
+	 */
+	if (exec_control & CPU_BASED_TPR_SHADOW) {
+		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
+		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
+	} else {
+#ifdef CONFIG_X86_64
+		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
+				CPU_BASED_CR8_STORE_EXITING;
+#endif
+	}
+
+	/*
+	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
+	 * for I/O port accesses.
+	 */
+	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
+	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
+	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
+
+	/*
+	 * SECONDARY EXEC CONTROLS
+	 */
+	if (cpu_has_secondary_exec_ctrls()) {
+		exec_control = vmx->secondary_exec_control;
+
+		/* Take the following fields only from vmcs12 */
+		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+				  SECONDARY_EXEC_ENABLE_INVPCID |
+				  SECONDARY_EXEC_RDTSCP |
+				  SECONDARY_EXEC_XSAVES |
+				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
+				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
+				  SECONDARY_EXEC_ENABLE_VMFUNC);
+		if (nested_cpu_has(vmcs12,
+				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
+			vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
+				~SECONDARY_EXEC_ENABLE_PML;
+			exec_control |= vmcs12_exec_ctrl;
+		}
+
+		/* VMCS shadowing for L2 is emulated for now */
+		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
+
+		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
+			vmcs_write16(GUEST_INTR_STATUS,
+				vmcs12->guest_intr_status);
+
+		/*
+		 * Write an illegal value to APIC_ACCESS_ADDR. Later,
+		 * nested_get_vmcs12_pages will either fix it up or
+		 * remove the VM execution control.
+		 */
+		if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
+			vmcs_write64(APIC_ACCESS_ADDR, -1ull);
+
+		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
+			vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
+
+		vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
+	}
+
+	/*
+	 * ENTRY CONTROLS
+	 *
+	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
+	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
+	 * on the related bits (if supported by the CPU) in the hope that
+	 * we can avoid VMWrites during vmx_set_efer().
+	 */
+	exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
+			~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
+	if (cpu_has_load_ia32_efer()) {
+		if (guest_efer & EFER_LMA)
+			exec_control |= VM_ENTRY_IA32E_MODE;
+		if (guest_efer != host_efer)
+			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
+	}
+	vm_entry_controls_init(vmx, exec_control);
+
+	/*
+	 * EXIT CONTROLS
+	 *
+	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
+	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
+	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
+	 */
+	exec_control = vmx_vmexit_ctrl();
+	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
+		exec_control |= VM_EXIT_LOAD_IA32_EFER;
+	vm_exit_controls_init(vmx, exec_control);
+
+	/*
+	 * Conceptually we want to copy the PML address and index from
+	 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
+	 * since we always flush the log on each vmexit and never change
+	 * the PML address (once set), this happens to be equivalent to
+	 * simply resetting the index in vmcs02.
+	 */
+	if (enable_pml)
+		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
+
+	/*
+	 * Interrupt/Exception Fields
+	 */
+	if (vmx->nested.nested_run_pending) {
+		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
+			     vmcs12->vm_entry_intr_info_field);
+		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
+			     vmcs12->vm_entry_exception_error_code);
+		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+			     vmcs12->vm_entry_instruction_len);
+		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
+			     vmcs12->guest_interruptibility_info);
+		vmx->loaded_vmcs->nmi_known_unmasked =
+			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
+	} else {
+		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
+	}
+}
+
+static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
+{
+	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
+
+	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
+			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
+		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
+		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
+		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
+		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
+		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
+		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
+		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
+		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
+		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
+		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
+		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
+		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
+		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
+		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
+		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
+		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
+		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
+		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
+		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
+		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
+		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
+		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
+		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
+		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
+		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
+		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
+		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
+		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
+		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
+		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
+		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
+		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
+		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
+		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
+	}
+
+	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
+			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
+		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
+		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
+			    vmcs12->guest_pending_dbg_exceptions);
+		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
+		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
+
+		/*
+		 * L1 may access the L2's PDPTR, so save them to construct
+		 * vmcs12
+		 */
+		if (enable_ept) {
+			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
+			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
+			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
+			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
+		}
+	}
+
+	if (nested_cpu_has_xsaves(vmcs12))
+		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
+
+	/*
+	 * Whether page-faults are trapped is determined by a combination of
+	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
+	 * If enable_ept, L0 doesn't care about page faults and we should
+	 * set all of these to L1's desires. However, if !enable_ept, L0 does
+	 * care about (at least some) page faults, and because it is not easy
+	 * (if at all possible?) to merge L0 and L1's desires, we simply ask
+	 * to exit on each and every L2 page fault. This is done by setting
+	 * MASK=MATCH=0 and (see below) EB.PF=1.
+	 * Note that below we don't need special code to set EB.PF beyond the
+	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
+	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
+	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
+	 */
+	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
+		enable_ept ? vmcs12->page_fault_error_code_mask : 0);
+	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
+		enable_ept ? vmcs12->page_fault_error_code_match : 0);
+
+	if (cpu_has_vmx_apicv()) {
+		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
+		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
+		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
+		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
+	}
+
+	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
+	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
+
+	set_cr4_guest_host_mask(vmx);
+
+	if (kvm_mpx_supported()) {
+		if (vmx->nested.nested_run_pending &&
+			(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
+			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
+		else
+			vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
+	}
+}
+
+/*
+ * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
+ * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
+ * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
+ * guest in a way that will both be appropriate to L1's requests, and our
+ * needs. In addition to modifying the active vmcs (which is vmcs02), this
+ * function also has additional necessary side-effects, like setting various
+ * vcpu->arch fields.
+ * Returns 0 on success, 1 on failure. Invalid state exit qualification code
+ * is assigned to entry_failure_code on failure.
+ */
+static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
+			  u32 *entry_failure_code)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
+
+	if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) {
+		prepare_vmcs02_full(vmx, vmcs12);
+		vmx->nested.dirty_vmcs12 = false;
+	}
+
+	/*
+	 * First, the fields that are shadowed.  This must be kept in sync
+	 * with vmcs_shadow_fields.h.
+	 */
+	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
+			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
+		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
+		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
+	}
+
+	if (vmx->nested.nested_run_pending &&
+	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
+		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
+		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
+	} else {
+		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
+		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
+	}
+	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
+
+	vmx->nested.preemption_timer_expired = false;
+	if (nested_cpu_has_preemption_timer(vmcs12))
+		vmx_start_preemption_timer(vcpu);
+
+	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
+	 * bitwise-or of what L1 wants to trap for L2, and what we want to
+	 * trap. Note that CR0.TS also needs updating - we do this later.
+	 */
+	update_exception_bitmap(vcpu);
+	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
+	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
+
+	if (vmx->nested.nested_run_pending &&
+	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
+		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
+		vcpu->arch.pat = vmcs12->guest_ia32_pat;
+	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
+		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
+	}
+
+	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
+
+	if (kvm_has_tsc_control)
+		decache_tsc_multiplier(vmx);
+
+	if (enable_vpid) {
+		/*
+		 * There is no direct mapping between vpid02 and vpid12, the
+		 * vpid02 is per-vCPU for L0 and reused while the value of
+		 * vpid12 is changed w/ one invvpid during nested vmentry.
+		 * The vpid12 is allocated by L1 for L2, so it will not
+		 * influence global bitmap(for vpid01 and vpid02 allocation)
+		 * even if spawn a lot of nested vCPUs.
+		 */
+		if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
+			if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
+				vmx->nested.last_vpid = vmcs12->virtual_processor_id;
+				__vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
+			}
+		} else {
+			/*
+			 * If L1 use EPT, then L0 needs to execute INVEPT on
+			 * EPTP02 instead of EPTP01. Therefore, delay TLB
+			 * flush until vmcs02->eptp is fully updated by
+			 * KVM_REQ_LOAD_CR3. Note that this assumes
+			 * KVM_REQ_TLB_FLUSH is evaluated after
+			 * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
+			 */
+			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+		}
+	}
+
+	if (nested_cpu_has_ept(vmcs12))
+		nested_ept_init_mmu_context(vcpu);
+	else if (nested_cpu_has2(vmcs12,
+				 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
+		vmx_flush_tlb(vcpu, true);
+
+	/*
+	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
+	 * bits which we consider mandatory enabled.
+	 * The CR0_READ_SHADOW is what L2 should have expected to read given
+	 * the specifications by L1; It's not enough to take
+	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
+	 * have more bits than L1 expected.
+	 */
+	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
+	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
+
+	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
+	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
+
+	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
+	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
+	vmx_set_efer(vcpu, vcpu->arch.efer);
+
+	/*
+	 * Guest state is invalid and unrestricted guest is disabled,
+	 * which means L1 attempted VMEntry to L2 with invalid state.
+	 * Fail the VMEntry.
+	 */
+	if (vmx->emulation_required) {
+		*entry_failure_code = ENTRY_FAIL_DEFAULT;
+		return 1;
+	}
+
+	/* Shadow page tables on either EPT or shadow page tables. */
+	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
+				entry_failure_code))
+		return 1;
+
+	if (!enable_ept)
+		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
+
+	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
+	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
+	return 0;
+}
+
+static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
+{
+	if (!nested_cpu_has_nmi_exiting(vmcs12) &&
+	    nested_cpu_has_virtual_nmis(vmcs12))
+		return -EINVAL;
+
+	if (!nested_cpu_has_virtual_nmis(vmcs12) &&
+	    nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
+		return -EINVAL;
+
+	return 0;
+}
+
+static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	int maxphyaddr = cpuid_maxphyaddr(vcpu);
+
+	/* Check for memory type validity */
+	switch (address & VMX_EPTP_MT_MASK) {
+	case VMX_EPTP_MT_UC:
+		if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
+			return false;
+		break;
+	case VMX_EPTP_MT_WB:
+		if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
+			return false;
+		break;
+	default:
+		return false;
+	}
+
+	/* only 4 levels page-walk length are valid */
+	if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
+		return false;
+
+	/* Reserved bits should not be set */
+	if (address >> maxphyaddr || ((address >> 7) & 0x1f))
+		return false;
+
+	/* AD, if set, should be supported */
+	if (address & VMX_EPTP_AD_ENABLE_BIT) {
+		if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
+			return false;
+	}
+
+	return true;
+}
+
+/*
+ * Checks related to VM-Execution Control Fields
+ */
+static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
+                                              struct vmcs12 *vmcs12)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
+				vmx->nested.msrs.pinbased_ctls_low,
+				vmx->nested.msrs.pinbased_ctls_high) ||
+	    !vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
+				vmx->nested.msrs.procbased_ctls_low,
+				vmx->nested.msrs.procbased_ctls_high))
+		return -EINVAL;
+
+	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
+	    !vmx_control_verify(vmcs12->secondary_vm_exec_control,
+				 vmx->nested.msrs.secondary_ctls_low,
+				 vmx->nested.msrs.secondary_ctls_high))
+		return -EINVAL;
+
+	if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu) ||
+	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
+	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
+	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
+	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
+	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
+	    nested_vmx_check_nmi_controls(vmcs12) ||
+	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
+	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
+	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
+	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
+	    (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
+		return -EINVAL;
+
+	if (nested_cpu_has_ept(vmcs12) &&
+	    !valid_ept_address(vcpu, vmcs12->ept_pointer))
+		return -EINVAL;
+
+	if (nested_cpu_has_vmfunc(vmcs12)) {
+		if (vmcs12->vm_function_control &
+		    ~vmx->nested.msrs.vmfunc_controls)
+			return -EINVAL;
+
+		if (nested_cpu_has_eptp_switching(vmcs12)) {
+			if (!nested_cpu_has_ept(vmcs12) ||
+			    !page_address_valid(vcpu, vmcs12->eptp_list_address))
+				return -EINVAL;
+		}
+	}
+
+	return 0;
+}
+
+/*
+ * Checks related to VM-Exit Control Fields
+ */
+static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
+                                         struct vmcs12 *vmcs12)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (!vmx_control_verify(vmcs12->vm_exit_controls,
+				vmx->nested.msrs.exit_ctls_low,
+				vmx->nested.msrs.exit_ctls_high) ||
+	    nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12))
+		return -EINVAL;
+
+	return 0;
+}
+
+/*
+ * Checks related to VM-Entry Control Fields
+ */
+static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
+					  struct vmcs12 *vmcs12)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (!vmx_control_verify(vmcs12->vm_entry_controls,
+				vmx->nested.msrs.entry_ctls_low,
+				vmx->nested.msrs.entry_ctls_high))
+		return -EINVAL;
+
+	/*
+	 * From the Intel SDM, volume 3:
+	 * Fields relevant to VM-entry event injection must be set properly.
+	 * These fields are the VM-entry interruption-information field, the
+	 * VM-entry exception error code, and the VM-entry instruction length.
+	 */
+	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
+		u32 intr_info = vmcs12->vm_entry_intr_info_field;
+		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
+		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
+		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
+		bool should_have_error_code;
+		bool urg = nested_cpu_has2(vmcs12,
+					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
+		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
+
+		/* VM-entry interruption-info field: interruption type */
+		if (intr_type == INTR_TYPE_RESERVED ||
+		    (intr_type == INTR_TYPE_OTHER_EVENT &&
+		     !nested_cpu_supports_monitor_trap_flag(vcpu)))
+			return -EINVAL;
+
+		/* VM-entry interruption-info field: vector */
+		if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
+		    (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
+		    (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
+			return -EINVAL;
+
+		/* VM-entry interruption-info field: deliver error code */
+		should_have_error_code =
+			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
+			x86_exception_has_error_code(vector);
+		if (has_error_code != should_have_error_code)
+			return -EINVAL;
+
+		/* VM-entry exception error code */
+		if (has_error_code &&
+		    vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
+			return -EINVAL;
+
+		/* VM-entry interruption-info field: reserved bits */
+		if (intr_info & INTR_INFO_RESVD_BITS_MASK)
+			return -EINVAL;
+
+		/* VM-entry instruction length */
+		switch (intr_type) {
+		case INTR_TYPE_SOFT_EXCEPTION:
+		case INTR_TYPE_SOFT_INTR:
+		case INTR_TYPE_PRIV_SW_EXCEPTION:
+			if ((vmcs12->vm_entry_instruction_len > 15) ||
+			    (vmcs12->vm_entry_instruction_len == 0 &&
+			     !nested_cpu_has_zero_length_injection(vcpu)))
+				return -EINVAL;
+		}
+	}
+
+	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
+		return -EINVAL;
+
+	return 0;
+}
+
+/*
+ * Checks related to Host Control Registers and MSRs
+ */
+static int nested_check_host_control_regs(struct kvm_vcpu *vcpu,
+                                          struct vmcs12 *vmcs12)
+{
+	bool ia32e;
+
+	if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
+	    !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
+	    !nested_cr3_valid(vcpu, vmcs12->host_cr3))
+		return -EINVAL;
+	/*
+	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
+	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
+	 * the values of the LMA and LME bits in the field must each be that of
+	 * the host address-space size VM-exit control.
+	 */
+	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
+		ia32e = (vmcs12->vm_exit_controls &
+			 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
+		if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
+		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
+		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
+			return -EINVAL;
+	}
+
+	return 0;
+}
+
+/*
+ * Checks related to Guest Non-register State
+ */
+static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
+{
+	if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
+	    vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
+		return -EINVAL;
+
+	return 0;
+}
+
+static int nested_vmx_check_vmentry_prereqs(struct kvm_vcpu *vcpu,
+					    struct vmcs12 *vmcs12)
+{
+	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
+	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
+	    nested_check_vm_entry_controls(vcpu, vmcs12))
+		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+	if (nested_check_host_control_regs(vcpu, vmcs12))
+		return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
+
+	if (nested_check_guest_non_reg_state(vmcs12))
+		return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+	return 0;
+}
+
+static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
+					  struct vmcs12 *vmcs12)
+{
+	int r;
+	struct page *page;
+	struct vmcs12 *shadow;
+
+	if (vmcs12->vmcs_link_pointer == -1ull)
+		return 0;
+
+	if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
+		return -EINVAL;
+
+	page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
+	if (is_error_page(page))
+		return -EINVAL;
+
+	r = 0;
+	shadow = kmap(page);
+	if (shadow->hdr.revision_id != VMCS12_REVISION ||
+	    shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
+		r = -EINVAL;
+	kunmap(page);
+	kvm_release_page_clean(page);
+	return r;
+}
+
+static int nested_vmx_check_vmentry_postreqs(struct kvm_vcpu *vcpu,
+					     struct vmcs12 *vmcs12,
+					     u32 *exit_qual)
+{
+	bool ia32e;
+
+	*exit_qual = ENTRY_FAIL_DEFAULT;
+
+	if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
+	    !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
+		return 1;
+
+	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
+		*exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
+		return 1;
+	}
+
+	/*
+	 * If the load IA32_EFER VM-entry control is 1, the following checks
+	 * are performed on the field for the IA32_EFER MSR:
+	 * - Bits reserved in the IA32_EFER MSR must be 0.
+	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
+	 *   the IA-32e mode guest VM-exit control. It must also be identical
+	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
+	 *   CR0.PG) is 1.
+	 */
+	if (to_vmx(vcpu)->nested.nested_run_pending &&
+	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
+		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
+		if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
+		    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
+		    ((vmcs12->guest_cr0 & X86_CR0_PG) &&
+		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
+			return 1;
+	}
+
+	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
+		(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
+		(vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
+			return 1;
+
+	return 0;
+}
+
+static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	unsigned long cr3, cr4;
+
+	if (!nested_early_check)
+		return 0;
+
+	if (vmx->msr_autoload.host.nr)
+		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
+	if (vmx->msr_autoload.guest.nr)
+		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
+
+	preempt_disable();
+
+	vmx_prepare_switch_to_guest(vcpu);
+
+	/*
+	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
+	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
+	 * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
+	 * there is no need to preserve other bits or save/restore the field.
+	 */
+	vmcs_writel(GUEST_RFLAGS, 0);
+
+	cr3 = __get_current_cr3_fast();
+	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
+		vmcs_writel(HOST_CR3, cr3);
+		vmx->loaded_vmcs->host_state.cr3 = cr3;
+	}
+
+	cr4 = cr4_read_shadow();
+	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
+		vmcs_writel(HOST_CR4, cr4);
+		vmx->loaded_vmcs->host_state.cr4 = cr4;
+	}
+
+	vmx->__launched = vmx->loaded_vmcs->launched;
+
+	asm(
+		/* Set HOST_RSP */
+		"sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
+		__ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t"
+		"mov %%" _ASM_SP ", %c[host_rsp](%1)\n\t"
+		"add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
+
+		/* Check if vmlaunch or vmresume is needed */
+		"cmpl $0, %c[launched](%% " _ASM_CX")\n\t"
+
+		"call vmx_vmenter\n\t"
+
+		/* Set vmx->fail accordingly */
+		"setbe %c[fail](%% " _ASM_CX")\n\t"
+	      : ASM_CALL_CONSTRAINT
+	      : "c"(vmx), "d"((unsigned long)HOST_RSP),
+		[launched]"i"(offsetof(struct vcpu_vmx, __launched)),
+		[fail]"i"(offsetof(struct vcpu_vmx, fail)),
+		[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
+		[wordsize]"i"(sizeof(ulong))
+	      : "rax", "cc", "memory"
+	);
+
+	preempt_enable();
+
+	if (vmx->msr_autoload.host.nr)
+		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
+	if (vmx->msr_autoload.guest.nr)
+		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
+
+	if (vmx->fail) {
+		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
+			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+		vmx->fail = 0;
+		return 1;
+	}
+
+	/*
+	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
+	 */
+	local_irq_enable();
+	if (hw_breakpoint_active())
+		set_debugreg(__this_cpu_read(cpu_dr7), 7);
+
+	/*
+	 * A non-failing VMEntry means we somehow entered guest mode with
+	 * an illegal RIP, and that's just the tip of the iceberg.  There
+	 * is no telling what memory has been modified or what state has
+	 * been exposed to unknown code.  Hitting this all but guarantees
+	 * a (very critical) hardware issue.
+	 */
+	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
+		VMX_EXIT_REASONS_FAILED_VMENTRY));
+
+	return 0;
+}
+STACK_FRAME_NON_STANDARD(nested_vmx_check_vmentry_hw);
+
+
+static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
+						 struct vmcs12 *vmcs12);
+
+static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
+{
+	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct page *page;
+	u64 hpa;
+
+	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
+		/*
+		 * Translate L1 physical address to host physical
+		 * address for vmcs02. Keep the page pinned, so this
+		 * physical address remains valid. We keep a reference
+		 * to it so we can release it later.
+		 */
+		if (vmx->nested.apic_access_page) { /* shouldn't happen */
+			kvm_release_page_dirty(vmx->nested.apic_access_page);
+			vmx->nested.apic_access_page = NULL;
+		}
+		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
+		/*
+		 * If translation failed, no matter: This feature asks
+		 * to exit when accessing the given address, and if it
+		 * can never be accessed, this feature won't do
+		 * anything anyway.
+		 */
+		if (!is_error_page(page)) {
+			vmx->nested.apic_access_page = page;
+			hpa = page_to_phys(vmx->nested.apic_access_page);
+			vmcs_write64(APIC_ACCESS_ADDR, hpa);
+		} else {
+			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
+					SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
+		}
+	}
+
+	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
+		if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
+			kvm_release_page_dirty(vmx->nested.virtual_apic_page);
+			vmx->nested.virtual_apic_page = NULL;
+		}
+		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
+
+		/*
+		 * If translation failed, VM entry will fail because
+		 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
+		 * Failing the vm entry is _not_ what the processor
+		 * does but it's basically the only possibility we
+		 * have.  We could still enter the guest if CR8 load
+		 * exits are enabled, CR8 store exits are enabled, and
+		 * virtualize APIC access is disabled; in this case
+		 * the processor would never use the TPR shadow and we
+		 * could simply clear the bit from the execution
+		 * control.  But such a configuration is useless, so
+		 * let's keep the code simple.
+		 */
+		if (!is_error_page(page)) {
+			vmx->nested.virtual_apic_page = page;
+			hpa = page_to_phys(vmx->nested.virtual_apic_page);
+			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
+		}
+	}
+
+	if (nested_cpu_has_posted_intr(vmcs12)) {
+		if (vmx->nested.pi_desc_page) { /* shouldn't happen */
+			kunmap(vmx->nested.pi_desc_page);
+			kvm_release_page_dirty(vmx->nested.pi_desc_page);
+			vmx->nested.pi_desc_page = NULL;
+			vmx->nested.pi_desc = NULL;
+			vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull);
+		}
+		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
+		if (is_error_page(page))
+			return;
+		vmx->nested.pi_desc_page = page;
+		vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
+		vmx->nested.pi_desc =
+			(struct pi_desc *)((void *)vmx->nested.pi_desc +
+			(unsigned long)(vmcs12->posted_intr_desc_addr &
+			(PAGE_SIZE - 1)));
+		vmcs_write64(POSTED_INTR_DESC_ADDR,
+			page_to_phys(vmx->nested.pi_desc_page) +
+			(unsigned long)(vmcs12->posted_intr_desc_addr &
+			(PAGE_SIZE - 1)));
+	}
+	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
+		vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
+			      CPU_BASED_USE_MSR_BITMAPS);
+	else
+		vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
+				CPU_BASED_USE_MSR_BITMAPS);
+}
+
+/*
+ * Intel's VMX Instruction Reference specifies a common set of prerequisites
+ * for running VMX instructions (except VMXON, whose prerequisites are
+ * slightly different). It also specifies what exception to inject otherwise.
+ * Note that many of these exceptions have priority over VM exits, so they
+ * don't have to be checked again here.
+ */
+static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
+{
+	if (!to_vmx(vcpu)->nested.vmxon) {
+		kvm_queue_exception(vcpu, UD_VECTOR);
+		return 0;
+	}
+
+	if (vmx_get_cpl(vcpu)) {
+		kvm_inject_gp(vcpu, 0);
+		return 0;
+	}
+
+	return 1;
+}
+
+static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
+{
+	u8 rvi = vmx_get_rvi();
+	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
+
+	return ((rvi & 0xf0) > (vppr & 0xf0));
+}
+
+static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
+				   struct vmcs12 *vmcs12);
+
+/*
+ * If from_vmentry is false, this is being called from state restore (either RSM
+ * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
++ *
++ * Returns:
++ *   0 - success, i.e. proceed with actual VMEnter
++ *   1 - consistency check VMExit
++ *  -1 - consistency check VMFail
+ */
+int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+	bool evaluate_pending_interrupts;
+	u32 exit_reason = EXIT_REASON_INVALID_STATE;
+	u32 exit_qual;
+
+	evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
+		(CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
+	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
+		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
+
+	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
+		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
+	if (kvm_mpx_supported() &&
+		!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
+		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
+
+	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
+
+	prepare_vmcs02_early(vmx, vmcs12);
+
+	if (from_vmentry) {
+		nested_get_vmcs12_pages(vcpu);
+
+		if (nested_vmx_check_vmentry_hw(vcpu)) {
+			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
+			return -1;
+		}
+
+		if (nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
+			goto vmentry_fail_vmexit;
+	}
+
+	enter_guest_mode(vcpu);
+	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
+		vcpu->arch.tsc_offset += vmcs12->tsc_offset;
+
+	if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
+		goto vmentry_fail_vmexit_guest_mode;
+
+	if (from_vmentry) {
+		exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
+		exit_qual = nested_vmx_load_msr(vcpu,
+						vmcs12->vm_entry_msr_load_addr,
+						vmcs12->vm_entry_msr_load_count);
+		if (exit_qual)
+			goto vmentry_fail_vmexit_guest_mode;
+	} else {
+		/*
+		 * The MMU is not initialized to point at the right entities yet and
+		 * "get pages" would need to read data from the guest (i.e. we will
+		 * need to perform gpa to hpa translation). Request a call
+		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
+		 * have already been set at vmentry time and should not be reset.
+		 */
+		kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
+	}
+
+	/*
+	 * If L1 had a pending IRQ/NMI until it executed
+	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
+	 * disallowed (e.g. interrupts disabled), L0 needs to
+	 * evaluate if this pending event should cause an exit from L2
+	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
+	 * intercept EXTERNAL_INTERRUPT).
+	 *
+	 * Usually this would be handled by the processor noticing an
+	 * IRQ/NMI window request, or checking RVI during evaluation of
+	 * pending virtual interrupts.  However, this setting was done
+	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
+	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
+	 */
+	if (unlikely(evaluate_pending_interrupts))
+		kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+	/*
+	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
+	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
+	 * returned as far as L1 is concerned. It will only return (and set
+	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
+	 */
+	return 0;
+
+	/*
+	 * A failed consistency check that leads to a VMExit during L1's
+	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
+	 * 26.7 "VM-entry failures during or after loading guest state".
+	 */
+vmentry_fail_vmexit_guest_mode:
+	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
+		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
+	leave_guest_mode(vcpu);
+
+vmentry_fail_vmexit:
+	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
+
+	if (!from_vmentry)
+		return 1;
+
+	load_vmcs12_host_state(vcpu, vmcs12);
+	vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
+	vmcs12->exit_qualification = exit_qual;
+	if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
+		vmx->nested.need_vmcs12_sync = true;
+	return 1;
+}
+
+/*
+ * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
+ * for running an L2 nested guest.
+ */
+static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
+{
+	struct vmcs12 *vmcs12;
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
+	int ret;
+
+	if (!nested_vmx_check_permission(vcpu))
+		return 1;
+
+	if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true))
+		return 1;
+
+	if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
+		return nested_vmx_failInvalid(vcpu);
+
+	vmcs12 = get_vmcs12(vcpu);
+
+	/*
+	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
+	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
+	 * rather than RFLAGS.ZF, and no error number is stored to the
+	 * VM-instruction error field.
+	 */
+	if (vmcs12->hdr.shadow_vmcs)
+		return nested_vmx_failInvalid(vcpu);
+
+	if (vmx->nested.hv_evmcs) {
+		copy_enlightened_to_vmcs12(vmx);
+		/* Enlightened VMCS doesn't have launch state */
+		vmcs12->launch_state = !launch;
+	} else if (enable_shadow_vmcs) {
+		copy_shadow_to_vmcs12(vmx);
+	}
+
+	/*
+	 * The nested entry process starts with enforcing various prerequisites
+	 * on vmcs12 as required by the Intel SDM, and act appropriately when
+	 * they fail: As the SDM explains, some conditions should cause the
+	 * instruction to fail, while others will cause the instruction to seem
+	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
+	 * To speed up the normal (success) code path, we should avoid checking
+	 * for misconfigurations which will anyway be caught by the processor
+	 * when using the merged vmcs02.
+	 */
+	if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
+		return nested_vmx_failValid(vcpu,
+			VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
+
+	if (vmcs12->launch_state == launch)
+		return nested_vmx_failValid(vcpu,
+			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
+			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
+
+	ret = nested_vmx_check_vmentry_prereqs(vcpu, vmcs12);
+	if (ret)
+		return nested_vmx_failValid(vcpu, ret);
+
+	/*
+	 * We're finally done with prerequisite checking, and can start with
+	 * the nested entry.
+	 */
+	vmx->nested.nested_run_pending = 1;
+	ret = nested_vmx_enter_non_root_mode(vcpu, true);
+	vmx->nested.nested_run_pending = !ret;
+	if (ret > 0)
+		return 1;
+	else if (ret)
+		return nested_vmx_failValid(vcpu,
+			VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+
+	/* Hide L1D cache contents from the nested guest.  */
+	vmx->vcpu.arch.l1tf_flush_l1d = true;
+
+	/*
+	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
+	 * also be used as part of restoring nVMX state for
+	 * snapshot restore (migration).
+	 *
+	 * In this flow, it is assumed that vmcs12 cache was
+	 * trasferred as part of captured nVMX state and should
+	 * therefore not be read from guest memory (which may not
+	 * exist on destination host yet).
+	 */
+	nested_cache_shadow_vmcs12(vcpu, vmcs12);
+
+	/*
+	 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
+	 * awakened by event injection or by an NMI-window VM-exit or
+	 * by an interrupt-window VM-exit, halt the vcpu.
+	 */
+	if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
+	    !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
+	    !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
+	    !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
+	      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
+		vmx->nested.nested_run_pending = 0;
+		return kvm_vcpu_halt(vcpu);
+	}
+	return 1;
+}
+
+/*
+ * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
+ * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
+ * This function returns the new value we should put in vmcs12.guest_cr0.
+ * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
+ *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
+ *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
+ *     didn't trap the bit, because if L1 did, so would L0).
+ *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
+ *     been modified by L2, and L1 knows it. So just leave the old value of
+ *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
+ *     isn't relevant, because if L0 traps this bit it can set it to anything.
+ *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
+ *     changed these bits, and therefore they need to be updated, but L0
+ *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
+ *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
+ */
+static inline unsigned long
+vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+{
+	return
+	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
+	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
+	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
+			vcpu->arch.cr0_guest_owned_bits));
+}
+
+static inline unsigned long
+vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+{
+	return
+	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
+	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
+	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
+			vcpu->arch.cr4_guest_owned_bits));
+}
+
+static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
+				      struct vmcs12 *vmcs12)
+{
+	u32 idt_vectoring;
+	unsigned int nr;
+
+	if (vcpu->arch.exception.injected) {
+		nr = vcpu->arch.exception.nr;
+		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
+
+		if (kvm_exception_is_soft(nr)) {
+			vmcs12->vm_exit_instruction_len =
+				vcpu->arch.event_exit_inst_len;
+			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
+		} else
+			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
+
+		if (vcpu->arch.exception.has_error_code) {
+			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
+			vmcs12->idt_vectoring_error_code =
+				vcpu->arch.exception.error_code;
+		}
+
+		vmcs12->idt_vectoring_info_field = idt_vectoring;
+	} else if (vcpu->arch.nmi_injected) {
+		vmcs12->idt_vectoring_info_field =
+			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
+	} else if (vcpu->arch.interrupt.injected) {
+		nr = vcpu->arch.interrupt.nr;
+		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
+
+		if (vcpu->arch.interrupt.soft) {
+			idt_vectoring |= INTR_TYPE_SOFT_INTR;
+			vmcs12->vm_entry_instruction_len =
+				vcpu->arch.event_exit_inst_len;
+		} else
+			idt_vectoring |= INTR_TYPE_EXT_INTR;
+
+		vmcs12->idt_vectoring_info_field = idt_vectoring;
+	}
+}
+
+
+static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
+{
+	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+	gfn_t gfn;
+
+	/*
+	 * Don't need to mark the APIC access page dirty; it is never
+	 * written to by the CPU during APIC virtualization.
+	 */
+
+	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
+		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
+		kvm_vcpu_mark_page_dirty(vcpu, gfn);
+	}
+
+	if (nested_cpu_has_posted_intr(vmcs12)) {
+		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
+		kvm_vcpu_mark_page_dirty(vcpu, gfn);
+	}
+}
+
+static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	int max_irr;
+	void *vapic_page;
+	u16 status;
+
+	if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
+		return;
+
+	vmx->nested.pi_pending = false;
+	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
+		return;
+
+	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
+	if (max_irr != 256) {
+		vapic_page = kmap(vmx->nested.virtual_apic_page);
+		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
+			vapic_page, &max_irr);
+		kunmap(vmx->nested.virtual_apic_page);
+
+		status = vmcs_read16(GUEST_INTR_STATUS);
+		if ((u8)max_irr > ((u8)status & 0xff)) {
+			status &= ~0xff;
+			status |= (u8)max_irr;
+			vmcs_write16(GUEST_INTR_STATUS, status);
+		}
+	}
+
+	nested_mark_vmcs12_pages_dirty(vcpu);
+}
+
+static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
+					       unsigned long exit_qual)
+{
+	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+	unsigned int nr = vcpu->arch.exception.nr;
+	u32 intr_info = nr | INTR_INFO_VALID_MASK;
+
+	if (vcpu->arch.exception.has_error_code) {
+		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
+		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
+	}
+
+	if (kvm_exception_is_soft(nr))
+		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
+	else
+		intr_info |= INTR_TYPE_HARD_EXCEPTION;
+
+	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
+	    vmx_get_nmi_mask(vcpu))
+		intr_info |= INTR_INFO_UNBLOCK_NMI;
+
+	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
+}
+
+static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	unsigned long exit_qual;
+	bool block_nested_events =
+	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
+
+	if (vcpu->arch.exception.pending &&
+		nested_vmx_check_exception(vcpu, &exit_qual)) {
+		if (block_nested_events)
+			return -EBUSY;
+		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
+		return 0;
+	}
+
+	if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
+	    vmx->nested.preemption_timer_expired) {
+		if (block_nested_events)
+			return -EBUSY;
+		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
+		return 0;
+	}
+
+	if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
+		if (block_nested_events)
+			return -EBUSY;
+		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
+				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
+				  INTR_INFO_VALID_MASK, 0);
+		/*
+		 * The NMI-triggered VM exit counts as injection:
+		 * clear this one and block further NMIs.
+		 */
+		vcpu->arch.nmi_pending = 0;
+		vmx_set_nmi_mask(vcpu, true);
+		return 0;
+	}
+
+	if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
+	    nested_exit_on_intr(vcpu)) {
+		if (block_nested_events)
+			return -EBUSY;
+		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
+		return 0;
+	}
+
+	vmx_complete_nested_posted_interrupt(vcpu);
+	return 0;
+}
+
+static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
+{
+	ktime_t remaining =
+		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
+	u64 value;
+
+	if (ktime_to_ns(remaining) <= 0)
+		return 0;
+
+	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
+	do_div(value, 1000000);
+	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
+}
+
+/*
+ * Update the guest state fields of vmcs12 to reflect changes that
+ * occurred while L2 was running. (The "IA-32e mode guest" bit of the
+ * VM-entry controls is also updated, since this is really a guest
+ * state bit.)
+ */
+static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+{
+	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
+	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
+
+	vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
+	vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
+	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
+
+	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
+	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
+	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
+	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
+	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
+	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
+	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
+	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
+	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
+	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
+	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
+	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
+	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
+	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
+	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
+	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
+	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
+	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
+	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
+	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
+	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
+	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
+	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
+	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
+	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
+	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
+	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
+	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
+	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
+	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
+	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
+	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
+	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
+	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
+	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
+	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
+
+	vmcs12->guest_interruptibility_info =
+		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+	vmcs12->guest_pending_dbg_exceptions =
+		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
+	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
+		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
+	else
+		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
+
+	if (nested_cpu_has_preemption_timer(vmcs12)) {
+		if (vmcs12->vm_exit_controls &
+		    VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
+			vmcs12->vmx_preemption_timer_value =
+				vmx_get_preemption_timer_value(vcpu);
+		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
+	}
+
+	/*
+	 * In some cases (usually, nested EPT), L2 is allowed to change its
+	 * own CR3 without exiting. If it has changed it, we must keep it.
+	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
+	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
+	 *
+	 * Additionally, restore L2's PDPTR to vmcs12.
+	 */
+	if (enable_ept) {
+		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
+		vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
+		vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
+		vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
+		vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
+	}
+
+	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
+
+	if (nested_cpu_has_vid(vmcs12))
+		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
+
+	vmcs12->vm_entry_controls =
+		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
+		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
+
+	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
+		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
+		vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
+	}
+
+	/* TODO: These cannot have changed unless we have MSR bitmaps and
+	 * the relevant bit asks not to trap the change */
+	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
+		vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
+	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
+		vmcs12->guest_ia32_efer = vcpu->arch.efer;
+	vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
+	vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
+	vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
+	if (kvm_mpx_supported())
+		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
+}
+
+/*
+ * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
+ * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
+ * and this function updates it to reflect the changes to the guest state while
+ * L2 was running (and perhaps made some exits which were handled directly by L0
+ * without going back to L1), and to reflect the exit reason.
+ * Note that we do not have to copy here all VMCS fields, just those that
+ * could have changed by the L2 guest or the exit - i.e., the guest-state and
+ * exit-information fields only. Other fields are modified by L1 with VMWRITE,
+ * which already writes to vmcs12 directly.
+ */
+static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
+			   u32 exit_reason, u32 exit_intr_info,
+			   unsigned long exit_qualification)
+{
+	/* update guest state fields: */
+	sync_vmcs12(vcpu, vmcs12);
+
+	/* update exit information fields: */
+
+	vmcs12->vm_exit_reason = exit_reason;
+	vmcs12->exit_qualification = exit_qualification;
+	vmcs12->vm_exit_intr_info = exit_intr_info;
+
+	vmcs12->idt_vectoring_info_field = 0;
+	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+
+	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
+		vmcs12->launch_state = 1;
+
+		/* vm_entry_intr_info_field is cleared on exit. Emulate this
+		 * instead of reading the real value. */
+		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
+
+		/*
+		 * Transfer the event that L0 or L1 may wanted to inject into
+		 * L2 to IDT_VECTORING_INFO_FIELD.
+		 */
+		vmcs12_save_pending_event(vcpu, vmcs12);
+
+		/*
+		 * According to spec, there's no need to store the guest's
+		 * MSRs if the exit is due to a VM-entry failure that occurs
+		 * during or after loading the guest state. Since this exit
+		 * does not fall in that category, we need to save the MSRs.
+		 */
+		if (nested_vmx_store_msr(vcpu,
+					 vmcs12->vm_exit_msr_store_addr,
+					 vmcs12->vm_exit_msr_store_count))
+			nested_vmx_abort(vcpu,
+					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
+	}
+
+	/*
+	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
+	 * preserved above and would only end up incorrectly in L1.
+	 */
+	vcpu->arch.nmi_injected = false;
+	kvm_clear_exception_queue(vcpu);
+	kvm_clear_interrupt_queue(vcpu);
+}
+
+/*
+ * A part of what we need to when the nested L2 guest exits and we want to
+ * run its L1 parent, is to reset L1's guest state to the host state specified
+ * in vmcs12.
+ * This function is to be called not only on normal nested exit, but also on
+ * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
+ * Failures During or After Loading Guest State").
+ * This function should be called when the active VMCS is L1's (vmcs01).
+ */
+static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
+				   struct vmcs12 *vmcs12)
+{
+	struct kvm_segment seg;
+	u32 entry_failure_code;
+
+	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
+		vcpu->arch.efer = vmcs12->host_ia32_efer;
+	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
+		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
+	else
+		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
+	vmx_set_efer(vcpu, vcpu->arch.efer);
+
+	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
+	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
+	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
+	vmx_set_interrupt_shadow(vcpu, 0);
+
+	/*
+	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
+	 * actually changed, because vmx_set_cr0 refers to efer set above.
+	 *
+	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
+	 * (KVM doesn't change it);
+	 */
+	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
+	vmx_set_cr0(vcpu, vmcs12->host_cr0);
+
+	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
+	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
+	vmx_set_cr4(vcpu, vmcs12->host_cr4);
+
+	nested_ept_uninit_mmu_context(vcpu);
+
+	/*
+	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
+	 * couldn't have changed.
+	 */
+	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
+		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
+
+	if (!enable_ept)
+		vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
+
+	/*
+	 * If vmcs01 doesn't use VPID, CPU flushes TLB on every
+	 * VMEntry/VMExit. Thus, no need to flush TLB.
+	 *
+	 * If vmcs12 doesn't use VPID, L1 expects TLB to be
+	 * flushed on every VMEntry/VMExit.
+	 *
+	 * Otherwise, we can preserve TLB entries as long as we are
+	 * able to tag L1 TLB entries differently than L2 TLB entries.
+	 *
+	 * If vmcs12 uses EPT, we need to execute this flush on EPTP01
+	 * and therefore we request the TLB flush to happen only after VMCS EPTP
+	 * has been set by KVM_REQ_LOAD_CR3.
+	 */
+	if (enable_vpid &&
+	    (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
+		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+	}
+
+	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
+	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
+	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
+	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
+	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
+	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
+	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
+
+	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
+	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
+		vmcs_write64(GUEST_BNDCFGS, 0);
+
+	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
+		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
+		vcpu->arch.pat = vmcs12->host_ia32_pat;
+	}
+	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
+		vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
+			vmcs12->host_ia32_perf_global_ctrl);
+
+	/* Set L1 segment info according to Intel SDM
+	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
+	seg = (struct kvm_segment) {
+		.base = 0,
+		.limit = 0xFFFFFFFF,
+		.selector = vmcs12->host_cs_selector,
+		.type = 11,
+		.present = 1,
+		.s = 1,
+		.g = 1
+	};
+	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
+		seg.l = 1;
+	else
+		seg.db = 1;
+	vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
+	seg = (struct kvm_segment) {
+		.base = 0,
+		.limit = 0xFFFFFFFF,
+		.type = 3,
+		.present = 1,
+		.s = 1,
+		.db = 1,
+		.g = 1
+	};
+	seg.selector = vmcs12->host_ds_selector;
+	vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
+	seg.selector = vmcs12->host_es_selector;
+	vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
+	seg.selector = vmcs12->host_ss_selector;
+	vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
+	seg.selector = vmcs12->host_fs_selector;
+	seg.base = vmcs12->host_fs_base;
+	vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
+	seg.selector = vmcs12->host_gs_selector;
+	seg.base = vmcs12->host_gs_base;
+	vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
+	seg = (struct kvm_segment) {
+		.base = vmcs12->host_tr_base,
+		.limit = 0x67,
+		.selector = vmcs12->host_tr_selector,
+		.type = 11,
+		.present = 1
+	};
+	vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
+
+	kvm_set_dr(vcpu, 7, 0x400);
+	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
+
+	if (cpu_has_vmx_msr_bitmap())
+		vmx_update_msr_bitmap(vcpu);
+
+	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
+				vmcs12->vm_exit_msr_load_count))
+		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
+}
+
+static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
+{
+	struct shared_msr_entry *efer_msr;
+	unsigned int i;
+
+	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
+		return vmcs_read64(GUEST_IA32_EFER);
+
+	if (cpu_has_load_ia32_efer())
+		return host_efer;
+
+	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
+		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
+			return vmx->msr_autoload.guest.val[i].value;
+	}
+
+	efer_msr = find_msr_entry(vmx, MSR_EFER);
+	if (efer_msr)
+		return efer_msr->data;
+
+	return host_efer;
+}
+
+static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
+{
+	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct vmx_msr_entry g, h;
+	struct msr_data msr;
+	gpa_t gpa;
+	u32 i, j;
+
+	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
+
+	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
+		/*
+		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
+		 * as vmcs01.GUEST_DR7 contains a userspace defined value
+		 * and vcpu->arch.dr7 is not squirreled away before the
+		 * nested VMENTER (not worth adding a variable in nested_vmx).
+		 */
+		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
+			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
+		else
+			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
+	}
+
+	/*
+	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
+	 * handle a variety of side effects to KVM's software model.
+	 */
+	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
+
+	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
+	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
+
+	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
+	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
+
+	nested_ept_uninit_mmu_context(vcpu);
+	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
+	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
+
+	/*
+	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
+	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
+	 * VMFail, like everything else we just need to ensure our
+	 * software model is up-to-date.
+	 */
+	ept_save_pdptrs(vcpu);
+
+	kvm_mmu_reset_context(vcpu);
+
+	if (cpu_has_vmx_msr_bitmap())
+		vmx_update_msr_bitmap(vcpu);
+
+	/*
+	 * This nasty bit of open coding is a compromise between blindly
+	 * loading L1's MSRs using the exit load lists (incorrect emulation
+	 * of VMFail), leaving the nested VM's MSRs in the software model
+	 * (incorrect behavior) and snapshotting the modified MSRs (too
+	 * expensive since the lists are unbound by hardware).  For each
+	 * MSR that was (prematurely) loaded from the nested VMEntry load
+	 * list, reload it from the exit load list if it exists and differs
+	 * from the guest value.  The intent is to stuff host state as
+	 * silently as possible, not to fully process the exit load list.
+	 */
+	msr.host_initiated = false;
+	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
+		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
+		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
+			pr_debug_ratelimited(
+				"%s read MSR index failed (%u, 0x%08llx)\n",
+				__func__, i, gpa);
+			goto vmabort;
+		}
+
+		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
+			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
+			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
+				pr_debug_ratelimited(
+					"%s read MSR failed (%u, 0x%08llx)\n",
+					__func__, j, gpa);
+				goto vmabort;
+			}
+			if (h.index != g.index)
+				continue;
+			if (h.value == g.value)
+				break;
+
+			if (nested_vmx_load_msr_check(vcpu, &h)) {
+				pr_debug_ratelimited(
+					"%s check failed (%u, 0x%x, 0x%x)\n",
+					__func__, j, h.index, h.reserved);
+				goto vmabort;
+			}
+
+			msr.index = h.index;
+			msr.data = h.value;
+			if (kvm_set_msr(vcpu, &msr)) {
+				pr_debug_ratelimited(
+					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
+					__func__, j, h.index, h.value);
+				goto vmabort;
+			}
+		}
+	}
+
+	return;
+
+vmabort:
+	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
+}
+
+/*
+ * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
+ * and modify vmcs12 to make it see what it would expect to see there if
+ * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
+ */
+void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
+		       u32 exit_intr_info, unsigned long exit_qualification)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+	/* trying to cancel vmlaunch/vmresume is a bug */
+	WARN_ON_ONCE(vmx->nested.nested_run_pending);
+
+	leave_guest_mode(vcpu);
+
+	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
+		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
+
+	if (likely(!vmx->fail)) {
+		if (exit_reason == -1)
+			sync_vmcs12(vcpu, vmcs12);
+		else
+			prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
+				       exit_qualification);
+
+		/*
+		 * Must happen outside of sync_vmcs12() as it will
+		 * also be used to capture vmcs12 cache as part of
+		 * capturing nVMX state for snapshot (migration).
+		 *
+		 * Otherwise, this flush will dirty guest memory at a
+		 * point it is already assumed by user-space to be
+		 * immutable.
+		 */
+		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
+	} else {
+		/*
+		 * The only expected VM-instruction error is "VM entry with
+		 * invalid control field(s)." Anything else indicates a
+		 * problem with L0.  And we should never get here with a
+		 * VMFail of any type if early consistency checks are enabled.
+		 */
+		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
+			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+		WARN_ON_ONCE(nested_early_check);
+	}
+
+	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
+
+	/* Update any VMCS fields that might have changed while L2 ran */
+	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
+	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
+	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
+
+	if (kvm_has_tsc_control)
+		decache_tsc_multiplier(vmx);
+
+	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
+		vmx->nested.change_vmcs01_virtual_apic_mode = false;
+		vmx_set_virtual_apic_mode(vcpu);
+	} else if (!nested_cpu_has_ept(vmcs12) &&
+		   nested_cpu_has2(vmcs12,
+				   SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
+		vmx_flush_tlb(vcpu, true);
+	}
+
+	/* This is needed for same reason as it was needed in prepare_vmcs02 */
+	vmx->host_rsp = 0;
+
+	/* Unpin physical memory we referred to in vmcs02 */
+	if (vmx->nested.apic_access_page) {
+		kvm_release_page_dirty(vmx->nested.apic_access_page);
+		vmx->nested.apic_access_page = NULL;
+	}
+	if (vmx->nested.virtual_apic_page) {
+		kvm_release_page_dirty(vmx->nested.virtual_apic_page);
+		vmx->nested.virtual_apic_page = NULL;
+	}
+	if (vmx->nested.pi_desc_page) {
+		kunmap(vmx->nested.pi_desc_page);
+		kvm_release_page_dirty(vmx->nested.pi_desc_page);
+		vmx->nested.pi_desc_page = NULL;
+		vmx->nested.pi_desc = NULL;
+	}
+
+	/*
+	 * We are now running in L2, mmu_notifier will force to reload the
+	 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
+	 */
+	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
+
+	if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
+		vmx->nested.need_vmcs12_sync = true;
+
+	/* in case we halted in L2 */
+	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
+
+	if (likely(!vmx->fail)) {
+		/*
+		 * TODO: SDM says that with acknowledge interrupt on
+		 * exit, bit 31 of the VM-exit interrupt information
+		 * (valid interrupt) is always set to 1 on
+		 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
+		 * need kvm_cpu_has_interrupt().  See the commit
+		 * message for details.
+		 */
+		if (nested_exit_intr_ack_set(vcpu) &&
+		    exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
+		    kvm_cpu_has_interrupt(vcpu)) {
+			int irq = kvm_cpu_get_interrupt(vcpu);
+			WARN_ON(irq < 0);
+			vmcs12->vm_exit_intr_info = irq |
+				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
+		}
+
+		if (exit_reason != -1)
+			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
+						       vmcs12->exit_qualification,
+						       vmcs12->idt_vectoring_info_field,
+						       vmcs12->vm_exit_intr_info,
+						       vmcs12->vm_exit_intr_error_code,
+						       KVM_ISA_VMX);
+
+		load_vmcs12_host_state(vcpu, vmcs12);
+
+		return;
+	}
+
+	/*
+	 * After an early L2 VM-entry failure, we're now back
+	 * in L1 which thinks it just finished a VMLAUNCH or
+	 * VMRESUME instruction, so we need to set the failure
+	 * flag and the VM-instruction error field of the VMCS
+	 * accordingly, and skip the emulated instruction.
+	 */
+	(void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+
+	/*
+	 * Restore L1's host state to KVM's software model.  We're here
+	 * because a consistency check was caught by hardware, which
+	 * means some amount of guest state has been propagated to KVM's
+	 * model and needs to be unwound to the host's state.
+	 */
+	nested_vmx_restore_host_state(vcpu);
+
+	vmx->fail = 0;
+}
+
+/*
+ * Decode the memory-address operand of a vmx instruction, as recorded on an
+ * exit caused by such an instruction (run by a guest hypervisor).
+ * On success, returns 0. When the operand is invalid, returns 1 and throws
+ * #UD or #GP.
+ */
+int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
+			u32 vmx_instruction_info, bool wr, gva_t *ret)
+{
+	gva_t off;
+	bool exn;
+	struct kvm_segment s;
+
+	/*
+	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
+	 * Execution", on an exit, vmx_instruction_info holds most of the
+	 * addressing components of the operand. Only the displacement part
+	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
+	 * For how an actual address is calculated from all these components,
+	 * refer to Vol. 1, "Operand Addressing".
+	 */
+	int  scaling = vmx_instruction_info & 3;
+	int  addr_size = (vmx_instruction_info >> 7) & 7;
+	bool is_reg = vmx_instruction_info & (1u << 10);
+	int  seg_reg = (vmx_instruction_info >> 15) & 7;
+	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
+	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
+	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
+	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
+
+	if (is_reg) {
+		kvm_queue_exception(vcpu, UD_VECTOR);
+		return 1;
+	}
+
+	/* Addr = segment_base + offset */
+	/* offset = base + [index * scale] + displacement */
+	off = exit_qualification; /* holds the displacement */
+	if (base_is_valid)
+		off += kvm_register_read(vcpu, base_reg);
+	if (index_is_valid)
+		off += kvm_register_read(vcpu, index_reg)<<scaling;
+	vmx_get_segment(vcpu, &s, seg_reg);
+	*ret = s.base + off;
+
+	if (addr_size == 1) /* 32 bit */
+		*ret &= 0xffffffff;
+
+	/* Checks for #GP/#SS exceptions. */
+	exn = false;
+	if (is_long_mode(vcpu)) {
+		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
+		 * non-canonical form. This is the only check on the memory
+		 * destination for long mode!
+		 */
+		exn = is_noncanonical_address(*ret, vcpu);
+	} else if (is_protmode(vcpu)) {
+		/* Protected mode: apply checks for segment validity in the
+		 * following order:
+		 * - segment type check (#GP(0) may be thrown)
+		 * - usability check (#GP(0)/#SS(0))
+		 * - limit check (#GP(0)/#SS(0))
+		 */
+		if (wr)
+			/* #GP(0) if the destination operand is located in a
+			 * read-only data segment or any code segment.
+			 */
+			exn = ((s.type & 0xa) == 0 || (s.type & 8));
+		else
+			/* #GP(0) if the source operand is located in an
+			 * execute-only code segment
+			 */
+			exn = ((s.type & 0xa) == 8);
+		if (exn) {
+			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
+			return 1;
+		}
+		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
+		 */
+		exn = (s.unusable != 0);
+		/* Protected mode: #GP(0)/#SS(0) if the memory
+		 * operand is outside the segment limit.
+		 */
+		exn = exn || (off + sizeof(u64) > s.limit);
+	}
+	if (exn) {
+		kvm_queue_exception_e(vcpu,
+				      seg_reg == VCPU_SREG_SS ?
+						SS_VECTOR : GP_VECTOR,
+				      0);
+		return 1;
+	}
+
+	return 0;
+}
+
+static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
+{
+	gva_t gva;
+	struct x86_exception e;
+
+	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+			vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
+		return 1;
+
+	if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
+		kvm_inject_page_fault(vcpu, &e);
+		return 1;
+	}
+
+	return 0;
+}
+
+/*
+ * Allocate a shadow VMCS and associate it with the currently loaded
+ * VMCS, unless such a shadow VMCS already exists. The newly allocated
+ * VMCS is also VMCLEARed, so that it is ready for use.
+ */
+static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
+
+	/*
+	 * We should allocate a shadow vmcs for vmcs01 only when L1
+	 * executes VMXON and free it when L1 executes VMXOFF.
+	 * As it is invalid to execute VMXON twice, we shouldn't reach
+	 * here when vmcs01 already have an allocated shadow vmcs.
+	 */
+	WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
+
+	if (!loaded_vmcs->shadow_vmcs) {
+		loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
+		if (loaded_vmcs->shadow_vmcs)
+			vmcs_clear(loaded_vmcs->shadow_vmcs);
+	}
+	return loaded_vmcs->shadow_vmcs;
+}
+
+static int enter_vmx_operation(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	int r;
+
+	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
+	if (r < 0)
+		goto out_vmcs02;
+
+	vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
+	if (!vmx->nested.cached_vmcs12)
+		goto out_cached_vmcs12;
+
+	vmx->nested.cached_shadow_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
+	if (!vmx->nested.cached_shadow_vmcs12)
+		goto out_cached_shadow_vmcs12;
+
+	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
+		goto out_shadow_vmcs;
+
+	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
+		     HRTIMER_MODE_REL_PINNED);
+	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
+
+	vmx->nested.vpid02 = allocate_vpid();
+
+	vmx->nested.vmcs02_initialized = false;
+	vmx->nested.vmxon = true;
+
+	if (pt_mode == PT_MODE_HOST_GUEST) {
+		vmx->pt_desc.guest.ctl = 0;
+		pt_update_intercept_for_msr(vmx);
+	}
+
+	return 0;
+
+out_shadow_vmcs:
+	kfree(vmx->nested.cached_shadow_vmcs12);
+
+out_cached_shadow_vmcs12:
+	kfree(vmx->nested.cached_vmcs12);
+
+out_cached_vmcs12:
+	free_loaded_vmcs(&vmx->nested.vmcs02);
+
+out_vmcs02:
+	return -ENOMEM;
+}
+
+/*
+ * Emulate the VMXON instruction.
+ * Currently, we just remember that VMX is active, and do not save or even
+ * inspect the argument to VMXON (the so-called "VMXON pointer") because we
+ * do not currently need to store anything in that guest-allocated memory
+ * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
+ * argument is different from the VMXON pointer (which the spec says they do).
+ */
+static int handle_vmon(struct kvm_vcpu *vcpu)
+{
+	int ret;
+	gpa_t vmptr;
+	struct page *page;
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
+		| FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
+
+	/*
+	 * The Intel VMX Instruction Reference lists a bunch of bits that are
+	 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
+	 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
+	 * Otherwise, we should fail with #UD.  But most faulting conditions
+	 * have already been checked by hardware, prior to the VM-exit for
+	 * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
+	 * that bit set to 1 in non-root mode.
+	 */
+	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
+		kvm_queue_exception(vcpu, UD_VECTOR);
+		return 1;
+	}
+
+	/* CPL=0 must be checked manually. */
+	if (vmx_get_cpl(vcpu)) {
+		kvm_inject_gp(vcpu, 0);
+		return 1;
+	}
+
+	if (vmx->nested.vmxon)
+		return nested_vmx_failValid(vcpu,
+			VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
+
+	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
+			!= VMXON_NEEDED_FEATURES) {
+		kvm_inject_gp(vcpu, 0);
+		return 1;
+	}
+
+	if (nested_vmx_get_vmptr(vcpu, &vmptr))
+		return 1;
+
+	/*
+	 * SDM 3: 24.11.5
+	 * The first 4 bytes of VMXON region contain the supported
+	 * VMCS revision identifier
+	 *
+	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
+	 * which replaces physical address width with 32
+	 */
+	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
+		return nested_vmx_failInvalid(vcpu);
+
+	page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
+	if (is_error_page(page))
+		return nested_vmx_failInvalid(vcpu);
+
+	if (*(u32 *)kmap(page) != VMCS12_REVISION) {
+		kunmap(page);
+		kvm_release_page_clean(page);
+		return nested_vmx_failInvalid(vcpu);
+	}
+	kunmap(page);
+	kvm_release_page_clean(page);
+
+	vmx->nested.vmxon_ptr = vmptr;
+	ret = enter_vmx_operation(vcpu);
+	if (ret)
+		return ret;
+
+	return nested_vmx_succeed(vcpu);
+}
+
+static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (vmx->nested.current_vmptr == -1ull)
+		return;
+
+	if (enable_shadow_vmcs) {
+		/* copy to memory all shadowed fields in case
+		   they were modified */
+		copy_shadow_to_vmcs12(vmx);
+		vmx->nested.need_vmcs12_sync = false;
+		vmx_disable_shadow_vmcs(vmx);
+	}
+	vmx->nested.posted_intr_nv = -1;
+
+	/* Flush VMCS12 to guest memory */
+	kvm_vcpu_write_guest_page(vcpu,
+				  vmx->nested.current_vmptr >> PAGE_SHIFT,
+				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
+
+	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
+
+	vmx->nested.current_vmptr = -1ull;
+}
+
+/* Emulate the VMXOFF instruction */
+static int handle_vmoff(struct kvm_vcpu *vcpu)
+{
+	if (!nested_vmx_check_permission(vcpu))
+		return 1;
+	free_nested(vcpu);
+	return nested_vmx_succeed(vcpu);
+}
+
+/* Emulate the VMCLEAR instruction */
+static int handle_vmclear(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	u32 zero = 0;
+	gpa_t vmptr;
+
+	if (!nested_vmx_check_permission(vcpu))
+		return 1;
+
+	if (nested_vmx_get_vmptr(vcpu, &vmptr))
+		return 1;
+
+	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
+		return nested_vmx_failValid(vcpu,
+			VMXERR_VMCLEAR_INVALID_ADDRESS);
+
+	if (vmptr == vmx->nested.vmxon_ptr)
+		return nested_vmx_failValid(vcpu,
+			VMXERR_VMCLEAR_VMXON_POINTER);
+
+	if (vmx->nested.hv_evmcs_page) {
+		if (vmptr == vmx->nested.hv_evmcs_vmptr)
+			nested_release_evmcs(vcpu);
+	} else {
+		if (vmptr == vmx->nested.current_vmptr)
+			nested_release_vmcs12(vcpu);
+
+		kvm_vcpu_write_guest(vcpu,
+				     vmptr + offsetof(struct vmcs12,
+						      launch_state),
+				     &zero, sizeof(zero));
+	}
+
+	return nested_vmx_succeed(vcpu);
+}
+
+static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
+
+/* Emulate the VMLAUNCH instruction */
+static int handle_vmlaunch(struct kvm_vcpu *vcpu)
+{
+	return nested_vmx_run(vcpu, true);
+}
+
+/* Emulate the VMRESUME instruction */
+static int handle_vmresume(struct kvm_vcpu *vcpu)
+{
+
+	return nested_vmx_run(vcpu, false);
+}
+
+static int handle_vmread(struct kvm_vcpu *vcpu)
+{
+	unsigned long field;
+	u64 field_value;
+	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+	gva_t gva = 0;
+	struct vmcs12 *vmcs12;
+
+	if (!nested_vmx_check_permission(vcpu))
+		return 1;
+
+	if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
+		return nested_vmx_failInvalid(vcpu);
+
+	if (!is_guest_mode(vcpu))
+		vmcs12 = get_vmcs12(vcpu);
+	else {
+		/*
+		 * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
+		 * to shadowed-field sets the ALU flags for VMfailInvalid.
+		 */
+		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
+			return nested_vmx_failInvalid(vcpu);
+		vmcs12 = get_shadow_vmcs12(vcpu);
+	}
+
+	/* Decode instruction info and find the field to read */
+	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
+	/* Read the field, zero-extended to a u64 field_value */
+	if (vmcs12_read_any(vmcs12, field, &field_value) < 0)
+		return nested_vmx_failValid(vcpu,
+			VMXERR_UNSUPPORTED_VMCS_COMPONENT);
+
+	/*
+	 * Now copy part of this value to register or memory, as requested.
+	 * Note that the number of bits actually copied is 32 or 64 depending
+	 * on the guest's mode (32 or 64 bit), not on the given field's length.
+	 */
+	if (vmx_instruction_info & (1u << 10)) {
+		kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
+			field_value);
+	} else {
+		if (get_vmx_mem_address(vcpu, exit_qualification,
+				vmx_instruction_info, true, &gva))
+			return 1;
+		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
+		kvm_write_guest_virt_system(vcpu, gva, &field_value,
+					    (is_long_mode(vcpu) ? 8 : 4), NULL);
+	}
+
+	return nested_vmx_succeed(vcpu);
+}
+
+
+static int handle_vmwrite(struct kvm_vcpu *vcpu)
+{
+	unsigned long field;
+	gva_t gva;
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+
+	/* The value to write might be 32 or 64 bits, depending on L1's long
+	 * mode, and eventually we need to write that into a field of several
+	 * possible lengths. The code below first zero-extends the value to 64
+	 * bit (field_value), and then copies only the appropriate number of
+	 * bits into the vmcs12 field.
+	 */
+	u64 field_value = 0;
+	struct x86_exception e;
+	struct vmcs12 *vmcs12;
+
+	if (!nested_vmx_check_permission(vcpu))
+		return 1;
+
+	if (vmx->nested.current_vmptr == -1ull)
+		return nested_vmx_failInvalid(vcpu);
+
+	if (vmx_instruction_info & (1u << 10))
+		field_value = kvm_register_readl(vcpu,
+			(((vmx_instruction_info) >> 3) & 0xf));
+	else {
+		if (get_vmx_mem_address(vcpu, exit_qualification,
+				vmx_instruction_info, false, &gva))
+			return 1;
+		if (kvm_read_guest_virt(vcpu, gva, &field_value,
+					(is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
+			kvm_inject_page_fault(vcpu, &e);
+			return 1;
+		}
+	}
+
+
+	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
+	/*
+	 * If the vCPU supports "VMWRITE to any supported field in the
+	 * VMCS," then the "read-only" fields are actually read/write.
+	 */
+	if (vmcs_field_readonly(field) &&
+	    !nested_cpu_has_vmwrite_any_field(vcpu))
+		return nested_vmx_failValid(vcpu,
+			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
+
+	if (!is_guest_mode(vcpu))
+		vmcs12 = get_vmcs12(vcpu);
+	else {
+		/*
+		 * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
+		 * to shadowed-field sets the ALU flags for VMfailInvalid.
+		 */
+		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
+			return nested_vmx_failInvalid(vcpu);
+		vmcs12 = get_shadow_vmcs12(vcpu);
+	}
+
+	if (vmcs12_write_any(vmcs12, field, field_value) < 0)
+		return nested_vmx_failValid(vcpu,
+			VMXERR_UNSUPPORTED_VMCS_COMPONENT);
+
+	/*
+	 * Do not track vmcs12 dirty-state if in guest-mode
+	 * as we actually dirty shadow vmcs12 instead of vmcs12.
+	 */
+	if (!is_guest_mode(vcpu)) {
+		switch (field) {
+#define SHADOW_FIELD_RW(x) case x:
+#include "vmcs_shadow_fields.h"
+			/*
+			 * The fields that can be updated by L1 without a vmexit are
+			 * always updated in the vmcs02, the others go down the slow
+			 * path of prepare_vmcs02.
+			 */
+			break;
+		default:
+			vmx->nested.dirty_vmcs12 = true;
+			break;
+		}
+	}
+
+	return nested_vmx_succeed(vcpu);
+}
+
+static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
+{
+	vmx->nested.current_vmptr = vmptr;
+	if (enable_shadow_vmcs) {
+		vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
+			      SECONDARY_EXEC_SHADOW_VMCS);
+		vmcs_write64(VMCS_LINK_POINTER,
+			     __pa(vmx->vmcs01.shadow_vmcs));
+		vmx->nested.need_vmcs12_sync = true;
+	}
+	vmx->nested.dirty_vmcs12 = true;
+}
+
+/* Emulate the VMPTRLD instruction */
+static int handle_vmptrld(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	gpa_t vmptr;
+
+	if (!nested_vmx_check_permission(vcpu))
+		return 1;
+
+	if (nested_vmx_get_vmptr(vcpu, &vmptr))
+		return 1;
+
+	if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
+		return nested_vmx_failValid(vcpu,
+			VMXERR_VMPTRLD_INVALID_ADDRESS);
+
+	if (vmptr == vmx->nested.vmxon_ptr)
+		return nested_vmx_failValid(vcpu,
+			VMXERR_VMPTRLD_VMXON_POINTER);
+
+	/* Forbid normal VMPTRLD if Enlightened version was used */
+	if (vmx->nested.hv_evmcs)
+		return 1;
+
+	if (vmx->nested.current_vmptr != vmptr) {
+		struct vmcs12 *new_vmcs12;
+		struct page *page;
+
+		page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
+		if (is_error_page(page)) {
+			/*
+			 * Reads from an unbacked page return all 1s,
+			 * which means that the 32 bits located at the
+			 * given physical address won't match the required
+			 * VMCS12_REVISION identifier.
+			 */
+			nested_vmx_failValid(vcpu,
+				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
+			return kvm_skip_emulated_instruction(vcpu);
+		}
+		new_vmcs12 = kmap(page);
+		if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
+		    (new_vmcs12->hdr.shadow_vmcs &&
+		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
+			kunmap(page);
+			kvm_release_page_clean(page);
+			return nested_vmx_failValid(vcpu,
+				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
+		}
+
+		nested_release_vmcs12(vcpu);
+
+		/*
+		 * Load VMCS12 from guest memory since it is not already
+		 * cached.
+		 */
+		memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
+		kunmap(page);
+		kvm_release_page_clean(page);
+
+		set_current_vmptr(vmx, vmptr);
+	}
+
+	return nested_vmx_succeed(vcpu);
+}
+
+/* Emulate the VMPTRST instruction */
+static int handle_vmptrst(struct kvm_vcpu *vcpu)
+{
+	unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
+	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
+	struct x86_exception e;
+	gva_t gva;
+
+	if (!nested_vmx_check_permission(vcpu))
+		return 1;
+
+	if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
+		return 1;
+
+	if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
+		return 1;
+	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
+	if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
+					sizeof(gpa_t), &e)) {
+		kvm_inject_page_fault(vcpu, &e);
+		return 1;
+	}
+	return nested_vmx_succeed(vcpu);
+}
+
+/* Emulate the INVEPT instruction */
+static int handle_invept(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	u32 vmx_instruction_info, types;
+	unsigned long type;
+	gva_t gva;
+	struct x86_exception e;
+	struct {
+		u64 eptp, gpa;
+	} operand;
+
+	if (!(vmx->nested.msrs.secondary_ctls_high &
+	      SECONDARY_EXEC_ENABLE_EPT) ||
+	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
+		kvm_queue_exception(vcpu, UD_VECTOR);
+		return 1;
+	}
+
+	if (!nested_vmx_check_permission(vcpu))
+		return 1;
+
+	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
+
+	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
+
+	if (type >= 32 || !(types & (1 << type)))
+		return nested_vmx_failValid(vcpu,
+				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+
+	/* According to the Intel VMX instruction reference, the memory
+	 * operand is read even if it isn't needed (e.g., for type==global)
+	 */
+	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+			vmx_instruction_info, false, &gva))
+		return 1;
+	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
+		kvm_inject_page_fault(vcpu, &e);
+		return 1;
+	}
+
+	switch (type) {
+	case VMX_EPT_EXTENT_GLOBAL:
+	/*
+	 * TODO: track mappings and invalidate
+	 * single context requests appropriately
+	 */
+	case VMX_EPT_EXTENT_CONTEXT:
+		kvm_mmu_sync_roots(vcpu);
+		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+		break;
+	default:
+		BUG_ON(1);
+		break;
+	}
+
+	return nested_vmx_succeed(vcpu);
+}
+
+static int handle_invvpid(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	u32 vmx_instruction_info;
+	unsigned long type, types;
+	gva_t gva;
+	struct x86_exception e;
+	struct {
+		u64 vpid;
+		u64 gla;
+	} operand;
+	u16 vpid02;
+
+	if (!(vmx->nested.msrs.secondary_ctls_high &
+	      SECONDARY_EXEC_ENABLE_VPID) ||
+			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
+		kvm_queue_exception(vcpu, UD_VECTOR);
+		return 1;
+	}
+
+	if (!nested_vmx_check_permission(vcpu))
+		return 1;
+
+	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
+
+	types = (vmx->nested.msrs.vpid_caps &
+			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
+
+	if (type >= 32 || !(types & (1 << type)))
+		return nested_vmx_failValid(vcpu,
+			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+
+	/* according to the intel vmx instruction reference, the memory
+	 * operand is read even if it isn't needed (e.g., for type==global)
+	 */
+	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+			vmx_instruction_info, false, &gva))
+		return 1;
+	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
+		kvm_inject_page_fault(vcpu, &e);
+		return 1;
+	}
+	if (operand.vpid >> 16)
+		return nested_vmx_failValid(vcpu,
+			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+
+	vpid02 = nested_get_vpid02(vcpu);
+	switch (type) {
+	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
+		if (!operand.vpid ||
+		    is_noncanonical_address(operand.gla, vcpu))
+			return nested_vmx_failValid(vcpu,
+				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+		if (cpu_has_vmx_invvpid_individual_addr()) {
+			__invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
+				vpid02, operand.gla);
+		} else
+			__vmx_flush_tlb(vcpu, vpid02, false);
+		break;
+	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
+	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
+		if (!operand.vpid)
+			return nested_vmx_failValid(vcpu,
+				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+		__vmx_flush_tlb(vcpu, vpid02, false);
+		break;
+	case VMX_VPID_EXTENT_ALL_CONTEXT:
+		__vmx_flush_tlb(vcpu, vpid02, false);
+		break;
+	default:
+		WARN_ON_ONCE(1);
+		return kvm_skip_emulated_instruction(vcpu);
+	}
+
+	return nested_vmx_succeed(vcpu);
+}
+
+static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
+				     struct vmcs12 *vmcs12)
+{
+	u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
+	u64 address;
+	bool accessed_dirty;
+	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
+
+	if (!nested_cpu_has_eptp_switching(vmcs12) ||
+	    !nested_cpu_has_ept(vmcs12))
+		return 1;
+
+	if (index >= VMFUNC_EPTP_ENTRIES)
+		return 1;
+
+
+	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
+				     &address, index * 8, 8))
+		return 1;
+
+	accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
+
+	/*
+	 * If the (L2) guest does a vmfunc to the currently
+	 * active ept pointer, we don't have to do anything else
+	 */
+	if (vmcs12->ept_pointer != address) {
+		if (!valid_ept_address(vcpu, address))
+			return 1;
+
+		kvm_mmu_unload(vcpu);
+		mmu->ept_ad = accessed_dirty;
+		mmu->mmu_role.base.ad_disabled = !accessed_dirty;
+		vmcs12->ept_pointer = address;
+		/*
+		 * TODO: Check what's the correct approach in case
+		 * mmu reload fails. Currently, we just let the next
+		 * reload potentially fail
+		 */
+		kvm_mmu_reload(vcpu);
+	}
+
+	return 0;
+}
+
+static int handle_vmfunc(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct vmcs12 *vmcs12;
+	u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
+
+	/*
+	 * VMFUNC is only supported for nested guests, but we always enable the
+	 * secondary control for simplicity; for non-nested mode, fake that we
+	 * didn't by injecting #UD.
+	 */
+	if (!is_guest_mode(vcpu)) {
+		kvm_queue_exception(vcpu, UD_VECTOR);
+		return 1;
+	}
+
+	vmcs12 = get_vmcs12(vcpu);
+	if ((vmcs12->vm_function_control & (1 << function)) == 0)
+		goto fail;
+
+	switch (function) {
+	case 0:
+		if (nested_vmx_eptp_switching(vcpu, vmcs12))
+			goto fail;
+		break;
+	default:
+		goto fail;
+	}
+	return kvm_skip_emulated_instruction(vcpu);
+
+fail:
+	nested_vmx_vmexit(vcpu, vmx->exit_reason,
+			  vmcs_read32(VM_EXIT_INTR_INFO),
+			  vmcs_readl(EXIT_QUALIFICATION));
+	return 1;
+}
+
+
+static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
+				       struct vmcs12 *vmcs12)
+{
+	unsigned long exit_qualification;
+	gpa_t bitmap, last_bitmap;
+	unsigned int port;
+	int size;
+	u8 b;
+
+	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
+		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
+
+	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+	port = exit_qualification >> 16;
+	size = (exit_qualification & 7) + 1;
+
+	last_bitmap = (gpa_t)-1;
+	b = -1;
+
+	while (size > 0) {
+		if (port < 0x8000)
+			bitmap = vmcs12->io_bitmap_a;
+		else if (port < 0x10000)
+			bitmap = vmcs12->io_bitmap_b;
+		else
+			return true;
+		bitmap += (port & 0x7fff) / 8;
+
+		if (last_bitmap != bitmap)
+			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
+				return true;
+		if (b & (1 << (port & 7)))
+			return true;
+
+		port++;
+		size--;
+		last_bitmap = bitmap;
+	}
+
+	return false;
+}
+
+/*
+ * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
+ * rather than handle it ourselves in L0. I.e., check whether L1 expressed
+ * disinterest in the current event (read or write a specific MSR) by using an
+ * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
+ */
+static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
+	struct vmcs12 *vmcs12, u32 exit_reason)
+{
+	u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
+	gpa_t bitmap;
+
+	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
+		return true;
+
+	/*
+	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
+	 * for the four combinations of read/write and low/high MSR numbers.
+	 * First we need to figure out which of the four to use:
+	 */
+	bitmap = vmcs12->msr_bitmap;
+	if (exit_reason == EXIT_REASON_MSR_WRITE)
+		bitmap += 2048;
+	if (msr_index >= 0xc0000000) {
+		msr_index -= 0xc0000000;
+		bitmap += 1024;
+	}
+
+	/* Then read the msr_index'th bit from this bitmap: */
+	if (msr_index < 1024*8) {
+		unsigned char b;
+		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
+			return true;
+		return 1 & (b >> (msr_index & 7));
+	} else
+		return true; /* let L1 handle the wrong parameter */
+}
+
+/*
+ * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
+ * rather than handle it ourselves in L0. I.e., check if L1 wanted to
+ * intercept (via guest_host_mask etc.) the current event.
+ */
+static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
+	struct vmcs12 *vmcs12)
+{
+	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+	int cr = exit_qualification & 15;
+	int reg;
+	unsigned long val;
+
+	switch ((exit_qualification >> 4) & 3) {
+	case 0: /* mov to cr */
+		reg = (exit_qualification >> 8) & 15;
+		val = kvm_register_readl(vcpu, reg);
+		switch (cr) {
+		case 0:
+			if (vmcs12->cr0_guest_host_mask &
+			    (val ^ vmcs12->cr0_read_shadow))
+				return true;
+			break;
+		case 3:
+			if ((vmcs12->cr3_target_count >= 1 &&
+					vmcs12->cr3_target_value0 == val) ||
+				(vmcs12->cr3_target_count >= 2 &&
+					vmcs12->cr3_target_value1 == val) ||
+				(vmcs12->cr3_target_count >= 3 &&
+					vmcs12->cr3_target_value2 == val) ||
+				(vmcs12->cr3_target_count >= 4 &&
+					vmcs12->cr3_target_value3 == val))
+				return false;
+			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
+				return true;
+			break;
+		case 4:
+			if (vmcs12->cr4_guest_host_mask &
+			    (vmcs12->cr4_read_shadow ^ val))
+				return true;
+			break;
+		case 8:
+			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
+				return true;
+			break;
+		}
+		break;
+	case 2: /* clts */
+		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
+		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
+			return true;
+		break;
+	case 1: /* mov from cr */
+		switch (cr) {
+		case 3:
+			if (vmcs12->cpu_based_vm_exec_control &
+			    CPU_BASED_CR3_STORE_EXITING)
+				return true;
+			break;
+		case 8:
+			if (vmcs12->cpu_based_vm_exec_control &
+			    CPU_BASED_CR8_STORE_EXITING)
+				return true;
+			break;
+		}
+		break;
+	case 3: /* lmsw */
+		/*
+		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
+		 * cr0. Other attempted changes are ignored, with no exit.
+		 */
+		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
+		if (vmcs12->cr0_guest_host_mask & 0xe &
+		    (val ^ vmcs12->cr0_read_shadow))
+			return true;
+		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
+		    !(vmcs12->cr0_read_shadow & 0x1) &&
+		    (val & 0x1))
+			return true;
+		break;
+	}
+	return false;
+}
+
+static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
+	struct vmcs12 *vmcs12, gpa_t bitmap)
+{
+	u32 vmx_instruction_info;
+	unsigned long field;
+	u8 b;
+
+	if (!nested_cpu_has_shadow_vmcs(vmcs12))
+		return true;
+
+	/* Decode instruction info and find the field to access */
+	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
+
+	/* Out-of-range fields always cause a VM exit from L2 to L1 */
+	if (field >> 15)
+		return true;
+
+	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
+		return true;
+
+	return 1 & (b >> (field & 7));
+}
+
+/*
+ * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
+ * should handle it ourselves in L0 (and then continue L2). Only call this
+ * when in is_guest_mode (L2).
+ */
+bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
+{
+	u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+	if (vmx->nested.nested_run_pending)
+		return false;
+
+	if (unlikely(vmx->fail)) {
+		pr_info_ratelimited("%s failed vm entry %x\n", __func__,
+				    vmcs_read32(VM_INSTRUCTION_ERROR));
+		return true;
+	}
+
+	/*
+	 * The host physical addresses of some pages of guest memory
+	 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
+	 * Page). The CPU may write to these pages via their host
+	 * physical address while L2 is running, bypassing any
+	 * address-translation-based dirty tracking (e.g. EPT write
+	 * protection).
+	 *
+	 * Mark them dirty on every exit from L2 to prevent them from
+	 * getting out of sync with dirty tracking.
+	 */
+	nested_mark_vmcs12_pages_dirty(vcpu);
+
+	trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
+				vmcs_readl(EXIT_QUALIFICATION),
+				vmx->idt_vectoring_info,
+				intr_info,
+				vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
+				KVM_ISA_VMX);
+
+	switch (exit_reason) {
+	case EXIT_REASON_EXCEPTION_NMI:
+		if (is_nmi(intr_info))
+			return false;
+		else if (is_page_fault(intr_info))
+			return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
+		else if (is_debug(intr_info) &&
+			 vcpu->guest_debug &
+			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
+			return false;
+		else if (is_breakpoint(intr_info) &&
+			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
+			return false;
+		return vmcs12->exception_bitmap &
+				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
+	case EXIT_REASON_EXTERNAL_INTERRUPT:
+		return false;
+	case EXIT_REASON_TRIPLE_FAULT:
+		return true;
+	case EXIT_REASON_PENDING_INTERRUPT:
+		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
+	case EXIT_REASON_NMI_WINDOW:
+		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
+	case EXIT_REASON_TASK_SWITCH:
+		return true;
+	case EXIT_REASON_CPUID:
+		return true;
+	case EXIT_REASON_HLT:
+		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
+	case EXIT_REASON_INVD:
+		return true;
+	case EXIT_REASON_INVLPG:
+		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
+	case EXIT_REASON_RDPMC:
+		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
+	case EXIT_REASON_RDRAND:
+		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
+	case EXIT_REASON_RDSEED:
+		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
+	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
+		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
+	case EXIT_REASON_VMREAD:
+		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
+			vmcs12->vmread_bitmap);
+	case EXIT_REASON_VMWRITE:
+		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
+			vmcs12->vmwrite_bitmap);
+	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
+	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
+	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
+	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
+	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
+		/*
+		 * VMX instructions trap unconditionally. This allows L1 to
+		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
+		 */
+		return true;
+	case EXIT_REASON_CR_ACCESS:
+		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
+	case EXIT_REASON_DR_ACCESS:
+		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
+	case EXIT_REASON_IO_INSTRUCTION:
+		return nested_vmx_exit_handled_io(vcpu, vmcs12);
+	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
+		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
+	case EXIT_REASON_MSR_READ:
+	case EXIT_REASON_MSR_WRITE:
+		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
+	case EXIT_REASON_INVALID_STATE:
+		return true;
+	case EXIT_REASON_MWAIT_INSTRUCTION:
+		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
+	case EXIT_REASON_MONITOR_TRAP_FLAG:
+		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
+	case EXIT_REASON_MONITOR_INSTRUCTION:
+		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
+	case EXIT_REASON_PAUSE_INSTRUCTION:
+		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
+			nested_cpu_has2(vmcs12,
+				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
+	case EXIT_REASON_MCE_DURING_VMENTRY:
+		return false;
+	case EXIT_REASON_TPR_BELOW_THRESHOLD:
+		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
+	case EXIT_REASON_APIC_ACCESS:
+	case EXIT_REASON_APIC_WRITE:
+	case EXIT_REASON_EOI_INDUCED:
+		/*
+		 * The controls for "virtualize APIC accesses," "APIC-
+		 * register virtualization," and "virtual-interrupt
+		 * delivery" only come from vmcs12.
+		 */
+		return true;
+	case EXIT_REASON_EPT_VIOLATION:
+		/*
+		 * L0 always deals with the EPT violation. If nested EPT is
+		 * used, and the nested mmu code discovers that the address is
+		 * missing in the guest EPT table (EPT12), the EPT violation
+		 * will be injected with nested_ept_inject_page_fault()
+		 */
+		return false;
+	case EXIT_REASON_EPT_MISCONFIG:
+		/*
+		 * L2 never uses directly L1's EPT, but rather L0's own EPT
+		 * table (shadow on EPT) or a merged EPT table that L0 built
+		 * (EPT on EPT). So any problems with the structure of the
+		 * table is L0's fault.
+		 */
+		return false;
+	case EXIT_REASON_INVPCID:
+		return
+			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
+			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
+	case EXIT_REASON_WBINVD:
+		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
+	case EXIT_REASON_XSETBV:
+		return true;
+	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
+		/*
+		 * This should never happen, since it is not possible to
+		 * set XSS to a non-zero value---neither in L1 nor in L2.
+		 * If if it were, XSS would have to be checked against
+		 * the XSS exit bitmap in vmcs12.
+		 */
+		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
+	case EXIT_REASON_PREEMPTION_TIMER:
+		return false;
+	case EXIT_REASON_PML_FULL:
+		/* We emulate PML support to L1. */
+		return false;
+	case EXIT_REASON_VMFUNC:
+		/* VM functions are emulated through L2->L0 vmexits. */
+		return false;
+	case EXIT_REASON_ENCLS:
+		/* SGX is never exposed to L1 */
+		return false;
+	default:
+		return true;
+	}
+}
+
+
+static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
+				struct kvm_nested_state __user *user_kvm_nested_state,
+				u32 user_data_size)
+{
+	struct vcpu_vmx *vmx;
+	struct vmcs12 *vmcs12;
+	struct kvm_nested_state kvm_state = {
+		.flags = 0,
+		.format = 0,
+		.size = sizeof(kvm_state),
+		.vmx.vmxon_pa = -1ull,
+		.vmx.vmcs_pa = -1ull,
+	};
+
+	if (!vcpu)
+		return kvm_state.size + 2 * VMCS12_SIZE;
+
+	vmx = to_vmx(vcpu);
+	vmcs12 = get_vmcs12(vcpu);
+
+	if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled)
+		kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
+
+	if (nested_vmx_allowed(vcpu) &&
+	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
+		kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
+		kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
+
+		if (vmx_has_valid_vmcs12(vcpu)) {
+			kvm_state.size += VMCS12_SIZE;
+
+			if (is_guest_mode(vcpu) &&
+			    nested_cpu_has_shadow_vmcs(vmcs12) &&
+			    vmcs12->vmcs_link_pointer != -1ull)
+				kvm_state.size += VMCS12_SIZE;
+		}
+
+		if (vmx->nested.smm.vmxon)
+			kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
+
+		if (vmx->nested.smm.guest_mode)
+			kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
+
+		if (is_guest_mode(vcpu)) {
+			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
+
+			if (vmx->nested.nested_run_pending)
+				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
+		}
+	}
+
+	if (user_data_size < kvm_state.size)
+		goto out;
+
+	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
+		return -EFAULT;
+
+	if (!vmx_has_valid_vmcs12(vcpu))
+		goto out;
+
+	/*
+	 * When running L2, the authoritative vmcs12 state is in the
+	 * vmcs02. When running L1, the authoritative vmcs12 state is
+	 * in the shadow or enlightened vmcs linked to vmcs01, unless
+	 * need_vmcs12_sync is set, in which case, the authoritative
+	 * vmcs12 state is in the vmcs12 already.
+	 */
+	if (is_guest_mode(vcpu)) {
+		sync_vmcs12(vcpu, vmcs12);
+	} else if (!vmx->nested.need_vmcs12_sync) {
+		if (vmx->nested.hv_evmcs)
+			copy_enlightened_to_vmcs12(vmx);
+		else if (enable_shadow_vmcs)
+			copy_shadow_to_vmcs12(vmx);
+	}
+
+	if (copy_to_user(user_kvm_nested_state->data, vmcs12, sizeof(*vmcs12)))
+		return -EFAULT;
+
+	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
+	    vmcs12->vmcs_link_pointer != -1ull) {
+		if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
+				 get_shadow_vmcs12(vcpu), sizeof(*vmcs12)))
+			return -EFAULT;
+	}
+
+out:
+	return kvm_state.size;
+}
+
+/*
+ * Forcibly leave nested mode in order to be able to reset the VCPU later on.
+ */
+void vmx_leave_nested(struct kvm_vcpu *vcpu)
+{
+	if (is_guest_mode(vcpu)) {
+		to_vmx(vcpu)->nested.nested_run_pending = 0;
+		nested_vmx_vmexit(vcpu, -1, 0, 0);
+	}
+	free_nested(vcpu);
+}
+
+static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
+				struct kvm_nested_state __user *user_kvm_nested_state,
+				struct kvm_nested_state *kvm_state)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct vmcs12 *vmcs12;
+	u32 exit_qual;
+	int ret;
+
+	if (kvm_state->format != 0)
+		return -EINVAL;
+
+	if (kvm_state->flags & KVM_STATE_NESTED_EVMCS)
+		nested_enable_evmcs(vcpu, NULL);
+
+	if (!nested_vmx_allowed(vcpu))
+		return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
+
+	if (kvm_state->vmx.vmxon_pa == -1ull) {
+		if (kvm_state->vmx.smm.flags)
+			return -EINVAL;
+
+		if (kvm_state->vmx.vmcs_pa != -1ull)
+			return -EINVAL;
+
+		vmx_leave_nested(vcpu);
+		return 0;
+	}
+
+	if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
+		return -EINVAL;
+
+	if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
+	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
+		return -EINVAL;
+
+	if (kvm_state->vmx.smm.flags &
+	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
+		return -EINVAL;
+
+	/*
+	 * SMM temporarily disables VMX, so we cannot be in guest mode,
+	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
+	 * must be zero.
+	 */
+	if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
+		return -EINVAL;
+
+	if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
+	    !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
+		return -EINVAL;
+
+	vmx_leave_nested(vcpu);
+	if (kvm_state->vmx.vmxon_pa == -1ull)
+		return 0;
+
+	vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
+	ret = enter_vmx_operation(vcpu);
+	if (ret)
+		return ret;
+
+	/* Empty 'VMXON' state is permitted */
+	if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12))
+		return 0;
+
+	if (kvm_state->vmx.vmcs_pa != -1ull) {
+		if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
+		    !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
+			return -EINVAL;
+
+		set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
+	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
+		/*
+		 * Sync eVMCS upon entry as we may not have
+		 * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
+		 */
+		vmx->nested.need_vmcs12_sync = true;
+	} else {
+		return -EINVAL;
+	}
+
+	if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
+		vmx->nested.smm.vmxon = true;
+		vmx->nested.vmxon = false;
+
+		if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
+			vmx->nested.smm.guest_mode = true;
+	}
+
+	vmcs12 = get_vmcs12(vcpu);
+	if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
+		return -EFAULT;
+
+	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
+		return -EINVAL;
+
+	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
+		return 0;
+
+	vmx->nested.nested_run_pending =
+		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
+
+	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
+	    vmcs12->vmcs_link_pointer != -1ull) {
+		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
+
+		if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12))
+			return -EINVAL;
+
+		if (copy_from_user(shadow_vmcs12,
+				   user_kvm_nested_state->data + VMCS12_SIZE,
+				   sizeof(*vmcs12)))
+			return -EFAULT;
+
+		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
+		    !shadow_vmcs12->hdr.shadow_vmcs)
+			return -EINVAL;
+	}
+
+	if (nested_vmx_check_vmentry_prereqs(vcpu, vmcs12) ||
+	    nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
+		return -EINVAL;
+
+	vmx->nested.dirty_vmcs12 = true;
+	ret = nested_vmx_enter_non_root_mode(vcpu, false);
+	if (ret)
+		return -EINVAL;
+
+	return 0;
+}
+
+void nested_vmx_vcpu_setup(void)
+{
+	if (enable_shadow_vmcs) {
+		/*
+		 * At vCPU creation, "VMWRITE to any supported field
+		 * in the VMCS" is supported, so use the more
+		 * permissive vmx_vmread_bitmap to specify both read
+		 * and write permissions for the shadow VMCS.
+		 */
+		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
+		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
+	}
+}
+
+/*
+ * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
+ * returned for the various VMX controls MSRs when nested VMX is enabled.
+ * The same values should also be used to verify that vmcs12 control fields are
+ * valid during nested entry from L1 to L2.
+ * Each of these control msrs has a low and high 32-bit half: A low bit is on
+ * if the corresponding bit in the (32-bit) control field *must* be on, and a
+ * bit in the high half is on if the corresponding bit in the control field
+ * may be on. See also vmx_control_verify().
+ */
+void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
+				bool apicv)
+{
+	/*
+	 * Note that as a general rule, the high half of the MSRs (bits in
+	 * the control fields which may be 1) should be initialized by the
+	 * intersection of the underlying hardware's MSR (i.e., features which
+	 * can be supported) and the list of features we want to expose -
+	 * because they are known to be properly supported in our code.
+	 * Also, usually, the low half of the MSRs (bits which must be 1) can
+	 * be set to 0, meaning that L1 may turn off any of these bits. The
+	 * reason is that if one of these bits is necessary, it will appear
+	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
+	 * fields of vmcs01 and vmcs02, will turn these bits off - and
+	 * nested_vmx_exit_reflected() will not pass related exits to L1.
+	 * These rules have exceptions below.
+	 */
+
+	/* pin-based controls */
+	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
+		msrs->pinbased_ctls_low,
+		msrs->pinbased_ctls_high);
+	msrs->pinbased_ctls_low |=
+		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+	msrs->pinbased_ctls_high &=
+		PIN_BASED_EXT_INTR_MASK |
+		PIN_BASED_NMI_EXITING |
+		PIN_BASED_VIRTUAL_NMIS |
+		(apicv ? PIN_BASED_POSTED_INTR : 0);
+	msrs->pinbased_ctls_high |=
+		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
+		PIN_BASED_VMX_PREEMPTION_TIMER;
+
+	/* exit controls */
+	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
+		msrs->exit_ctls_low,
+		msrs->exit_ctls_high);
+	msrs->exit_ctls_low =
+		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
+
+	msrs->exit_ctls_high &=
+#ifdef CONFIG_X86_64
+		VM_EXIT_HOST_ADDR_SPACE_SIZE |
+#endif
+		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
+	msrs->exit_ctls_high |=
+		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
+		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
+		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
+
+	/* We support free control of debug control saving. */
+	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
+
+	/* entry controls */
+	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
+		msrs->entry_ctls_low,
+		msrs->entry_ctls_high);
+	msrs->entry_ctls_low =
+		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
+	msrs->entry_ctls_high &=
+#ifdef CONFIG_X86_64
+		VM_ENTRY_IA32E_MODE |
+#endif
+		VM_ENTRY_LOAD_IA32_PAT;
+	msrs->entry_ctls_high |=
+		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
+
+	/* We support free control of debug control loading. */
+	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
+
+	/* cpu-based controls */
+	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
+		msrs->procbased_ctls_low,
+		msrs->procbased_ctls_high);
+	msrs->procbased_ctls_low =
+		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+	msrs->procbased_ctls_high &=
+		CPU_BASED_VIRTUAL_INTR_PENDING |
+		CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
+		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
+		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
+		CPU_BASED_CR3_STORE_EXITING |
+#ifdef CONFIG_X86_64
+		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
+#endif
+		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
+		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
+		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
+		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
+		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
+	/*
+	 * We can allow some features even when not supported by the
+	 * hardware. For example, L1 can specify an MSR bitmap - and we
+	 * can use it to avoid exits to L1 - even when L0 runs L2
+	 * without MSR bitmaps.
+	 */
+	msrs->procbased_ctls_high |=
+		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
+		CPU_BASED_USE_MSR_BITMAPS;
+
+	/* We support free control of CR3 access interception. */
+	msrs->procbased_ctls_low &=
+		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
+
+	/*
+	 * secondary cpu-based controls.  Do not include those that
+	 * depend on CPUID bits, they are added later by vmx_cpuid_update.
+	 */
+	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
+		msrs->secondary_ctls_low,
+		msrs->secondary_ctls_high);
+	msrs->secondary_ctls_low = 0;
+	msrs->secondary_ctls_high &=
+		SECONDARY_EXEC_DESC |
+		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+		SECONDARY_EXEC_APIC_REGISTER_VIRT |
+		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
+		SECONDARY_EXEC_WBINVD_EXITING;
+
+	/*
+	 * We can emulate "VMCS shadowing," even if the hardware
+	 * doesn't support it.
+	 */
+	msrs->secondary_ctls_high |=
+		SECONDARY_EXEC_SHADOW_VMCS;
+
+	if (enable_ept) {
+		/* nested EPT: emulate EPT also to L1 */
+		msrs->secondary_ctls_high |=
+			SECONDARY_EXEC_ENABLE_EPT;
+		msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
+			 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
+		if (cpu_has_vmx_ept_execute_only())
+			msrs->ept_caps |=
+				VMX_EPT_EXECUTE_ONLY_BIT;
+		msrs->ept_caps &= ept_caps;
+		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
+			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
+			VMX_EPT_1GB_PAGE_BIT;
+		if (enable_ept_ad_bits) {
+			msrs->secondary_ctls_high |=
+				SECONDARY_EXEC_ENABLE_PML;
+			msrs->ept_caps |= VMX_EPT_AD_BIT;
+		}
+	}
+
+	if (cpu_has_vmx_vmfunc()) {
+		msrs->secondary_ctls_high |=
+			SECONDARY_EXEC_ENABLE_VMFUNC;
+		/*
+		 * Advertise EPTP switching unconditionally
+		 * since we emulate it
+		 */
+		if (enable_ept)
+			msrs->vmfunc_controls =
+				VMX_VMFUNC_EPTP_SWITCHING;
+	}
+
+	/*
+	 * Old versions of KVM use the single-context version without
+	 * checking for support, so declare that it is supported even
+	 * though it is treated as global context.  The alternative is
+	 * not failing the single-context invvpid, and it is worse.
+	 */
+	if (enable_vpid) {
+		msrs->secondary_ctls_high |=
+			SECONDARY_EXEC_ENABLE_VPID;
+		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
+			VMX_VPID_EXTENT_SUPPORTED_MASK;
+	}
+
+	if (enable_unrestricted_guest)
+		msrs->secondary_ctls_high |=
+			SECONDARY_EXEC_UNRESTRICTED_GUEST;
+
+	if (flexpriority_enabled)
+		msrs->secondary_ctls_high |=
+			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+
+	/* miscellaneous data */
+	rdmsr(MSR_IA32_VMX_MISC,
+		msrs->misc_low,
+		msrs->misc_high);
+	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
+	msrs->misc_low |=
+		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
+		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
+		VMX_MISC_ACTIVITY_HLT;
+	msrs->misc_high = 0;
+
+	/*
+	 * This MSR reports some information about VMX support. We
+	 * should return information about the VMX we emulate for the
+	 * guest, and the VMCS structure we give it - not about the
+	 * VMX support of the underlying hardware.
+	 */
+	msrs->basic =
+		VMCS12_REVISION |
+		VMX_BASIC_TRUE_CTLS |
+		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
+		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
+
+	if (cpu_has_vmx_basic_inout())
+		msrs->basic |= VMX_BASIC_INOUT;
+
+	/*
+	 * These MSRs specify bits which the guest must keep fixed on
+	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
+	 * We picked the standard core2 setting.
+	 */
+#define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
+#define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
+	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
+	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
+
+	/* These MSRs specify bits which the guest must keep fixed off. */
+	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
+	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
+
+	/* highest index: VMX_PREEMPTION_TIMER_VALUE */
+	msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
+}
+
+void nested_vmx_hardware_unsetup(void)
+{
+	int i;
+
+	if (enable_shadow_vmcs) {
+		for (i = 0; i < VMX_BITMAP_NR; i++)
+			free_page((unsigned long)vmx_bitmap[i]);
+	}
+}
+
+__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
+{
+	int i;
+
+	if (!cpu_has_vmx_shadow_vmcs())
+		enable_shadow_vmcs = 0;
+	if (enable_shadow_vmcs) {
+		for (i = 0; i < VMX_BITMAP_NR; i++) {
+			vmx_bitmap[i] = (unsigned long *)
+				__get_free_page(GFP_KERNEL);
+			if (!vmx_bitmap[i]) {
+				nested_vmx_hardware_unsetup();
+				return -ENOMEM;
+			}
+		}
+
+		init_vmcs_shadow_fields();
+	}
+
+	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear,
+	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch,
+	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld,
+	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst,
+	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread,
+	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume,
+	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite,
+	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmoff,
+	exit_handlers[EXIT_REASON_VMON]		= handle_vmon,
+	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept,
+	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid,
+	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc,
+
+	kvm_x86_ops->check_nested_events = vmx_check_nested_events;
+	kvm_x86_ops->get_nested_state = vmx_get_nested_state;
+	kvm_x86_ops->set_nested_state = vmx_set_nested_state;
+	kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
+	kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
+	kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
+
+	return 0;
+}
diff --git a/arch/x86/kvm/vmx/nested.h b/arch/x86/kvm/vmx/nested.h
new file mode 100644
index 000000000000..e847ff1019a2
--- /dev/null
+++ b/arch/x86/kvm/vmx/nested.h
@@ -0,0 +1,282 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __KVM_X86_VMX_NESTED_H
+#define __KVM_X86_VMX_NESTED_H
+
+#include "kvm_cache_regs.h"
+#include "vmcs12.h"
+#include "vmx.h"
+
+void vmx_leave_nested(struct kvm_vcpu *vcpu);
+void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
+				bool apicv);
+void nested_vmx_hardware_unsetup(void);
+__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *));
+void nested_vmx_vcpu_setup(void);
+void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu);
+int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry);
+bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason);
+void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
+		       u32 exit_intr_info, unsigned long exit_qualification);
+void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu);
+int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data);
+int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata);
+int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
+			u32 vmx_instruction_info, bool wr, gva_t *ret);
+
+static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
+{
+	return to_vmx(vcpu)->nested.cached_vmcs12;
+}
+
+static inline struct vmcs12 *get_shadow_vmcs12(struct kvm_vcpu *vcpu)
+{
+	return to_vmx(vcpu)->nested.cached_shadow_vmcs12;
+}
+
+static inline int vmx_has_valid_vmcs12(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	/*
+	 * In case we do two consecutive get/set_nested_state()s while L2 was
+	 * running hv_evmcs may end up not being mapped (we map it from
+	 * nested_vmx_run()/vmx_vcpu_run()). Check is_guest_mode() as we always
+	 * have vmcs12 if it is true.
+	 */
+	return is_guest_mode(vcpu) || vmx->nested.current_vmptr != -1ull ||
+		vmx->nested.hv_evmcs;
+}
+
+static inline unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
+{
+	/* return the page table to be shadowed - in our case, EPT12 */
+	return get_vmcs12(vcpu)->ept_pointer;
+}
+
+static inline bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
+{
+	return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
+}
+
+/*
+ * Reflect a VM Exit into L1.
+ */
+static inline int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu,
+					    u32 exit_reason)
+{
+	u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+
+	/*
+	 * At this point, the exit interruption info in exit_intr_info
+	 * is only valid for EXCEPTION_NMI exits.  For EXTERNAL_INTERRUPT
+	 * we need to query the in-kernel LAPIC.
+	 */
+	WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
+	if ((exit_intr_info &
+	     (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
+	    (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
+		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+		vmcs12->vm_exit_intr_error_code =
+			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
+	}
+
+	nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
+			  vmcs_readl(EXIT_QUALIFICATION));
+	return 1;
+}
+
+/*
+ * Return the cr0 value that a nested guest would read. This is a combination
+ * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
+ * its hypervisor (cr0_read_shadow).
+ */
+static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
+{
+	return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
+		(fields->cr0_read_shadow & fields->cr0_guest_host_mask);
+}
+static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
+{
+	return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
+		(fields->cr4_read_shadow & fields->cr4_guest_host_mask);
+}
+
+static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
+{
+	return vmx_misc_cr3_count(to_vmx(vcpu)->nested.msrs.misc_low);
+}
+
+/*
+ * Do the virtual VMX capability MSRs specify that L1 can use VMWRITE
+ * to modify any valid field of the VMCS, or are the VM-exit
+ * information fields read-only?
+ */
+static inline bool nested_cpu_has_vmwrite_any_field(struct kvm_vcpu *vcpu)
+{
+	return to_vmx(vcpu)->nested.msrs.misc_low &
+		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS;
+}
+
+static inline bool nested_cpu_has_zero_length_injection(struct kvm_vcpu *vcpu)
+{
+	return to_vmx(vcpu)->nested.msrs.misc_low & VMX_MISC_ZERO_LEN_INS;
+}
+
+static inline bool nested_cpu_supports_monitor_trap_flag(struct kvm_vcpu *vcpu)
+{
+	return to_vmx(vcpu)->nested.msrs.procbased_ctls_high &
+			CPU_BASED_MONITOR_TRAP_FLAG;
+}
+
+static inline bool nested_cpu_has_vmx_shadow_vmcs(struct kvm_vcpu *vcpu)
+{
+	return to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
+		SECONDARY_EXEC_SHADOW_VMCS;
+}
+
+static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
+{
+	return vmcs12->cpu_based_vm_exec_control & bit;
+}
+
+static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
+{
+	return (vmcs12->cpu_based_vm_exec_control &
+			CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
+		(vmcs12->secondary_vm_exec_control & bit);
+}
+
+static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
+{
+	return vmcs12->pin_based_vm_exec_control &
+		PIN_BASED_VMX_PREEMPTION_TIMER;
+}
+
+static inline bool nested_cpu_has_nmi_exiting(struct vmcs12 *vmcs12)
+{
+	return vmcs12->pin_based_vm_exec_control & PIN_BASED_NMI_EXITING;
+}
+
+static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
+{
+	return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
+}
+
+static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
+{
+	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
+}
+
+static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
+{
+	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
+}
+
+static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
+{
+	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
+}
+
+static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
+{
+	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
+}
+
+static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
+{
+	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
+}
+
+static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
+{
+	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
+}
+
+static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
+{
+	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+}
+
+static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
+{
+	return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
+}
+
+static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
+{
+	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
+}
+
+static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
+{
+	return nested_cpu_has_vmfunc(vmcs12) &&
+		(vmcs12->vm_function_control &
+		 VMX_VMFUNC_EPTP_SWITCHING);
+}
+
+static inline bool nested_cpu_has_shadow_vmcs(struct vmcs12 *vmcs12)
+{
+	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS);
+}
+
+static inline bool nested_cpu_has_save_preemption_timer(struct vmcs12 *vmcs12)
+{
+	return vmcs12->vm_exit_controls &
+	    VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
+}
+
+/*
+ * In nested virtualization, check if L1 asked to exit on external interrupts.
+ * For most existing hypervisors, this will always return true.
+ */
+static inline bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
+{
+	return get_vmcs12(vcpu)->pin_based_vm_exec_control &
+		PIN_BASED_EXT_INTR_MASK;
+}
+
+/*
+ * if fixed0[i] == 1: val[i] must be 1
+ * if fixed1[i] == 0: val[i] must be 0
+ */
+static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
+{
+	return ((val & fixed1) | fixed0) == val;
+}
+
+static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
+{
+	u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
+	u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
+	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+	if (to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
+		SECONDARY_EXEC_UNRESTRICTED_GUEST &&
+	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
+		fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
+
+	return fixed_bits_valid(val, fixed0, fixed1);
+}
+
+static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
+{
+	u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
+	u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
+
+	return fixed_bits_valid(val, fixed0, fixed1);
+}
+
+static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
+{
+	u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr4_fixed0;
+	u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr4_fixed1;
+
+	return fixed_bits_valid(val, fixed0, fixed1);
+}
+
+/* No difference in the restrictions on guest and host CR4 in VMX operation. */
+#define nested_guest_cr4_valid	nested_cr4_valid
+#define nested_host_cr4_valid	nested_cr4_valid
+
+#endif /* __KVM_X86_VMX_NESTED_H */
diff --git a/arch/x86/kvm/vmx/ops.h b/arch/x86/kvm/vmx/ops.h
new file mode 100644
index 000000000000..b8e50f76fefc
--- /dev/null
+++ b/arch/x86/kvm/vmx/ops.h
@@ -0,0 +1,285 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __KVM_X86_VMX_INSN_H
+#define __KVM_X86_VMX_INSN_H
+
+#include <linux/nospec.h>
+
+#include <asm/kvm_host.h>
+#include <asm/vmx.h>
+
+#include "evmcs.h"
+#include "vmcs.h"
+
+#define __ex(x) __kvm_handle_fault_on_reboot(x)
+#define __ex_clear(x, reg) \
+	____kvm_handle_fault_on_reboot(x, "xor " reg ", " reg)
+
+static __always_inline void vmcs_check16(unsigned long field)
+{
+	BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
+			 "16-bit accessor invalid for 64-bit field");
+	BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
+			 "16-bit accessor invalid for 64-bit high field");
+	BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
+			 "16-bit accessor invalid for 32-bit high field");
+	BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
+			 "16-bit accessor invalid for natural width field");
+}
+
+static __always_inline void vmcs_check32(unsigned long field)
+{
+	BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
+			 "32-bit accessor invalid for 16-bit field");
+	BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
+			 "32-bit accessor invalid for natural width field");
+}
+
+static __always_inline void vmcs_check64(unsigned long field)
+{
+	BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
+			 "64-bit accessor invalid for 16-bit field");
+	BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
+			 "64-bit accessor invalid for 64-bit high field");
+	BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
+			 "64-bit accessor invalid for 32-bit field");
+	BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
+			 "64-bit accessor invalid for natural width field");
+}
+
+static __always_inline void vmcs_checkl(unsigned long field)
+{
+	BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
+			 "Natural width accessor invalid for 16-bit field");
+	BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
+			 "Natural width accessor invalid for 64-bit field");
+	BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
+			 "Natural width accessor invalid for 64-bit high field");
+	BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
+			 "Natural width accessor invalid for 32-bit field");
+}
+
+static __always_inline unsigned long __vmcs_readl(unsigned long field)
+{
+	unsigned long value;
+
+	asm volatile (__ex_clear("vmread %1, %0", "%k0")
+		      : "=r"(value) : "r"(field));
+	return value;
+}
+
+static __always_inline u16 vmcs_read16(unsigned long field)
+{
+	vmcs_check16(field);
+	if (static_branch_unlikely(&enable_evmcs))
+		return evmcs_read16(field);
+	return __vmcs_readl(field);
+}
+
+static __always_inline u32 vmcs_read32(unsigned long field)
+{
+	vmcs_check32(field);
+	if (static_branch_unlikely(&enable_evmcs))
+		return evmcs_read32(field);
+	return __vmcs_readl(field);
+}
+
+static __always_inline u64 vmcs_read64(unsigned long field)
+{
+	vmcs_check64(field);
+	if (static_branch_unlikely(&enable_evmcs))
+		return evmcs_read64(field);
+#ifdef CONFIG_X86_64
+	return __vmcs_readl(field);
+#else
+	return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
+#endif
+}
+
+static __always_inline unsigned long vmcs_readl(unsigned long field)
+{
+	vmcs_checkl(field);
+	if (static_branch_unlikely(&enable_evmcs))
+		return evmcs_read64(field);
+	return __vmcs_readl(field);
+}
+
+static noinline void vmwrite_error(unsigned long field, unsigned long value)
+{
+	printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
+	       field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
+	dump_stack();
+}
+
+static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
+{
+	bool error;
+
+	asm volatile (__ex("vmwrite %2, %1") CC_SET(na)
+		      : CC_OUT(na) (error) : "r"(field), "rm"(value));
+	if (unlikely(error))
+		vmwrite_error(field, value);
+}
+
+static __always_inline void vmcs_write16(unsigned long field, u16 value)
+{
+	vmcs_check16(field);
+	if (static_branch_unlikely(&enable_evmcs))
+		return evmcs_write16(field, value);
+
+	__vmcs_writel(field, value);
+}
+
+static __always_inline void vmcs_write32(unsigned long field, u32 value)
+{
+	vmcs_check32(field);
+	if (static_branch_unlikely(&enable_evmcs))
+		return evmcs_write32(field, value);
+
+	__vmcs_writel(field, value);
+}
+
+static __always_inline void vmcs_write64(unsigned long field, u64 value)
+{
+	vmcs_check64(field);
+	if (static_branch_unlikely(&enable_evmcs))
+		return evmcs_write64(field, value);
+
+	__vmcs_writel(field, value);
+#ifndef CONFIG_X86_64
+	asm volatile ("");
+	__vmcs_writel(field+1, value >> 32);
+#endif
+}
+
+static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
+{
+	vmcs_checkl(field);
+	if (static_branch_unlikely(&enable_evmcs))
+		return evmcs_write64(field, value);
+
+	__vmcs_writel(field, value);
+}
+
+static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
+{
+	BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
+			 "vmcs_clear_bits does not support 64-bit fields");
+	if (static_branch_unlikely(&enable_evmcs))
+		return evmcs_write32(field, evmcs_read32(field) & ~mask);
+
+	__vmcs_writel(field, __vmcs_readl(field) & ~mask);
+}
+
+static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
+{
+	BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
+			 "vmcs_set_bits does not support 64-bit fields");
+	if (static_branch_unlikely(&enable_evmcs))
+		return evmcs_write32(field, evmcs_read32(field) | mask);
+
+	__vmcs_writel(field, __vmcs_readl(field) | mask);
+}
+
+static inline void vmcs_clear(struct vmcs *vmcs)
+{
+	u64 phys_addr = __pa(vmcs);
+	bool error;
+
+	asm volatile (__ex("vmclear %1") CC_SET(na)
+		      : CC_OUT(na) (error) : "m"(phys_addr));
+	if (unlikely(error))
+		printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
+		       vmcs, phys_addr);
+}
+
+static inline void vmcs_load(struct vmcs *vmcs)
+{
+	u64 phys_addr = __pa(vmcs);
+	bool error;
+
+	if (static_branch_unlikely(&enable_evmcs))
+		return evmcs_load(phys_addr);
+
+	asm volatile (__ex("vmptrld %1") CC_SET(na)
+		      : CC_OUT(na) (error) : "m"(phys_addr));
+	if (unlikely(error))
+		printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
+		       vmcs, phys_addr);
+}
+
+static inline void __invvpid(unsigned long ext, u16 vpid, gva_t gva)
+{
+	struct {
+		u64 vpid : 16;
+		u64 rsvd : 48;
+		u64 gva;
+	} operand = { vpid, 0, gva };
+	bool error;
+
+	asm volatile (__ex("invvpid %2, %1") CC_SET(na)
+		      : CC_OUT(na) (error) : "r"(ext), "m"(operand));
+	BUG_ON(error);
+}
+
+static inline void __invept(unsigned long ext, u64 eptp, gpa_t gpa)
+{
+	struct {
+		u64 eptp, gpa;
+	} operand = {eptp, gpa};
+	bool error;
+
+	asm volatile (__ex("invept %2, %1") CC_SET(na)
+		      : CC_OUT(na) (error) : "r"(ext), "m"(operand));
+	BUG_ON(error);
+}
+
+static inline bool vpid_sync_vcpu_addr(int vpid, gva_t addr)
+{
+	if (vpid == 0)
+		return true;
+
+	if (cpu_has_vmx_invvpid_individual_addr()) {
+		__invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR, vpid, addr);
+		return true;
+	}
+
+	return false;
+}
+
+static inline void vpid_sync_vcpu_single(int vpid)
+{
+	if (vpid == 0)
+		return;
+
+	if (cpu_has_vmx_invvpid_single())
+		__invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
+}
+
+static inline void vpid_sync_vcpu_global(void)
+{
+	if (cpu_has_vmx_invvpid_global())
+		__invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
+}
+
+static inline void vpid_sync_context(int vpid)
+{
+	if (cpu_has_vmx_invvpid_single())
+		vpid_sync_vcpu_single(vpid);
+	else
+		vpid_sync_vcpu_global();
+}
+
+static inline void ept_sync_global(void)
+{
+	__invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
+}
+
+static inline void ept_sync_context(u64 eptp)
+{
+	if (cpu_has_vmx_invept_context())
+		__invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
+	else
+		ept_sync_global();
+}
+
+#endif /* __KVM_X86_VMX_INSN_H */
diff --git a/arch/x86/kvm/pmu_intel.c b/arch/x86/kvm/vmx/pmu_intel.c
index 5ab4a364348e..5ab4a364348e 100644
--- a/arch/x86/kvm/pmu_intel.c
+++ b/arch/x86/kvm/vmx/pmu_intel.c
diff --git a/arch/x86/kvm/vmx/vmcs.h b/arch/x86/kvm/vmx/vmcs.h
new file mode 100644
index 000000000000..6def3ba88e3b
--- /dev/null
+++ b/arch/x86/kvm/vmx/vmcs.h
@@ -0,0 +1,136 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __KVM_X86_VMX_VMCS_H
+#define __KVM_X86_VMX_VMCS_H
+
+#include <linux/ktime.h>
+#include <linux/list.h>
+#include <linux/nospec.h>
+
+#include <asm/kvm.h>
+#include <asm/vmx.h>
+
+#include "capabilities.h"
+
+struct vmcs_hdr {
+	u32 revision_id:31;
+	u32 shadow_vmcs:1;
+};
+
+struct vmcs {
+	struct vmcs_hdr hdr;
+	u32 abort;
+	char data[0];
+};
+
+DECLARE_PER_CPU(struct vmcs *, current_vmcs);
+
+/*
+ * vmcs_host_state tracks registers that are loaded from the VMCS on VMEXIT
+ * and whose values change infrequently, but are not constant.  I.e. this is
+ * used as a write-through cache of the corresponding VMCS fields.
+ */
+struct vmcs_host_state {
+	unsigned long cr3;	/* May not match real cr3 */
+	unsigned long cr4;	/* May not match real cr4 */
+	unsigned long gs_base;
+	unsigned long fs_base;
+
+	u16           fs_sel, gs_sel, ldt_sel;
+#ifdef CONFIG_X86_64
+	u16           ds_sel, es_sel;
+#endif
+};
+
+/*
+ * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
+ * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
+ * loaded on this CPU (so we can clear them if the CPU goes down).
+ */
+struct loaded_vmcs {
+	struct vmcs *vmcs;
+	struct vmcs *shadow_vmcs;
+	int cpu;
+	bool launched;
+	bool nmi_known_unmasked;
+	bool hv_timer_armed;
+	/* Support for vnmi-less CPUs */
+	int soft_vnmi_blocked;
+	ktime_t entry_time;
+	s64 vnmi_blocked_time;
+	unsigned long *msr_bitmap;
+	struct list_head loaded_vmcss_on_cpu_link;
+	struct vmcs_host_state host_state;
+};
+
+static inline bool is_exception_n(u32 intr_info, u8 vector)
+{
+	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
+			     INTR_INFO_VALID_MASK)) ==
+		(INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
+}
+
+static inline bool is_debug(u32 intr_info)
+{
+	return is_exception_n(intr_info, DB_VECTOR);
+}
+
+static inline bool is_breakpoint(u32 intr_info)
+{
+	return is_exception_n(intr_info, BP_VECTOR);
+}
+
+static inline bool is_page_fault(u32 intr_info)
+{
+	return is_exception_n(intr_info, PF_VECTOR);
+}
+
+static inline bool is_invalid_opcode(u32 intr_info)
+{
+	return is_exception_n(intr_info, UD_VECTOR);
+}
+
+static inline bool is_gp_fault(u32 intr_info)
+{
+	return is_exception_n(intr_info, GP_VECTOR);
+}
+
+static inline bool is_machine_check(u32 intr_info)
+{
+	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
+			     INTR_INFO_VALID_MASK)) ==
+		(INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
+}
+
+/* Undocumented: icebp/int1 */
+static inline bool is_icebp(u32 intr_info)
+{
+	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
+		== (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK);
+}
+
+static inline bool is_nmi(u32 intr_info)
+{
+	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
+		== (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
+}
+
+enum vmcs_field_width {
+	VMCS_FIELD_WIDTH_U16 = 0,
+	VMCS_FIELD_WIDTH_U64 = 1,
+	VMCS_FIELD_WIDTH_U32 = 2,
+	VMCS_FIELD_WIDTH_NATURAL_WIDTH = 3
+};
+
+static inline int vmcs_field_width(unsigned long field)
+{
+	if (0x1 & field)	/* the *_HIGH fields are all 32 bit */
+		return VMCS_FIELD_WIDTH_U32;
+	return (field >> 13) & 0x3;
+}
+
+static inline int vmcs_field_readonly(unsigned long field)
+{
+	return (((field >> 10) & 0x3) == 1);
+}
+
+#endif /* __KVM_X86_VMX_VMCS_H */
diff --git a/arch/x86/kvm/vmx/vmcs12.c b/arch/x86/kvm/vmx/vmcs12.c
new file mode 100644
index 000000000000..53dfb401316d
--- /dev/null
+++ b/arch/x86/kvm/vmx/vmcs12.c
@@ -0,0 +1,157 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#include "vmcs12.h"
+
+#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
+#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
+#define FIELD(number, name)	[ROL16(number, 6)] = VMCS12_OFFSET(name)
+#define FIELD64(number, name)						\
+	FIELD(number, name),						\
+	[ROL16(number##_HIGH, 6)] = VMCS12_OFFSET(name) + sizeof(u32)
+
+const unsigned short vmcs_field_to_offset_table[] = {
+	FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
+	FIELD(POSTED_INTR_NV, posted_intr_nv),
+	FIELD(GUEST_ES_SELECTOR, guest_es_selector),
+	FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
+	FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
+	FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
+	FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
+	FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
+	FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
+	FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
+	FIELD(GUEST_INTR_STATUS, guest_intr_status),
+	FIELD(GUEST_PML_INDEX, guest_pml_index),
+	FIELD(HOST_ES_SELECTOR, host_es_selector),
+	FIELD(HOST_CS_SELECTOR, host_cs_selector),
+	FIELD(HOST_SS_SELECTOR, host_ss_selector),
+	FIELD(HOST_DS_SELECTOR, host_ds_selector),
+	FIELD(HOST_FS_SELECTOR, host_fs_selector),
+	FIELD(HOST_GS_SELECTOR, host_gs_selector),
+	FIELD(HOST_TR_SELECTOR, host_tr_selector),
+	FIELD64(IO_BITMAP_A, io_bitmap_a),
+	FIELD64(IO_BITMAP_B, io_bitmap_b),
+	FIELD64(MSR_BITMAP, msr_bitmap),
+	FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
+	FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
+	FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
+	FIELD64(PML_ADDRESS, pml_address),
+	FIELD64(TSC_OFFSET, tsc_offset),
+	FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
+	FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
+	FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
+	FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
+	FIELD64(EPT_POINTER, ept_pointer),
+	FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
+	FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
+	FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
+	FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
+	FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
+	FIELD64(VMREAD_BITMAP, vmread_bitmap),
+	FIELD64(VMWRITE_BITMAP, vmwrite_bitmap),
+	FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
+	FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
+	FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
+	FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
+	FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
+	FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
+	FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
+	FIELD64(GUEST_PDPTR0, guest_pdptr0),
+	FIELD64(GUEST_PDPTR1, guest_pdptr1),
+	FIELD64(GUEST_PDPTR2, guest_pdptr2),
+	FIELD64(GUEST_PDPTR3, guest_pdptr3),
+	FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
+	FIELD64(HOST_IA32_PAT, host_ia32_pat),
+	FIELD64(HOST_IA32_EFER, host_ia32_efer),
+	FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
+	FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
+	FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
+	FIELD(EXCEPTION_BITMAP, exception_bitmap),
+	FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
+	FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
+	FIELD(CR3_TARGET_COUNT, cr3_target_count),
+	FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
+	FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
+	FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
+	FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
+	FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
+	FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
+	FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
+	FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
+	FIELD(TPR_THRESHOLD, tpr_threshold),
+	FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
+	FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
+	FIELD(VM_EXIT_REASON, vm_exit_reason),
+	FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
+	FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
+	FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
+	FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
+	FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
+	FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
+	FIELD(GUEST_ES_LIMIT, guest_es_limit),
+	FIELD(GUEST_CS_LIMIT, guest_cs_limit),
+	FIELD(GUEST_SS_LIMIT, guest_ss_limit),
+	FIELD(GUEST_DS_LIMIT, guest_ds_limit),
+	FIELD(GUEST_FS_LIMIT, guest_fs_limit),
+	FIELD(GUEST_GS_LIMIT, guest_gs_limit),
+	FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
+	FIELD(GUEST_TR_LIMIT, guest_tr_limit),
+	FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
+	FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
+	FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
+	FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
+	FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
+	FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
+	FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
+	FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
+	FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
+	FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
+	FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
+	FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
+	FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
+	FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
+	FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
+	FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
+	FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
+	FIELD(CR0_READ_SHADOW, cr0_read_shadow),
+	FIELD(CR4_READ_SHADOW, cr4_read_shadow),
+	FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
+	FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
+	FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
+	FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
+	FIELD(EXIT_QUALIFICATION, exit_qualification),
+	FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
+	FIELD(GUEST_CR0, guest_cr0),
+	FIELD(GUEST_CR3, guest_cr3),
+	FIELD(GUEST_CR4, guest_cr4),
+	FIELD(GUEST_ES_BASE, guest_es_base),
+	FIELD(GUEST_CS_BASE, guest_cs_base),
+	FIELD(GUEST_SS_BASE, guest_ss_base),
+	FIELD(GUEST_DS_BASE, guest_ds_base),
+	FIELD(GUEST_FS_BASE, guest_fs_base),
+	FIELD(GUEST_GS_BASE, guest_gs_base),
+	FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
+	FIELD(GUEST_TR_BASE, guest_tr_base),
+	FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
+	FIELD(GUEST_IDTR_BASE, guest_idtr_base),
+	FIELD(GUEST_DR7, guest_dr7),
+	FIELD(GUEST_RSP, guest_rsp),
+	FIELD(GUEST_RIP, guest_rip),
+	FIELD(GUEST_RFLAGS, guest_rflags),
+	FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
+	FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
+	FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
+	FIELD(HOST_CR0, host_cr0),
+	FIELD(HOST_CR3, host_cr3),
+	FIELD(HOST_CR4, host_cr4),
+	FIELD(HOST_FS_BASE, host_fs_base),
+	FIELD(HOST_GS_BASE, host_gs_base),
+	FIELD(HOST_TR_BASE, host_tr_base),
+	FIELD(HOST_GDTR_BASE, host_gdtr_base),
+	FIELD(HOST_IDTR_BASE, host_idtr_base),
+	FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
+	FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
+	FIELD(HOST_RSP, host_rsp),
+	FIELD(HOST_RIP, host_rip),
+};
+const unsigned int nr_vmcs12_fields = ARRAY_SIZE(vmcs_field_to_offset_table);
diff --git a/arch/x86/kvm/vmx/vmcs12.h b/arch/x86/kvm/vmx/vmcs12.h
new file mode 100644
index 000000000000..3a742428ad17
--- /dev/null
+++ b/arch/x86/kvm/vmx/vmcs12.h
@@ -0,0 +1,462 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __KVM_X86_VMX_VMCS12_H
+#define __KVM_X86_VMX_VMCS12_H
+
+#include <linux/build_bug.h>
+
+#include "vmcs.h"
+
+/*
+ * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
+ * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
+ * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
+ * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
+ * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
+ * More than one of these structures may exist, if L1 runs multiple L2 guests.
+ * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the
+ * underlying hardware which will be used to run L2.
+ * This structure is packed to ensure that its layout is identical across
+ * machines (necessary for live migration).
+ *
+ * IMPORTANT: Changing the layout of existing fields in this structure
+ * will break save/restore compatibility with older kvm releases. When
+ * adding new fields, either use space in the reserved padding* arrays
+ * or add the new fields to the end of the structure.
+ */
+typedef u64 natural_width;
+struct __packed vmcs12 {
+	/* According to the Intel spec, a VMCS region must start with the
+	 * following two fields. Then follow implementation-specific data.
+	 */
+	struct vmcs_hdr hdr;
+	u32 abort;
+
+	u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
+	u32 padding[7]; /* room for future expansion */
+
+	u64 io_bitmap_a;
+	u64 io_bitmap_b;
+	u64 msr_bitmap;
+	u64 vm_exit_msr_store_addr;
+	u64 vm_exit_msr_load_addr;
+	u64 vm_entry_msr_load_addr;
+	u64 tsc_offset;
+	u64 virtual_apic_page_addr;
+	u64 apic_access_addr;
+	u64 posted_intr_desc_addr;
+	u64 ept_pointer;
+	u64 eoi_exit_bitmap0;
+	u64 eoi_exit_bitmap1;
+	u64 eoi_exit_bitmap2;
+	u64 eoi_exit_bitmap3;
+	u64 xss_exit_bitmap;
+	u64 guest_physical_address;
+	u64 vmcs_link_pointer;
+	u64 guest_ia32_debugctl;
+	u64 guest_ia32_pat;
+	u64 guest_ia32_efer;
+	u64 guest_ia32_perf_global_ctrl;
+	u64 guest_pdptr0;
+	u64 guest_pdptr1;
+	u64 guest_pdptr2;
+	u64 guest_pdptr3;
+	u64 guest_bndcfgs;
+	u64 host_ia32_pat;
+	u64 host_ia32_efer;
+	u64 host_ia32_perf_global_ctrl;
+	u64 vmread_bitmap;
+	u64 vmwrite_bitmap;
+	u64 vm_function_control;
+	u64 eptp_list_address;
+	u64 pml_address;
+	u64 padding64[3]; /* room for future expansion */
+	/*
+	 * To allow migration of L1 (complete with its L2 guests) between
+	 * machines of different natural widths (32 or 64 bit), we cannot have
+	 * unsigned long fields with no explicit size. We use u64 (aliased
+	 * natural_width) instead. Luckily, x86 is little-endian.
+	 */
+	natural_width cr0_guest_host_mask;
+	natural_width cr4_guest_host_mask;
+	natural_width cr0_read_shadow;
+	natural_width cr4_read_shadow;
+	natural_width cr3_target_value0;
+	natural_width cr3_target_value1;
+	natural_width cr3_target_value2;
+	natural_width cr3_target_value3;
+	natural_width exit_qualification;
+	natural_width guest_linear_address;
+	natural_width guest_cr0;
+	natural_width guest_cr3;
+	natural_width guest_cr4;
+	natural_width guest_es_base;
+	natural_width guest_cs_base;
+	natural_width guest_ss_base;
+	natural_width guest_ds_base;
+	natural_width guest_fs_base;
+	natural_width guest_gs_base;
+	natural_width guest_ldtr_base;
+	natural_width guest_tr_base;
+	natural_width guest_gdtr_base;
+	natural_width guest_idtr_base;
+	natural_width guest_dr7;
+	natural_width guest_rsp;
+	natural_width guest_rip;
+	natural_width guest_rflags;
+	natural_width guest_pending_dbg_exceptions;
+	natural_width guest_sysenter_esp;
+	natural_width guest_sysenter_eip;
+	natural_width host_cr0;
+	natural_width host_cr3;
+	natural_width host_cr4;
+	natural_width host_fs_base;
+	natural_width host_gs_base;
+	natural_width host_tr_base;
+	natural_width host_gdtr_base;
+	natural_width host_idtr_base;
+	natural_width host_ia32_sysenter_esp;
+	natural_width host_ia32_sysenter_eip;
+	natural_width host_rsp;
+	natural_width host_rip;
+	natural_width paddingl[8]; /* room for future expansion */
+	u32 pin_based_vm_exec_control;
+	u32 cpu_based_vm_exec_control;
+	u32 exception_bitmap;
+	u32 page_fault_error_code_mask;
+	u32 page_fault_error_code_match;
+	u32 cr3_target_count;
+	u32 vm_exit_controls;
+	u32 vm_exit_msr_store_count;
+	u32 vm_exit_msr_load_count;
+	u32 vm_entry_controls;
+	u32 vm_entry_msr_load_count;
+	u32 vm_entry_intr_info_field;
+	u32 vm_entry_exception_error_code;
+	u32 vm_entry_instruction_len;
+	u32 tpr_threshold;
+	u32 secondary_vm_exec_control;
+	u32 vm_instruction_error;
+	u32 vm_exit_reason;
+	u32 vm_exit_intr_info;
+	u32 vm_exit_intr_error_code;
+	u32 idt_vectoring_info_field;
+	u32 idt_vectoring_error_code;
+	u32 vm_exit_instruction_len;
+	u32 vmx_instruction_info;
+	u32 guest_es_limit;
+	u32 guest_cs_limit;
+	u32 guest_ss_limit;
+	u32 guest_ds_limit;
+	u32 guest_fs_limit;
+	u32 guest_gs_limit;
+	u32 guest_ldtr_limit;
+	u32 guest_tr_limit;
+	u32 guest_gdtr_limit;
+	u32 guest_idtr_limit;
+	u32 guest_es_ar_bytes;
+	u32 guest_cs_ar_bytes;
+	u32 guest_ss_ar_bytes;
+	u32 guest_ds_ar_bytes;
+	u32 guest_fs_ar_bytes;
+	u32 guest_gs_ar_bytes;
+	u32 guest_ldtr_ar_bytes;
+	u32 guest_tr_ar_bytes;
+	u32 guest_interruptibility_info;
+	u32 guest_activity_state;
+	u32 guest_sysenter_cs;
+	u32 host_ia32_sysenter_cs;
+	u32 vmx_preemption_timer_value;
+	u32 padding32[7]; /* room for future expansion */
+	u16 virtual_processor_id;
+	u16 posted_intr_nv;
+	u16 guest_es_selector;
+	u16 guest_cs_selector;
+	u16 guest_ss_selector;
+	u16 guest_ds_selector;
+	u16 guest_fs_selector;
+	u16 guest_gs_selector;
+	u16 guest_ldtr_selector;
+	u16 guest_tr_selector;
+	u16 guest_intr_status;
+	u16 host_es_selector;
+	u16 host_cs_selector;
+	u16 host_ss_selector;
+	u16 host_ds_selector;
+	u16 host_fs_selector;
+	u16 host_gs_selector;
+	u16 host_tr_selector;
+	u16 guest_pml_index;
+};
+
+/*
+ * VMCS12_REVISION is an arbitrary id that should be changed if the content or
+ * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
+ * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
+ *
+ * IMPORTANT: Changing this value will break save/restore compatibility with
+ * older kvm releases.
+ */
+#define VMCS12_REVISION 0x11e57ed0
+
+/*
+ * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
+ * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
+ * current implementation, 4K are reserved to avoid future complications.
+ */
+#define VMCS12_SIZE 0x1000
+
+/*
+ * VMCS12_MAX_FIELD_INDEX is the highest index value used in any
+ * supported VMCS12 field encoding.
+ */
+#define VMCS12_MAX_FIELD_INDEX 0x17
+
+/*
+ * For save/restore compatibility, the vmcs12 field offsets must not change.
+ */
+#define CHECK_OFFSET(field, loc)				\
+	BUILD_BUG_ON_MSG(offsetof(struct vmcs12, field) != (loc),	\
+		"Offset of " #field " in struct vmcs12 has changed.")
+
+static inline void vmx_check_vmcs12_offsets(void)
+{
+	CHECK_OFFSET(hdr, 0);
+	CHECK_OFFSET(abort, 4);
+	CHECK_OFFSET(launch_state, 8);
+	CHECK_OFFSET(io_bitmap_a, 40);
+	CHECK_OFFSET(io_bitmap_b, 48);
+	CHECK_OFFSET(msr_bitmap, 56);
+	CHECK_OFFSET(vm_exit_msr_store_addr, 64);
+	CHECK_OFFSET(vm_exit_msr_load_addr, 72);
+	CHECK_OFFSET(vm_entry_msr_load_addr, 80);
+	CHECK_OFFSET(tsc_offset, 88);
+	CHECK_OFFSET(virtual_apic_page_addr, 96);
+	CHECK_OFFSET(apic_access_addr, 104);
+	CHECK_OFFSET(posted_intr_desc_addr, 112);
+	CHECK_OFFSET(ept_pointer, 120);
+	CHECK_OFFSET(eoi_exit_bitmap0, 128);
+	CHECK_OFFSET(eoi_exit_bitmap1, 136);
+	CHECK_OFFSET(eoi_exit_bitmap2, 144);
+	CHECK_OFFSET(eoi_exit_bitmap3, 152);
+	CHECK_OFFSET(xss_exit_bitmap, 160);
+	CHECK_OFFSET(guest_physical_address, 168);
+	CHECK_OFFSET(vmcs_link_pointer, 176);
+	CHECK_OFFSET(guest_ia32_debugctl, 184);
+	CHECK_OFFSET(guest_ia32_pat, 192);
+	CHECK_OFFSET(guest_ia32_efer, 200);
+	CHECK_OFFSET(guest_ia32_perf_global_ctrl, 208);
+	CHECK_OFFSET(guest_pdptr0, 216);
+	CHECK_OFFSET(guest_pdptr1, 224);
+	CHECK_OFFSET(guest_pdptr2, 232);
+	CHECK_OFFSET(guest_pdptr3, 240);
+	CHECK_OFFSET(guest_bndcfgs, 248);
+	CHECK_OFFSET(host_ia32_pat, 256);
+	CHECK_OFFSET(host_ia32_efer, 264);
+	CHECK_OFFSET(host_ia32_perf_global_ctrl, 272);
+	CHECK_OFFSET(vmread_bitmap, 280);
+	CHECK_OFFSET(vmwrite_bitmap, 288);
+	CHECK_OFFSET(vm_function_control, 296);
+	CHECK_OFFSET(eptp_list_address, 304);
+	CHECK_OFFSET(pml_address, 312);
+	CHECK_OFFSET(cr0_guest_host_mask, 344);
+	CHECK_OFFSET(cr4_guest_host_mask, 352);
+	CHECK_OFFSET(cr0_read_shadow, 360);
+	CHECK_OFFSET(cr4_read_shadow, 368);
+	CHECK_OFFSET(cr3_target_value0, 376);
+	CHECK_OFFSET(cr3_target_value1, 384);
+	CHECK_OFFSET(cr3_target_value2, 392);
+	CHECK_OFFSET(cr3_target_value3, 400);
+	CHECK_OFFSET(exit_qualification, 408);
+	CHECK_OFFSET(guest_linear_address, 416);
+	CHECK_OFFSET(guest_cr0, 424);
+	CHECK_OFFSET(guest_cr3, 432);
+	CHECK_OFFSET(guest_cr4, 440);
+	CHECK_OFFSET(guest_es_base, 448);
+	CHECK_OFFSET(guest_cs_base, 456);
+	CHECK_OFFSET(guest_ss_base, 464);
+	CHECK_OFFSET(guest_ds_base, 472);
+	CHECK_OFFSET(guest_fs_base, 480);
+	CHECK_OFFSET(guest_gs_base, 488);
+	CHECK_OFFSET(guest_ldtr_base, 496);
+	CHECK_OFFSET(guest_tr_base, 504);
+	CHECK_OFFSET(guest_gdtr_base, 512);
+	CHECK_OFFSET(guest_idtr_base, 520);
+	CHECK_OFFSET(guest_dr7, 528);
+	CHECK_OFFSET(guest_rsp, 536);
+	CHECK_OFFSET(guest_rip, 544);
+	CHECK_OFFSET(guest_rflags, 552);
+	CHECK_OFFSET(guest_pending_dbg_exceptions, 560);
+	CHECK_OFFSET(guest_sysenter_esp, 568);
+	CHECK_OFFSET(guest_sysenter_eip, 576);
+	CHECK_OFFSET(host_cr0, 584);
+	CHECK_OFFSET(host_cr3, 592);
+	CHECK_OFFSET(host_cr4, 600);
+	CHECK_OFFSET(host_fs_base, 608);
+	CHECK_OFFSET(host_gs_base, 616);
+	CHECK_OFFSET(host_tr_base, 624);
+	CHECK_OFFSET(host_gdtr_base, 632);
+	CHECK_OFFSET(host_idtr_base, 640);
+	CHECK_OFFSET(host_ia32_sysenter_esp, 648);
+	CHECK_OFFSET(host_ia32_sysenter_eip, 656);
+	CHECK_OFFSET(host_rsp, 664);
+	CHECK_OFFSET(host_rip, 672);
+	CHECK_OFFSET(pin_based_vm_exec_control, 744);
+	CHECK_OFFSET(cpu_based_vm_exec_control, 748);
+	CHECK_OFFSET(exception_bitmap, 752);
+	CHECK_OFFSET(page_fault_error_code_mask, 756);
+	CHECK_OFFSET(page_fault_error_code_match, 760);
+	CHECK_OFFSET(cr3_target_count, 764);
+	CHECK_OFFSET(vm_exit_controls, 768);
+	CHECK_OFFSET(vm_exit_msr_store_count, 772);
+	CHECK_OFFSET(vm_exit_msr_load_count, 776);
+	CHECK_OFFSET(vm_entry_controls, 780);
+	CHECK_OFFSET(vm_entry_msr_load_count, 784);
+	CHECK_OFFSET(vm_entry_intr_info_field, 788);
+	CHECK_OFFSET(vm_entry_exception_error_code, 792);
+	CHECK_OFFSET(vm_entry_instruction_len, 796);
+	CHECK_OFFSET(tpr_threshold, 800);
+	CHECK_OFFSET(secondary_vm_exec_control, 804);
+	CHECK_OFFSET(vm_instruction_error, 808);
+	CHECK_OFFSET(vm_exit_reason, 812);
+	CHECK_OFFSET(vm_exit_intr_info, 816);
+	CHECK_OFFSET(vm_exit_intr_error_code, 820);
+	CHECK_OFFSET(idt_vectoring_info_field, 824);
+	CHECK_OFFSET(idt_vectoring_error_code, 828);
+	CHECK_OFFSET(vm_exit_instruction_len, 832);
+	CHECK_OFFSET(vmx_instruction_info, 836);
+	CHECK_OFFSET(guest_es_limit, 840);
+	CHECK_OFFSET(guest_cs_limit, 844);
+	CHECK_OFFSET(guest_ss_limit, 848);
+	CHECK_OFFSET(guest_ds_limit, 852);
+	CHECK_OFFSET(guest_fs_limit, 856);
+	CHECK_OFFSET(guest_gs_limit, 860);
+	CHECK_OFFSET(guest_ldtr_limit, 864);
+	CHECK_OFFSET(guest_tr_limit, 868);
+	CHECK_OFFSET(guest_gdtr_limit, 872);
+	CHECK_OFFSET(guest_idtr_limit, 876);
+	CHECK_OFFSET(guest_es_ar_bytes, 880);
+	CHECK_OFFSET(guest_cs_ar_bytes, 884);
+	CHECK_OFFSET(guest_ss_ar_bytes, 888);
+	CHECK_OFFSET(guest_ds_ar_bytes, 892);
+	CHECK_OFFSET(guest_fs_ar_bytes, 896);
+	CHECK_OFFSET(guest_gs_ar_bytes, 900);
+	CHECK_OFFSET(guest_ldtr_ar_bytes, 904);
+	CHECK_OFFSET(guest_tr_ar_bytes, 908);
+	CHECK_OFFSET(guest_interruptibility_info, 912);
+	CHECK_OFFSET(guest_activity_state, 916);
+	CHECK_OFFSET(guest_sysenter_cs, 920);
+	CHECK_OFFSET(host_ia32_sysenter_cs, 924);
+	CHECK_OFFSET(vmx_preemption_timer_value, 928);
+	CHECK_OFFSET(virtual_processor_id, 960);
+	CHECK_OFFSET(posted_intr_nv, 962);
+	CHECK_OFFSET(guest_es_selector, 964);
+	CHECK_OFFSET(guest_cs_selector, 966);
+	CHECK_OFFSET(guest_ss_selector, 968);
+	CHECK_OFFSET(guest_ds_selector, 970);
+	CHECK_OFFSET(guest_fs_selector, 972);
+	CHECK_OFFSET(guest_gs_selector, 974);
+	CHECK_OFFSET(guest_ldtr_selector, 976);
+	CHECK_OFFSET(guest_tr_selector, 978);
+	CHECK_OFFSET(guest_intr_status, 980);
+	CHECK_OFFSET(host_es_selector, 982);
+	CHECK_OFFSET(host_cs_selector, 984);
+	CHECK_OFFSET(host_ss_selector, 986);
+	CHECK_OFFSET(host_ds_selector, 988);
+	CHECK_OFFSET(host_fs_selector, 990);
+	CHECK_OFFSET(host_gs_selector, 992);
+	CHECK_OFFSET(host_tr_selector, 994);
+	CHECK_OFFSET(guest_pml_index, 996);
+}
+
+extern const unsigned short vmcs_field_to_offset_table[];
+extern const unsigned int nr_vmcs12_fields;
+
+#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
+
+static inline short vmcs_field_to_offset(unsigned long field)
+{
+	unsigned short offset;
+	unsigned int index;
+
+	if (field >> 15)
+		return -ENOENT;
+
+	index = ROL16(field, 6);
+	if (index >= nr_vmcs12_fields)
+		return -ENOENT;
+
+	index = array_index_nospec(index, nr_vmcs12_fields);
+	offset = vmcs_field_to_offset_table[index];
+	if (offset == 0)
+		return -ENOENT;
+	return offset;
+}
+
+#undef ROL16
+
+/*
+ * Read a vmcs12 field. Since these can have varying lengths and we return
+ * one type, we chose the biggest type (u64) and zero-extend the return value
+ * to that size. Note that the caller, handle_vmread, might need to use only
+ * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
+ * 64-bit fields are to be returned).
+ */
+static inline int vmcs12_read_any(struct vmcs12 *vmcs12,
+				  unsigned long field, u64 *ret)
+{
+	short offset = vmcs_field_to_offset(field);
+	char *p;
+
+	if (offset < 0)
+		return offset;
+
+	p = (char *)vmcs12 + offset;
+
+	switch (vmcs_field_width(field)) {
+	case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
+		*ret = *((natural_width *)p);
+		return 0;
+	case VMCS_FIELD_WIDTH_U16:
+		*ret = *((u16 *)p);
+		return 0;
+	case VMCS_FIELD_WIDTH_U32:
+		*ret = *((u32 *)p);
+		return 0;
+	case VMCS_FIELD_WIDTH_U64:
+		*ret = *((u64 *)p);
+		return 0;
+	default:
+		WARN_ON(1);
+		return -ENOENT;
+	}
+}
+
+static inline int vmcs12_write_any(struct vmcs12 *vmcs12,
+				   unsigned long field, u64 field_value){
+	short offset = vmcs_field_to_offset(field);
+	char *p = (char *)vmcs12 + offset;
+
+	if (offset < 0)
+		return offset;
+
+	switch (vmcs_field_width(field)) {
+	case VMCS_FIELD_WIDTH_U16:
+		*(u16 *)p = field_value;
+		return 0;
+	case VMCS_FIELD_WIDTH_U32:
+		*(u32 *)p = field_value;
+		return 0;
+	case VMCS_FIELD_WIDTH_U64:
+		*(u64 *)p = field_value;
+		return 0;
+	case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
+		*(natural_width *)p = field_value;
+		return 0;
+	default:
+		WARN_ON(1);
+		return -ENOENT;
+	}
+
+}
+
+#endif /* __KVM_X86_VMX_VMCS12_H */
diff --git a/arch/x86/kvm/vmx_shadow_fields.h b/arch/x86/kvm/vmx/vmcs_shadow_fields.h
index 132432f375c2..132432f375c2 100644
--- a/arch/x86/kvm/vmx_shadow_fields.h
+++ b/arch/x86/kvm/vmx/vmcs_shadow_fields.h
diff --git a/arch/x86/kvm/vmx/vmenter.S b/arch/x86/kvm/vmx/vmenter.S
new file mode 100644
index 000000000000..bcef2c7e9bc4
--- /dev/null
+++ b/arch/x86/kvm/vmx/vmenter.S
@@ -0,0 +1,57 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#include <linux/linkage.h>
+#include <asm/asm.h>
+
+	.text
+
+/**
+ * vmx_vmenter - VM-Enter the current loaded VMCS
+ *
+ * %RFLAGS.ZF:	!VMCS.LAUNCHED, i.e. controls VMLAUNCH vs. VMRESUME
+ *
+ * Returns:
+ *	%RFLAGS.CF is set on VM-Fail Invalid
+ *	%RFLAGS.ZF is set on VM-Fail Valid
+ *	%RFLAGS.{CF,ZF} are cleared on VM-Success, i.e. VM-Exit
+ *
+ * Note that VMRESUME/VMLAUNCH fall-through and return directly if
+ * they VM-Fail, whereas a successful VM-Enter + VM-Exit will jump
+ * to vmx_vmexit.
+ */
+ENTRY(vmx_vmenter)
+	/* EFLAGS.ZF is set if VMCS.LAUNCHED == 0 */
+	je 2f
+
+1:	vmresume
+	ret
+
+2:	vmlaunch
+	ret
+
+3:	cmpb $0, kvm_rebooting
+	jne 4f
+	call kvm_spurious_fault
+4:	ret
+
+	.pushsection .fixup, "ax"
+5:	jmp 3b
+	.popsection
+
+	_ASM_EXTABLE(1b, 5b)
+	_ASM_EXTABLE(2b, 5b)
+
+ENDPROC(vmx_vmenter)
+
+/**
+ * vmx_vmexit - Handle a VMX VM-Exit
+ *
+ * Returns:
+ *	%RFLAGS.{CF,ZF} are cleared on VM-Success, i.e. VM-Exit
+ *
+ * This is vmx_vmenter's partner in crime.  On a VM-Exit, control will jump
+ * here after hardware loads the host's state, i.e. this is the destination
+ * referred to by VMCS.HOST_RIP.
+ */
+ENTRY(vmx_vmexit)
+	ret
+ENDPROC(vmx_vmexit)
diff --git a/arch/x86/kvm/vmx/vmx.c b/arch/x86/kvm/vmx/vmx.c
new file mode 100644
index 000000000000..4d39f731bc33
--- /dev/null
+++ b/arch/x86/kvm/vmx/vmx.c
@@ -0,0 +1,7935 @@
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * This module enables machines with Intel VT-x extensions to run virtual
+ * machines without emulation or binary translation.
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ *   Avi Kivity   <avi@qumranet.com>
+ *   Yaniv Kamay  <yaniv@qumranet.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2.  See
+ * the COPYING file in the top-level directory.
+ *
+ */
+
+#include <linux/frame.h>
+#include <linux/highmem.h>
+#include <linux/hrtimer.h>
+#include <linux/kernel.h>
+#include <linux/kvm_host.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/mod_devicetable.h>
+#include <linux/mm.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/tboot.h>
+#include <linux/trace_events.h>
+
+#include <asm/apic.h>
+#include <asm/asm.h>
+#include <asm/cpu.h>
+#include <asm/debugreg.h>
+#include <asm/desc.h>
+#include <asm/fpu/internal.h>
+#include <asm/io.h>
+#include <asm/irq_remapping.h>
+#include <asm/kexec.h>
+#include <asm/perf_event.h>
+#include <asm/mce.h>
+#include <asm/mmu_context.h>
+#include <asm/mshyperv.h>
+#include <asm/spec-ctrl.h>
+#include <asm/virtext.h>
+#include <asm/vmx.h>
+
+#include "capabilities.h"
+#include "cpuid.h"
+#include "evmcs.h"
+#include "irq.h"
+#include "kvm_cache_regs.h"
+#include "lapic.h"
+#include "mmu.h"
+#include "nested.h"
+#include "ops.h"
+#include "pmu.h"
+#include "trace.h"
+#include "vmcs.h"
+#include "vmcs12.h"
+#include "vmx.h"
+#include "x86.h"
+
+MODULE_AUTHOR("Qumranet");
+MODULE_LICENSE("GPL");
+
+static const struct x86_cpu_id vmx_cpu_id[] = {
+	X86_FEATURE_MATCH(X86_FEATURE_VMX),
+	{}
+};
+MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
+
+bool __read_mostly enable_vpid = 1;
+module_param_named(vpid, enable_vpid, bool, 0444);
+
+static bool __read_mostly enable_vnmi = 1;
+module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
+
+bool __read_mostly flexpriority_enabled = 1;
+module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
+
+bool __read_mostly enable_ept = 1;
+module_param_named(ept, enable_ept, bool, S_IRUGO);
+
+bool __read_mostly enable_unrestricted_guest = 1;
+module_param_named(unrestricted_guest,
+			enable_unrestricted_guest, bool, S_IRUGO);
+
+bool __read_mostly enable_ept_ad_bits = 1;
+module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
+
+static bool __read_mostly emulate_invalid_guest_state = true;
+module_param(emulate_invalid_guest_state, bool, S_IRUGO);
+
+static bool __read_mostly fasteoi = 1;
+module_param(fasteoi, bool, S_IRUGO);
+
+static bool __read_mostly enable_apicv = 1;
+module_param(enable_apicv, bool, S_IRUGO);
+
+/*
+ * If nested=1, nested virtualization is supported, i.e., guests may use
+ * VMX and be a hypervisor for its own guests. If nested=0, guests may not
+ * use VMX instructions.
+ */
+static bool __read_mostly nested = 1;
+module_param(nested, bool, S_IRUGO);
+
+static u64 __read_mostly host_xss;
+
+bool __read_mostly enable_pml = 1;
+module_param_named(pml, enable_pml, bool, S_IRUGO);
+
+#define MSR_BITMAP_MODE_X2APIC		1
+#define MSR_BITMAP_MODE_X2APIC_APICV	2
+
+#define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
+
+/* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
+static int __read_mostly cpu_preemption_timer_multi;
+static bool __read_mostly enable_preemption_timer = 1;
+#ifdef CONFIG_X86_64
+module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
+#endif
+
+#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
+#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
+#define KVM_VM_CR0_ALWAYS_ON				\
+	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
+	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
+#define KVM_CR4_GUEST_OWNED_BITS				      \
+	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
+	 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
+
+#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
+#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
+#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
+
+#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
+
+#define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
+	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
+	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
+	RTIT_STATUS_BYTECNT))
+
+#define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
+	(~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
+
+/*
+ * These 2 parameters are used to config the controls for Pause-Loop Exiting:
+ * ple_gap:    upper bound on the amount of time between two successive
+ *             executions of PAUSE in a loop. Also indicate if ple enabled.
+ *             According to test, this time is usually smaller than 128 cycles.
+ * ple_window: upper bound on the amount of time a guest is allowed to execute
+ *             in a PAUSE loop. Tests indicate that most spinlocks are held for
+ *             less than 2^12 cycles
+ * Time is measured based on a counter that runs at the same rate as the TSC,
+ * refer SDM volume 3b section 21.6.13 & 22.1.3.
+ */
+static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
+module_param(ple_gap, uint, 0444);
+
+static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
+module_param(ple_window, uint, 0444);
+
+/* Default doubles per-vcpu window every exit. */
+static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
+module_param(ple_window_grow, uint, 0444);
+
+/* Default resets per-vcpu window every exit to ple_window. */
+static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
+module_param(ple_window_shrink, uint, 0444);
+
+/* Default is to compute the maximum so we can never overflow. */
+static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
+module_param(ple_window_max, uint, 0444);
+
+/* Default is SYSTEM mode, 1 for host-guest mode */
+int __read_mostly pt_mode = PT_MODE_SYSTEM;
+module_param(pt_mode, int, S_IRUGO);
+
+static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
+static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
+static DEFINE_MUTEX(vmx_l1d_flush_mutex);
+
+/* Storage for pre module init parameter parsing */
+static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
+
+static const struct {
+	const char *option;
+	bool for_parse;
+} vmentry_l1d_param[] = {
+	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
+	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
+	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
+	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
+	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
+	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
+};
+
+#define L1D_CACHE_ORDER 4
+static void *vmx_l1d_flush_pages;
+
+static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
+{
+	struct page *page;
+	unsigned int i;
+
+	if (!enable_ept) {
+		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
+		return 0;
+	}
+
+	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
+		u64 msr;
+
+		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
+		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
+			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
+			return 0;
+		}
+	}
+
+	/* If set to auto use the default l1tf mitigation method */
+	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
+		switch (l1tf_mitigation) {
+		case L1TF_MITIGATION_OFF:
+			l1tf = VMENTER_L1D_FLUSH_NEVER;
+			break;
+		case L1TF_MITIGATION_FLUSH_NOWARN:
+		case L1TF_MITIGATION_FLUSH:
+		case L1TF_MITIGATION_FLUSH_NOSMT:
+			l1tf = VMENTER_L1D_FLUSH_COND;
+			break;
+		case L1TF_MITIGATION_FULL:
+		case L1TF_MITIGATION_FULL_FORCE:
+			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
+			break;
+		}
+	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
+		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
+	}
+
+	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
+	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
+		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
+		if (!page)
+			return -ENOMEM;
+		vmx_l1d_flush_pages = page_address(page);
+
+		/*
+		 * Initialize each page with a different pattern in
+		 * order to protect against KSM in the nested
+		 * virtualization case.
+		 */
+		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
+			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
+			       PAGE_SIZE);
+		}
+	}
+
+	l1tf_vmx_mitigation = l1tf;
+
+	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
+		static_branch_enable(&vmx_l1d_should_flush);
+	else
+		static_branch_disable(&vmx_l1d_should_flush);
+
+	if (l1tf == VMENTER_L1D_FLUSH_COND)
+		static_branch_enable(&vmx_l1d_flush_cond);
+	else
+		static_branch_disable(&vmx_l1d_flush_cond);
+	return 0;
+}
+
+static int vmentry_l1d_flush_parse(const char *s)
+{
+	unsigned int i;
+
+	if (s) {
+		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
+			if (vmentry_l1d_param[i].for_parse &&
+			    sysfs_streq(s, vmentry_l1d_param[i].option))
+				return i;
+		}
+	}
+	return -EINVAL;
+}
+
+static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
+{
+	int l1tf, ret;
+
+	l1tf = vmentry_l1d_flush_parse(s);
+	if (l1tf < 0)
+		return l1tf;
+
+	if (!boot_cpu_has(X86_BUG_L1TF))
+		return 0;
+
+	/*
+	 * Has vmx_init() run already? If not then this is the pre init
+	 * parameter parsing. In that case just store the value and let
+	 * vmx_init() do the proper setup after enable_ept has been
+	 * established.
+	 */
+	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
+		vmentry_l1d_flush_param = l1tf;
+		return 0;
+	}
+
+	mutex_lock(&vmx_l1d_flush_mutex);
+	ret = vmx_setup_l1d_flush(l1tf);
+	mutex_unlock(&vmx_l1d_flush_mutex);
+	return ret;
+}
+
+static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
+{
+	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
+		return sprintf(s, "???\n");
+
+	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
+}
+
+static const struct kernel_param_ops vmentry_l1d_flush_ops = {
+	.set = vmentry_l1d_flush_set,
+	.get = vmentry_l1d_flush_get,
+};
+module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
+
+static bool guest_state_valid(struct kvm_vcpu *vcpu);
+static u32 vmx_segment_access_rights(struct kvm_segment *var);
+static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
+							  u32 msr, int type);
+
+void vmx_vmexit(void);
+
+static DEFINE_PER_CPU(struct vmcs *, vmxarea);
+DEFINE_PER_CPU(struct vmcs *, current_vmcs);
+/*
+ * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
+ * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
+ */
+static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
+
+/*
+ * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
+ * can find which vCPU should be waken up.
+ */
+static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
+static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
+
+static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
+static DEFINE_SPINLOCK(vmx_vpid_lock);
+
+struct vmcs_config vmcs_config;
+struct vmx_capability vmx_capability;
+
+#define VMX_SEGMENT_FIELD(seg)					\
+	[VCPU_SREG_##seg] = {                                   \
+		.selector = GUEST_##seg##_SELECTOR,		\
+		.base = GUEST_##seg##_BASE,		   	\
+		.limit = GUEST_##seg##_LIMIT,		   	\
+		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
+	}
+
+static const struct kvm_vmx_segment_field {
+	unsigned selector;
+	unsigned base;
+	unsigned limit;
+	unsigned ar_bytes;
+} kvm_vmx_segment_fields[] = {
+	VMX_SEGMENT_FIELD(CS),
+	VMX_SEGMENT_FIELD(DS),
+	VMX_SEGMENT_FIELD(ES),
+	VMX_SEGMENT_FIELD(FS),
+	VMX_SEGMENT_FIELD(GS),
+	VMX_SEGMENT_FIELD(SS),
+	VMX_SEGMENT_FIELD(TR),
+	VMX_SEGMENT_FIELD(LDTR),
+};
+
+u64 host_efer;
+
+/*
+ * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
+ * will emulate SYSCALL in legacy mode if the vendor string in guest
+ * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
+ * support this emulation, IA32_STAR must always be included in
+ * vmx_msr_index[], even in i386 builds.
+ */
+const u32 vmx_msr_index[] = {
+#ifdef CONFIG_X86_64
+	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
+#endif
+	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
+};
+
+#if IS_ENABLED(CONFIG_HYPERV)
+static bool __read_mostly enlightened_vmcs = true;
+module_param(enlightened_vmcs, bool, 0444);
+
+/* check_ept_pointer() should be under protection of ept_pointer_lock. */
+static void check_ept_pointer_match(struct kvm *kvm)
+{
+	struct kvm_vcpu *vcpu;
+	u64 tmp_eptp = INVALID_PAGE;
+	int i;
+
+	kvm_for_each_vcpu(i, vcpu, kvm) {
+		if (!VALID_PAGE(tmp_eptp)) {
+			tmp_eptp = to_vmx(vcpu)->ept_pointer;
+		} else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
+			to_kvm_vmx(kvm)->ept_pointers_match
+				= EPT_POINTERS_MISMATCH;
+			return;
+		}
+	}
+
+	to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
+}
+
+int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
+		void *data)
+{
+	struct kvm_tlb_range *range = data;
+
+	return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
+			range->pages);
+}
+
+static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
+		struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
+{
+	u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
+
+	/*
+	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
+	 * of the base of EPT PML4 table, strip off EPT configuration
+	 * information.
+	 */
+	if (range)
+		return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
+				kvm_fill_hv_flush_list_func, (void *)range);
+	else
+		return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
+}
+
+static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
+		struct kvm_tlb_range *range)
+{
+	struct kvm_vcpu *vcpu;
+	int ret = -ENOTSUPP, i;
+
+	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
+
+	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
+		check_ept_pointer_match(kvm);
+
+	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
+		kvm_for_each_vcpu(i, vcpu, kvm) {
+			/* If ept_pointer is invalid pointer, bypass flush request. */
+			if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
+				ret |= __hv_remote_flush_tlb_with_range(
+					kvm, vcpu, range);
+		}
+	} else {
+		ret = __hv_remote_flush_tlb_with_range(kvm,
+				kvm_get_vcpu(kvm, 0), range);
+	}
+
+	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
+	return ret;
+}
+static int hv_remote_flush_tlb(struct kvm *kvm)
+{
+	return hv_remote_flush_tlb_with_range(kvm, NULL);
+}
+
+#endif /* IS_ENABLED(CONFIG_HYPERV) */
+
+/*
+ * Comment's format: document - errata name - stepping - processor name.
+ * Refer from
+ * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
+ */
+static u32 vmx_preemption_cpu_tfms[] = {
+/* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
+0x000206E6,
+/* 323056.pdf - AAX65  - C2 - Xeon L3406 */
+/* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
+/* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
+0x00020652,
+/* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
+0x00020655,
+/* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
+/* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
+/*
+ * 320767.pdf - AAP86  - B1 -
+ * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
+ */
+0x000106E5,
+/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
+0x000106A0,
+/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
+0x000106A1,
+/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
+0x000106A4,
+ /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
+ /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
+ /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
+0x000106A5,
+ /* Xeon E3-1220 V2 */
+0x000306A8,
+};
+
+static inline bool cpu_has_broken_vmx_preemption_timer(void)
+{
+	u32 eax = cpuid_eax(0x00000001), i;
+
+	/* Clear the reserved bits */
+	eax &= ~(0x3U << 14 | 0xfU << 28);
+	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
+		if (eax == vmx_preemption_cpu_tfms[i])
+			return true;
+
+	return false;
+}
+
+static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
+{
+	return flexpriority_enabled && lapic_in_kernel(vcpu);
+}
+
+static inline bool report_flexpriority(void)
+{
+	return flexpriority_enabled;
+}
+
+static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
+{
+	int i;
+
+	for (i = 0; i < vmx->nmsrs; ++i)
+		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
+			return i;
+	return -1;
+}
+
+struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
+{
+	int i;
+
+	i = __find_msr_index(vmx, msr);
+	if (i >= 0)
+		return &vmx->guest_msrs[i];
+	return NULL;
+}
+
+void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
+{
+	vmcs_clear(loaded_vmcs->vmcs);
+	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
+		vmcs_clear(loaded_vmcs->shadow_vmcs);
+	loaded_vmcs->cpu = -1;
+	loaded_vmcs->launched = 0;
+}
+
+#ifdef CONFIG_KEXEC_CORE
+/*
+ * This bitmap is used to indicate whether the vmclear
+ * operation is enabled on all cpus. All disabled by
+ * default.
+ */
+static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
+
+static inline void crash_enable_local_vmclear(int cpu)
+{
+	cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
+}
+
+static inline void crash_disable_local_vmclear(int cpu)
+{
+	cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
+}
+
+static inline int crash_local_vmclear_enabled(int cpu)
+{
+	return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
+}
+
+static void crash_vmclear_local_loaded_vmcss(void)
+{
+	int cpu = raw_smp_processor_id();
+	struct loaded_vmcs *v;
+
+	if (!crash_local_vmclear_enabled(cpu))
+		return;
+
+	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
+			    loaded_vmcss_on_cpu_link)
+		vmcs_clear(v->vmcs);
+}
+#else
+static inline void crash_enable_local_vmclear(int cpu) { }
+static inline void crash_disable_local_vmclear(int cpu) { }
+#endif /* CONFIG_KEXEC_CORE */
+
+static void __loaded_vmcs_clear(void *arg)
+{
+	struct loaded_vmcs *loaded_vmcs = arg;
+	int cpu = raw_smp_processor_id();
+
+	if (loaded_vmcs->cpu != cpu)
+		return; /* vcpu migration can race with cpu offline */
+	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
+		per_cpu(current_vmcs, cpu) = NULL;
+	crash_disable_local_vmclear(cpu);
+	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
+
+	/*
+	 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
+	 * is before setting loaded_vmcs->vcpu to -1 which is done in
+	 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
+	 * then adds the vmcs into percpu list before it is deleted.
+	 */
+	smp_wmb();
+
+	loaded_vmcs_init(loaded_vmcs);
+	crash_enable_local_vmclear(cpu);
+}
+
+void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
+{
+	int cpu = loaded_vmcs->cpu;
+
+	if (cpu != -1)
+		smp_call_function_single(cpu,
+			 __loaded_vmcs_clear, loaded_vmcs, 1);
+}
+
+static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
+				       unsigned field)
+{
+	bool ret;
+	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
+
+	if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
+		vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
+		vmx->segment_cache.bitmask = 0;
+	}
+	ret = vmx->segment_cache.bitmask & mask;
+	vmx->segment_cache.bitmask |= mask;
+	return ret;
+}
+
+static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
+{
+	u16 *p = &vmx->segment_cache.seg[seg].selector;
+
+	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
+		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
+	return *p;
+}
+
+static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
+{
+	ulong *p = &vmx->segment_cache.seg[seg].base;
+
+	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
+		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
+	return *p;
+}
+
+static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
+{
+	u32 *p = &vmx->segment_cache.seg[seg].limit;
+
+	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
+		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
+	return *p;
+}
+
+static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
+{
+	u32 *p = &vmx->segment_cache.seg[seg].ar;
+
+	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
+		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
+	return *p;
+}
+
+void update_exception_bitmap(struct kvm_vcpu *vcpu)
+{
+	u32 eb;
+
+	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
+	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
+	/*
+	 * Guest access to VMware backdoor ports could legitimately
+	 * trigger #GP because of TSS I/O permission bitmap.
+	 * We intercept those #GP and allow access to them anyway
+	 * as VMware does.
+	 */
+	if (enable_vmware_backdoor)
+		eb |= (1u << GP_VECTOR);
+	if ((vcpu->guest_debug &
+	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
+	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
+		eb |= 1u << BP_VECTOR;
+	if (to_vmx(vcpu)->rmode.vm86_active)
+		eb = ~0;
+	if (enable_ept)
+		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
+
+	/* When we are running a nested L2 guest and L1 specified for it a
+	 * certain exception bitmap, we must trap the same exceptions and pass
+	 * them to L1. When running L2, we will only handle the exceptions
+	 * specified above if L1 did not want them.
+	 */
+	if (is_guest_mode(vcpu))
+		eb |= get_vmcs12(vcpu)->exception_bitmap;
+
+	vmcs_write32(EXCEPTION_BITMAP, eb);
+}
+
+/*
+ * Check if MSR is intercepted for currently loaded MSR bitmap.
+ */
+static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
+{
+	unsigned long *msr_bitmap;
+	int f = sizeof(unsigned long);
+
+	if (!cpu_has_vmx_msr_bitmap())
+		return true;
+
+	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
+
+	if (msr <= 0x1fff) {
+		return !!test_bit(msr, msr_bitmap + 0x800 / f);
+	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+		msr &= 0x1fff;
+		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
+	}
+
+	return true;
+}
+
+static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
+		unsigned long entry, unsigned long exit)
+{
+	vm_entry_controls_clearbit(vmx, entry);
+	vm_exit_controls_clearbit(vmx, exit);
+}
+
+static int find_msr(struct vmx_msrs *m, unsigned int msr)
+{
+	unsigned int i;
+
+	for (i = 0; i < m->nr; ++i) {
+		if (m->val[i].index == msr)
+			return i;
+	}
+	return -ENOENT;
+}
+
+static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
+{
+	int i;
+	struct msr_autoload *m = &vmx->msr_autoload;
+
+	switch (msr) {
+	case MSR_EFER:
+		if (cpu_has_load_ia32_efer()) {
+			clear_atomic_switch_msr_special(vmx,
+					VM_ENTRY_LOAD_IA32_EFER,
+					VM_EXIT_LOAD_IA32_EFER);
+			return;
+		}
+		break;
+	case MSR_CORE_PERF_GLOBAL_CTRL:
+		if (cpu_has_load_perf_global_ctrl()) {
+			clear_atomic_switch_msr_special(vmx,
+					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
+					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
+			return;
+		}
+		break;
+	}
+	i = find_msr(&m->guest, msr);
+	if (i < 0)
+		goto skip_guest;
+	--m->guest.nr;
+	m->guest.val[i] = m->guest.val[m->guest.nr];
+	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
+
+skip_guest:
+	i = find_msr(&m->host, msr);
+	if (i < 0)
+		return;
+
+	--m->host.nr;
+	m->host.val[i] = m->host.val[m->host.nr];
+	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
+}
+
+static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
+		unsigned long entry, unsigned long exit,
+		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
+		u64 guest_val, u64 host_val)
+{
+	vmcs_write64(guest_val_vmcs, guest_val);
+	if (host_val_vmcs != HOST_IA32_EFER)
+		vmcs_write64(host_val_vmcs, host_val);
+	vm_entry_controls_setbit(vmx, entry);
+	vm_exit_controls_setbit(vmx, exit);
+}
+
+static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
+				  u64 guest_val, u64 host_val, bool entry_only)
+{
+	int i, j = 0;
+	struct msr_autoload *m = &vmx->msr_autoload;
+
+	switch (msr) {
+	case MSR_EFER:
+		if (cpu_has_load_ia32_efer()) {
+			add_atomic_switch_msr_special(vmx,
+					VM_ENTRY_LOAD_IA32_EFER,
+					VM_EXIT_LOAD_IA32_EFER,
+					GUEST_IA32_EFER,
+					HOST_IA32_EFER,
+					guest_val, host_val);
+			return;
+		}
+		break;
+	case MSR_CORE_PERF_GLOBAL_CTRL:
+		if (cpu_has_load_perf_global_ctrl()) {
+			add_atomic_switch_msr_special(vmx,
+					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
+					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
+					GUEST_IA32_PERF_GLOBAL_CTRL,
+					HOST_IA32_PERF_GLOBAL_CTRL,
+					guest_val, host_val);
+			return;
+		}
+		break;
+	case MSR_IA32_PEBS_ENABLE:
+		/* PEBS needs a quiescent period after being disabled (to write
+		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
+		 * provide that period, so a CPU could write host's record into
+		 * guest's memory.
+		 */
+		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
+	}
+
+	i = find_msr(&m->guest, msr);
+	if (!entry_only)
+		j = find_msr(&m->host, msr);
+
+	if (i == NR_AUTOLOAD_MSRS || j == NR_AUTOLOAD_MSRS) {
+		printk_once(KERN_WARNING "Not enough msr switch entries. "
+				"Can't add msr %x\n", msr);
+		return;
+	}
+	if (i < 0) {
+		i = m->guest.nr++;
+		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
+	}
+	m->guest.val[i].index = msr;
+	m->guest.val[i].value = guest_val;
+
+	if (entry_only)
+		return;
+
+	if (j < 0) {
+		j = m->host.nr++;
+		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
+	}
+	m->host.val[j].index = msr;
+	m->host.val[j].value = host_val;
+}
+
+static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
+{
+	u64 guest_efer = vmx->vcpu.arch.efer;
+	u64 ignore_bits = 0;
+
+	if (!enable_ept) {
+		/*
+		 * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
+		 * host CPUID is more efficient than testing guest CPUID
+		 * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
+		 */
+		if (boot_cpu_has(X86_FEATURE_SMEP))
+			guest_efer |= EFER_NX;
+		else if (!(guest_efer & EFER_NX))
+			ignore_bits |= EFER_NX;
+	}
+
+	/*
+	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
+	 */
+	ignore_bits |= EFER_SCE;
+#ifdef CONFIG_X86_64
+	ignore_bits |= EFER_LMA | EFER_LME;
+	/* SCE is meaningful only in long mode on Intel */
+	if (guest_efer & EFER_LMA)
+		ignore_bits &= ~(u64)EFER_SCE;
+#endif
+
+	/*
+	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
+	 * On CPUs that support "load IA32_EFER", always switch EFER
+	 * atomically, since it's faster than switching it manually.
+	 */
+	if (cpu_has_load_ia32_efer() ||
+	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
+		if (!(guest_efer & EFER_LMA))
+			guest_efer &= ~EFER_LME;
+		if (guest_efer != host_efer)
+			add_atomic_switch_msr(vmx, MSR_EFER,
+					      guest_efer, host_efer, false);
+		else
+			clear_atomic_switch_msr(vmx, MSR_EFER);
+		return false;
+	} else {
+		clear_atomic_switch_msr(vmx, MSR_EFER);
+
+		guest_efer &= ~ignore_bits;
+		guest_efer |= host_efer & ignore_bits;
+
+		vmx->guest_msrs[efer_offset].data = guest_efer;
+		vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
+
+		return true;
+	}
+}
+
+#ifdef CONFIG_X86_32
+/*
+ * On 32-bit kernels, VM exits still load the FS and GS bases from the
+ * VMCS rather than the segment table.  KVM uses this helper to figure
+ * out the current bases to poke them into the VMCS before entry.
+ */
+static unsigned long segment_base(u16 selector)
+{
+	struct desc_struct *table;
+	unsigned long v;
+
+	if (!(selector & ~SEGMENT_RPL_MASK))
+		return 0;
+
+	table = get_current_gdt_ro();
+
+	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
+		u16 ldt_selector = kvm_read_ldt();
+
+		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
+			return 0;
+
+		table = (struct desc_struct *)segment_base(ldt_selector);
+	}
+	v = get_desc_base(&table[selector >> 3]);
+	return v;
+}
+#endif
+
+static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
+{
+	u32 i;
+
+	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
+	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
+	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
+	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
+	for (i = 0; i < addr_range; i++) {
+		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
+		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
+	}
+}
+
+static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
+{
+	u32 i;
+
+	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
+	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
+	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
+	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
+	for (i = 0; i < addr_range; i++) {
+		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
+		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
+	}
+}
+
+static void pt_guest_enter(struct vcpu_vmx *vmx)
+{
+	if (pt_mode == PT_MODE_SYSTEM)
+		return;
+
+	/*
+	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
+	 * Save host state before VM entry.
+	 */
+	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
+	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
+		wrmsrl(MSR_IA32_RTIT_CTL, 0);
+		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
+		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
+	}
+}
+
+static void pt_guest_exit(struct vcpu_vmx *vmx)
+{
+	if (pt_mode == PT_MODE_SYSTEM)
+		return;
+
+	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
+		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
+		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
+	}
+
+	/* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
+	wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
+}
+
+void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct vmcs_host_state *host_state;
+#ifdef CONFIG_X86_64
+	int cpu = raw_smp_processor_id();
+#endif
+	unsigned long fs_base, gs_base;
+	u16 fs_sel, gs_sel;
+	int i;
+
+	vmx->req_immediate_exit = false;
+
+	/*
+	 * Note that guest MSRs to be saved/restored can also be changed
+	 * when guest state is loaded. This happens when guest transitions
+	 * to/from long-mode by setting MSR_EFER.LMA.
+	 */
+	if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) {
+		vmx->guest_msrs_dirty = false;
+		for (i = 0; i < vmx->save_nmsrs; ++i)
+			kvm_set_shared_msr(vmx->guest_msrs[i].index,
+					   vmx->guest_msrs[i].data,
+					   vmx->guest_msrs[i].mask);
+
+	}
+
+	if (vmx->loaded_cpu_state)
+		return;
+
+	vmx->loaded_cpu_state = vmx->loaded_vmcs;
+	host_state = &vmx->loaded_cpu_state->host_state;
+
+	/*
+	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
+	 * allow segment selectors with cpl > 0 or ti == 1.
+	 */
+	host_state->ldt_sel = kvm_read_ldt();
+
+#ifdef CONFIG_X86_64
+	savesegment(ds, host_state->ds_sel);
+	savesegment(es, host_state->es_sel);
+
+	gs_base = cpu_kernelmode_gs_base(cpu);
+	if (likely(is_64bit_mm(current->mm))) {
+		save_fsgs_for_kvm();
+		fs_sel = current->thread.fsindex;
+		gs_sel = current->thread.gsindex;
+		fs_base = current->thread.fsbase;
+		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
+	} else {
+		savesegment(fs, fs_sel);
+		savesegment(gs, gs_sel);
+		fs_base = read_msr(MSR_FS_BASE);
+		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
+	}
+
+	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
+#else
+	savesegment(fs, fs_sel);
+	savesegment(gs, gs_sel);
+	fs_base = segment_base(fs_sel);
+	gs_base = segment_base(gs_sel);
+#endif
+
+	if (unlikely(fs_sel != host_state->fs_sel)) {
+		if (!(fs_sel & 7))
+			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
+		else
+			vmcs_write16(HOST_FS_SELECTOR, 0);
+		host_state->fs_sel = fs_sel;
+	}
+	if (unlikely(gs_sel != host_state->gs_sel)) {
+		if (!(gs_sel & 7))
+			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
+		else
+			vmcs_write16(HOST_GS_SELECTOR, 0);
+		host_state->gs_sel = gs_sel;
+	}
+	if (unlikely(fs_base != host_state->fs_base)) {
+		vmcs_writel(HOST_FS_BASE, fs_base);
+		host_state->fs_base = fs_base;
+	}
+	if (unlikely(gs_base != host_state->gs_base)) {
+		vmcs_writel(HOST_GS_BASE, gs_base);
+		host_state->gs_base = gs_base;
+	}
+}
+
+static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
+{
+	struct vmcs_host_state *host_state;
+
+	if (!vmx->loaded_cpu_state)
+		return;
+
+	WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs);
+	host_state = &vmx->loaded_cpu_state->host_state;
+
+	++vmx->vcpu.stat.host_state_reload;
+	vmx->loaded_cpu_state = NULL;
+
+#ifdef CONFIG_X86_64
+	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
+#endif
+	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
+		kvm_load_ldt(host_state->ldt_sel);
+#ifdef CONFIG_X86_64
+		load_gs_index(host_state->gs_sel);
+#else
+		loadsegment(gs, host_state->gs_sel);
+#endif
+	}
+	if (host_state->fs_sel & 7)
+		loadsegment(fs, host_state->fs_sel);
+#ifdef CONFIG_X86_64
+	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
+		loadsegment(ds, host_state->ds_sel);
+		loadsegment(es, host_state->es_sel);
+	}
+#endif
+	invalidate_tss_limit();
+#ifdef CONFIG_X86_64
+	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
+#endif
+	load_fixmap_gdt(raw_smp_processor_id());
+}
+
+#ifdef CONFIG_X86_64
+static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
+{
+	preempt_disable();
+	if (vmx->loaded_cpu_state)
+		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
+	preempt_enable();
+	return vmx->msr_guest_kernel_gs_base;
+}
+
+static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
+{
+	preempt_disable();
+	if (vmx->loaded_cpu_state)
+		wrmsrl(MSR_KERNEL_GS_BASE, data);
+	preempt_enable();
+	vmx->msr_guest_kernel_gs_base = data;
+}
+#endif
+
+static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
+{
+	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
+	struct pi_desc old, new;
+	unsigned int dest;
+
+	/*
+	 * In case of hot-plug or hot-unplug, we may have to undo
+	 * vmx_vcpu_pi_put even if there is no assigned device.  And we
+	 * always keep PI.NDST up to date for simplicity: it makes the
+	 * code easier, and CPU migration is not a fast path.
+	 */
+	if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
+		return;
+
+	/*
+	 * First handle the simple case where no cmpxchg is necessary; just
+	 * allow posting non-urgent interrupts.
+	 *
+	 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
+	 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
+	 * expects the VCPU to be on the blocked_vcpu_list that matches
+	 * PI.NDST.
+	 */
+	if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
+	    vcpu->cpu == cpu) {
+		pi_clear_sn(pi_desc);
+		return;
+	}
+
+	/* The full case.  */
+	do {
+		old.control = new.control = pi_desc->control;
+
+		dest = cpu_physical_id(cpu);
+
+		if (x2apic_enabled())
+			new.ndst = dest;
+		else
+			new.ndst = (dest << 8) & 0xFF00;
+
+		new.sn = 0;
+	} while (cmpxchg64(&pi_desc->control, old.control,
+			   new.control) != old.control);
+}
+
+/*
+ * Switches to specified vcpu, until a matching vcpu_put(), but assumes
+ * vcpu mutex is already taken.
+ */
+void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
+
+	if (!already_loaded) {
+		loaded_vmcs_clear(vmx->loaded_vmcs);
+		local_irq_disable();
+		crash_disable_local_vmclear(cpu);
+
+		/*
+		 * Read loaded_vmcs->cpu should be before fetching
+		 * loaded_vmcs->loaded_vmcss_on_cpu_link.
+		 * See the comments in __loaded_vmcs_clear().
+		 */
+		smp_rmb();
+
+		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
+			 &per_cpu(loaded_vmcss_on_cpu, cpu));
+		crash_enable_local_vmclear(cpu);
+		local_irq_enable();
+	}
+
+	if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
+		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
+		vmcs_load(vmx->loaded_vmcs->vmcs);
+		indirect_branch_prediction_barrier();
+	}
+
+	if (!already_loaded) {
+		void *gdt = get_current_gdt_ro();
+		unsigned long sysenter_esp;
+
+		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+
+		/*
+		 * Linux uses per-cpu TSS and GDT, so set these when switching
+		 * processors.  See 22.2.4.
+		 */
+		vmcs_writel(HOST_TR_BASE,
+			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
+		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
+
+		/*
+		 * VM exits change the host TR limit to 0x67 after a VM
+		 * exit.  This is okay, since 0x67 covers everything except
+		 * the IO bitmap and have have code to handle the IO bitmap
+		 * being lost after a VM exit.
+		 */
+		BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
+
+		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
+		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
+
+		vmx->loaded_vmcs->cpu = cpu;
+	}
+
+	/* Setup TSC multiplier */
+	if (kvm_has_tsc_control &&
+	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
+		decache_tsc_multiplier(vmx);
+
+	vmx_vcpu_pi_load(vcpu, cpu);
+	vmx->host_pkru = read_pkru();
+	vmx->host_debugctlmsr = get_debugctlmsr();
+}
+
+static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
+{
+	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
+
+	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
+		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
+		!kvm_vcpu_apicv_active(vcpu))
+		return;
+
+	/* Set SN when the vCPU is preempted */
+	if (vcpu->preempted)
+		pi_set_sn(pi_desc);
+}
+
+void vmx_vcpu_put(struct kvm_vcpu *vcpu)
+{
+	vmx_vcpu_pi_put(vcpu);
+
+	vmx_prepare_switch_to_host(to_vmx(vcpu));
+}
+
+static bool emulation_required(struct kvm_vcpu *vcpu)
+{
+	return emulate_invalid_guest_state && !guest_state_valid(vcpu);
+}
+
+static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
+
+unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
+{
+	unsigned long rflags, save_rflags;
+
+	if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
+		__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
+		rflags = vmcs_readl(GUEST_RFLAGS);
+		if (to_vmx(vcpu)->rmode.vm86_active) {
+			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
+			save_rflags = to_vmx(vcpu)->rmode.save_rflags;
+			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
+		}
+		to_vmx(vcpu)->rflags = rflags;
+	}
+	return to_vmx(vcpu)->rflags;
+}
+
+void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
+{
+	unsigned long old_rflags = vmx_get_rflags(vcpu);
+
+	__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
+	to_vmx(vcpu)->rflags = rflags;
+	if (to_vmx(vcpu)->rmode.vm86_active) {
+		to_vmx(vcpu)->rmode.save_rflags = rflags;
+		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
+	}
+	vmcs_writel(GUEST_RFLAGS, rflags);
+
+	if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
+		to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
+}
+
+u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
+{
+	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+	int ret = 0;
+
+	if (interruptibility & GUEST_INTR_STATE_STI)
+		ret |= KVM_X86_SHADOW_INT_STI;
+	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
+		ret |= KVM_X86_SHADOW_INT_MOV_SS;
+
+	return ret;
+}
+
+void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
+{
+	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+	u32 interruptibility = interruptibility_old;
+
+	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
+
+	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
+		interruptibility |= GUEST_INTR_STATE_MOV_SS;
+	else if (mask & KVM_X86_SHADOW_INT_STI)
+		interruptibility |= GUEST_INTR_STATE_STI;
+
+	if ((interruptibility != interruptibility_old))
+		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
+}
+
+static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	unsigned long value;
+
+	/*
+	 * Any MSR write that attempts to change bits marked reserved will
+	 * case a #GP fault.
+	 */
+	if (data & vmx->pt_desc.ctl_bitmask)
+		return 1;
+
+	/*
+	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
+	 * result in a #GP unless the same write also clears TraceEn.
+	 */
+	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
+		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
+		return 1;
+
+	/*
+	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
+	 * and FabricEn would cause #GP, if
+	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
+	 */
+	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
+		!(data & RTIT_CTL_FABRIC_EN) &&
+		!intel_pt_validate_cap(vmx->pt_desc.caps,
+					PT_CAP_single_range_output))
+		return 1;
+
+	/*
+	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
+	 * utilize encodings marked reserved will casue a #GP fault.
+	 */
+	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
+	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
+			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
+			RTIT_CTL_MTC_RANGE_OFFSET, &value))
+		return 1;
+	value = intel_pt_validate_cap(vmx->pt_desc.caps,
+						PT_CAP_cycle_thresholds);
+	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
+			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
+			RTIT_CTL_CYC_THRESH_OFFSET, &value))
+		return 1;
+	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
+	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
+			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
+			RTIT_CTL_PSB_FREQ_OFFSET, &value))
+		return 1;
+
+	/*
+	 * If ADDRx_CFG is reserved or the encodings is >2 will
+	 * cause a #GP fault.
+	 */
+	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
+	if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
+		return 1;
+	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
+	if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
+		return 1;
+	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
+	if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
+		return 1;
+	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
+	if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
+		return 1;
+
+	return 0;
+}
+
+
+static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
+{
+	unsigned long rip;
+
+	rip = kvm_rip_read(vcpu);
+	rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+	kvm_rip_write(vcpu, rip);
+
+	/* skipping an emulated instruction also counts */
+	vmx_set_interrupt_shadow(vcpu, 0);
+}
+
+static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
+{
+	/*
+	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
+	 * explicitly skip the instruction because if the HLT state is set,
+	 * then the instruction is already executing and RIP has already been
+	 * advanced.
+	 */
+	if (kvm_hlt_in_guest(vcpu->kvm) &&
+			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
+		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
+}
+
+static void vmx_queue_exception(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	unsigned nr = vcpu->arch.exception.nr;
+	bool has_error_code = vcpu->arch.exception.has_error_code;
+	u32 error_code = vcpu->arch.exception.error_code;
+	u32 intr_info = nr | INTR_INFO_VALID_MASK;
+
+	kvm_deliver_exception_payload(vcpu);
+
+	if (has_error_code) {
+		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
+		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
+	}
+
+	if (vmx->rmode.vm86_active) {
+		int inc_eip = 0;
+		if (kvm_exception_is_soft(nr))
+			inc_eip = vcpu->arch.event_exit_inst_len;
+		if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
+			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+		return;
+	}
+
+	WARN_ON_ONCE(vmx->emulation_required);
+
+	if (kvm_exception_is_soft(nr)) {
+		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+			     vmx->vcpu.arch.event_exit_inst_len);
+		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
+	} else
+		intr_info |= INTR_TYPE_HARD_EXCEPTION;
+
+	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
+
+	vmx_clear_hlt(vcpu);
+}
+
+static bool vmx_rdtscp_supported(void)
+{
+	return cpu_has_vmx_rdtscp();
+}
+
+static bool vmx_invpcid_supported(void)
+{
+	return cpu_has_vmx_invpcid();
+}
+
+/*
+ * Swap MSR entry in host/guest MSR entry array.
+ */
+static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
+{
+	struct shared_msr_entry tmp;
+
+	tmp = vmx->guest_msrs[to];
+	vmx->guest_msrs[to] = vmx->guest_msrs[from];
+	vmx->guest_msrs[from] = tmp;
+}
+
+/*
+ * Set up the vmcs to automatically save and restore system
+ * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
+ * mode, as fiddling with msrs is very expensive.
+ */
+static void setup_msrs(struct vcpu_vmx *vmx)
+{
+	int save_nmsrs, index;
+
+	save_nmsrs = 0;
+#ifdef CONFIG_X86_64
+	/*
+	 * The SYSCALL MSRs are only needed on long mode guests, and only
+	 * when EFER.SCE is set.
+	 */
+	if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
+		index = __find_msr_index(vmx, MSR_STAR);
+		if (index >= 0)
+			move_msr_up(vmx, index, save_nmsrs++);
+		index = __find_msr_index(vmx, MSR_LSTAR);
+		if (index >= 0)
+			move_msr_up(vmx, index, save_nmsrs++);
+		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
+		if (index >= 0)
+			move_msr_up(vmx, index, save_nmsrs++);
+	}
+#endif
+	index = __find_msr_index(vmx, MSR_EFER);
+	if (index >= 0 && update_transition_efer(vmx, index))
+		move_msr_up(vmx, index, save_nmsrs++);
+	index = __find_msr_index(vmx, MSR_TSC_AUX);
+	if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
+		move_msr_up(vmx, index, save_nmsrs++);
+
+	vmx->save_nmsrs = save_nmsrs;
+	vmx->guest_msrs_dirty = true;
+
+	if (cpu_has_vmx_msr_bitmap())
+		vmx_update_msr_bitmap(&vmx->vcpu);
+}
+
+static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
+{
+	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+	if (is_guest_mode(vcpu) &&
+	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
+		return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
+
+	return vcpu->arch.tsc_offset;
+}
+
+static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
+{
+	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+	u64 g_tsc_offset = 0;
+
+	/*
+	 * We're here if L1 chose not to trap WRMSR to TSC. According
+	 * to the spec, this should set L1's TSC; The offset that L1
+	 * set for L2 remains unchanged, and still needs to be added
+	 * to the newly set TSC to get L2's TSC.
+	 */
+	if (is_guest_mode(vcpu) &&
+	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
+		g_tsc_offset = vmcs12->tsc_offset;
+
+	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
+				   vcpu->arch.tsc_offset - g_tsc_offset,
+				   offset);
+	vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
+	return offset + g_tsc_offset;
+}
+
+/*
+ * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
+ * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
+ * all guests if the "nested" module option is off, and can also be disabled
+ * for a single guest by disabling its VMX cpuid bit.
+ */
+bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
+{
+	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
+}
+
+static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
+						 uint64_t val)
+{
+	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
+
+	return !(val & ~valid_bits);
+}
+
+static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
+{
+	switch (msr->index) {
+	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
+		if (!nested)
+			return 1;
+		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
+	default:
+		return 1;
+	}
+
+	return 0;
+}
+
+/*
+ * Reads an msr value (of 'msr_index') into 'pdata'.
+ * Returns 0 on success, non-0 otherwise.
+ * Assumes vcpu_load() was already called.
+ */
+static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct shared_msr_entry *msr;
+	u32 index;
+
+	switch (msr_info->index) {
+#ifdef CONFIG_X86_64
+	case MSR_FS_BASE:
+		msr_info->data = vmcs_readl(GUEST_FS_BASE);
+		break;
+	case MSR_GS_BASE:
+		msr_info->data = vmcs_readl(GUEST_GS_BASE);
+		break;
+	case MSR_KERNEL_GS_BASE:
+		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
+		break;
+#endif
+	case MSR_EFER:
+		return kvm_get_msr_common(vcpu, msr_info);
+	case MSR_IA32_SPEC_CTRL:
+		if (!msr_info->host_initiated &&
+		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
+			return 1;
+
+		msr_info->data = to_vmx(vcpu)->spec_ctrl;
+		break;
+	case MSR_IA32_ARCH_CAPABILITIES:
+		if (!msr_info->host_initiated &&
+		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
+			return 1;
+		msr_info->data = to_vmx(vcpu)->arch_capabilities;
+		break;
+	case MSR_IA32_SYSENTER_CS:
+		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
+		break;
+	case MSR_IA32_SYSENTER_EIP:
+		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
+		break;
+	case MSR_IA32_SYSENTER_ESP:
+		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
+		break;
+	case MSR_IA32_BNDCFGS:
+		if (!kvm_mpx_supported() ||
+		    (!msr_info->host_initiated &&
+		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
+			return 1;
+		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
+		break;
+	case MSR_IA32_MCG_EXT_CTL:
+		if (!msr_info->host_initiated &&
+		    !(vmx->msr_ia32_feature_control &
+		      FEATURE_CONTROL_LMCE))
+			return 1;
+		msr_info->data = vcpu->arch.mcg_ext_ctl;
+		break;
+	case MSR_IA32_FEATURE_CONTROL:
+		msr_info->data = vmx->msr_ia32_feature_control;
+		break;
+	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
+		if (!nested_vmx_allowed(vcpu))
+			return 1;
+		return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
+				       &msr_info->data);
+	case MSR_IA32_XSS:
+		if (!vmx_xsaves_supported())
+			return 1;
+		msr_info->data = vcpu->arch.ia32_xss;
+		break;
+	case MSR_IA32_RTIT_CTL:
+		if (pt_mode != PT_MODE_HOST_GUEST)
+			return 1;
+		msr_info->data = vmx->pt_desc.guest.ctl;
+		break;
+	case MSR_IA32_RTIT_STATUS:
+		if (pt_mode != PT_MODE_HOST_GUEST)
+			return 1;
+		msr_info->data = vmx->pt_desc.guest.status;
+		break;
+	case MSR_IA32_RTIT_CR3_MATCH:
+		if ((pt_mode != PT_MODE_HOST_GUEST) ||
+			!intel_pt_validate_cap(vmx->pt_desc.caps,
+						PT_CAP_cr3_filtering))
+			return 1;
+		msr_info->data = vmx->pt_desc.guest.cr3_match;
+		break;
+	case MSR_IA32_RTIT_OUTPUT_BASE:
+		if ((pt_mode != PT_MODE_HOST_GUEST) ||
+			(!intel_pt_validate_cap(vmx->pt_desc.caps,
+					PT_CAP_topa_output) &&
+			 !intel_pt_validate_cap(vmx->pt_desc.caps,
+					PT_CAP_single_range_output)))
+			return 1;
+		msr_info->data = vmx->pt_desc.guest.output_base;
+		break;
+	case MSR_IA32_RTIT_OUTPUT_MASK:
+		if ((pt_mode != PT_MODE_HOST_GUEST) ||
+			(!intel_pt_validate_cap(vmx->pt_desc.caps,
+					PT_CAP_topa_output) &&
+			 !intel_pt_validate_cap(vmx->pt_desc.caps,
+					PT_CAP_single_range_output)))
+			return 1;
+		msr_info->data = vmx->pt_desc.guest.output_mask;
+		break;
+	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
+		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
+		if ((pt_mode != PT_MODE_HOST_GUEST) ||
+			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
+					PT_CAP_num_address_ranges)))
+			return 1;
+		if (index % 2)
+			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
+		else
+			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
+		break;
+	case MSR_TSC_AUX:
+		if (!msr_info->host_initiated &&
+		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
+			return 1;
+		/* Otherwise falls through */
+	default:
+		msr = find_msr_entry(vmx, msr_info->index);
+		if (msr) {
+			msr_info->data = msr->data;
+			break;
+		}
+		return kvm_get_msr_common(vcpu, msr_info);
+	}
+
+	return 0;
+}
+
+/*
+ * Writes msr value into into the appropriate "register".
+ * Returns 0 on success, non-0 otherwise.
+ * Assumes vcpu_load() was already called.
+ */
+static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct shared_msr_entry *msr;
+	int ret = 0;
+	u32 msr_index = msr_info->index;
+	u64 data = msr_info->data;
+	u32 index;
+
+	switch (msr_index) {
+	case MSR_EFER:
+		ret = kvm_set_msr_common(vcpu, msr_info);
+		break;
+#ifdef CONFIG_X86_64
+	case MSR_FS_BASE:
+		vmx_segment_cache_clear(vmx);
+		vmcs_writel(GUEST_FS_BASE, data);
+		break;
+	case MSR_GS_BASE:
+		vmx_segment_cache_clear(vmx);
+		vmcs_writel(GUEST_GS_BASE, data);
+		break;
+	case MSR_KERNEL_GS_BASE:
+		vmx_write_guest_kernel_gs_base(vmx, data);
+		break;
+#endif
+	case MSR_IA32_SYSENTER_CS:
+		vmcs_write32(GUEST_SYSENTER_CS, data);
+		break;
+	case MSR_IA32_SYSENTER_EIP:
+		vmcs_writel(GUEST_SYSENTER_EIP, data);
+		break;
+	case MSR_IA32_SYSENTER_ESP:
+		vmcs_writel(GUEST_SYSENTER_ESP, data);
+		break;
+	case MSR_IA32_BNDCFGS:
+		if (!kvm_mpx_supported() ||
+		    (!msr_info->host_initiated &&
+		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
+			return 1;
+		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
+		    (data & MSR_IA32_BNDCFGS_RSVD))
+			return 1;
+		vmcs_write64(GUEST_BNDCFGS, data);
+		break;
+	case MSR_IA32_SPEC_CTRL:
+		if (!msr_info->host_initiated &&
+		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
+			return 1;
+
+		/* The STIBP bit doesn't fault even if it's not advertised */
+		if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
+			return 1;
+
+		vmx->spec_ctrl = data;
+
+		if (!data)
+			break;
+
+		/*
+		 * For non-nested:
+		 * When it's written (to non-zero) for the first time, pass
+		 * it through.
+		 *
+		 * For nested:
+		 * The handling of the MSR bitmap for L2 guests is done in
+		 * nested_vmx_merge_msr_bitmap. We should not touch the
+		 * vmcs02.msr_bitmap here since it gets completely overwritten
+		 * in the merging. We update the vmcs01 here for L1 as well
+		 * since it will end up touching the MSR anyway now.
+		 */
+		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
+					      MSR_IA32_SPEC_CTRL,
+					      MSR_TYPE_RW);
+		break;
+	case MSR_IA32_PRED_CMD:
+		if (!msr_info->host_initiated &&
+		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
+			return 1;
+
+		if (data & ~PRED_CMD_IBPB)
+			return 1;
+
+		if (!data)
+			break;
+
+		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
+
+		/*
+		 * For non-nested:
+		 * When it's written (to non-zero) for the first time, pass
+		 * it through.
+		 *
+		 * For nested:
+		 * The handling of the MSR bitmap for L2 guests is done in
+		 * nested_vmx_merge_msr_bitmap. We should not touch the
+		 * vmcs02.msr_bitmap here since it gets completely overwritten
+		 * in the merging.
+		 */
+		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
+					      MSR_TYPE_W);
+		break;
+	case MSR_IA32_ARCH_CAPABILITIES:
+		if (!msr_info->host_initiated)
+			return 1;
+		vmx->arch_capabilities = data;
+		break;
+	case MSR_IA32_CR_PAT:
+		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
+			if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
+				return 1;
+			vmcs_write64(GUEST_IA32_PAT, data);
+			vcpu->arch.pat = data;
+			break;
+		}
+		ret = kvm_set_msr_common(vcpu, msr_info);
+		break;
+	case MSR_IA32_TSC_ADJUST:
+		ret = kvm_set_msr_common(vcpu, msr_info);
+		break;
+	case MSR_IA32_MCG_EXT_CTL:
+		if ((!msr_info->host_initiated &&
+		     !(to_vmx(vcpu)->msr_ia32_feature_control &
+		       FEATURE_CONTROL_LMCE)) ||
+		    (data & ~MCG_EXT_CTL_LMCE_EN))
+			return 1;
+		vcpu->arch.mcg_ext_ctl = data;
+		break;
+	case MSR_IA32_FEATURE_CONTROL:
+		if (!vmx_feature_control_msr_valid(vcpu, data) ||
+		    (to_vmx(vcpu)->msr_ia32_feature_control &
+		     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
+			return 1;
+		vmx->msr_ia32_feature_control = data;
+		if (msr_info->host_initiated && data == 0)
+			vmx_leave_nested(vcpu);
+		break;
+	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
+		if (!msr_info->host_initiated)
+			return 1; /* they are read-only */
+		if (!nested_vmx_allowed(vcpu))
+			return 1;
+		return vmx_set_vmx_msr(vcpu, msr_index, data);
+	case MSR_IA32_XSS:
+		if (!vmx_xsaves_supported())
+			return 1;
+		/*
+		 * The only supported bit as of Skylake is bit 8, but
+		 * it is not supported on KVM.
+		 */
+		if (data != 0)
+			return 1;
+		vcpu->arch.ia32_xss = data;
+		if (vcpu->arch.ia32_xss != host_xss)
+			add_atomic_switch_msr(vmx, MSR_IA32_XSS,
+				vcpu->arch.ia32_xss, host_xss, false);
+		else
+			clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
+		break;
+	case MSR_IA32_RTIT_CTL:
+		if ((pt_mode != PT_MODE_HOST_GUEST) ||
+			vmx_rtit_ctl_check(vcpu, data) ||
+			vmx->nested.vmxon)
+			return 1;
+		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
+		vmx->pt_desc.guest.ctl = data;
+		pt_update_intercept_for_msr(vmx);
+		break;
+	case MSR_IA32_RTIT_STATUS:
+		if ((pt_mode != PT_MODE_HOST_GUEST) ||
+			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
+			(data & MSR_IA32_RTIT_STATUS_MASK))
+			return 1;
+		vmx->pt_desc.guest.status = data;
+		break;
+	case MSR_IA32_RTIT_CR3_MATCH:
+		if ((pt_mode != PT_MODE_HOST_GUEST) ||
+			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
+			!intel_pt_validate_cap(vmx->pt_desc.caps,
+						PT_CAP_cr3_filtering))
+			return 1;
+		vmx->pt_desc.guest.cr3_match = data;
+		break;
+	case MSR_IA32_RTIT_OUTPUT_BASE:
+		if ((pt_mode != PT_MODE_HOST_GUEST) ||
+			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
+			(!intel_pt_validate_cap(vmx->pt_desc.caps,
+					PT_CAP_topa_output) &&
+			 !intel_pt_validate_cap(vmx->pt_desc.caps,
+					PT_CAP_single_range_output)) ||
+			(data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
+			return 1;
+		vmx->pt_desc.guest.output_base = data;
+		break;
+	case MSR_IA32_RTIT_OUTPUT_MASK:
+		if ((pt_mode != PT_MODE_HOST_GUEST) ||
+			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
+			(!intel_pt_validate_cap(vmx->pt_desc.caps,
+					PT_CAP_topa_output) &&
+			 !intel_pt_validate_cap(vmx->pt_desc.caps,
+					PT_CAP_single_range_output)))
+			return 1;
+		vmx->pt_desc.guest.output_mask = data;
+		break;
+	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
+		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
+		if ((pt_mode != PT_MODE_HOST_GUEST) ||
+			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
+			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
+					PT_CAP_num_address_ranges)))
+			return 1;
+		if (index % 2)
+			vmx->pt_desc.guest.addr_b[index / 2] = data;
+		else
+			vmx->pt_desc.guest.addr_a[index / 2] = data;
+		break;
+	case MSR_TSC_AUX:
+		if (!msr_info->host_initiated &&
+		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
+			return 1;
+		/* Check reserved bit, higher 32 bits should be zero */
+		if ((data >> 32) != 0)
+			return 1;
+		/* Otherwise falls through */
+	default:
+		msr = find_msr_entry(vmx, msr_index);
+		if (msr) {
+			u64 old_msr_data = msr->data;
+			msr->data = data;
+			if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
+				preempt_disable();
+				ret = kvm_set_shared_msr(msr->index, msr->data,
+							 msr->mask);
+				preempt_enable();
+				if (ret)
+					msr->data = old_msr_data;
+			}
+			break;
+		}
+		ret = kvm_set_msr_common(vcpu, msr_info);
+	}
+
+	return ret;
+}
+
+static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
+{
+	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
+	switch (reg) {
+	case VCPU_REGS_RSP:
+		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
+		break;
+	case VCPU_REGS_RIP:
+		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
+		break;
+	case VCPU_EXREG_PDPTR:
+		if (enable_ept)
+			ept_save_pdptrs(vcpu);
+		break;
+	default:
+		break;
+	}
+}
+
+static __init int cpu_has_kvm_support(void)
+{
+	return cpu_has_vmx();
+}
+
+static __init int vmx_disabled_by_bios(void)
+{
+	u64 msr;
+
+	rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
+	if (msr & FEATURE_CONTROL_LOCKED) {
+		/* launched w/ TXT and VMX disabled */
+		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
+			&& tboot_enabled())
+			return 1;
+		/* launched w/o TXT and VMX only enabled w/ TXT */
+		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
+			&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
+			&& !tboot_enabled()) {
+			printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
+				"activate TXT before enabling KVM\n");
+			return 1;
+		}
+		/* launched w/o TXT and VMX disabled */
+		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
+			&& !tboot_enabled())
+			return 1;
+	}
+
+	return 0;
+}
+
+static void kvm_cpu_vmxon(u64 addr)
+{
+	cr4_set_bits(X86_CR4_VMXE);
+	intel_pt_handle_vmx(1);
+
+	asm volatile ("vmxon %0" : : "m"(addr));
+}
+
+static int hardware_enable(void)
+{
+	int cpu = raw_smp_processor_id();
+	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
+	u64 old, test_bits;
+
+	if (cr4_read_shadow() & X86_CR4_VMXE)
+		return -EBUSY;
+
+	/*
+	 * This can happen if we hot-added a CPU but failed to allocate
+	 * VP assist page for it.
+	 */
+	if (static_branch_unlikely(&enable_evmcs) &&
+	    !hv_get_vp_assist_page(cpu))
+		return -EFAULT;
+
+	INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
+	INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
+	spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
+
+	/*
+	 * Now we can enable the vmclear operation in kdump
+	 * since the loaded_vmcss_on_cpu list on this cpu
+	 * has been initialized.
+	 *
+	 * Though the cpu is not in VMX operation now, there
+	 * is no problem to enable the vmclear operation
+	 * for the loaded_vmcss_on_cpu list is empty!
+	 */
+	crash_enable_local_vmclear(cpu);
+
+	rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
+
+	test_bits = FEATURE_CONTROL_LOCKED;
+	test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
+	if (tboot_enabled())
+		test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
+
+	if ((old & test_bits) != test_bits) {
+		/* enable and lock */
+		wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
+	}
+	kvm_cpu_vmxon(phys_addr);
+	if (enable_ept)
+		ept_sync_global();
+
+	return 0;
+}
+
+static void vmclear_local_loaded_vmcss(void)
+{
+	int cpu = raw_smp_processor_id();
+	struct loaded_vmcs *v, *n;
+
+	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
+				 loaded_vmcss_on_cpu_link)
+		__loaded_vmcs_clear(v);
+}
+
+
+/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
+ * tricks.
+ */
+static void kvm_cpu_vmxoff(void)
+{
+	asm volatile (__ex("vmxoff"));
+
+	intel_pt_handle_vmx(0);
+	cr4_clear_bits(X86_CR4_VMXE);
+}
+
+static void hardware_disable(void)
+{
+	vmclear_local_loaded_vmcss();
+	kvm_cpu_vmxoff();
+}
+
+static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
+				      u32 msr, u32 *result)
+{
+	u32 vmx_msr_low, vmx_msr_high;
+	u32 ctl = ctl_min | ctl_opt;
+
+	rdmsr(msr, vmx_msr_low, vmx_msr_high);
+
+	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
+	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
+
+	/* Ensure minimum (required) set of control bits are supported. */
+	if (ctl_min & ~ctl)
+		return -EIO;
+
+	*result = ctl;
+	return 0;
+}
+
+static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
+				    struct vmx_capability *vmx_cap)
+{
+	u32 vmx_msr_low, vmx_msr_high;
+	u32 min, opt, min2, opt2;
+	u32 _pin_based_exec_control = 0;
+	u32 _cpu_based_exec_control = 0;
+	u32 _cpu_based_2nd_exec_control = 0;
+	u32 _vmexit_control = 0;
+	u32 _vmentry_control = 0;
+
+	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
+	min = CPU_BASED_HLT_EXITING |
+#ifdef CONFIG_X86_64
+	      CPU_BASED_CR8_LOAD_EXITING |
+	      CPU_BASED_CR8_STORE_EXITING |
+#endif
+	      CPU_BASED_CR3_LOAD_EXITING |
+	      CPU_BASED_CR3_STORE_EXITING |
+	      CPU_BASED_UNCOND_IO_EXITING |
+	      CPU_BASED_MOV_DR_EXITING |
+	      CPU_BASED_USE_TSC_OFFSETING |
+	      CPU_BASED_MWAIT_EXITING |
+	      CPU_BASED_MONITOR_EXITING |
+	      CPU_BASED_INVLPG_EXITING |
+	      CPU_BASED_RDPMC_EXITING;
+
+	opt = CPU_BASED_TPR_SHADOW |
+	      CPU_BASED_USE_MSR_BITMAPS |
+	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
+	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
+				&_cpu_based_exec_control) < 0)
+		return -EIO;
+#ifdef CONFIG_X86_64
+	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
+		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
+					   ~CPU_BASED_CR8_STORE_EXITING;
+#endif
+	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
+		min2 = 0;
+		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+			SECONDARY_EXEC_WBINVD_EXITING |
+			SECONDARY_EXEC_ENABLE_VPID |
+			SECONDARY_EXEC_ENABLE_EPT |
+			SECONDARY_EXEC_UNRESTRICTED_GUEST |
+			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
+			SECONDARY_EXEC_DESC |
+			SECONDARY_EXEC_RDTSCP |
+			SECONDARY_EXEC_ENABLE_INVPCID |
+			SECONDARY_EXEC_APIC_REGISTER_VIRT |
+			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
+			SECONDARY_EXEC_SHADOW_VMCS |
+			SECONDARY_EXEC_XSAVES |
+			SECONDARY_EXEC_RDSEED_EXITING |
+			SECONDARY_EXEC_RDRAND_EXITING |
+			SECONDARY_EXEC_ENABLE_PML |
+			SECONDARY_EXEC_TSC_SCALING |
+			SECONDARY_EXEC_PT_USE_GPA |
+			SECONDARY_EXEC_PT_CONCEAL_VMX |
+			SECONDARY_EXEC_ENABLE_VMFUNC |
+			SECONDARY_EXEC_ENCLS_EXITING;
+		if (adjust_vmx_controls(min2, opt2,
+					MSR_IA32_VMX_PROCBASED_CTLS2,
+					&_cpu_based_2nd_exec_control) < 0)
+			return -EIO;
+	}
+#ifndef CONFIG_X86_64
+	if (!(_cpu_based_2nd_exec_control &
+				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
+		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
+#endif
+
+	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
+		_cpu_based_2nd_exec_control &= ~(
+				SECONDARY_EXEC_APIC_REGISTER_VIRT |
+				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+
+	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
+		&vmx_cap->ept, &vmx_cap->vpid);
+
+	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
+		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
+		   enabled */
+		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
+					     CPU_BASED_CR3_STORE_EXITING |
+					     CPU_BASED_INVLPG_EXITING);
+	} else if (vmx_cap->ept) {
+		vmx_cap->ept = 0;
+		pr_warn_once("EPT CAP should not exist if not support "
+				"1-setting enable EPT VM-execution control\n");
+	}
+	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
+		vmx_cap->vpid) {
+		vmx_cap->vpid = 0;
+		pr_warn_once("VPID CAP should not exist if not support "
+				"1-setting enable VPID VM-execution control\n");
+	}
+
+	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
+#ifdef CONFIG_X86_64
+	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
+#endif
+	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
+	      VM_EXIT_SAVE_IA32_PAT |
+	      VM_EXIT_LOAD_IA32_PAT |
+	      VM_EXIT_LOAD_IA32_EFER |
+	      VM_EXIT_CLEAR_BNDCFGS |
+	      VM_EXIT_PT_CONCEAL_PIP |
+	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
+	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
+				&_vmexit_control) < 0)
+		return -EIO;
+
+	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
+	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
+		 PIN_BASED_VMX_PREEMPTION_TIMER;
+	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
+				&_pin_based_exec_control) < 0)
+		return -EIO;
+
+	if (cpu_has_broken_vmx_preemption_timer())
+		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
+	if (!(_cpu_based_2nd_exec_control &
+		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
+		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
+
+	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
+	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
+	      VM_ENTRY_LOAD_IA32_PAT |
+	      VM_ENTRY_LOAD_IA32_EFER |
+	      VM_ENTRY_LOAD_BNDCFGS |
+	      VM_ENTRY_PT_CONCEAL_PIP |
+	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
+	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
+				&_vmentry_control) < 0)
+		return -EIO;
+
+	/*
+	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
+	 * can't be used due to an errata where VM Exit may incorrectly clear
+	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
+	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
+	 */
+	if (boot_cpu_data.x86 == 0x6) {
+		switch (boot_cpu_data.x86_model) {
+		case 26: /* AAK155 */
+		case 30: /* AAP115 */
+		case 37: /* AAT100 */
+		case 44: /* BC86,AAY89,BD102 */
+		case 46: /* BA97 */
+			_vmexit_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
+			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
+			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
+					"does not work properly. Using workaround\n");
+			break;
+		default:
+			break;
+		}
+	}
+
+
+	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
+
+	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
+	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
+		return -EIO;
+
+#ifdef CONFIG_X86_64
+	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
+	if (vmx_msr_high & (1u<<16))
+		return -EIO;
+#endif
+
+	/* Require Write-Back (WB) memory type for VMCS accesses. */
+	if (((vmx_msr_high >> 18) & 15) != 6)
+		return -EIO;
+
+	vmcs_conf->size = vmx_msr_high & 0x1fff;
+	vmcs_conf->order = get_order(vmcs_conf->size);
+	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
+
+	vmcs_conf->revision_id = vmx_msr_low;
+
+	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
+	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
+	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
+	vmcs_conf->vmexit_ctrl         = _vmexit_control;
+	vmcs_conf->vmentry_ctrl        = _vmentry_control;
+
+	if (static_branch_unlikely(&enable_evmcs))
+		evmcs_sanitize_exec_ctrls(vmcs_conf);
+
+	return 0;
+}
+
+struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu)
+{
+	int node = cpu_to_node(cpu);
+	struct page *pages;
+	struct vmcs *vmcs;
+
+	pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
+	if (!pages)
+		return NULL;
+	vmcs = page_address(pages);
+	memset(vmcs, 0, vmcs_config.size);
+
+	/* KVM supports Enlightened VMCS v1 only */
+	if (static_branch_unlikely(&enable_evmcs))
+		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
+	else
+		vmcs->hdr.revision_id = vmcs_config.revision_id;
+
+	if (shadow)
+		vmcs->hdr.shadow_vmcs = 1;
+	return vmcs;
+}
+
+void free_vmcs(struct vmcs *vmcs)
+{
+	free_pages((unsigned long)vmcs, vmcs_config.order);
+}
+
+/*
+ * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
+ */
+void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
+{
+	if (!loaded_vmcs->vmcs)
+		return;
+	loaded_vmcs_clear(loaded_vmcs);
+	free_vmcs(loaded_vmcs->vmcs);
+	loaded_vmcs->vmcs = NULL;
+	if (loaded_vmcs->msr_bitmap)
+		free_page((unsigned long)loaded_vmcs->msr_bitmap);
+	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
+}
+
+int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
+{
+	loaded_vmcs->vmcs = alloc_vmcs(false);
+	if (!loaded_vmcs->vmcs)
+		return -ENOMEM;
+
+	loaded_vmcs->shadow_vmcs = NULL;
+	loaded_vmcs_init(loaded_vmcs);
+
+	if (cpu_has_vmx_msr_bitmap()) {
+		loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
+		if (!loaded_vmcs->msr_bitmap)
+			goto out_vmcs;
+		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
+
+		if (IS_ENABLED(CONFIG_HYPERV) &&
+		    static_branch_unlikely(&enable_evmcs) &&
+		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
+			struct hv_enlightened_vmcs *evmcs =
+				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
+
+			evmcs->hv_enlightenments_control.msr_bitmap = 1;
+		}
+	}
+
+	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
+
+	return 0;
+
+out_vmcs:
+	free_loaded_vmcs(loaded_vmcs);
+	return -ENOMEM;
+}
+
+static void free_kvm_area(void)
+{
+	int cpu;
+
+	for_each_possible_cpu(cpu) {
+		free_vmcs(per_cpu(vmxarea, cpu));
+		per_cpu(vmxarea, cpu) = NULL;
+	}
+}
+
+static __init int alloc_kvm_area(void)
+{
+	int cpu;
+
+	for_each_possible_cpu(cpu) {
+		struct vmcs *vmcs;
+
+		vmcs = alloc_vmcs_cpu(false, cpu);
+		if (!vmcs) {
+			free_kvm_area();
+			return -ENOMEM;
+		}
+
+		/*
+		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
+		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
+		 * revision_id reported by MSR_IA32_VMX_BASIC.
+		 *
+		 * However, even though not explicitly documented by
+		 * TLFS, VMXArea passed as VMXON argument should
+		 * still be marked with revision_id reported by
+		 * physical CPU.
+		 */
+		if (static_branch_unlikely(&enable_evmcs))
+			vmcs->hdr.revision_id = vmcs_config.revision_id;
+
+		per_cpu(vmxarea, cpu) = vmcs;
+	}
+	return 0;
+}
+
+static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
+		struct kvm_segment *save)
+{
+	if (!emulate_invalid_guest_state) {
+		/*
+		 * CS and SS RPL should be equal during guest entry according
+		 * to VMX spec, but in reality it is not always so. Since vcpu
+		 * is in the middle of the transition from real mode to
+		 * protected mode it is safe to assume that RPL 0 is a good
+		 * default value.
+		 */
+		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
+			save->selector &= ~SEGMENT_RPL_MASK;
+		save->dpl = save->selector & SEGMENT_RPL_MASK;
+		save->s = 1;
+	}
+	vmx_set_segment(vcpu, save, seg);
+}
+
+static void enter_pmode(struct kvm_vcpu *vcpu)
+{
+	unsigned long flags;
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	/*
+	 * Update real mode segment cache. It may be not up-to-date if sement
+	 * register was written while vcpu was in a guest mode.
+	 */
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
+
+	vmx->rmode.vm86_active = 0;
+
+	vmx_segment_cache_clear(vmx);
+
+	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
+
+	flags = vmcs_readl(GUEST_RFLAGS);
+	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
+	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
+	vmcs_writel(GUEST_RFLAGS, flags);
+
+	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
+			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
+
+	update_exception_bitmap(vcpu);
+
+	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
+	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
+	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
+	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
+	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
+	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
+}
+
+static void fix_rmode_seg(int seg, struct kvm_segment *save)
+{
+	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
+	struct kvm_segment var = *save;
+
+	var.dpl = 0x3;
+	if (seg == VCPU_SREG_CS)
+		var.type = 0x3;
+
+	if (!emulate_invalid_guest_state) {
+		var.selector = var.base >> 4;
+		var.base = var.base & 0xffff0;
+		var.limit = 0xffff;
+		var.g = 0;
+		var.db = 0;
+		var.present = 1;
+		var.s = 1;
+		var.l = 0;
+		var.unusable = 0;
+		var.type = 0x3;
+		var.avl = 0;
+		if (save->base & 0xf)
+			printk_once(KERN_WARNING "kvm: segment base is not "
+					"paragraph aligned when entering "
+					"protected mode (seg=%d)", seg);
+	}
+
+	vmcs_write16(sf->selector, var.selector);
+	vmcs_writel(sf->base, var.base);
+	vmcs_write32(sf->limit, var.limit);
+	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
+}
+
+static void enter_rmode(struct kvm_vcpu *vcpu)
+{
+	unsigned long flags;
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
+
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
+	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
+
+	vmx->rmode.vm86_active = 1;
+
+	/*
+	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
+	 * vcpu. Warn the user that an update is overdue.
+	 */
+	if (!kvm_vmx->tss_addr)
+		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
+			     "called before entering vcpu\n");
+
+	vmx_segment_cache_clear(vmx);
+
+	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
+	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
+	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
+
+	flags = vmcs_readl(GUEST_RFLAGS);
+	vmx->rmode.save_rflags = flags;
+
+	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
+
+	vmcs_writel(GUEST_RFLAGS, flags);
+	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
+	update_exception_bitmap(vcpu);
+
+	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
+	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
+	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
+	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
+	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
+	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
+
+	kvm_mmu_reset_context(vcpu);
+}
+
+void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
+
+	if (!msr)
+		return;
+
+	vcpu->arch.efer = efer;
+	if (efer & EFER_LMA) {
+		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
+		msr->data = efer;
+	} else {
+		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
+
+		msr->data = efer & ~EFER_LME;
+	}
+	setup_msrs(vmx);
+}
+
+#ifdef CONFIG_X86_64
+
+static void enter_lmode(struct kvm_vcpu *vcpu)
+{
+	u32 guest_tr_ar;
+
+	vmx_segment_cache_clear(to_vmx(vcpu));
+
+	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
+	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
+		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
+				     __func__);
+		vmcs_write32(GUEST_TR_AR_BYTES,
+			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
+			     | VMX_AR_TYPE_BUSY_64_TSS);
+	}
+	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
+}
+
+static void exit_lmode(struct kvm_vcpu *vcpu)
+{
+	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
+	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
+}
+
+#endif
+
+static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
+{
+	int vpid = to_vmx(vcpu)->vpid;
+
+	if (!vpid_sync_vcpu_addr(vpid, addr))
+		vpid_sync_context(vpid);
+
+	/*
+	 * If VPIDs are not supported or enabled, then the above is a no-op.
+	 * But we don't really need a TLB flush in that case anyway, because
+	 * each VM entry/exit includes an implicit flush when VPID is 0.
+	 */
+}
+
+static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
+{
+	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
+
+	vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
+	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
+}
+
+static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
+{
+	if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
+		vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
+	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
+}
+
+static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
+{
+	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
+
+	vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
+	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
+}
+
+static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
+{
+	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
+
+	if (!test_bit(VCPU_EXREG_PDPTR,
+		      (unsigned long *)&vcpu->arch.regs_dirty))
+		return;
+
+	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
+		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
+		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
+		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
+		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
+	}
+}
+
+void ept_save_pdptrs(struct kvm_vcpu *vcpu)
+{
+	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
+
+	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
+		mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
+		mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
+		mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
+		mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
+	}
+
+	__set_bit(VCPU_EXREG_PDPTR,
+		  (unsigned long *)&vcpu->arch.regs_avail);
+	__set_bit(VCPU_EXREG_PDPTR,
+		  (unsigned long *)&vcpu->arch.regs_dirty);
+}
+
+static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
+					unsigned long cr0,
+					struct kvm_vcpu *vcpu)
+{
+	if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
+		vmx_decache_cr3(vcpu);
+	if (!(cr0 & X86_CR0_PG)) {
+		/* From paging/starting to nonpaging */
+		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
+			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
+			     (CPU_BASED_CR3_LOAD_EXITING |
+			      CPU_BASED_CR3_STORE_EXITING));
+		vcpu->arch.cr0 = cr0;
+		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
+	} else if (!is_paging(vcpu)) {
+		/* From nonpaging to paging */
+		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
+			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
+			     ~(CPU_BASED_CR3_LOAD_EXITING |
+			       CPU_BASED_CR3_STORE_EXITING));
+		vcpu->arch.cr0 = cr0;
+		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
+	}
+
+	if (!(cr0 & X86_CR0_WP))
+		*hw_cr0 &= ~X86_CR0_WP;
+}
+
+void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	unsigned long hw_cr0;
+
+	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
+	if (enable_unrestricted_guest)
+		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
+	else {
+		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
+
+		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
+			enter_pmode(vcpu);
+
+		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
+			enter_rmode(vcpu);
+	}
+
+#ifdef CONFIG_X86_64
+	if (vcpu->arch.efer & EFER_LME) {
+		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
+			enter_lmode(vcpu);
+		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
+			exit_lmode(vcpu);
+	}
+#endif
+
+	if (enable_ept && !enable_unrestricted_guest)
+		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
+
+	vmcs_writel(CR0_READ_SHADOW, cr0);
+	vmcs_writel(GUEST_CR0, hw_cr0);
+	vcpu->arch.cr0 = cr0;
+
+	/* depends on vcpu->arch.cr0 to be set to a new value */
+	vmx->emulation_required = emulation_required(vcpu);
+}
+
+static int get_ept_level(struct kvm_vcpu *vcpu)
+{
+	if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
+		return 5;
+	return 4;
+}
+
+u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
+{
+	u64 eptp = VMX_EPTP_MT_WB;
+
+	eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
+
+	if (enable_ept_ad_bits &&
+	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
+		eptp |= VMX_EPTP_AD_ENABLE_BIT;
+	eptp |= (root_hpa & PAGE_MASK);
+
+	return eptp;
+}
+
+void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
+{
+	struct kvm *kvm = vcpu->kvm;
+	unsigned long guest_cr3;
+	u64 eptp;
+
+	guest_cr3 = cr3;
+	if (enable_ept) {
+		eptp = construct_eptp(vcpu, cr3);
+		vmcs_write64(EPT_POINTER, eptp);
+
+		if (kvm_x86_ops->tlb_remote_flush) {
+			spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
+			to_vmx(vcpu)->ept_pointer = eptp;
+			to_kvm_vmx(kvm)->ept_pointers_match
+				= EPT_POINTERS_CHECK;
+			spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
+		}
+
+		if (enable_unrestricted_guest || is_paging(vcpu) ||
+		    is_guest_mode(vcpu))
+			guest_cr3 = kvm_read_cr3(vcpu);
+		else
+			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
+		ept_load_pdptrs(vcpu);
+	}
+
+	vmcs_writel(GUEST_CR3, guest_cr3);
+}
+
+int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
+{
+	/*
+	 * Pass through host's Machine Check Enable value to hw_cr4, which
+	 * is in force while we are in guest mode.  Do not let guests control
+	 * this bit, even if host CR4.MCE == 0.
+	 */
+	unsigned long hw_cr4;
+
+	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
+	if (enable_unrestricted_guest)
+		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
+	else if (to_vmx(vcpu)->rmode.vm86_active)
+		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
+	else
+		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
+
+	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
+		if (cr4 & X86_CR4_UMIP) {
+			vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
+				SECONDARY_EXEC_DESC);
+			hw_cr4 &= ~X86_CR4_UMIP;
+		} else if (!is_guest_mode(vcpu) ||
+			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC))
+			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
+					SECONDARY_EXEC_DESC);
+	}
+
+	if (cr4 & X86_CR4_VMXE) {
+		/*
+		 * To use VMXON (and later other VMX instructions), a guest
+		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
+		 * So basically the check on whether to allow nested VMX
+		 * is here.  We operate under the default treatment of SMM,
+		 * so VMX cannot be enabled under SMM.
+		 */
+		if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
+			return 1;
+	}
+
+	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
+		return 1;
+
+	vcpu->arch.cr4 = cr4;
+
+	if (!enable_unrestricted_guest) {
+		if (enable_ept) {
+			if (!is_paging(vcpu)) {
+				hw_cr4 &= ~X86_CR4_PAE;
+				hw_cr4 |= X86_CR4_PSE;
+			} else if (!(cr4 & X86_CR4_PAE)) {
+				hw_cr4 &= ~X86_CR4_PAE;
+			}
+		}
+
+		/*
+		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
+		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
+		 * to be manually disabled when guest switches to non-paging
+		 * mode.
+		 *
+		 * If !enable_unrestricted_guest, the CPU is always running
+		 * with CR0.PG=1 and CR4 needs to be modified.
+		 * If enable_unrestricted_guest, the CPU automatically
+		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
+		 */
+		if (!is_paging(vcpu))
+			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
+	}
+
+	vmcs_writel(CR4_READ_SHADOW, cr4);
+	vmcs_writel(GUEST_CR4, hw_cr4);
+	return 0;
+}
+
+void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	u32 ar;
+
+	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
+		*var = vmx->rmode.segs[seg];
+		if (seg == VCPU_SREG_TR
+		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
+			return;
+		var->base = vmx_read_guest_seg_base(vmx, seg);
+		var->selector = vmx_read_guest_seg_selector(vmx, seg);
+		return;
+	}
+	var->base = vmx_read_guest_seg_base(vmx, seg);
+	var->limit = vmx_read_guest_seg_limit(vmx, seg);
+	var->selector = vmx_read_guest_seg_selector(vmx, seg);
+	ar = vmx_read_guest_seg_ar(vmx, seg);
+	var->unusable = (ar >> 16) & 1;
+	var->type = ar & 15;
+	var->s = (ar >> 4) & 1;
+	var->dpl = (ar >> 5) & 3;
+	/*
+	 * Some userspaces do not preserve unusable property. Since usable
+	 * segment has to be present according to VMX spec we can use present
+	 * property to amend userspace bug by making unusable segment always
+	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
+	 * segment as unusable.
+	 */
+	var->present = !var->unusable;
+	var->avl = (ar >> 12) & 1;
+	var->l = (ar >> 13) & 1;
+	var->db = (ar >> 14) & 1;
+	var->g = (ar >> 15) & 1;
+}
+
+static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
+{
+	struct kvm_segment s;
+
+	if (to_vmx(vcpu)->rmode.vm86_active) {
+		vmx_get_segment(vcpu, &s, seg);
+		return s.base;
+	}
+	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
+}
+
+int vmx_get_cpl(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (unlikely(vmx->rmode.vm86_active))
+		return 0;
+	else {
+		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
+		return VMX_AR_DPL(ar);
+	}
+}
+
+static u32 vmx_segment_access_rights(struct kvm_segment *var)
+{
+	u32 ar;
+
+	if (var->unusable || !var->present)
+		ar = 1 << 16;
+	else {
+		ar = var->type & 15;
+		ar |= (var->s & 1) << 4;
+		ar |= (var->dpl & 3) << 5;
+		ar |= (var->present & 1) << 7;
+		ar |= (var->avl & 1) << 12;
+		ar |= (var->l & 1) << 13;
+		ar |= (var->db & 1) << 14;
+		ar |= (var->g & 1) << 15;
+	}
+
+	return ar;
+}
+
+void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
+
+	vmx_segment_cache_clear(vmx);
+
+	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
+		vmx->rmode.segs[seg] = *var;
+		if (seg == VCPU_SREG_TR)
+			vmcs_write16(sf->selector, var->selector);
+		else if (var->s)
+			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
+		goto out;
+	}
+
+	vmcs_writel(sf->base, var->base);
+	vmcs_write32(sf->limit, var->limit);
+	vmcs_write16(sf->selector, var->selector);
+
+	/*
+	 *   Fix the "Accessed" bit in AR field of segment registers for older
+	 * qemu binaries.
+	 *   IA32 arch specifies that at the time of processor reset the
+	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
+	 * is setting it to 0 in the userland code. This causes invalid guest
+	 * state vmexit when "unrestricted guest" mode is turned on.
+	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
+	 * tree. Newer qemu binaries with that qemu fix would not need this
+	 * kvm hack.
+	 */
+	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
+		var->type |= 0x1; /* Accessed */
+
+	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
+
+out:
+	vmx->emulation_required = emulation_required(vcpu);
+}
+
+static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
+{
+	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
+
+	*db = (ar >> 14) & 1;
+	*l = (ar >> 13) & 1;
+}
+
+static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
+	dt->address = vmcs_readl(GUEST_IDTR_BASE);
+}
+
+static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
+	vmcs_writel(GUEST_IDTR_BASE, dt->address);
+}
+
+static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
+	dt->address = vmcs_readl(GUEST_GDTR_BASE);
+}
+
+static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
+	vmcs_writel(GUEST_GDTR_BASE, dt->address);
+}
+
+static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
+{
+	struct kvm_segment var;
+	u32 ar;
+
+	vmx_get_segment(vcpu, &var, seg);
+	var.dpl = 0x3;
+	if (seg == VCPU_SREG_CS)
+		var.type = 0x3;
+	ar = vmx_segment_access_rights(&var);
+
+	if (var.base != (var.selector << 4))
+		return false;
+	if (var.limit != 0xffff)
+		return false;
+	if (ar != 0xf3)
+		return false;
+
+	return true;
+}
+
+static bool code_segment_valid(struct kvm_vcpu *vcpu)
+{
+	struct kvm_segment cs;
+	unsigned int cs_rpl;
+
+	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
+	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
+
+	if (cs.unusable)
+		return false;
+	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
+		return false;
+	if (!cs.s)
+		return false;
+	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
+		if (cs.dpl > cs_rpl)
+			return false;
+	} else {
+		if (cs.dpl != cs_rpl)
+			return false;
+	}
+	if (!cs.present)
+		return false;
+
+	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
+	return true;
+}
+
+static bool stack_segment_valid(struct kvm_vcpu *vcpu)
+{
+	struct kvm_segment ss;
+	unsigned int ss_rpl;
+
+	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
+	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
+
+	if (ss.unusable)
+		return true;
+	if (ss.type != 3 && ss.type != 7)
+		return false;
+	if (!ss.s)
+		return false;
+	if (ss.dpl != ss_rpl) /* DPL != RPL */
+		return false;
+	if (!ss.present)
+		return false;
+
+	return true;
+}
+
+static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
+{
+	struct kvm_segment var;
+	unsigned int rpl;
+
+	vmx_get_segment(vcpu, &var, seg);
+	rpl = var.selector & SEGMENT_RPL_MASK;
+
+	if (var.unusable)
+		return true;
+	if (!var.s)
+		return false;
+	if (!var.present)
+		return false;
+	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
+		if (var.dpl < rpl) /* DPL < RPL */
+			return false;
+	}
+
+	/* TODO: Add other members to kvm_segment_field to allow checking for other access
+	 * rights flags
+	 */
+	return true;
+}
+
+static bool tr_valid(struct kvm_vcpu *vcpu)
+{
+	struct kvm_segment tr;
+
+	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
+
+	if (tr.unusable)
+		return false;
+	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
+		return false;
+	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
+		return false;
+	if (!tr.present)
+		return false;
+
+	return true;
+}
+
+static bool ldtr_valid(struct kvm_vcpu *vcpu)
+{
+	struct kvm_segment ldtr;
+
+	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
+
+	if (ldtr.unusable)
+		return true;
+	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
+		return false;
+	if (ldtr.type != 2)
+		return false;
+	if (!ldtr.present)
+		return false;
+
+	return true;
+}
+
+static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
+{
+	struct kvm_segment cs, ss;
+
+	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
+	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
+
+	return ((cs.selector & SEGMENT_RPL_MASK) ==
+		 (ss.selector & SEGMENT_RPL_MASK));
+}
+
+/*
+ * Check if guest state is valid. Returns true if valid, false if
+ * not.
+ * We assume that registers are always usable
+ */
+static bool guest_state_valid(struct kvm_vcpu *vcpu)
+{
+	if (enable_unrestricted_guest)
+		return true;
+
+	/* real mode guest state checks */
+	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
+		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
+			return false;
+		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
+			return false;
+		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
+			return false;
+		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
+			return false;
+		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
+			return false;
+		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
+			return false;
+	} else {
+	/* protected mode guest state checks */
+		if (!cs_ss_rpl_check(vcpu))
+			return false;
+		if (!code_segment_valid(vcpu))
+			return false;
+		if (!stack_segment_valid(vcpu))
+			return false;
+		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
+			return false;
+		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
+			return false;
+		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
+			return false;
+		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
+			return false;
+		if (!tr_valid(vcpu))
+			return false;
+		if (!ldtr_valid(vcpu))
+			return false;
+	}
+	/* TODO:
+	 * - Add checks on RIP
+	 * - Add checks on RFLAGS
+	 */
+
+	return true;
+}
+
+static int init_rmode_tss(struct kvm *kvm)
+{
+	gfn_t fn;
+	u16 data = 0;
+	int idx, r;
+
+	idx = srcu_read_lock(&kvm->srcu);
+	fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
+	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
+	if (r < 0)
+		goto out;
+	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
+	r = kvm_write_guest_page(kvm, fn++, &data,
+			TSS_IOPB_BASE_OFFSET, sizeof(u16));
+	if (r < 0)
+		goto out;
+	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
+	if (r < 0)
+		goto out;
+	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
+	if (r < 0)
+		goto out;
+	data = ~0;
+	r = kvm_write_guest_page(kvm, fn, &data,
+				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
+				 sizeof(u8));
+out:
+	srcu_read_unlock(&kvm->srcu, idx);
+	return r;
+}
+
+static int init_rmode_identity_map(struct kvm *kvm)
+{
+	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
+	int i, idx, r = 0;
+	kvm_pfn_t identity_map_pfn;
+	u32 tmp;
+
+	/* Protect kvm_vmx->ept_identity_pagetable_done. */
+	mutex_lock(&kvm->slots_lock);
+
+	if (likely(kvm_vmx->ept_identity_pagetable_done))
+		goto out2;
+
+	if (!kvm_vmx->ept_identity_map_addr)
+		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
+	identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
+
+	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
+				    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
+	if (r < 0)
+		goto out2;
+
+	idx = srcu_read_lock(&kvm->srcu);
+	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
+	if (r < 0)
+		goto out;
+	/* Set up identity-mapping pagetable for EPT in real mode */
+	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
+		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
+			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
+		r = kvm_write_guest_page(kvm, identity_map_pfn,
+				&tmp, i * sizeof(tmp), sizeof(tmp));
+		if (r < 0)
+			goto out;
+	}
+	kvm_vmx->ept_identity_pagetable_done = true;
+
+out:
+	srcu_read_unlock(&kvm->srcu, idx);
+
+out2:
+	mutex_unlock(&kvm->slots_lock);
+	return r;
+}
+
+static void seg_setup(int seg)
+{
+	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
+	unsigned int ar;
+
+	vmcs_write16(sf->selector, 0);
+	vmcs_writel(sf->base, 0);
+	vmcs_write32(sf->limit, 0xffff);
+	ar = 0x93;
+	if (seg == VCPU_SREG_CS)
+		ar |= 0x08; /* code segment */
+
+	vmcs_write32(sf->ar_bytes, ar);
+}
+
+static int alloc_apic_access_page(struct kvm *kvm)
+{
+	struct page *page;
+	int r = 0;
+
+	mutex_lock(&kvm->slots_lock);
+	if (kvm->arch.apic_access_page_done)
+		goto out;
+	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
+				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
+	if (r)
+		goto out;
+
+	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
+	if (is_error_page(page)) {
+		r = -EFAULT;
+		goto out;
+	}
+
+	/*
+	 * Do not pin the page in memory, so that memory hot-unplug
+	 * is able to migrate it.
+	 */
+	put_page(page);
+	kvm->arch.apic_access_page_done = true;
+out:
+	mutex_unlock(&kvm->slots_lock);
+	return r;
+}
+
+int allocate_vpid(void)
+{
+	int vpid;
+
+	if (!enable_vpid)
+		return 0;
+	spin_lock(&vmx_vpid_lock);
+	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
+	if (vpid < VMX_NR_VPIDS)
+		__set_bit(vpid, vmx_vpid_bitmap);
+	else
+		vpid = 0;
+	spin_unlock(&vmx_vpid_lock);
+	return vpid;
+}
+
+void free_vpid(int vpid)
+{
+	if (!enable_vpid || vpid == 0)
+		return;
+	spin_lock(&vmx_vpid_lock);
+	__clear_bit(vpid, vmx_vpid_bitmap);
+	spin_unlock(&vmx_vpid_lock);
+}
+
+static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
+							  u32 msr, int type)
+{
+	int f = sizeof(unsigned long);
+
+	if (!cpu_has_vmx_msr_bitmap())
+		return;
+
+	if (static_branch_unlikely(&enable_evmcs))
+		evmcs_touch_msr_bitmap();
+
+	/*
+	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
+	 * have the write-low and read-high bitmap offsets the wrong way round.
+	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
+	 */
+	if (msr <= 0x1fff) {
+		if (type & MSR_TYPE_R)
+			/* read-low */
+			__clear_bit(msr, msr_bitmap + 0x000 / f);
+
+		if (type & MSR_TYPE_W)
+			/* write-low */
+			__clear_bit(msr, msr_bitmap + 0x800 / f);
+
+	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+		msr &= 0x1fff;
+		if (type & MSR_TYPE_R)
+			/* read-high */
+			__clear_bit(msr, msr_bitmap + 0x400 / f);
+
+		if (type & MSR_TYPE_W)
+			/* write-high */
+			__clear_bit(msr, msr_bitmap + 0xc00 / f);
+
+	}
+}
+
+static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
+							 u32 msr, int type)
+{
+	int f = sizeof(unsigned long);
+
+	if (!cpu_has_vmx_msr_bitmap())
+		return;
+
+	if (static_branch_unlikely(&enable_evmcs))
+		evmcs_touch_msr_bitmap();
+
+	/*
+	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
+	 * have the write-low and read-high bitmap offsets the wrong way round.
+	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
+	 */
+	if (msr <= 0x1fff) {
+		if (type & MSR_TYPE_R)
+			/* read-low */
+			__set_bit(msr, msr_bitmap + 0x000 / f);
+
+		if (type & MSR_TYPE_W)
+			/* write-low */
+			__set_bit(msr, msr_bitmap + 0x800 / f);
+
+	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+		msr &= 0x1fff;
+		if (type & MSR_TYPE_R)
+			/* read-high */
+			__set_bit(msr, msr_bitmap + 0x400 / f);
+
+		if (type & MSR_TYPE_W)
+			/* write-high */
+			__set_bit(msr, msr_bitmap + 0xc00 / f);
+
+	}
+}
+
+static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
+			     			      u32 msr, int type, bool value)
+{
+	if (value)
+		vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
+	else
+		vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
+}
+
+static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
+{
+	u8 mode = 0;
+
+	if (cpu_has_secondary_exec_ctrls() &&
+	    (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
+	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
+		mode |= MSR_BITMAP_MODE_X2APIC;
+		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
+			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
+	}
+
+	return mode;
+}
+
+static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
+					 u8 mode)
+{
+	int msr;
+
+	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
+		unsigned word = msr / BITS_PER_LONG;
+		msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
+		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
+	}
+
+	if (mode & MSR_BITMAP_MODE_X2APIC) {
+		/*
+		 * TPR reads and writes can be virtualized even if virtual interrupt
+		 * delivery is not in use.
+		 */
+		vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
+		if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
+			vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
+			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
+			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
+		}
+	}
+}
+
+void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
+	u8 mode = vmx_msr_bitmap_mode(vcpu);
+	u8 changed = mode ^ vmx->msr_bitmap_mode;
+
+	if (!changed)
+		return;
+
+	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
+		vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
+
+	vmx->msr_bitmap_mode = mode;
+}
+
+void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
+{
+	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
+	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
+	u32 i;
+
+	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
+							MSR_TYPE_RW, flag);
+	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
+							MSR_TYPE_RW, flag);
+	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
+							MSR_TYPE_RW, flag);
+	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
+							MSR_TYPE_RW, flag);
+	for (i = 0; i < vmx->pt_desc.addr_range; i++) {
+		vmx_set_intercept_for_msr(msr_bitmap,
+			MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
+		vmx_set_intercept_for_msr(msr_bitmap,
+			MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
+	}
+}
+
+static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
+{
+	return enable_apicv;
+}
+
+static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	void *vapic_page;
+	u32 vppr;
+	int rvi;
+
+	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
+		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
+		WARN_ON_ONCE(!vmx->nested.virtual_apic_page))
+		return false;
+
+	rvi = vmx_get_rvi();
+
+	vapic_page = kmap(vmx->nested.virtual_apic_page);
+	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
+	kunmap(vmx->nested.virtual_apic_page);
+
+	return ((rvi & 0xf0) > (vppr & 0xf0));
+}
+
+static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
+						     bool nested)
+{
+#ifdef CONFIG_SMP
+	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
+
+	if (vcpu->mode == IN_GUEST_MODE) {
+		/*
+		 * The vector of interrupt to be delivered to vcpu had
+		 * been set in PIR before this function.
+		 *
+		 * Following cases will be reached in this block, and
+		 * we always send a notification event in all cases as
+		 * explained below.
+		 *
+		 * Case 1: vcpu keeps in non-root mode. Sending a
+		 * notification event posts the interrupt to vcpu.
+		 *
+		 * Case 2: vcpu exits to root mode and is still
+		 * runnable. PIR will be synced to vIRR before the
+		 * next vcpu entry. Sending a notification event in
+		 * this case has no effect, as vcpu is not in root
+		 * mode.
+		 *
+		 * Case 3: vcpu exits to root mode and is blocked.
+		 * vcpu_block() has already synced PIR to vIRR and
+		 * never blocks vcpu if vIRR is not cleared. Therefore,
+		 * a blocked vcpu here does not wait for any requested
+		 * interrupts in PIR, and sending a notification event
+		 * which has no effect is safe here.
+		 */
+
+		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
+		return true;
+	}
+#endif
+	return false;
+}
+
+static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
+						int vector)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (is_guest_mode(vcpu) &&
+	    vector == vmx->nested.posted_intr_nv) {
+		/*
+		 * If a posted intr is not recognized by hardware,
+		 * we will accomplish it in the next vmentry.
+		 */
+		vmx->nested.pi_pending = true;
+		kvm_make_request(KVM_REQ_EVENT, vcpu);
+		/* the PIR and ON have been set by L1. */
+		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
+			kvm_vcpu_kick(vcpu);
+		return 0;
+	}
+	return -1;
+}
+/*
+ * Send interrupt to vcpu via posted interrupt way.
+ * 1. If target vcpu is running(non-root mode), send posted interrupt
+ * notification to vcpu and hardware will sync PIR to vIRR atomically.
+ * 2. If target vcpu isn't running(root mode), kick it to pick up the
+ * interrupt from PIR in next vmentry.
+ */
+static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	int r;
+
+	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
+	if (!r)
+		return;
+
+	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
+		return;
+
+	/* If a previous notification has sent the IPI, nothing to do.  */
+	if (pi_test_and_set_on(&vmx->pi_desc))
+		return;
+
+	if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
+		kvm_vcpu_kick(vcpu);
+}
+
+/*
+ * Set up the vmcs's constant host-state fields, i.e., host-state fields that
+ * will not change in the lifetime of the guest.
+ * Note that host-state that does change is set elsewhere. E.g., host-state
+ * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
+ */
+void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
+{
+	u32 low32, high32;
+	unsigned long tmpl;
+	struct desc_ptr dt;
+	unsigned long cr0, cr3, cr4;
+
+	cr0 = read_cr0();
+	WARN_ON(cr0 & X86_CR0_TS);
+	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
+
+	/*
+	 * Save the most likely value for this task's CR3 in the VMCS.
+	 * We can't use __get_current_cr3_fast() because we're not atomic.
+	 */
+	cr3 = __read_cr3();
+	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
+	vmx->loaded_vmcs->host_state.cr3 = cr3;
+
+	/* Save the most likely value for this task's CR4 in the VMCS. */
+	cr4 = cr4_read_shadow();
+	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
+	vmx->loaded_vmcs->host_state.cr4 = cr4;
+
+	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
+#ifdef CONFIG_X86_64
+	/*
+	 * Load null selectors, so we can avoid reloading them in
+	 * vmx_prepare_switch_to_host(), in case userspace uses
+	 * the null selectors too (the expected case).
+	 */
+	vmcs_write16(HOST_DS_SELECTOR, 0);
+	vmcs_write16(HOST_ES_SELECTOR, 0);
+#else
+	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
+	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
+#endif
+	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
+	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
+
+	store_idt(&dt);
+	vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
+	vmx->host_idt_base = dt.address;
+
+	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
+
+	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
+	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
+	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
+	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
+
+	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
+		rdmsr(MSR_IA32_CR_PAT, low32, high32);
+		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
+	}
+
+	if (cpu_has_load_ia32_efer())
+		vmcs_write64(HOST_IA32_EFER, host_efer);
+}
+
+void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
+{
+	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
+	if (enable_ept)
+		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
+	if (is_guest_mode(&vmx->vcpu))
+		vmx->vcpu.arch.cr4_guest_owned_bits &=
+			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
+	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
+}
+
+static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
+{
+	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
+
+	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
+		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
+
+	if (!enable_vnmi)
+		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
+
+	/* Enable the preemption timer dynamically */
+	pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
+	return pin_based_exec_ctrl;
+}
+
+static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
+	if (cpu_has_secondary_exec_ctrls()) {
+		if (kvm_vcpu_apicv_active(vcpu))
+			vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
+				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
+				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+		else
+			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
+					SECONDARY_EXEC_APIC_REGISTER_VIRT |
+					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+	}
+
+	if (cpu_has_vmx_msr_bitmap())
+		vmx_update_msr_bitmap(vcpu);
+}
+
+u32 vmx_exec_control(struct vcpu_vmx *vmx)
+{
+	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
+
+	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
+		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
+
+	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
+		exec_control &= ~CPU_BASED_TPR_SHADOW;
+#ifdef CONFIG_X86_64
+		exec_control |= CPU_BASED_CR8_STORE_EXITING |
+				CPU_BASED_CR8_LOAD_EXITING;
+#endif
+	}
+	if (!enable_ept)
+		exec_control |= CPU_BASED_CR3_STORE_EXITING |
+				CPU_BASED_CR3_LOAD_EXITING  |
+				CPU_BASED_INVLPG_EXITING;
+	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
+		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
+				CPU_BASED_MONITOR_EXITING);
+	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
+		exec_control &= ~CPU_BASED_HLT_EXITING;
+	return exec_control;
+}
+
+
+static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
+{
+	struct kvm_vcpu *vcpu = &vmx->vcpu;
+
+	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
+
+	if (pt_mode == PT_MODE_SYSTEM)
+		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
+	if (!cpu_need_virtualize_apic_accesses(vcpu))
+		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+	if (vmx->vpid == 0)
+		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
+	if (!enable_ept) {
+		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
+		enable_unrestricted_guest = 0;
+	}
+	if (!enable_unrestricted_guest)
+		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
+	if (kvm_pause_in_guest(vmx->vcpu.kvm))
+		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
+	if (!kvm_vcpu_apicv_active(vcpu))
+		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
+				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
+
+	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
+	 * in vmx_set_cr4.  */
+	exec_control &= ~SECONDARY_EXEC_DESC;
+
+	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
+	   (handle_vmptrld).
+	   We can NOT enable shadow_vmcs here because we don't have yet
+	   a current VMCS12
+	*/
+	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
+
+	if (!enable_pml)
+		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
+
+	if (vmx_xsaves_supported()) {
+		/* Exposing XSAVES only when XSAVE is exposed */
+		bool xsaves_enabled =
+			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
+			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
+
+		if (!xsaves_enabled)
+			exec_control &= ~SECONDARY_EXEC_XSAVES;
+
+		if (nested) {
+			if (xsaves_enabled)
+				vmx->nested.msrs.secondary_ctls_high |=
+					SECONDARY_EXEC_XSAVES;
+			else
+				vmx->nested.msrs.secondary_ctls_high &=
+					~SECONDARY_EXEC_XSAVES;
+		}
+	}
+
+	if (vmx_rdtscp_supported()) {
+		bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
+		if (!rdtscp_enabled)
+			exec_control &= ~SECONDARY_EXEC_RDTSCP;
+
+		if (nested) {
+			if (rdtscp_enabled)
+				vmx->nested.msrs.secondary_ctls_high |=
+					SECONDARY_EXEC_RDTSCP;
+			else
+				vmx->nested.msrs.secondary_ctls_high &=
+					~SECONDARY_EXEC_RDTSCP;
+		}
+	}
+
+	if (vmx_invpcid_supported()) {
+		/* Exposing INVPCID only when PCID is exposed */
+		bool invpcid_enabled =
+			guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
+			guest_cpuid_has(vcpu, X86_FEATURE_PCID);
+
+		if (!invpcid_enabled) {
+			exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
+			guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
+		}
+
+		if (nested) {
+			if (invpcid_enabled)
+				vmx->nested.msrs.secondary_ctls_high |=
+					SECONDARY_EXEC_ENABLE_INVPCID;
+			else
+				vmx->nested.msrs.secondary_ctls_high &=
+					~SECONDARY_EXEC_ENABLE_INVPCID;
+		}
+	}
+
+	if (vmx_rdrand_supported()) {
+		bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
+		if (rdrand_enabled)
+			exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
+
+		if (nested) {
+			if (rdrand_enabled)
+				vmx->nested.msrs.secondary_ctls_high |=
+					SECONDARY_EXEC_RDRAND_EXITING;
+			else
+				vmx->nested.msrs.secondary_ctls_high &=
+					~SECONDARY_EXEC_RDRAND_EXITING;
+		}
+	}
+
+	if (vmx_rdseed_supported()) {
+		bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
+		if (rdseed_enabled)
+			exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
+
+		if (nested) {
+			if (rdseed_enabled)
+				vmx->nested.msrs.secondary_ctls_high |=
+					SECONDARY_EXEC_RDSEED_EXITING;
+			else
+				vmx->nested.msrs.secondary_ctls_high &=
+					~SECONDARY_EXEC_RDSEED_EXITING;
+		}
+	}
+
+	vmx->secondary_exec_control = exec_control;
+}
+
+static void ept_set_mmio_spte_mask(void)
+{
+	/*
+	 * EPT Misconfigurations can be generated if the value of bits 2:0
+	 * of an EPT paging-structure entry is 110b (write/execute).
+	 */
+	kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
+				   VMX_EPT_MISCONFIG_WX_VALUE);
+}
+
+#define VMX_XSS_EXIT_BITMAP 0
+
+/*
+ * Sets up the vmcs for emulated real mode.
+ */
+static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
+{
+	int i;
+
+	if (nested)
+		nested_vmx_vcpu_setup();
+
+	if (cpu_has_vmx_msr_bitmap())
+		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
+
+	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
+
+	/* Control */
+	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
+	vmx->hv_deadline_tsc = -1;
+
+	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
+
+	if (cpu_has_secondary_exec_ctrls()) {
+		vmx_compute_secondary_exec_control(vmx);
+		vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
+			     vmx->secondary_exec_control);
+	}
+
+	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
+		vmcs_write64(EOI_EXIT_BITMAP0, 0);
+		vmcs_write64(EOI_EXIT_BITMAP1, 0);
+		vmcs_write64(EOI_EXIT_BITMAP2, 0);
+		vmcs_write64(EOI_EXIT_BITMAP3, 0);
+
+		vmcs_write16(GUEST_INTR_STATUS, 0);
+
+		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
+		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
+	}
+
+	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
+		vmcs_write32(PLE_GAP, ple_gap);
+		vmx->ple_window = ple_window;
+		vmx->ple_window_dirty = true;
+	}
+
+	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
+	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
+	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
+
+	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
+	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
+	vmx_set_constant_host_state(vmx);
+	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
+	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
+
+	if (cpu_has_vmx_vmfunc())
+		vmcs_write64(VM_FUNCTION_CONTROL, 0);
+
+	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
+	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
+	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
+	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
+	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
+
+	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
+		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
+
+	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
+		u32 index = vmx_msr_index[i];
+		u32 data_low, data_high;
+		int j = vmx->nmsrs;
+
+		if (rdmsr_safe(index, &data_low, &data_high) < 0)
+			continue;
+		if (wrmsr_safe(index, data_low, data_high) < 0)
+			continue;
+		vmx->guest_msrs[j].index = i;
+		vmx->guest_msrs[j].data = 0;
+		vmx->guest_msrs[j].mask = -1ull;
+		++vmx->nmsrs;
+	}
+
+	vmx->arch_capabilities = kvm_get_arch_capabilities();
+
+	vm_exit_controls_init(vmx, vmx_vmexit_ctrl());
+
+	/* 22.2.1, 20.8.1 */
+	vm_entry_controls_init(vmx, vmx_vmentry_ctrl());
+
+	vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
+	vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
+
+	set_cr4_guest_host_mask(vmx);
+
+	if (vmx_xsaves_supported())
+		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
+
+	if (enable_pml) {
+		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
+		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
+	}
+
+	if (cpu_has_vmx_encls_vmexit())
+		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
+
+	if (pt_mode == PT_MODE_HOST_GUEST) {
+		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
+		/* Bit[6~0] are forced to 1, writes are ignored. */
+		vmx->pt_desc.guest.output_mask = 0x7F;
+		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
+	}
+}
+
+static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct msr_data apic_base_msr;
+	u64 cr0;
+
+	vmx->rmode.vm86_active = 0;
+	vmx->spec_ctrl = 0;
+
+	vcpu->arch.microcode_version = 0x100000000ULL;
+	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
+	kvm_set_cr8(vcpu, 0);
+
+	if (!init_event) {
+		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
+				     MSR_IA32_APICBASE_ENABLE;
+		if (kvm_vcpu_is_reset_bsp(vcpu))
+			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
+		apic_base_msr.host_initiated = true;
+		kvm_set_apic_base(vcpu, &apic_base_msr);
+	}
+
+	vmx_segment_cache_clear(vmx);
+
+	seg_setup(VCPU_SREG_CS);
+	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
+	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
+
+	seg_setup(VCPU_SREG_DS);
+	seg_setup(VCPU_SREG_ES);
+	seg_setup(VCPU_SREG_FS);
+	seg_setup(VCPU_SREG_GS);
+	seg_setup(VCPU_SREG_SS);
+
+	vmcs_write16(GUEST_TR_SELECTOR, 0);
+	vmcs_writel(GUEST_TR_BASE, 0);
+	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
+	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
+
+	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
+	vmcs_writel(GUEST_LDTR_BASE, 0);
+	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
+	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
+
+	if (!init_event) {
+		vmcs_write32(GUEST_SYSENTER_CS, 0);
+		vmcs_writel(GUEST_SYSENTER_ESP, 0);
+		vmcs_writel(GUEST_SYSENTER_EIP, 0);
+		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
+	}
+
+	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
+	kvm_rip_write(vcpu, 0xfff0);
+
+	vmcs_writel(GUEST_GDTR_BASE, 0);
+	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
+
+	vmcs_writel(GUEST_IDTR_BASE, 0);
+	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
+
+	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
+	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
+	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
+	if (kvm_mpx_supported())
+		vmcs_write64(GUEST_BNDCFGS, 0);
+
+	setup_msrs(vmx);
+
+	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
+
+	if (cpu_has_vmx_tpr_shadow() && !init_event) {
+		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
+		if (cpu_need_tpr_shadow(vcpu))
+			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
+				     __pa(vcpu->arch.apic->regs));
+		vmcs_write32(TPR_THRESHOLD, 0);
+	}
+
+	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
+
+	if (vmx->vpid != 0)
+		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
+
+	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
+	vmx->vcpu.arch.cr0 = cr0;
+	vmx_set_cr0(vcpu, cr0); /* enter rmode */
+	vmx_set_cr4(vcpu, 0);
+	vmx_set_efer(vcpu, 0);
+
+	update_exception_bitmap(vcpu);
+
+	vpid_sync_context(vmx->vpid);
+	if (init_event)
+		vmx_clear_hlt(vcpu);
+}
+
+static void enable_irq_window(struct kvm_vcpu *vcpu)
+{
+	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
+		      CPU_BASED_VIRTUAL_INTR_PENDING);
+}
+
+static void enable_nmi_window(struct kvm_vcpu *vcpu)
+{
+	if (!enable_vnmi ||
+	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
+		enable_irq_window(vcpu);
+		return;
+	}
+
+	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
+		      CPU_BASED_VIRTUAL_NMI_PENDING);
+}
+
+static void vmx_inject_irq(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	uint32_t intr;
+	int irq = vcpu->arch.interrupt.nr;
+
+	trace_kvm_inj_virq(irq);
+
+	++vcpu->stat.irq_injections;
+	if (vmx->rmode.vm86_active) {
+		int inc_eip = 0;
+		if (vcpu->arch.interrupt.soft)
+			inc_eip = vcpu->arch.event_exit_inst_len;
+		if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
+			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+		return;
+	}
+	intr = irq | INTR_INFO_VALID_MASK;
+	if (vcpu->arch.interrupt.soft) {
+		intr |= INTR_TYPE_SOFT_INTR;
+		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+			     vmx->vcpu.arch.event_exit_inst_len);
+	} else
+		intr |= INTR_TYPE_EXT_INTR;
+	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
+
+	vmx_clear_hlt(vcpu);
+}
+
+static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (!enable_vnmi) {
+		/*
+		 * Tracking the NMI-blocked state in software is built upon
+		 * finding the next open IRQ window. This, in turn, depends on
+		 * well-behaving guests: They have to keep IRQs disabled at
+		 * least as long as the NMI handler runs. Otherwise we may
+		 * cause NMI nesting, maybe breaking the guest. But as this is
+		 * highly unlikely, we can live with the residual risk.
+		 */
+		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
+		vmx->loaded_vmcs->vnmi_blocked_time = 0;
+	}
+
+	++vcpu->stat.nmi_injections;
+	vmx->loaded_vmcs->nmi_known_unmasked = false;
+
+	if (vmx->rmode.vm86_active) {
+		if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
+			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+		return;
+	}
+
+	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
+			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
+
+	vmx_clear_hlt(vcpu);
+}
+
+bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	bool masked;
+
+	if (!enable_vnmi)
+		return vmx->loaded_vmcs->soft_vnmi_blocked;
+	if (vmx->loaded_vmcs->nmi_known_unmasked)
+		return false;
+	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
+	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
+	return masked;
+}
+
+void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (!enable_vnmi) {
+		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
+			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
+			vmx->loaded_vmcs->vnmi_blocked_time = 0;
+		}
+	} else {
+		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
+		if (masked)
+			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
+				      GUEST_INTR_STATE_NMI);
+		else
+			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
+					GUEST_INTR_STATE_NMI);
+	}
+}
+
+static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
+{
+	if (to_vmx(vcpu)->nested.nested_run_pending)
+		return 0;
+
+	if (!enable_vnmi &&
+	    to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
+		return 0;
+
+	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
+		  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
+		   | GUEST_INTR_STATE_NMI));
+}
+
+static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
+{
+	return (!to_vmx(vcpu)->nested.nested_run_pending &&
+		vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
+		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
+			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
+}
+
+static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
+{
+	int ret;
+
+	if (enable_unrestricted_guest)
+		return 0;
+
+	ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
+				    PAGE_SIZE * 3);
+	if (ret)
+		return ret;
+	to_kvm_vmx(kvm)->tss_addr = addr;
+	return init_rmode_tss(kvm);
+}
+
+static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
+{
+	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
+	return 0;
+}
+
+static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
+{
+	switch (vec) {
+	case BP_VECTOR:
+		/*
+		 * Update instruction length as we may reinject the exception
+		 * from user space while in guest debugging mode.
+		 */
+		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
+			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
+			return false;
+		/* fall through */
+	case DB_VECTOR:
+		if (vcpu->guest_debug &
+			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
+			return false;
+		/* fall through */
+	case DE_VECTOR:
+	case OF_VECTOR:
+	case BR_VECTOR:
+	case UD_VECTOR:
+	case DF_VECTOR:
+	case SS_VECTOR:
+	case GP_VECTOR:
+	case MF_VECTOR:
+		return true;
+	break;
+	}
+	return false;
+}
+
+static int handle_rmode_exception(struct kvm_vcpu *vcpu,
+				  int vec, u32 err_code)
+{
+	/*
+	 * Instruction with address size override prefix opcode 0x67
+	 * Cause the #SS fault with 0 error code in VM86 mode.
+	 */
+	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
+		if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) {
+			if (vcpu->arch.halt_request) {
+				vcpu->arch.halt_request = 0;
+				return kvm_vcpu_halt(vcpu);
+			}
+			return 1;
+		}
+		return 0;
+	}
+
+	/*
+	 * Forward all other exceptions that are valid in real mode.
+	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
+	 *        the required debugging infrastructure rework.
+	 */
+	kvm_queue_exception(vcpu, vec);
+	return 1;
+}
+
+/*
+ * Trigger machine check on the host. We assume all the MSRs are already set up
+ * by the CPU and that we still run on the same CPU as the MCE occurred on.
+ * We pass a fake environment to the machine check handler because we want
+ * the guest to be always treated like user space, no matter what context
+ * it used internally.
+ */
+static void kvm_machine_check(void)
+{
+#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
+	struct pt_regs regs = {
+		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
+		.flags = X86_EFLAGS_IF,
+	};
+
+	do_machine_check(&regs, 0);
+#endif
+}
+
+static int handle_machine_check(struct kvm_vcpu *vcpu)
+{
+	/* already handled by vcpu_run */
+	return 1;
+}
+
+static int handle_exception(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct kvm_run *kvm_run = vcpu->run;
+	u32 intr_info, ex_no, error_code;
+	unsigned long cr2, rip, dr6;
+	u32 vect_info;
+	enum emulation_result er;
+
+	vect_info = vmx->idt_vectoring_info;
+	intr_info = vmx->exit_intr_info;
+
+	if (is_machine_check(intr_info))
+		return handle_machine_check(vcpu);
+
+	if (is_nmi(intr_info))
+		return 1;  /* already handled by vmx_vcpu_run() */
+
+	if (is_invalid_opcode(intr_info))
+		return handle_ud(vcpu);
+
+	error_code = 0;
+	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
+		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
+
+	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
+		WARN_ON_ONCE(!enable_vmware_backdoor);
+		er = kvm_emulate_instruction(vcpu,
+			EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
+		if (er == EMULATE_USER_EXIT)
+			return 0;
+		else if (er != EMULATE_DONE)
+			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
+		return 1;
+	}
+
+	/*
+	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
+	 * MMIO, it is better to report an internal error.
+	 * See the comments in vmx_handle_exit.
+	 */
+	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
+	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
+		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
+		vcpu->run->internal.ndata = 3;
+		vcpu->run->internal.data[0] = vect_info;
+		vcpu->run->internal.data[1] = intr_info;
+		vcpu->run->internal.data[2] = error_code;
+		return 0;
+	}
+
+	if (is_page_fault(intr_info)) {
+		cr2 = vmcs_readl(EXIT_QUALIFICATION);
+		/* EPT won't cause page fault directly */
+		WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
+		return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
+	}
+
+	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
+
+	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
+		return handle_rmode_exception(vcpu, ex_no, error_code);
+
+	switch (ex_no) {
+	case AC_VECTOR:
+		kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
+		return 1;
+	case DB_VECTOR:
+		dr6 = vmcs_readl(EXIT_QUALIFICATION);
+		if (!(vcpu->guest_debug &
+		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
+			vcpu->arch.dr6 &= ~15;
+			vcpu->arch.dr6 |= dr6 | DR6_RTM;
+			if (is_icebp(intr_info))
+				skip_emulated_instruction(vcpu);
+
+			kvm_queue_exception(vcpu, DB_VECTOR);
+			return 1;
+		}
+		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
+		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
+		/* fall through */
+	case BP_VECTOR:
+		/*
+		 * Update instruction length as we may reinject #BP from
+		 * user space while in guest debugging mode. Reading it for
+		 * #DB as well causes no harm, it is not used in that case.
+		 */
+		vmx->vcpu.arch.event_exit_inst_len =
+			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+		kvm_run->exit_reason = KVM_EXIT_DEBUG;
+		rip = kvm_rip_read(vcpu);
+		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
+		kvm_run->debug.arch.exception = ex_no;
+		break;
+	default:
+		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
+		kvm_run->ex.exception = ex_no;
+		kvm_run->ex.error_code = error_code;
+		break;
+	}
+	return 0;
+}
+
+static int handle_external_interrupt(struct kvm_vcpu *vcpu)
+{
+	++vcpu->stat.irq_exits;
+	return 1;
+}
+
+static int handle_triple_fault(struct kvm_vcpu *vcpu)
+{
+	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
+	vcpu->mmio_needed = 0;
+	return 0;
+}
+
+static int handle_io(struct kvm_vcpu *vcpu)
+{
+	unsigned long exit_qualification;
+	int size, in, string;
+	unsigned port;
+
+	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+	string = (exit_qualification & 16) != 0;
+
+	++vcpu->stat.io_exits;
+
+	if (string)
+		return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
+
+	port = exit_qualification >> 16;
+	size = (exit_qualification & 7) + 1;
+	in = (exit_qualification & 8) != 0;
+
+	return kvm_fast_pio(vcpu, size, port, in);
+}
+
+static void
+vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
+{
+	/*
+	 * Patch in the VMCALL instruction:
+	 */
+	hypercall[0] = 0x0f;
+	hypercall[1] = 0x01;
+	hypercall[2] = 0xc1;
+}
+
+/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
+static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
+{
+	if (is_guest_mode(vcpu)) {
+		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+		unsigned long orig_val = val;
+
+		/*
+		 * We get here when L2 changed cr0 in a way that did not change
+		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
+		 * but did change L0 shadowed bits. So we first calculate the
+		 * effective cr0 value that L1 would like to write into the
+		 * hardware. It consists of the L2-owned bits from the new
+		 * value combined with the L1-owned bits from L1's guest_cr0.
+		 */
+		val = (val & ~vmcs12->cr0_guest_host_mask) |
+			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
+
+		if (!nested_guest_cr0_valid(vcpu, val))
+			return 1;
+
+		if (kvm_set_cr0(vcpu, val))
+			return 1;
+		vmcs_writel(CR0_READ_SHADOW, orig_val);
+		return 0;
+	} else {
+		if (to_vmx(vcpu)->nested.vmxon &&
+		    !nested_host_cr0_valid(vcpu, val))
+			return 1;
+
+		return kvm_set_cr0(vcpu, val);
+	}
+}
+
+static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
+{
+	if (is_guest_mode(vcpu)) {
+		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+		unsigned long orig_val = val;
+
+		/* analogously to handle_set_cr0 */
+		val = (val & ~vmcs12->cr4_guest_host_mask) |
+			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
+		if (kvm_set_cr4(vcpu, val))
+			return 1;
+		vmcs_writel(CR4_READ_SHADOW, orig_val);
+		return 0;
+	} else
+		return kvm_set_cr4(vcpu, val);
+}
+
+static int handle_desc(struct kvm_vcpu *vcpu)
+{
+	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
+	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
+}
+
+static int handle_cr(struct kvm_vcpu *vcpu)
+{
+	unsigned long exit_qualification, val;
+	int cr;
+	int reg;
+	int err;
+	int ret;
+
+	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+	cr = exit_qualification & 15;
+	reg = (exit_qualification >> 8) & 15;
+	switch ((exit_qualification >> 4) & 3) {
+	case 0: /* mov to cr */
+		val = kvm_register_readl(vcpu, reg);
+		trace_kvm_cr_write(cr, val);
+		switch (cr) {
+		case 0:
+			err = handle_set_cr0(vcpu, val);
+			return kvm_complete_insn_gp(vcpu, err);
+		case 3:
+			WARN_ON_ONCE(enable_unrestricted_guest);
+			err = kvm_set_cr3(vcpu, val);
+			return kvm_complete_insn_gp(vcpu, err);
+		case 4:
+			err = handle_set_cr4(vcpu, val);
+			return kvm_complete_insn_gp(vcpu, err);
+		case 8: {
+				u8 cr8_prev = kvm_get_cr8(vcpu);
+				u8 cr8 = (u8)val;
+				err = kvm_set_cr8(vcpu, cr8);
+				ret = kvm_complete_insn_gp(vcpu, err);
+				if (lapic_in_kernel(vcpu))
+					return ret;
+				if (cr8_prev <= cr8)
+					return ret;
+				/*
+				 * TODO: we might be squashing a
+				 * KVM_GUESTDBG_SINGLESTEP-triggered
+				 * KVM_EXIT_DEBUG here.
+				 */
+				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
+				return 0;
+			}
+		}
+		break;
+	case 2: /* clts */
+		WARN_ONCE(1, "Guest should always own CR0.TS");
+		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
+		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
+		return kvm_skip_emulated_instruction(vcpu);
+	case 1: /*mov from cr*/
+		switch (cr) {
+		case 3:
+			WARN_ON_ONCE(enable_unrestricted_guest);
+			val = kvm_read_cr3(vcpu);
+			kvm_register_write(vcpu, reg, val);
+			trace_kvm_cr_read(cr, val);
+			return kvm_skip_emulated_instruction(vcpu);
+		case 8:
+			val = kvm_get_cr8(vcpu);
+			kvm_register_write(vcpu, reg, val);
+			trace_kvm_cr_read(cr, val);
+			return kvm_skip_emulated_instruction(vcpu);
+		}
+		break;
+	case 3: /* lmsw */
+		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
+		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
+		kvm_lmsw(vcpu, val);
+
+		return kvm_skip_emulated_instruction(vcpu);
+	default:
+		break;
+	}
+	vcpu->run->exit_reason = 0;
+	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
+	       (int)(exit_qualification >> 4) & 3, cr);
+	return 0;
+}
+
+static int handle_dr(struct kvm_vcpu *vcpu)
+{
+	unsigned long exit_qualification;
+	int dr, dr7, reg;
+
+	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
+
+	/* First, if DR does not exist, trigger UD */
+	if (!kvm_require_dr(vcpu, dr))
+		return 1;
+
+	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
+	if (!kvm_require_cpl(vcpu, 0))
+		return 1;
+	dr7 = vmcs_readl(GUEST_DR7);
+	if (dr7 & DR7_GD) {
+		/*
+		 * As the vm-exit takes precedence over the debug trap, we
+		 * need to emulate the latter, either for the host or the
+		 * guest debugging itself.
+		 */
+		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
+			vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
+			vcpu->run->debug.arch.dr7 = dr7;
+			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
+			vcpu->run->debug.arch.exception = DB_VECTOR;
+			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
+			return 0;
+		} else {
+			vcpu->arch.dr6 &= ~15;
+			vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
+			kvm_queue_exception(vcpu, DB_VECTOR);
+			return 1;
+		}
+	}
+
+	if (vcpu->guest_debug == 0) {
+		vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
+				CPU_BASED_MOV_DR_EXITING);
+
+		/*
+		 * No more DR vmexits; force a reload of the debug registers
+		 * and reenter on this instruction.  The next vmexit will
+		 * retrieve the full state of the debug registers.
+		 */
+		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
+		return 1;
+	}
+
+	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
+	if (exit_qualification & TYPE_MOV_FROM_DR) {
+		unsigned long val;
+
+		if (kvm_get_dr(vcpu, dr, &val))
+			return 1;
+		kvm_register_write(vcpu, reg, val);
+	} else
+		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
+			return 1;
+
+	return kvm_skip_emulated_instruction(vcpu);
+}
+
+static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
+{
+	return vcpu->arch.dr6;
+}
+
+static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
+{
+}
+
+static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
+{
+	get_debugreg(vcpu->arch.db[0], 0);
+	get_debugreg(vcpu->arch.db[1], 1);
+	get_debugreg(vcpu->arch.db[2], 2);
+	get_debugreg(vcpu->arch.db[3], 3);
+	get_debugreg(vcpu->arch.dr6, 6);
+	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
+
+	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
+	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
+}
+
+static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
+{
+	vmcs_writel(GUEST_DR7, val);
+}
+
+static int handle_cpuid(struct kvm_vcpu *vcpu)
+{
+	return kvm_emulate_cpuid(vcpu);
+}
+
+static int handle_rdmsr(struct kvm_vcpu *vcpu)
+{
+	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
+	struct msr_data msr_info;
+
+	msr_info.index = ecx;
+	msr_info.host_initiated = false;
+	if (vmx_get_msr(vcpu, &msr_info)) {
+		trace_kvm_msr_read_ex(ecx);
+		kvm_inject_gp(vcpu, 0);
+		return 1;
+	}
+
+	trace_kvm_msr_read(ecx, msr_info.data);
+
+	/* FIXME: handling of bits 32:63 of rax, rdx */
+	vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
+	vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
+	return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int handle_wrmsr(struct kvm_vcpu *vcpu)
+{
+	struct msr_data msr;
+	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
+	u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
+		| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
+
+	msr.data = data;
+	msr.index = ecx;
+	msr.host_initiated = false;
+	if (kvm_set_msr(vcpu, &msr) != 0) {
+		trace_kvm_msr_write_ex(ecx, data);
+		kvm_inject_gp(vcpu, 0);
+		return 1;
+	}
+
+	trace_kvm_msr_write(ecx, data);
+	return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
+{
+	kvm_apic_update_ppr(vcpu);
+	return 1;
+}
+
+static int handle_interrupt_window(struct kvm_vcpu *vcpu)
+{
+	vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
+			CPU_BASED_VIRTUAL_INTR_PENDING);
+
+	kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+	++vcpu->stat.irq_window_exits;
+	return 1;
+}
+
+static int handle_halt(struct kvm_vcpu *vcpu)
+{
+	return kvm_emulate_halt(vcpu);
+}
+
+static int handle_vmcall(struct kvm_vcpu *vcpu)
+{
+	return kvm_emulate_hypercall(vcpu);
+}
+
+static int handle_invd(struct kvm_vcpu *vcpu)
+{
+	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
+}
+
+static int handle_invlpg(struct kvm_vcpu *vcpu)
+{
+	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+	kvm_mmu_invlpg(vcpu, exit_qualification);
+	return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int handle_rdpmc(struct kvm_vcpu *vcpu)
+{
+	int err;
+
+	err = kvm_rdpmc(vcpu);
+	return kvm_complete_insn_gp(vcpu, err);
+}
+
+static int handle_wbinvd(struct kvm_vcpu *vcpu)
+{
+	return kvm_emulate_wbinvd(vcpu);
+}
+
+static int handle_xsetbv(struct kvm_vcpu *vcpu)
+{
+	u64 new_bv = kvm_read_edx_eax(vcpu);
+	u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
+
+	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
+		return kvm_skip_emulated_instruction(vcpu);
+	return 1;
+}
+
+static int handle_xsaves(struct kvm_vcpu *vcpu)
+{
+	kvm_skip_emulated_instruction(vcpu);
+	WARN(1, "this should never happen\n");
+	return 1;
+}
+
+static int handle_xrstors(struct kvm_vcpu *vcpu)
+{
+	kvm_skip_emulated_instruction(vcpu);
+	WARN(1, "this should never happen\n");
+	return 1;
+}
+
+static int handle_apic_access(struct kvm_vcpu *vcpu)
+{
+	if (likely(fasteoi)) {
+		unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+		int access_type, offset;
+
+		access_type = exit_qualification & APIC_ACCESS_TYPE;
+		offset = exit_qualification & APIC_ACCESS_OFFSET;
+		/*
+		 * Sane guest uses MOV to write EOI, with written value
+		 * not cared. So make a short-circuit here by avoiding
+		 * heavy instruction emulation.
+		 */
+		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
+		    (offset == APIC_EOI)) {
+			kvm_lapic_set_eoi(vcpu);
+			return kvm_skip_emulated_instruction(vcpu);
+		}
+	}
+	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
+}
+
+static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
+{
+	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+	int vector = exit_qualification & 0xff;
+
+	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
+	kvm_apic_set_eoi_accelerated(vcpu, vector);
+	return 1;
+}
+
+static int handle_apic_write(struct kvm_vcpu *vcpu)
+{
+	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+	u32 offset = exit_qualification & 0xfff;
+
+	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
+	kvm_apic_write_nodecode(vcpu, offset);
+	return 1;
+}
+
+static int handle_task_switch(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	unsigned long exit_qualification;
+	bool has_error_code = false;
+	u32 error_code = 0;
+	u16 tss_selector;
+	int reason, type, idt_v, idt_index;
+
+	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
+	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
+	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
+
+	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+	reason = (u32)exit_qualification >> 30;
+	if (reason == TASK_SWITCH_GATE && idt_v) {
+		switch (type) {
+		case INTR_TYPE_NMI_INTR:
+			vcpu->arch.nmi_injected = false;
+			vmx_set_nmi_mask(vcpu, true);
+			break;
+		case INTR_TYPE_EXT_INTR:
+		case INTR_TYPE_SOFT_INTR:
+			kvm_clear_interrupt_queue(vcpu);
+			break;
+		case INTR_TYPE_HARD_EXCEPTION:
+			if (vmx->idt_vectoring_info &
+			    VECTORING_INFO_DELIVER_CODE_MASK) {
+				has_error_code = true;
+				error_code =
+					vmcs_read32(IDT_VECTORING_ERROR_CODE);
+			}
+			/* fall through */
+		case INTR_TYPE_SOFT_EXCEPTION:
+			kvm_clear_exception_queue(vcpu);
+			break;
+		default:
+			break;
+		}
+	}
+	tss_selector = exit_qualification;
+
+	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
+		       type != INTR_TYPE_EXT_INTR &&
+		       type != INTR_TYPE_NMI_INTR))
+		skip_emulated_instruction(vcpu);
+
+	if (kvm_task_switch(vcpu, tss_selector,
+			    type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
+			    has_error_code, error_code) == EMULATE_FAIL) {
+		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
+		vcpu->run->internal.ndata = 0;
+		return 0;
+	}
+
+	/*
+	 * TODO: What about debug traps on tss switch?
+	 *       Are we supposed to inject them and update dr6?
+	 */
+
+	return 1;
+}
+
+static int handle_ept_violation(struct kvm_vcpu *vcpu)
+{
+	unsigned long exit_qualification;
+	gpa_t gpa;
+	u64 error_code;
+
+	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+	/*
+	 * EPT violation happened while executing iret from NMI,
+	 * "blocked by NMI" bit has to be set before next VM entry.
+	 * There are errata that may cause this bit to not be set:
+	 * AAK134, BY25.
+	 */
+	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
+			enable_vnmi &&
+			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
+		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
+
+	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
+	trace_kvm_page_fault(gpa, exit_qualification);
+
+	/* Is it a read fault? */
+	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
+		     ? PFERR_USER_MASK : 0;
+	/* Is it a write fault? */
+	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
+		      ? PFERR_WRITE_MASK : 0;
+	/* Is it a fetch fault? */
+	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
+		      ? PFERR_FETCH_MASK : 0;
+	/* ept page table entry is present? */
+	error_code |= (exit_qualification &
+		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
+			EPT_VIOLATION_EXECUTABLE))
+		      ? PFERR_PRESENT_MASK : 0;
+
+	error_code |= (exit_qualification & 0x100) != 0 ?
+	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
+
+	vcpu->arch.exit_qualification = exit_qualification;
+	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
+}
+
+static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
+{
+	gpa_t gpa;
+
+	/*
+	 * A nested guest cannot optimize MMIO vmexits, because we have an
+	 * nGPA here instead of the required GPA.
+	 */
+	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
+	if (!is_guest_mode(vcpu) &&
+	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
+		trace_kvm_fast_mmio(gpa);
+		/*
+		 * Doing kvm_skip_emulated_instruction() depends on undefined
+		 * behavior: Intel's manual doesn't mandate
+		 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
+		 * occurs and while on real hardware it was observed to be set,
+		 * other hypervisors (namely Hyper-V) don't set it, we end up
+		 * advancing IP with some random value. Disable fast mmio when
+		 * running nested and keep it for real hardware in hope that
+		 * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
+		 */
+		if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
+			return kvm_skip_emulated_instruction(vcpu);
+		else
+			return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) ==
+								EMULATE_DONE;
+	}
+
+	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
+}
+
+static int handle_nmi_window(struct kvm_vcpu *vcpu)
+{
+	WARN_ON_ONCE(!enable_vnmi);
+	vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
+			CPU_BASED_VIRTUAL_NMI_PENDING);
+	++vcpu->stat.nmi_window_exits;
+	kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+	return 1;
+}
+
+static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	enum emulation_result err = EMULATE_DONE;
+	int ret = 1;
+	u32 cpu_exec_ctrl;
+	bool intr_window_requested;
+	unsigned count = 130;
+
+	/*
+	 * We should never reach the point where we are emulating L2
+	 * due to invalid guest state as that means we incorrectly
+	 * allowed a nested VMEntry with an invalid vmcs12.
+	 */
+	WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
+
+	cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+	intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
+
+	while (vmx->emulation_required && count-- != 0) {
+		if (intr_window_requested && vmx_interrupt_allowed(vcpu))
+			return handle_interrupt_window(&vmx->vcpu);
+
+		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
+			return 1;
+
+		err = kvm_emulate_instruction(vcpu, 0);
+
+		if (err == EMULATE_USER_EXIT) {
+			++vcpu->stat.mmio_exits;
+			ret = 0;
+			goto out;
+		}
+
+		if (err != EMULATE_DONE)
+			goto emulation_error;
+
+		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
+		    vcpu->arch.exception.pending)
+			goto emulation_error;
+
+		if (vcpu->arch.halt_request) {
+			vcpu->arch.halt_request = 0;
+			ret = kvm_vcpu_halt(vcpu);
+			goto out;
+		}
+
+		if (signal_pending(current))
+			goto out;
+		if (need_resched())
+			schedule();
+	}
+
+out:
+	return ret;
+
+emulation_error:
+	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
+	vcpu->run->internal.ndata = 0;
+	return 0;
+}
+
+static void grow_ple_window(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	int old = vmx->ple_window;
+
+	vmx->ple_window = __grow_ple_window(old, ple_window,
+					    ple_window_grow,
+					    ple_window_max);
+
+	if (vmx->ple_window != old)
+		vmx->ple_window_dirty = true;
+
+	trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
+}
+
+static void shrink_ple_window(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	int old = vmx->ple_window;
+
+	vmx->ple_window = __shrink_ple_window(old, ple_window,
+					      ple_window_shrink,
+					      ple_window);
+
+	if (vmx->ple_window != old)
+		vmx->ple_window_dirty = true;
+
+	trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
+}
+
+/*
+ * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
+ */
+static void wakeup_handler(void)
+{
+	struct kvm_vcpu *vcpu;
+	int cpu = smp_processor_id();
+
+	spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
+	list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
+			blocked_vcpu_list) {
+		struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
+
+		if (pi_test_on(pi_desc) == 1)
+			kvm_vcpu_kick(vcpu);
+	}
+	spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
+}
+
+static void vmx_enable_tdp(void)
+{
+	kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
+		enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
+		enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
+		0ull, VMX_EPT_EXECUTABLE_MASK,
+		cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
+		VMX_EPT_RWX_MASK, 0ull);
+
+	ept_set_mmio_spte_mask();
+	kvm_enable_tdp();
+}
+
+/*
+ * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
+ * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
+ */
+static int handle_pause(struct kvm_vcpu *vcpu)
+{
+	if (!kvm_pause_in_guest(vcpu->kvm))
+		grow_ple_window(vcpu);
+
+	/*
+	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
+	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
+	 * never set PAUSE_EXITING and just set PLE if supported,
+	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
+	 */
+	kvm_vcpu_on_spin(vcpu, true);
+	return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int handle_nop(struct kvm_vcpu *vcpu)
+{
+	return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int handle_mwait(struct kvm_vcpu *vcpu)
+{
+	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
+	return handle_nop(vcpu);
+}
+
+static int handle_invalid_op(struct kvm_vcpu *vcpu)
+{
+	kvm_queue_exception(vcpu, UD_VECTOR);
+	return 1;
+}
+
+static int handle_monitor_trap(struct kvm_vcpu *vcpu)
+{
+	return 1;
+}
+
+static int handle_monitor(struct kvm_vcpu *vcpu)
+{
+	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
+	return handle_nop(vcpu);
+}
+
+static int handle_invpcid(struct kvm_vcpu *vcpu)
+{
+	u32 vmx_instruction_info;
+	unsigned long type;
+	bool pcid_enabled;
+	gva_t gva;
+	struct x86_exception e;
+	unsigned i;
+	unsigned long roots_to_free = 0;
+	struct {
+		u64 pcid;
+		u64 gla;
+	} operand;
+
+	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
+		kvm_queue_exception(vcpu, UD_VECTOR);
+		return 1;
+	}
+
+	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
+
+	if (type > 3) {
+		kvm_inject_gp(vcpu, 0);
+		return 1;
+	}
+
+	/* According to the Intel instruction reference, the memory operand
+	 * is read even if it isn't needed (e.g., for type==all)
+	 */
+	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+				vmx_instruction_info, false, &gva))
+		return 1;
+
+	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
+		kvm_inject_page_fault(vcpu, &e);
+		return 1;
+	}
+
+	if (operand.pcid >> 12 != 0) {
+		kvm_inject_gp(vcpu, 0);
+		return 1;
+	}
+
+	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
+
+	switch (type) {
+	case INVPCID_TYPE_INDIV_ADDR:
+		if ((!pcid_enabled && (operand.pcid != 0)) ||
+		    is_noncanonical_address(operand.gla, vcpu)) {
+			kvm_inject_gp(vcpu, 0);
+			return 1;
+		}
+		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
+		return kvm_skip_emulated_instruction(vcpu);
+
+	case INVPCID_TYPE_SINGLE_CTXT:
+		if (!pcid_enabled && (operand.pcid != 0)) {
+			kvm_inject_gp(vcpu, 0);
+			return 1;
+		}
+
+		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
+			kvm_mmu_sync_roots(vcpu);
+			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+		}
+
+		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
+			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
+			    == operand.pcid)
+				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
+
+		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
+		/*
+		 * If neither the current cr3 nor any of the prev_roots use the
+		 * given PCID, then nothing needs to be done here because a
+		 * resync will happen anyway before switching to any other CR3.
+		 */
+
+		return kvm_skip_emulated_instruction(vcpu);
+
+	case INVPCID_TYPE_ALL_NON_GLOBAL:
+		/*
+		 * Currently, KVM doesn't mark global entries in the shadow
+		 * page tables, so a non-global flush just degenerates to a
+		 * global flush. If needed, we could optimize this later by
+		 * keeping track of global entries in shadow page tables.
+		 */
+
+		/* fall-through */
+	case INVPCID_TYPE_ALL_INCL_GLOBAL:
+		kvm_mmu_unload(vcpu);
+		return kvm_skip_emulated_instruction(vcpu);
+
+	default:
+		BUG(); /* We have already checked above that type <= 3 */
+	}
+}
+
+static int handle_pml_full(struct kvm_vcpu *vcpu)
+{
+	unsigned long exit_qualification;
+
+	trace_kvm_pml_full(vcpu->vcpu_id);
+
+	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+	/*
+	 * PML buffer FULL happened while executing iret from NMI,
+	 * "blocked by NMI" bit has to be set before next VM entry.
+	 */
+	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
+			enable_vnmi &&
+			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
+		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
+				GUEST_INTR_STATE_NMI);
+
+	/*
+	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
+	 * here.., and there's no userspace involvement needed for PML.
+	 */
+	return 1;
+}
+
+static int handle_preemption_timer(struct kvm_vcpu *vcpu)
+{
+	if (!to_vmx(vcpu)->req_immediate_exit)
+		kvm_lapic_expired_hv_timer(vcpu);
+	return 1;
+}
+
+/*
+ * When nested=0, all VMX instruction VM Exits filter here.  The handlers
+ * are overwritten by nested_vmx_setup() when nested=1.
+ */
+static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
+{
+	kvm_queue_exception(vcpu, UD_VECTOR);
+	return 1;
+}
+
+static int handle_encls(struct kvm_vcpu *vcpu)
+{
+	/*
+	 * SGX virtualization is not yet supported.  There is no software
+	 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
+	 * to prevent the guest from executing ENCLS.
+	 */
+	kvm_queue_exception(vcpu, UD_VECTOR);
+	return 1;
+}
+
+/*
+ * The exit handlers return 1 if the exit was handled fully and guest execution
+ * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
+ * to be done to userspace and return 0.
+ */
+static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
+	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
+	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
+	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
+	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
+	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
+	[EXIT_REASON_CR_ACCESS]               = handle_cr,
+	[EXIT_REASON_DR_ACCESS]               = handle_dr,
+	[EXIT_REASON_CPUID]                   = handle_cpuid,
+	[EXIT_REASON_MSR_READ]                = handle_rdmsr,
+	[EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
+	[EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
+	[EXIT_REASON_HLT]                     = handle_halt,
+	[EXIT_REASON_INVD]		      = handle_invd,
+	[EXIT_REASON_INVLPG]		      = handle_invlpg,
+	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
+	[EXIT_REASON_VMCALL]                  = handle_vmcall,
+	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
+	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
+	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
+	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
+	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
+	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
+	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
+	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
+	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
+	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
+	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
+	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
+	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
+	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
+	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
+	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
+	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
+	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
+	[EXIT_REASON_LDTR_TR]		      = handle_desc,
+	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
+	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
+	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
+	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
+	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
+	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
+	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
+	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
+	[EXIT_REASON_RDRAND]                  = handle_invalid_op,
+	[EXIT_REASON_RDSEED]                  = handle_invalid_op,
+	[EXIT_REASON_XSAVES]                  = handle_xsaves,
+	[EXIT_REASON_XRSTORS]                 = handle_xrstors,
+	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
+	[EXIT_REASON_INVPCID]                 = handle_invpcid,
+	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
+	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
+	[EXIT_REASON_ENCLS]		      = handle_encls,
+};
+
+static const int kvm_vmx_max_exit_handlers =
+	ARRAY_SIZE(kvm_vmx_exit_handlers);
+
+static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
+{
+	*info1 = vmcs_readl(EXIT_QUALIFICATION);
+	*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
+}
+
+static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
+{
+	if (vmx->pml_pg) {
+		__free_page(vmx->pml_pg);
+		vmx->pml_pg = NULL;
+	}
+}
+
+static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	u64 *pml_buf;
+	u16 pml_idx;
+
+	pml_idx = vmcs_read16(GUEST_PML_INDEX);
+
+	/* Do nothing if PML buffer is empty */
+	if (pml_idx == (PML_ENTITY_NUM - 1))
+		return;
+
+	/* PML index always points to next available PML buffer entity */
+	if (pml_idx >= PML_ENTITY_NUM)
+		pml_idx = 0;
+	else
+		pml_idx++;
+
+	pml_buf = page_address(vmx->pml_pg);
+	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
+		u64 gpa;
+
+		gpa = pml_buf[pml_idx];
+		WARN_ON(gpa & (PAGE_SIZE - 1));
+		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
+	}
+
+	/* reset PML index */
+	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
+}
+
+/*
+ * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
+ * Called before reporting dirty_bitmap to userspace.
+ */
+static void kvm_flush_pml_buffers(struct kvm *kvm)
+{
+	int i;
+	struct kvm_vcpu *vcpu;
+	/*
+	 * We only need to kick vcpu out of guest mode here, as PML buffer
+	 * is flushed at beginning of all VMEXITs, and it's obvious that only
+	 * vcpus running in guest are possible to have unflushed GPAs in PML
+	 * buffer.
+	 */
+	kvm_for_each_vcpu(i, vcpu, kvm)
+		kvm_vcpu_kick(vcpu);
+}
+
+static void vmx_dump_sel(char *name, uint32_t sel)
+{
+	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
+	       name, vmcs_read16(sel),
+	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
+	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
+	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
+}
+
+static void vmx_dump_dtsel(char *name, uint32_t limit)
+{
+	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
+	       name, vmcs_read32(limit),
+	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
+}
+
+static void dump_vmcs(void)
+{
+	u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
+	u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
+	u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+	u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
+	u32 secondary_exec_control = 0;
+	unsigned long cr4 = vmcs_readl(GUEST_CR4);
+	u64 efer = vmcs_read64(GUEST_IA32_EFER);
+	int i, n;
+
+	if (cpu_has_secondary_exec_ctrls())
+		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+
+	pr_err("*** Guest State ***\n");
+	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
+	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
+	       vmcs_readl(CR0_GUEST_HOST_MASK));
+	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
+	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
+	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
+	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
+	    (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
+	{
+		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
+		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
+		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
+		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
+	}
+	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
+	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
+	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
+	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
+	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
+	       vmcs_readl(GUEST_SYSENTER_ESP),
+	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
+	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
+	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
+	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
+	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
+	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
+	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
+	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
+	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
+	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
+	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
+	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
+	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
+		pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
+		       efer, vmcs_read64(GUEST_IA32_PAT));
+	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
+	       vmcs_read64(GUEST_IA32_DEBUGCTL),
+	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
+	if (cpu_has_load_perf_global_ctrl() &&
+	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
+		pr_err("PerfGlobCtl = 0x%016llx\n",
+		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
+	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
+		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
+	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
+	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
+	       vmcs_read32(GUEST_ACTIVITY_STATE));
+	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
+		pr_err("InterruptStatus = %04x\n",
+		       vmcs_read16(GUEST_INTR_STATUS));
+
+	pr_err("*** Host State ***\n");
+	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
+	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
+	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
+	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
+	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
+	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
+	       vmcs_read16(HOST_TR_SELECTOR));
+	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
+	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
+	       vmcs_readl(HOST_TR_BASE));
+	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
+	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
+	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
+	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
+	       vmcs_readl(HOST_CR4));
+	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
+	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
+	       vmcs_read32(HOST_IA32_SYSENTER_CS),
+	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
+	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
+		pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
+		       vmcs_read64(HOST_IA32_EFER),
+		       vmcs_read64(HOST_IA32_PAT));
+	if (cpu_has_load_perf_global_ctrl() &&
+	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
+		pr_err("PerfGlobCtl = 0x%016llx\n",
+		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
+
+	pr_err("*** Control State ***\n");
+	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
+	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
+	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
+	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
+	       vmcs_read32(EXCEPTION_BITMAP),
+	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
+	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
+	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
+	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
+	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
+	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
+	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
+	       vmcs_read32(VM_EXIT_INTR_INFO),
+	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
+	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
+	pr_err("        reason=%08x qualification=%016lx\n",
+	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
+	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
+	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
+	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
+	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
+	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
+		pr_err("TSC Multiplier = 0x%016llx\n",
+		       vmcs_read64(TSC_MULTIPLIER));
+	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
+		pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
+	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
+		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
+	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
+		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
+	n = vmcs_read32(CR3_TARGET_COUNT);
+	for (i = 0; i + 1 < n; i += 4)
+		pr_err("CR3 target%u=%016lx target%u=%016lx\n",
+		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
+		       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
+	if (i < n)
+		pr_err("CR3 target%u=%016lx\n",
+		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
+	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
+		pr_err("PLE Gap=%08x Window=%08x\n",
+		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
+	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
+		pr_err("Virtual processor ID = 0x%04x\n",
+		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
+}
+
+/*
+ * The guest has exited.  See if we can fix it or if we need userspace
+ * assistance.
+ */
+static int vmx_handle_exit(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	u32 exit_reason = vmx->exit_reason;
+	u32 vectoring_info = vmx->idt_vectoring_info;
+
+	trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
+
+	/*
+	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
+	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
+	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
+	 * mode as if vcpus is in root mode, the PML buffer must has been
+	 * flushed already.
+	 */
+	if (enable_pml)
+		vmx_flush_pml_buffer(vcpu);
+
+	/* If guest state is invalid, start emulating */
+	if (vmx->emulation_required)
+		return handle_invalid_guest_state(vcpu);
+
+	if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
+		return nested_vmx_reflect_vmexit(vcpu, exit_reason);
+
+	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
+		dump_vmcs();
+		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+		vcpu->run->fail_entry.hardware_entry_failure_reason
+			= exit_reason;
+		return 0;
+	}
+
+	if (unlikely(vmx->fail)) {
+		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+		vcpu->run->fail_entry.hardware_entry_failure_reason
+			= vmcs_read32(VM_INSTRUCTION_ERROR);
+		return 0;
+	}
+
+	/*
+	 * Note:
+	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
+	 * delivery event since it indicates guest is accessing MMIO.
+	 * The vm-exit can be triggered again after return to guest that
+	 * will cause infinite loop.
+	 */
+	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
+			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
+			exit_reason != EXIT_REASON_EPT_VIOLATION &&
+			exit_reason != EXIT_REASON_PML_FULL &&
+			exit_reason != EXIT_REASON_TASK_SWITCH)) {
+		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
+		vcpu->run->internal.ndata = 3;
+		vcpu->run->internal.data[0] = vectoring_info;
+		vcpu->run->internal.data[1] = exit_reason;
+		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
+		if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
+			vcpu->run->internal.ndata++;
+			vcpu->run->internal.data[3] =
+				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
+		}
+		return 0;
+	}
+
+	if (unlikely(!enable_vnmi &&
+		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
+		if (vmx_interrupt_allowed(vcpu)) {
+			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
+		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
+			   vcpu->arch.nmi_pending) {
+			/*
+			 * This CPU don't support us in finding the end of an
+			 * NMI-blocked window if the guest runs with IRQs
+			 * disabled. So we pull the trigger after 1 s of
+			 * futile waiting, but inform the user about this.
+			 */
+			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
+			       "state on VCPU %d after 1 s timeout\n",
+			       __func__, vcpu->vcpu_id);
+			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
+		}
+	}
+
+	if (exit_reason < kvm_vmx_max_exit_handlers
+	    && kvm_vmx_exit_handlers[exit_reason])
+		return kvm_vmx_exit_handlers[exit_reason](vcpu);
+	else {
+		vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
+				exit_reason);
+		kvm_queue_exception(vcpu, UD_VECTOR);
+		return 1;
+	}
+}
+
+/*
+ * Software based L1D cache flush which is used when microcode providing
+ * the cache control MSR is not loaded.
+ *
+ * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
+ * flush it is required to read in 64 KiB because the replacement algorithm
+ * is not exactly LRU. This could be sized at runtime via topology
+ * information but as all relevant affected CPUs have 32KiB L1D cache size
+ * there is no point in doing so.
+ */
+static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
+{
+	int size = PAGE_SIZE << L1D_CACHE_ORDER;
+
+	/*
+	 * This code is only executed when the the flush mode is 'cond' or
+	 * 'always'
+	 */
+	if (static_branch_likely(&vmx_l1d_flush_cond)) {
+		bool flush_l1d;
+
+		/*
+		 * Clear the per-vcpu flush bit, it gets set again
+		 * either from vcpu_run() or from one of the unsafe
+		 * VMEXIT handlers.
+		 */
+		flush_l1d = vcpu->arch.l1tf_flush_l1d;
+		vcpu->arch.l1tf_flush_l1d = false;
+
+		/*
+		 * Clear the per-cpu flush bit, it gets set again from
+		 * the interrupt handlers.
+		 */
+		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
+		kvm_clear_cpu_l1tf_flush_l1d();
+
+		if (!flush_l1d)
+			return;
+	}
+
+	vcpu->stat.l1d_flush++;
+
+	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
+		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
+		return;
+	}
+
+	asm volatile(
+		/* First ensure the pages are in the TLB */
+		"xorl	%%eax, %%eax\n"
+		".Lpopulate_tlb:\n\t"
+		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
+		"addl	$4096, %%eax\n\t"
+		"cmpl	%%eax, %[size]\n\t"
+		"jne	.Lpopulate_tlb\n\t"
+		"xorl	%%eax, %%eax\n\t"
+		"cpuid\n\t"
+		/* Now fill the cache */
+		"xorl	%%eax, %%eax\n"
+		".Lfill_cache:\n"
+		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
+		"addl	$64, %%eax\n\t"
+		"cmpl	%%eax, %[size]\n\t"
+		"jne	.Lfill_cache\n\t"
+		"lfence\n"
+		:: [flush_pages] "r" (vmx_l1d_flush_pages),
+		    [size] "r" (size)
+		: "eax", "ebx", "ecx", "edx");
+}
+
+static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
+{
+	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+	if (is_guest_mode(vcpu) &&
+		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
+		return;
+
+	if (irr == -1 || tpr < irr) {
+		vmcs_write32(TPR_THRESHOLD, 0);
+		return;
+	}
+
+	vmcs_write32(TPR_THRESHOLD, irr);
+}
+
+void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
+{
+	u32 sec_exec_control;
+
+	if (!lapic_in_kernel(vcpu))
+		return;
+
+	if (!flexpriority_enabled &&
+	    !cpu_has_vmx_virtualize_x2apic_mode())
+		return;
+
+	/* Postpone execution until vmcs01 is the current VMCS. */
+	if (is_guest_mode(vcpu)) {
+		to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true;
+		return;
+	}
+
+	sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
+
+	switch (kvm_get_apic_mode(vcpu)) {
+	case LAPIC_MODE_INVALID:
+		WARN_ONCE(true, "Invalid local APIC state");
+	case LAPIC_MODE_DISABLED:
+		break;
+	case LAPIC_MODE_XAPIC:
+		if (flexpriority_enabled) {
+			sec_exec_control |=
+				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+			vmx_flush_tlb(vcpu, true);
+		}
+		break;
+	case LAPIC_MODE_X2APIC:
+		if (cpu_has_vmx_virtualize_x2apic_mode())
+			sec_exec_control |=
+				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
+		break;
+	}
+	vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
+
+	vmx_update_msr_bitmap(vcpu);
+}
+
+static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
+{
+	if (!is_guest_mode(vcpu)) {
+		vmcs_write64(APIC_ACCESS_ADDR, hpa);
+		vmx_flush_tlb(vcpu, true);
+	}
+}
+
+static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
+{
+	u16 status;
+	u8 old;
+
+	if (max_isr == -1)
+		max_isr = 0;
+
+	status = vmcs_read16(GUEST_INTR_STATUS);
+	old = status >> 8;
+	if (max_isr != old) {
+		status &= 0xff;
+		status |= max_isr << 8;
+		vmcs_write16(GUEST_INTR_STATUS, status);
+	}
+}
+
+static void vmx_set_rvi(int vector)
+{
+	u16 status;
+	u8 old;
+
+	if (vector == -1)
+		vector = 0;
+
+	status = vmcs_read16(GUEST_INTR_STATUS);
+	old = (u8)status & 0xff;
+	if ((u8)vector != old) {
+		status &= ~0xff;
+		status |= (u8)vector;
+		vmcs_write16(GUEST_INTR_STATUS, status);
+	}
+}
+
+static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
+{
+	/*
+	 * When running L2, updating RVI is only relevant when
+	 * vmcs12 virtual-interrupt-delivery enabled.
+	 * However, it can be enabled only when L1 also
+	 * intercepts external-interrupts and in that case
+	 * we should not update vmcs02 RVI but instead intercept
+	 * interrupt. Therefore, do nothing when running L2.
+	 */
+	if (!is_guest_mode(vcpu))
+		vmx_set_rvi(max_irr);
+}
+
+static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	int max_irr;
+	bool max_irr_updated;
+
+	WARN_ON(!vcpu->arch.apicv_active);
+	if (pi_test_on(&vmx->pi_desc)) {
+		pi_clear_on(&vmx->pi_desc);
+		/*
+		 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
+		 * But on x86 this is just a compiler barrier anyway.
+		 */
+		smp_mb__after_atomic();
+		max_irr_updated =
+			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
+
+		/*
+		 * If we are running L2 and L1 has a new pending interrupt
+		 * which can be injected, we should re-evaluate
+		 * what should be done with this new L1 interrupt.
+		 * If L1 intercepts external-interrupts, we should
+		 * exit from L2 to L1. Otherwise, interrupt should be
+		 * delivered directly to L2.
+		 */
+		if (is_guest_mode(vcpu) && max_irr_updated) {
+			if (nested_exit_on_intr(vcpu))
+				kvm_vcpu_exiting_guest_mode(vcpu);
+			else
+				kvm_make_request(KVM_REQ_EVENT, vcpu);
+		}
+	} else {
+		max_irr = kvm_lapic_find_highest_irr(vcpu);
+	}
+	vmx_hwapic_irr_update(vcpu, max_irr);
+	return max_irr;
+}
+
+static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
+{
+	if (!kvm_vcpu_apicv_active(vcpu))
+		return;
+
+	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
+	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
+	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
+	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
+}
+
+static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	pi_clear_on(&vmx->pi_desc);
+	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
+}
+
+static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
+{
+	u32 exit_intr_info = 0;
+	u16 basic_exit_reason = (u16)vmx->exit_reason;
+
+	if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
+	      || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
+		return;
+
+	if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
+		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+	vmx->exit_intr_info = exit_intr_info;
+
+	/* if exit due to PF check for async PF */
+	if (is_page_fault(exit_intr_info))
+		vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
+
+	/* Handle machine checks before interrupts are enabled */
+	if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
+	    is_machine_check(exit_intr_info))
+		kvm_machine_check();
+
+	/* We need to handle NMIs before interrupts are enabled */
+	if (is_nmi(exit_intr_info)) {
+		kvm_before_interrupt(&vmx->vcpu);
+		asm("int $2");
+		kvm_after_interrupt(&vmx->vcpu);
+	}
+}
+
+static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
+{
+	u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+
+	if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
+			== (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
+		unsigned int vector;
+		unsigned long entry;
+		gate_desc *desc;
+		struct vcpu_vmx *vmx = to_vmx(vcpu);
+#ifdef CONFIG_X86_64
+		unsigned long tmp;
+#endif
+
+		vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
+		desc = (gate_desc *)vmx->host_idt_base + vector;
+		entry = gate_offset(desc);
+		asm volatile(
+#ifdef CONFIG_X86_64
+			"mov %%" _ASM_SP ", %[sp]\n\t"
+			"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
+			"push $%c[ss]\n\t"
+			"push %[sp]\n\t"
+#endif
+			"pushf\n\t"
+			__ASM_SIZE(push) " $%c[cs]\n\t"
+			CALL_NOSPEC
+			:
+#ifdef CONFIG_X86_64
+			[sp]"=&r"(tmp),
+#endif
+			ASM_CALL_CONSTRAINT
+			:
+			THUNK_TARGET(entry),
+			[ss]"i"(__KERNEL_DS),
+			[cs]"i"(__KERNEL_CS)
+			);
+	}
+}
+STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
+
+static bool vmx_has_emulated_msr(int index)
+{
+	switch (index) {
+	case MSR_IA32_SMBASE:
+		/*
+		 * We cannot do SMM unless we can run the guest in big
+		 * real mode.
+		 */
+		return enable_unrestricted_guest || emulate_invalid_guest_state;
+	case MSR_AMD64_VIRT_SPEC_CTRL:
+		/* This is AMD only.  */
+		return false;
+	default:
+		return true;
+	}
+}
+
+static bool vmx_pt_supported(void)
+{
+	return pt_mode == PT_MODE_HOST_GUEST;
+}
+
+static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
+{
+	u32 exit_intr_info;
+	bool unblock_nmi;
+	u8 vector;
+	bool idtv_info_valid;
+
+	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
+
+	if (enable_vnmi) {
+		if (vmx->loaded_vmcs->nmi_known_unmasked)
+			return;
+		/*
+		 * Can't use vmx->exit_intr_info since we're not sure what
+		 * the exit reason is.
+		 */
+		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
+		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
+		/*
+		 * SDM 3: 27.7.1.2 (September 2008)
+		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
+		 * a guest IRET fault.
+		 * SDM 3: 23.2.2 (September 2008)
+		 * Bit 12 is undefined in any of the following cases:
+		 *  If the VM exit sets the valid bit in the IDT-vectoring
+		 *   information field.
+		 *  If the VM exit is due to a double fault.
+		 */
+		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
+		    vector != DF_VECTOR && !idtv_info_valid)
+			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
+				      GUEST_INTR_STATE_NMI);
+		else
+			vmx->loaded_vmcs->nmi_known_unmasked =
+				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
+				  & GUEST_INTR_STATE_NMI);
+	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
+		vmx->loaded_vmcs->vnmi_blocked_time +=
+			ktime_to_ns(ktime_sub(ktime_get(),
+					      vmx->loaded_vmcs->entry_time));
+}
+
+static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
+				      u32 idt_vectoring_info,
+				      int instr_len_field,
+				      int error_code_field)
+{
+	u8 vector;
+	int type;
+	bool idtv_info_valid;
+
+	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
+
+	vcpu->arch.nmi_injected = false;
+	kvm_clear_exception_queue(vcpu);
+	kvm_clear_interrupt_queue(vcpu);
+
+	if (!idtv_info_valid)
+		return;
+
+	kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
+	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
+
+	switch (type) {
+	case INTR_TYPE_NMI_INTR:
+		vcpu->arch.nmi_injected = true;
+		/*
+		 * SDM 3: 27.7.1.2 (September 2008)
+		 * Clear bit "block by NMI" before VM entry if a NMI
+		 * delivery faulted.
+		 */
+		vmx_set_nmi_mask(vcpu, false);
+		break;
+	case INTR_TYPE_SOFT_EXCEPTION:
+		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
+		/* fall through */
+	case INTR_TYPE_HARD_EXCEPTION:
+		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
+			u32 err = vmcs_read32(error_code_field);
+			kvm_requeue_exception_e(vcpu, vector, err);
+		} else
+			kvm_requeue_exception(vcpu, vector);
+		break;
+	case INTR_TYPE_SOFT_INTR:
+		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
+		/* fall through */
+	case INTR_TYPE_EXT_INTR:
+		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
+		break;
+	default:
+		break;
+	}
+}
+
+static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
+{
+	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
+				  VM_EXIT_INSTRUCTION_LEN,
+				  IDT_VECTORING_ERROR_CODE);
+}
+
+static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
+{
+	__vmx_complete_interrupts(vcpu,
+				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
+				  VM_ENTRY_INSTRUCTION_LEN,
+				  VM_ENTRY_EXCEPTION_ERROR_CODE);
+
+	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
+}
+
+static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
+{
+	int i, nr_msrs;
+	struct perf_guest_switch_msr *msrs;
+
+	msrs = perf_guest_get_msrs(&nr_msrs);
+
+	if (!msrs)
+		return;
+
+	for (i = 0; i < nr_msrs; i++)
+		if (msrs[i].host == msrs[i].guest)
+			clear_atomic_switch_msr(vmx, msrs[i].msr);
+		else
+			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
+					msrs[i].host, false);
+}
+
+static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val)
+{
+	vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val);
+	if (!vmx->loaded_vmcs->hv_timer_armed)
+		vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
+			      PIN_BASED_VMX_PREEMPTION_TIMER);
+	vmx->loaded_vmcs->hv_timer_armed = true;
+}
+
+static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	u64 tscl;
+	u32 delta_tsc;
+
+	if (vmx->req_immediate_exit) {
+		vmx_arm_hv_timer(vmx, 0);
+		return;
+	}
+
+	if (vmx->hv_deadline_tsc != -1) {
+		tscl = rdtsc();
+		if (vmx->hv_deadline_tsc > tscl)
+			/* set_hv_timer ensures the delta fits in 32-bits */
+			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
+				cpu_preemption_timer_multi);
+		else
+			delta_tsc = 0;
+
+		vmx_arm_hv_timer(vmx, delta_tsc);
+		return;
+	}
+
+	if (vmx->loaded_vmcs->hv_timer_armed)
+		vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
+				PIN_BASED_VMX_PREEMPTION_TIMER);
+	vmx->loaded_vmcs->hv_timer_armed = false;
+}
+
+static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	unsigned long cr3, cr4, evmcs_rsp;
+
+	/* Record the guest's net vcpu time for enforced NMI injections. */
+	if (unlikely(!enable_vnmi &&
+		     vmx->loaded_vmcs->soft_vnmi_blocked))
+		vmx->loaded_vmcs->entry_time = ktime_get();
+
+	/* Don't enter VMX if guest state is invalid, let the exit handler
+	   start emulation until we arrive back to a valid state */
+	if (vmx->emulation_required)
+		return;
+
+	if (vmx->ple_window_dirty) {
+		vmx->ple_window_dirty = false;
+		vmcs_write32(PLE_WINDOW, vmx->ple_window);
+	}
+
+	if (vmx->nested.need_vmcs12_sync)
+		nested_sync_from_vmcs12(vcpu);
+
+	if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
+		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
+	if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
+		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
+
+	cr3 = __get_current_cr3_fast();
+	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
+		vmcs_writel(HOST_CR3, cr3);
+		vmx->loaded_vmcs->host_state.cr3 = cr3;
+	}
+
+	cr4 = cr4_read_shadow();
+	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
+		vmcs_writel(HOST_CR4, cr4);
+		vmx->loaded_vmcs->host_state.cr4 = cr4;
+	}
+
+	/* When single-stepping over STI and MOV SS, we must clear the
+	 * corresponding interruptibility bits in the guest state. Otherwise
+	 * vmentry fails as it then expects bit 14 (BS) in pending debug
+	 * exceptions being set, but that's not correct for the guest debugging
+	 * case. */
+	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
+		vmx_set_interrupt_shadow(vcpu, 0);
+
+	if (static_cpu_has(X86_FEATURE_PKU) &&
+	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
+	    vcpu->arch.pkru != vmx->host_pkru)
+		__write_pkru(vcpu->arch.pkru);
+
+	pt_guest_enter(vmx);
+
+	atomic_switch_perf_msrs(vmx);
+
+	vmx_update_hv_timer(vcpu);
+
+	/*
+	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
+	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
+	 * is no need to worry about the conditional branch over the wrmsr
+	 * being speculatively taken.
+	 */
+	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
+
+	vmx->__launched = vmx->loaded_vmcs->launched;
+
+	evmcs_rsp = static_branch_unlikely(&enable_evmcs) ?
+		(unsigned long)&current_evmcs->host_rsp : 0;
+
+	if (static_branch_unlikely(&vmx_l1d_should_flush))
+		vmx_l1d_flush(vcpu);
+
+	asm(
+		/* Store host registers */
+		"push %%" _ASM_DX "; push %%" _ASM_BP ";"
+		"push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
+		"push %%" _ASM_CX " \n\t"
+		"sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
+		"cmp %%" _ASM_SP ", %c[host_rsp](%%" _ASM_CX ") \n\t"
+		"je 1f \n\t"
+		"mov %%" _ASM_SP ", %c[host_rsp](%%" _ASM_CX ") \n\t"
+		/* Avoid VMWRITE when Enlightened VMCS is in use */
+		"test %%" _ASM_SI ", %%" _ASM_SI " \n\t"
+		"jz 2f \n\t"
+		"mov %%" _ASM_SP ", (%%" _ASM_SI ") \n\t"
+		"jmp 1f \n\t"
+		"2: \n\t"
+		__ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t"
+		"1: \n\t"
+		"add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
+
+		/* Reload cr2 if changed */
+		"mov %c[cr2](%%" _ASM_CX "), %%" _ASM_AX " \n\t"
+		"mov %%cr2, %%" _ASM_DX " \n\t"
+		"cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
+		"je 3f \n\t"
+		"mov %%" _ASM_AX", %%cr2 \n\t"
+		"3: \n\t"
+		/* Check if vmlaunch or vmresume is needed */
+		"cmpl $0, %c[launched](%%" _ASM_CX ") \n\t"
+		/* Load guest registers.  Don't clobber flags. */
+		"mov %c[rax](%%" _ASM_CX "), %%" _ASM_AX " \n\t"
+		"mov %c[rbx](%%" _ASM_CX "), %%" _ASM_BX " \n\t"
+		"mov %c[rdx](%%" _ASM_CX "), %%" _ASM_DX " \n\t"
+		"mov %c[rsi](%%" _ASM_CX "), %%" _ASM_SI " \n\t"
+		"mov %c[rdi](%%" _ASM_CX "), %%" _ASM_DI " \n\t"
+		"mov %c[rbp](%%" _ASM_CX "), %%" _ASM_BP " \n\t"
+#ifdef CONFIG_X86_64
+		"mov %c[r8](%%" _ASM_CX "),  %%r8  \n\t"
+		"mov %c[r9](%%" _ASM_CX "),  %%r9  \n\t"
+		"mov %c[r10](%%" _ASM_CX "), %%r10 \n\t"
+		"mov %c[r11](%%" _ASM_CX "), %%r11 \n\t"
+		"mov %c[r12](%%" _ASM_CX "), %%r12 \n\t"
+		"mov %c[r13](%%" _ASM_CX "), %%r13 \n\t"
+		"mov %c[r14](%%" _ASM_CX "), %%r14 \n\t"
+		"mov %c[r15](%%" _ASM_CX "), %%r15 \n\t"
+#endif
+		/* Load guest RCX.  This kills the vmx_vcpu pointer! */
+		"mov %c[rcx](%%" _ASM_CX "), %%" _ASM_CX " \n\t"
+
+		/* Enter guest mode */
+		"call vmx_vmenter\n\t"
+
+		/* Save guest's RCX to the stack placeholder (see above) */
+		"mov %%" _ASM_CX ", %c[wordsize](%%" _ASM_SP ") \n\t"
+
+		/* Load host's RCX, i.e. the vmx_vcpu pointer */
+		"pop %%" _ASM_CX " \n\t"
+
+		/* Set vmx->fail based on EFLAGS.{CF,ZF} */
+		"setbe %c[fail](%%" _ASM_CX ")\n\t"
+
+		/* Save all guest registers, including RCX from the stack */
+		"mov %%" _ASM_AX ", %c[rax](%%" _ASM_CX ") \n\t"
+		"mov %%" _ASM_BX ", %c[rbx](%%" _ASM_CX ") \n\t"
+		__ASM_SIZE(pop) " %c[rcx](%%" _ASM_CX ") \n\t"
+		"mov %%" _ASM_DX ", %c[rdx](%%" _ASM_CX ") \n\t"
+		"mov %%" _ASM_SI ", %c[rsi](%%" _ASM_CX ") \n\t"
+		"mov %%" _ASM_DI ", %c[rdi](%%" _ASM_CX ") \n\t"
+		"mov %%" _ASM_BP ", %c[rbp](%%" _ASM_CX ") \n\t"
+#ifdef CONFIG_X86_64
+		"mov %%r8,  %c[r8](%%" _ASM_CX ") \n\t"
+		"mov %%r9,  %c[r9](%%" _ASM_CX ") \n\t"
+		"mov %%r10, %c[r10](%%" _ASM_CX ") \n\t"
+		"mov %%r11, %c[r11](%%" _ASM_CX ") \n\t"
+		"mov %%r12, %c[r12](%%" _ASM_CX ") \n\t"
+		"mov %%r13, %c[r13](%%" _ASM_CX ") \n\t"
+		"mov %%r14, %c[r14](%%" _ASM_CX ") \n\t"
+		"mov %%r15, %c[r15](%%" _ASM_CX ") \n\t"
+		/*
+		* Clear host registers marked as clobbered to prevent
+		* speculative use.
+		*/
+		"xor %%r8d,  %%r8d \n\t"
+		"xor %%r9d,  %%r9d \n\t"
+		"xor %%r10d, %%r10d \n\t"
+		"xor %%r11d, %%r11d \n\t"
+		"xor %%r12d, %%r12d \n\t"
+		"xor %%r13d, %%r13d \n\t"
+		"xor %%r14d, %%r14d \n\t"
+		"xor %%r15d, %%r15d \n\t"
+#endif
+		"mov %%cr2, %%" _ASM_AX "   \n\t"
+		"mov %%" _ASM_AX ", %c[cr2](%%" _ASM_CX ") \n\t"
+
+		"xor %%eax, %%eax \n\t"
+		"xor %%ebx, %%ebx \n\t"
+		"xor %%esi, %%esi \n\t"
+		"xor %%edi, %%edi \n\t"
+		"pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
+	      : ASM_CALL_CONSTRAINT
+	      : "c"(vmx), "d"((unsigned long)HOST_RSP), "S"(evmcs_rsp),
+		[launched]"i"(offsetof(struct vcpu_vmx, __launched)),
+		[fail]"i"(offsetof(struct vcpu_vmx, fail)),
+		[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
+		[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
+		[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
+		[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
+		[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
+		[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
+		[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
+		[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
+#ifdef CONFIG_X86_64
+		[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
+		[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
+		[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
+		[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
+		[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
+		[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
+		[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
+		[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
+#endif
+		[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
+		[wordsize]"i"(sizeof(ulong))
+	      : "cc", "memory"
+#ifdef CONFIG_X86_64
+		, "rax", "rbx", "rdi"
+		, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
+#else
+		, "eax", "ebx", "edi"
+#endif
+	      );
+
+	/*
+	 * We do not use IBRS in the kernel. If this vCPU has used the
+	 * SPEC_CTRL MSR it may have left it on; save the value and
+	 * turn it off. This is much more efficient than blindly adding
+	 * it to the atomic save/restore list. Especially as the former
+	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
+	 *
+	 * For non-nested case:
+	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
+	 * save it.
+	 *
+	 * For nested case:
+	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
+	 * save it.
+	 */
+	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
+		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
+
+	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
+
+	/* Eliminate branch target predictions from guest mode */
+	vmexit_fill_RSB();
+
+	/* All fields are clean at this point */
+	if (static_branch_unlikely(&enable_evmcs))
+		current_evmcs->hv_clean_fields |=
+			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
+
+	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
+	if (vmx->host_debugctlmsr)
+		update_debugctlmsr(vmx->host_debugctlmsr);
+
+#ifndef CONFIG_X86_64
+	/*
+	 * The sysexit path does not restore ds/es, so we must set them to
+	 * a reasonable value ourselves.
+	 *
+	 * We can't defer this to vmx_prepare_switch_to_host() since that
+	 * function may be executed in interrupt context, which saves and
+	 * restore segments around it, nullifying its effect.
+	 */
+	loadsegment(ds, __USER_DS);
+	loadsegment(es, __USER_DS);
+#endif
+
+	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
+				  | (1 << VCPU_EXREG_RFLAGS)
+				  | (1 << VCPU_EXREG_PDPTR)
+				  | (1 << VCPU_EXREG_SEGMENTS)
+				  | (1 << VCPU_EXREG_CR3));
+	vcpu->arch.regs_dirty = 0;
+
+	pt_guest_exit(vmx);
+
+	/*
+	 * eager fpu is enabled if PKEY is supported and CR4 is switched
+	 * back on host, so it is safe to read guest PKRU from current
+	 * XSAVE.
+	 */
+	if (static_cpu_has(X86_FEATURE_PKU) &&
+	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
+		vcpu->arch.pkru = __read_pkru();
+		if (vcpu->arch.pkru != vmx->host_pkru)
+			__write_pkru(vmx->host_pkru);
+	}
+
+	vmx->nested.nested_run_pending = 0;
+	vmx->idt_vectoring_info = 0;
+
+	vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
+	if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
+		return;
+
+	vmx->loaded_vmcs->launched = 1;
+	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
+
+	vmx_complete_atomic_exit(vmx);
+	vmx_recover_nmi_blocking(vmx);
+	vmx_complete_interrupts(vmx);
+}
+STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
+
+static struct kvm *vmx_vm_alloc(void)
+{
+	struct kvm_vmx *kvm_vmx = vzalloc(sizeof(struct kvm_vmx));
+	return &kvm_vmx->kvm;
+}
+
+static void vmx_vm_free(struct kvm *kvm)
+{
+	vfree(to_kvm_vmx(kvm));
+}
+
+static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (enable_pml)
+		vmx_destroy_pml_buffer(vmx);
+	free_vpid(vmx->vpid);
+	leave_guest_mode(vcpu);
+	nested_vmx_free_vcpu(vcpu);
+	free_loaded_vmcs(vmx->loaded_vmcs);
+	kfree(vmx->guest_msrs);
+	kvm_vcpu_uninit(vcpu);
+	kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
+	kmem_cache_free(kvm_vcpu_cache, vmx);
+}
+
+static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
+{
+	int err;
+	struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
+	unsigned long *msr_bitmap;
+	int cpu;
+
+	if (!vmx)
+		return ERR_PTR(-ENOMEM);
+
+	vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, GFP_KERNEL);
+	if (!vmx->vcpu.arch.guest_fpu) {
+		printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
+		err = -ENOMEM;
+		goto free_partial_vcpu;
+	}
+
+	vmx->vpid = allocate_vpid();
+
+	err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
+	if (err)
+		goto free_vcpu;
+
+	err = -ENOMEM;
+
+	/*
+	 * If PML is turned on, failure on enabling PML just results in failure
+	 * of creating the vcpu, therefore we can simplify PML logic (by
+	 * avoiding dealing with cases, such as enabling PML partially on vcpus
+	 * for the guest, etc.
+	 */
+	if (enable_pml) {
+		vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
+		if (!vmx->pml_pg)
+			goto uninit_vcpu;
+	}
+
+	vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
+	BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
+		     > PAGE_SIZE);
+
+	if (!vmx->guest_msrs)
+		goto free_pml;
+
+	err = alloc_loaded_vmcs(&vmx->vmcs01);
+	if (err < 0)
+		goto free_msrs;
+
+	msr_bitmap = vmx->vmcs01.msr_bitmap;
+	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
+	vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
+	vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
+	vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
+	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
+	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
+	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
+	vmx->msr_bitmap_mode = 0;
+
+	vmx->loaded_vmcs = &vmx->vmcs01;
+	cpu = get_cpu();
+	vmx_vcpu_load(&vmx->vcpu, cpu);
+	vmx->vcpu.cpu = cpu;
+	vmx_vcpu_setup(vmx);
+	vmx_vcpu_put(&vmx->vcpu);
+	put_cpu();
+	if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
+		err = alloc_apic_access_page(kvm);
+		if (err)
+			goto free_vmcs;
+	}
+
+	if (enable_ept && !enable_unrestricted_guest) {
+		err = init_rmode_identity_map(kvm);
+		if (err)
+			goto free_vmcs;
+	}
+
+	if (nested)
+		nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
+					   vmx_capability.ept,
+					   kvm_vcpu_apicv_active(&vmx->vcpu));
+	else
+		memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
+
+	vmx->nested.posted_intr_nv = -1;
+	vmx->nested.current_vmptr = -1ull;
+
+	vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
+
+	/*
+	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
+	 * or POSTED_INTR_WAKEUP_VECTOR.
+	 */
+	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
+	vmx->pi_desc.sn = 1;
+
+	vmx->ept_pointer = INVALID_PAGE;
+
+	return &vmx->vcpu;
+
+free_vmcs:
+	free_loaded_vmcs(vmx->loaded_vmcs);
+free_msrs:
+	kfree(vmx->guest_msrs);
+free_pml:
+	vmx_destroy_pml_buffer(vmx);
+uninit_vcpu:
+	kvm_vcpu_uninit(&vmx->vcpu);
+free_vcpu:
+	free_vpid(vmx->vpid);
+	kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
+free_partial_vcpu:
+	kmem_cache_free(kvm_vcpu_cache, vmx);
+	return ERR_PTR(err);
+}
+
+#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n"
+#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n"
+
+static int vmx_vm_init(struct kvm *kvm)
+{
+	spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
+
+	if (!ple_gap)
+		kvm->arch.pause_in_guest = true;
+
+	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
+		switch (l1tf_mitigation) {
+		case L1TF_MITIGATION_OFF:
+		case L1TF_MITIGATION_FLUSH_NOWARN:
+			/* 'I explicitly don't care' is set */
+			break;
+		case L1TF_MITIGATION_FLUSH:
+		case L1TF_MITIGATION_FLUSH_NOSMT:
+		case L1TF_MITIGATION_FULL:
+			/*
+			 * Warn upon starting the first VM in a potentially
+			 * insecure environment.
+			 */
+			if (cpu_smt_control == CPU_SMT_ENABLED)
+				pr_warn_once(L1TF_MSG_SMT);
+			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
+				pr_warn_once(L1TF_MSG_L1D);
+			break;
+		case L1TF_MITIGATION_FULL_FORCE:
+			/* Flush is enforced */
+			break;
+		}
+	}
+	return 0;
+}
+
+static void __init vmx_check_processor_compat(void *rtn)
+{
+	struct vmcs_config vmcs_conf;
+	struct vmx_capability vmx_cap;
+
+	*(int *)rtn = 0;
+	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
+		*(int *)rtn = -EIO;
+	if (nested)
+		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
+					   enable_apicv);
+	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
+		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
+				smp_processor_id());
+		*(int *)rtn = -EIO;
+	}
+}
+
+static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
+{
+	u8 cache;
+	u64 ipat = 0;
+
+	/* For VT-d and EPT combination
+	 * 1. MMIO: always map as UC
+	 * 2. EPT with VT-d:
+	 *   a. VT-d without snooping control feature: can't guarantee the
+	 *	result, try to trust guest.
+	 *   b. VT-d with snooping control feature: snooping control feature of
+	 *	VT-d engine can guarantee the cache correctness. Just set it
+	 *	to WB to keep consistent with host. So the same as item 3.
+	 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
+	 *    consistent with host MTRR
+	 */
+	if (is_mmio) {
+		cache = MTRR_TYPE_UNCACHABLE;
+		goto exit;
+	}
+
+	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
+		ipat = VMX_EPT_IPAT_BIT;
+		cache = MTRR_TYPE_WRBACK;
+		goto exit;
+	}
+
+	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
+		ipat = VMX_EPT_IPAT_BIT;
+		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
+			cache = MTRR_TYPE_WRBACK;
+		else
+			cache = MTRR_TYPE_UNCACHABLE;
+		goto exit;
+	}
+
+	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
+
+exit:
+	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
+}
+
+static int vmx_get_lpage_level(void)
+{
+	if (enable_ept && !cpu_has_vmx_ept_1g_page())
+		return PT_DIRECTORY_LEVEL;
+	else
+		/* For shadow and EPT supported 1GB page */
+		return PT_PDPE_LEVEL;
+}
+
+static void vmcs_set_secondary_exec_control(u32 new_ctl)
+{
+	/*
+	 * These bits in the secondary execution controls field
+	 * are dynamic, the others are mostly based on the hypervisor
+	 * architecture and the guest's CPUID.  Do not touch the
+	 * dynamic bits.
+	 */
+	u32 mask =
+		SECONDARY_EXEC_SHADOW_VMCS |
+		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+		SECONDARY_EXEC_DESC;
+
+	u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+
+	vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
+		     (new_ctl & ~mask) | (cur_ctl & mask));
+}
+
+/*
+ * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
+ * (indicating "allowed-1") if they are supported in the guest's CPUID.
+ */
+static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct kvm_cpuid_entry2 *entry;
+
+	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
+	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
+
+#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
+	if (entry && (entry->_reg & (_cpuid_mask)))			\
+		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
+} while (0)
+
+	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
+	cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
+	cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
+	cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
+	cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
+	cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
+	cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
+	cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
+	cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
+	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
+	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
+	cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
+	cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
+	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
+	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
+
+	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
+	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
+	cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
+	cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
+	cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
+	cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
+
+#undef cr4_fixed1_update
+}
+
+static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (kvm_mpx_supported()) {
+		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
+
+		if (mpx_enabled) {
+			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
+			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
+		} else {
+			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
+			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
+		}
+	}
+}
+
+static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	struct kvm_cpuid_entry2 *best = NULL;
+	int i;
+
+	for (i = 0; i < PT_CPUID_LEAVES; i++) {
+		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
+		if (!best)
+			return;
+		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
+		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
+		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
+		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
+	}
+
+	/* Get the number of configurable Address Ranges for filtering */
+	vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
+						PT_CAP_num_address_ranges);
+
+	/* Initialize and clear the no dependency bits */
+	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
+			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
+
+	/*
+	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
+	 * will inject an #GP
+	 */
+	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
+		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
+
+	/*
+	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
+	 * PSBFreq can be set
+	 */
+	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
+		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
+				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
+
+	/*
+	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
+	 * MTCFreq can be set
+	 */
+	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
+		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
+				RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
+
+	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
+	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
+		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
+							RTIT_CTL_PTW_EN);
+
+	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
+	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
+		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
+
+	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
+	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
+		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
+
+	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
+	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
+		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
+
+	/* unmask address range configure area */
+	for (i = 0; i < vmx->pt_desc.addr_range; i++)
+		vmx->pt_desc.ctl_bitmask &= ~(0xf << (32 + i * 4));
+}
+
+static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	if (cpu_has_secondary_exec_ctrls()) {
+		vmx_compute_secondary_exec_control(vmx);
+		vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
+	}
+
+	if (nested_vmx_allowed(vcpu))
+		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
+			FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
+	else
+		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
+			~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
+
+	if (nested_vmx_allowed(vcpu)) {
+		nested_vmx_cr_fixed1_bits_update(vcpu);
+		nested_vmx_entry_exit_ctls_update(vcpu);
+	}
+
+	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
+			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
+		update_intel_pt_cfg(vcpu);
+}
+
+static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
+{
+	if (func == 1 && nested)
+		entry->ecx |= bit(X86_FEATURE_VMX);
+}
+
+static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
+{
+	to_vmx(vcpu)->req_immediate_exit = true;
+}
+
+static int vmx_check_intercept(struct kvm_vcpu *vcpu,
+			       struct x86_instruction_info *info,
+			       enum x86_intercept_stage stage)
+{
+	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
+
+	/*
+	 * RDPID causes #UD if disabled through secondary execution controls.
+	 * Because it is marked as EmulateOnUD, we need to intercept it here.
+	 */
+	if (info->intercept == x86_intercept_rdtscp &&
+	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
+		ctxt->exception.vector = UD_VECTOR;
+		ctxt->exception.error_code_valid = false;
+		return X86EMUL_PROPAGATE_FAULT;
+	}
+
+	/* TODO: check more intercepts... */
+	return X86EMUL_CONTINUE;
+}
+
+#ifdef CONFIG_X86_64
+/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
+static inline int u64_shl_div_u64(u64 a, unsigned int shift,
+				  u64 divisor, u64 *result)
+{
+	u64 low = a << shift, high = a >> (64 - shift);
+
+	/* To avoid the overflow on divq */
+	if (high >= divisor)
+		return 1;
+
+	/* Low hold the result, high hold rem which is discarded */
+	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
+	    "rm" (divisor), "0" (low), "1" (high));
+	*result = low;
+
+	return 0;
+}
+
+static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
+{
+	struct vcpu_vmx *vmx;
+	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
+
+	if (kvm_mwait_in_guest(vcpu->kvm))
+		return -EOPNOTSUPP;
+
+	vmx = to_vmx(vcpu);
+	tscl = rdtsc();
+	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
+	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
+	lapic_timer_advance_cycles = nsec_to_cycles(vcpu, lapic_timer_advance_ns);
+
+	if (delta_tsc > lapic_timer_advance_cycles)
+		delta_tsc -= lapic_timer_advance_cycles;
+	else
+		delta_tsc = 0;
+
+	/* Convert to host delta tsc if tsc scaling is enabled */
+	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
+			u64_shl_div_u64(delta_tsc,
+				kvm_tsc_scaling_ratio_frac_bits,
+				vcpu->arch.tsc_scaling_ratio,
+				&delta_tsc))
+		return -ERANGE;
+
+	/*
+	 * If the delta tsc can't fit in the 32 bit after the multi shift,
+	 * we can't use the preemption timer.
+	 * It's possible that it fits on later vmentries, but checking
+	 * on every vmentry is costly so we just use an hrtimer.
+	 */
+	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
+		return -ERANGE;
+
+	vmx->hv_deadline_tsc = tscl + delta_tsc;
+	return delta_tsc == 0;
+}
+
+static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
+{
+	to_vmx(vcpu)->hv_deadline_tsc = -1;
+}
+#endif
+
+static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
+{
+	if (!kvm_pause_in_guest(vcpu->kvm))
+		shrink_ple_window(vcpu);
+}
+
+static void vmx_slot_enable_log_dirty(struct kvm *kvm,
+				     struct kvm_memory_slot *slot)
+{
+	kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
+	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
+}
+
+static void vmx_slot_disable_log_dirty(struct kvm *kvm,
+				       struct kvm_memory_slot *slot)
+{
+	kvm_mmu_slot_set_dirty(kvm, slot);
+}
+
+static void vmx_flush_log_dirty(struct kvm *kvm)
+{
+	kvm_flush_pml_buffers(kvm);
+}
+
+static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
+{
+	struct vmcs12 *vmcs12;
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	gpa_t gpa;
+	struct page *page = NULL;
+	u64 *pml_address;
+
+	if (is_guest_mode(vcpu)) {
+		WARN_ON_ONCE(vmx->nested.pml_full);
+
+		/*
+		 * Check if PML is enabled for the nested guest.
+		 * Whether eptp bit 6 is set is already checked
+		 * as part of A/D emulation.
+		 */
+		vmcs12 = get_vmcs12(vcpu);
+		if (!nested_cpu_has_pml(vmcs12))
+			return 0;
+
+		if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
+			vmx->nested.pml_full = true;
+			return 1;
+		}
+
+		gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
+
+		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
+		if (is_error_page(page))
+			return 0;
+
+		pml_address = kmap(page);
+		pml_address[vmcs12->guest_pml_index--] = gpa;
+		kunmap(page);
+		kvm_release_page_clean(page);
+	}
+
+	return 0;
+}
+
+static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
+					   struct kvm_memory_slot *memslot,
+					   gfn_t offset, unsigned long mask)
+{
+	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
+}
+
+static void __pi_post_block(struct kvm_vcpu *vcpu)
+{
+	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
+	struct pi_desc old, new;
+	unsigned int dest;
+
+	do {
+		old.control = new.control = pi_desc->control;
+		WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
+		     "Wakeup handler not enabled while the VCPU is blocked\n");
+
+		dest = cpu_physical_id(vcpu->cpu);
+
+		if (x2apic_enabled())
+			new.ndst = dest;
+		else
+			new.ndst = (dest << 8) & 0xFF00;
+
+		/* set 'NV' to 'notification vector' */
+		new.nv = POSTED_INTR_VECTOR;
+	} while (cmpxchg64(&pi_desc->control, old.control,
+			   new.control) != old.control);
+
+	if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
+		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
+		list_del(&vcpu->blocked_vcpu_list);
+		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
+		vcpu->pre_pcpu = -1;
+	}
+}
+
+/*
+ * This routine does the following things for vCPU which is going
+ * to be blocked if VT-d PI is enabled.
+ * - Store the vCPU to the wakeup list, so when interrupts happen
+ *   we can find the right vCPU to wake up.
+ * - Change the Posted-interrupt descriptor as below:
+ *      'NDST' <-- vcpu->pre_pcpu
+ *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
+ * - If 'ON' is set during this process, which means at least one
+ *   interrupt is posted for this vCPU, we cannot block it, in
+ *   this case, return 1, otherwise, return 0.
+ *
+ */
+static int pi_pre_block(struct kvm_vcpu *vcpu)
+{
+	unsigned int dest;
+	struct pi_desc old, new;
+	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
+
+	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
+		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
+		!kvm_vcpu_apicv_active(vcpu))
+		return 0;
+
+	WARN_ON(irqs_disabled());
+	local_irq_disable();
+	if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
+		vcpu->pre_pcpu = vcpu->cpu;
+		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
+		list_add_tail(&vcpu->blocked_vcpu_list,
+			      &per_cpu(blocked_vcpu_on_cpu,
+				       vcpu->pre_pcpu));
+		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
+	}
+
+	do {
+		old.control = new.control = pi_desc->control;
+
+		WARN((pi_desc->sn == 1),
+		     "Warning: SN field of posted-interrupts "
+		     "is set before blocking\n");
+
+		/*
+		 * Since vCPU can be preempted during this process,
+		 * vcpu->cpu could be different with pre_pcpu, we
+		 * need to set pre_pcpu as the destination of wakeup
+		 * notification event, then we can find the right vCPU
+		 * to wakeup in wakeup handler if interrupts happen
+		 * when the vCPU is in blocked state.
+		 */
+		dest = cpu_physical_id(vcpu->pre_pcpu);
+
+		if (x2apic_enabled())
+			new.ndst = dest;
+		else
+			new.ndst = (dest << 8) & 0xFF00;
+
+		/* set 'NV' to 'wakeup vector' */
+		new.nv = POSTED_INTR_WAKEUP_VECTOR;
+	} while (cmpxchg64(&pi_desc->control, old.control,
+			   new.control) != old.control);
+
+	/* We should not block the vCPU if an interrupt is posted for it.  */
+	if (pi_test_on(pi_desc) == 1)
+		__pi_post_block(vcpu);
+
+	local_irq_enable();
+	return (vcpu->pre_pcpu == -1);
+}
+
+static int vmx_pre_block(struct kvm_vcpu *vcpu)
+{
+	if (pi_pre_block(vcpu))
+		return 1;
+
+	if (kvm_lapic_hv_timer_in_use(vcpu))
+		kvm_lapic_switch_to_sw_timer(vcpu);
+
+	return 0;
+}
+
+static void pi_post_block(struct kvm_vcpu *vcpu)
+{
+	if (vcpu->pre_pcpu == -1)
+		return;
+
+	WARN_ON(irqs_disabled());
+	local_irq_disable();
+	__pi_post_block(vcpu);
+	local_irq_enable();
+}
+
+static void vmx_post_block(struct kvm_vcpu *vcpu)
+{
+	if (kvm_x86_ops->set_hv_timer)
+		kvm_lapic_switch_to_hv_timer(vcpu);
+
+	pi_post_block(vcpu);
+}
+
+/*
+ * vmx_update_pi_irte - set IRTE for Posted-Interrupts
+ *
+ * @kvm: kvm
+ * @host_irq: host irq of the interrupt
+ * @guest_irq: gsi of the interrupt
+ * @set: set or unset PI
+ * returns 0 on success, < 0 on failure
+ */
+static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
+			      uint32_t guest_irq, bool set)
+{
+	struct kvm_kernel_irq_routing_entry *e;
+	struct kvm_irq_routing_table *irq_rt;
+	struct kvm_lapic_irq irq;
+	struct kvm_vcpu *vcpu;
+	struct vcpu_data vcpu_info;
+	int idx, ret = 0;
+
+	if (!kvm_arch_has_assigned_device(kvm) ||
+		!irq_remapping_cap(IRQ_POSTING_CAP) ||
+		!kvm_vcpu_apicv_active(kvm->vcpus[0]))
+		return 0;
+
+	idx = srcu_read_lock(&kvm->irq_srcu);
+	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
+	if (guest_irq >= irq_rt->nr_rt_entries ||
+	    hlist_empty(&irq_rt->map[guest_irq])) {
+		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
+			     guest_irq, irq_rt->nr_rt_entries);
+		goto out;
+	}
+
+	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
+		if (e->type != KVM_IRQ_ROUTING_MSI)
+			continue;
+		/*
+		 * VT-d PI cannot support posting multicast/broadcast
+		 * interrupts to a vCPU, we still use interrupt remapping
+		 * for these kind of interrupts.
+		 *
+		 * For lowest-priority interrupts, we only support
+		 * those with single CPU as the destination, e.g. user
+		 * configures the interrupts via /proc/irq or uses
+		 * irqbalance to make the interrupts single-CPU.
+		 *
+		 * We will support full lowest-priority interrupt later.
+		 */
+
+		kvm_set_msi_irq(kvm, e, &irq);
+		if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
+			/*
+			 * Make sure the IRTE is in remapped mode if
+			 * we don't handle it in posted mode.
+			 */
+			ret = irq_set_vcpu_affinity(host_irq, NULL);
+			if (ret < 0) {
+				printk(KERN_INFO
+				   "failed to back to remapped mode, irq: %u\n",
+				   host_irq);
+				goto out;
+			}
+
+			continue;
+		}
+
+		vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
+		vcpu_info.vector = irq.vector;
+
+		trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
+				vcpu_info.vector, vcpu_info.pi_desc_addr, set);
+
+		if (set)
+			ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
+		else
+			ret = irq_set_vcpu_affinity(host_irq, NULL);
+
+		if (ret < 0) {
+			printk(KERN_INFO "%s: failed to update PI IRTE\n",
+					__func__);
+			goto out;
+		}
+	}
+
+	ret = 0;
+out:
+	srcu_read_unlock(&kvm->irq_srcu, idx);
+	return ret;
+}
+
+static void vmx_setup_mce(struct kvm_vcpu *vcpu)
+{
+	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
+		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
+			FEATURE_CONTROL_LMCE;
+	else
+		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
+			~FEATURE_CONTROL_LMCE;
+}
+
+static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
+{
+	/* we need a nested vmexit to enter SMM, postpone if run is pending */
+	if (to_vmx(vcpu)->nested.nested_run_pending)
+		return 0;
+	return 1;
+}
+
+static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
+	if (vmx->nested.smm.guest_mode)
+		nested_vmx_vmexit(vcpu, -1, 0, 0);
+
+	vmx->nested.smm.vmxon = vmx->nested.vmxon;
+	vmx->nested.vmxon = false;
+	vmx_clear_hlt(vcpu);
+	return 0;
+}
+
+static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
+{
+	struct vcpu_vmx *vmx = to_vmx(vcpu);
+	int ret;
+
+	if (vmx->nested.smm.vmxon) {
+		vmx->nested.vmxon = true;
+		vmx->nested.smm.vmxon = false;
+	}
+
+	if (vmx->nested.smm.guest_mode) {
+		vcpu->arch.hflags &= ~HF_SMM_MASK;
+		ret = nested_vmx_enter_non_root_mode(vcpu, false);
+		vcpu->arch.hflags |= HF_SMM_MASK;
+		if (ret)
+			return ret;
+
+		vmx->nested.smm.guest_mode = false;
+	}
+	return 0;
+}
+
+static int enable_smi_window(struct kvm_vcpu *vcpu)
+{
+	return 0;
+}
+
+static __init int hardware_setup(void)
+{
+	unsigned long host_bndcfgs;
+	int r, i;
+
+	rdmsrl_safe(MSR_EFER, &host_efer);
+
+	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
+		kvm_define_shared_msr(i, vmx_msr_index[i]);
+
+	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
+		return -EIO;
+
+	if (boot_cpu_has(X86_FEATURE_NX))
+		kvm_enable_efer_bits(EFER_NX);
+
+	if (boot_cpu_has(X86_FEATURE_MPX)) {
+		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
+		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
+	}
+
+	if (boot_cpu_has(X86_FEATURE_XSAVES))
+		rdmsrl(MSR_IA32_XSS, host_xss);
+
+	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
+	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
+		enable_vpid = 0;
+
+	if (!cpu_has_vmx_ept() ||
+	    !cpu_has_vmx_ept_4levels() ||
+	    !cpu_has_vmx_ept_mt_wb() ||
+	    !cpu_has_vmx_invept_global())
+		enable_ept = 0;
+
+	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
+		enable_ept_ad_bits = 0;
+
+	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
+		enable_unrestricted_guest = 0;
+
+	if (!cpu_has_vmx_flexpriority())
+		flexpriority_enabled = 0;
+
+	if (!cpu_has_virtual_nmis())
+		enable_vnmi = 0;
+
+	/*
+	 * set_apic_access_page_addr() is used to reload apic access
+	 * page upon invalidation.  No need to do anything if not
+	 * using the APIC_ACCESS_ADDR VMCS field.
+	 */
+	if (!flexpriority_enabled)
+		kvm_x86_ops->set_apic_access_page_addr = NULL;
+
+	if (!cpu_has_vmx_tpr_shadow())
+		kvm_x86_ops->update_cr8_intercept = NULL;
+
+	if (enable_ept && !cpu_has_vmx_ept_2m_page())
+		kvm_disable_largepages();
+
+#if IS_ENABLED(CONFIG_HYPERV)
+	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
+	    && enable_ept) {
+		kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
+		kvm_x86_ops->tlb_remote_flush_with_range =
+				hv_remote_flush_tlb_with_range;
+	}
+#endif
+
+	if (!cpu_has_vmx_ple()) {
+		ple_gap = 0;
+		ple_window = 0;
+		ple_window_grow = 0;
+		ple_window_max = 0;
+		ple_window_shrink = 0;
+	}
+
+	if (!cpu_has_vmx_apicv()) {
+		enable_apicv = 0;
+		kvm_x86_ops->sync_pir_to_irr = NULL;
+	}
+
+	if (cpu_has_vmx_tsc_scaling()) {
+		kvm_has_tsc_control = true;
+		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
+		kvm_tsc_scaling_ratio_frac_bits = 48;
+	}
+
+	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
+
+	if (enable_ept)
+		vmx_enable_tdp();
+	else
+		kvm_disable_tdp();
+
+	/*
+	 * Only enable PML when hardware supports PML feature, and both EPT
+	 * and EPT A/D bit features are enabled -- PML depends on them to work.
+	 */
+	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
+		enable_pml = 0;
+
+	if (!enable_pml) {
+		kvm_x86_ops->slot_enable_log_dirty = NULL;
+		kvm_x86_ops->slot_disable_log_dirty = NULL;
+		kvm_x86_ops->flush_log_dirty = NULL;
+		kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
+	}
+
+	if (!cpu_has_vmx_preemption_timer())
+		kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
+
+	if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
+		u64 vmx_msr;
+
+		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
+		cpu_preemption_timer_multi =
+			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
+	} else {
+		kvm_x86_ops->set_hv_timer = NULL;
+		kvm_x86_ops->cancel_hv_timer = NULL;
+	}
+
+	kvm_set_posted_intr_wakeup_handler(wakeup_handler);
+
+	kvm_mce_cap_supported |= MCG_LMCE_P;
+
+	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
+		return -EINVAL;
+	if (!enable_ept || !cpu_has_vmx_intel_pt())
+		pt_mode = PT_MODE_SYSTEM;
+
+	if (nested) {
+		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
+					   vmx_capability.ept, enable_apicv);
+
+		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
+		if (r)
+			return r;
+	}
+
+	r = alloc_kvm_area();
+	if (r)
+		nested_vmx_hardware_unsetup();
+	return r;
+}
+
+static __exit void hardware_unsetup(void)
+{
+	if (nested)
+		nested_vmx_hardware_unsetup();
+
+	free_kvm_area();
+}
+
+static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
+	.cpu_has_kvm_support = cpu_has_kvm_support,
+	.disabled_by_bios = vmx_disabled_by_bios,
+	.hardware_setup = hardware_setup,
+	.hardware_unsetup = hardware_unsetup,
+	.check_processor_compatibility = vmx_check_processor_compat,
+	.hardware_enable = hardware_enable,
+	.hardware_disable = hardware_disable,
+	.cpu_has_accelerated_tpr = report_flexpriority,
+	.has_emulated_msr = vmx_has_emulated_msr,
+
+	.vm_init = vmx_vm_init,
+	.vm_alloc = vmx_vm_alloc,
+	.vm_free = vmx_vm_free,
+
+	.vcpu_create = vmx_create_vcpu,
+	.vcpu_free = vmx_free_vcpu,
+	.vcpu_reset = vmx_vcpu_reset,
+
+	.prepare_guest_switch = vmx_prepare_switch_to_guest,
+	.vcpu_load = vmx_vcpu_load,
+	.vcpu_put = vmx_vcpu_put,
+
+	.update_bp_intercept = update_exception_bitmap,
+	.get_msr_feature = vmx_get_msr_feature,
+	.get_msr = vmx_get_msr,
+	.set_msr = vmx_set_msr,
+	.get_segment_base = vmx_get_segment_base,
+	.get_segment = vmx_get_segment,
+	.set_segment = vmx_set_segment,
+	.get_cpl = vmx_get_cpl,
+	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
+	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
+	.decache_cr3 = vmx_decache_cr3,
+	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
+	.set_cr0 = vmx_set_cr0,
+	.set_cr3 = vmx_set_cr3,
+	.set_cr4 = vmx_set_cr4,
+	.set_efer = vmx_set_efer,
+	.get_idt = vmx_get_idt,
+	.set_idt = vmx_set_idt,
+	.get_gdt = vmx_get_gdt,
+	.set_gdt = vmx_set_gdt,
+	.get_dr6 = vmx_get_dr6,
+	.set_dr6 = vmx_set_dr6,
+	.set_dr7 = vmx_set_dr7,
+	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
+	.cache_reg = vmx_cache_reg,
+	.get_rflags = vmx_get_rflags,
+	.set_rflags = vmx_set_rflags,
+
+	.tlb_flush = vmx_flush_tlb,
+	.tlb_flush_gva = vmx_flush_tlb_gva,
+
+	.run = vmx_vcpu_run,
+	.handle_exit = vmx_handle_exit,
+	.skip_emulated_instruction = skip_emulated_instruction,
+	.set_interrupt_shadow = vmx_set_interrupt_shadow,
+	.get_interrupt_shadow = vmx_get_interrupt_shadow,
+	.patch_hypercall = vmx_patch_hypercall,
+	.set_irq = vmx_inject_irq,
+	.set_nmi = vmx_inject_nmi,
+	.queue_exception = vmx_queue_exception,
+	.cancel_injection = vmx_cancel_injection,
+	.interrupt_allowed = vmx_interrupt_allowed,
+	.nmi_allowed = vmx_nmi_allowed,
+	.get_nmi_mask = vmx_get_nmi_mask,
+	.set_nmi_mask = vmx_set_nmi_mask,
+	.enable_nmi_window = enable_nmi_window,
+	.enable_irq_window = enable_irq_window,
+	.update_cr8_intercept = update_cr8_intercept,
+	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
+	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
+	.get_enable_apicv = vmx_get_enable_apicv,
+	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
+	.load_eoi_exitmap = vmx_load_eoi_exitmap,
+	.apicv_post_state_restore = vmx_apicv_post_state_restore,
+	.hwapic_irr_update = vmx_hwapic_irr_update,
+	.hwapic_isr_update = vmx_hwapic_isr_update,
+	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
+	.sync_pir_to_irr = vmx_sync_pir_to_irr,
+	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
+
+	.set_tss_addr = vmx_set_tss_addr,
+	.set_identity_map_addr = vmx_set_identity_map_addr,
+	.get_tdp_level = get_ept_level,
+	.get_mt_mask = vmx_get_mt_mask,
+
+	.get_exit_info = vmx_get_exit_info,
+
+	.get_lpage_level = vmx_get_lpage_level,
+
+	.cpuid_update = vmx_cpuid_update,
+
+	.rdtscp_supported = vmx_rdtscp_supported,
+	.invpcid_supported = vmx_invpcid_supported,
+
+	.set_supported_cpuid = vmx_set_supported_cpuid,
+
+	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
+
+	.read_l1_tsc_offset = vmx_read_l1_tsc_offset,
+	.write_l1_tsc_offset = vmx_write_l1_tsc_offset,
+
+	.set_tdp_cr3 = vmx_set_cr3,
+
+	.check_intercept = vmx_check_intercept,
+	.handle_external_intr = vmx_handle_external_intr,
+	.mpx_supported = vmx_mpx_supported,
+	.xsaves_supported = vmx_xsaves_supported,
+	.umip_emulated = vmx_umip_emulated,
+	.pt_supported = vmx_pt_supported,
+
+	.request_immediate_exit = vmx_request_immediate_exit,
+
+	.sched_in = vmx_sched_in,
+
+	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
+	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
+	.flush_log_dirty = vmx_flush_log_dirty,
+	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
+	.write_log_dirty = vmx_write_pml_buffer,
+
+	.pre_block = vmx_pre_block,
+	.post_block = vmx_post_block,
+
+	.pmu_ops = &intel_pmu_ops,
+
+	.update_pi_irte = vmx_update_pi_irte,
+
+#ifdef CONFIG_X86_64
+	.set_hv_timer = vmx_set_hv_timer,
+	.cancel_hv_timer = vmx_cancel_hv_timer,
+#endif
+
+	.setup_mce = vmx_setup_mce,
+
+	.smi_allowed = vmx_smi_allowed,
+	.pre_enter_smm = vmx_pre_enter_smm,
+	.pre_leave_smm = vmx_pre_leave_smm,
+	.enable_smi_window = enable_smi_window,
+
+	.check_nested_events = NULL,
+	.get_nested_state = NULL,
+	.set_nested_state = NULL,
+	.get_vmcs12_pages = NULL,
+	.nested_enable_evmcs = NULL,
+};
+
+static void vmx_cleanup_l1d_flush(void)
+{
+	if (vmx_l1d_flush_pages) {
+		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
+		vmx_l1d_flush_pages = NULL;
+	}
+	/* Restore state so sysfs ignores VMX */
+	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
+}
+
+static void vmx_exit(void)
+{
+#ifdef CONFIG_KEXEC_CORE
+	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
+	synchronize_rcu();
+#endif
+
+	kvm_exit();
+
+#if IS_ENABLED(CONFIG_HYPERV)
+	if (static_branch_unlikely(&enable_evmcs)) {
+		int cpu;
+		struct hv_vp_assist_page *vp_ap;
+		/*
+		 * Reset everything to support using non-enlightened VMCS
+		 * access later (e.g. when we reload the module with
+		 * enlightened_vmcs=0)
+		 */
+		for_each_online_cpu(cpu) {
+			vp_ap =	hv_get_vp_assist_page(cpu);
+
+			if (!vp_ap)
+				continue;
+
+			vp_ap->current_nested_vmcs = 0;
+			vp_ap->enlighten_vmentry = 0;
+		}
+
+		static_branch_disable(&enable_evmcs);
+	}
+#endif
+	vmx_cleanup_l1d_flush();
+}
+module_exit(vmx_exit);
+
+static int __init vmx_init(void)
+{
+	int r;
+
+#if IS_ENABLED(CONFIG_HYPERV)
+	/*
+	 * Enlightened VMCS usage should be recommended and the host needs
+	 * to support eVMCS v1 or above. We can also disable eVMCS support
+	 * with module parameter.
+	 */
+	if (enlightened_vmcs &&
+	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
+	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
+	    KVM_EVMCS_VERSION) {
+		int cpu;
+
+		/* Check that we have assist pages on all online CPUs */
+		for_each_online_cpu(cpu) {
+			if (!hv_get_vp_assist_page(cpu)) {
+				enlightened_vmcs = false;
+				break;
+			}
+		}
+
+		if (enlightened_vmcs) {
+			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
+			static_branch_enable(&enable_evmcs);
+		}
+	} else {
+		enlightened_vmcs = false;
+	}
+#endif
+
+	r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
+		     __alignof__(struct vcpu_vmx), THIS_MODULE);
+	if (r)
+		return r;
+
+	/*
+	 * Must be called after kvm_init() so enable_ept is properly set
+	 * up. Hand the parameter mitigation value in which was stored in
+	 * the pre module init parser. If no parameter was given, it will
+	 * contain 'auto' which will be turned into the default 'cond'
+	 * mitigation mode.
+	 */
+	if (boot_cpu_has(X86_BUG_L1TF)) {
+		r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
+		if (r) {
+			vmx_exit();
+			return r;
+		}
+	}
+
+#ifdef CONFIG_KEXEC_CORE
+	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
+			   crash_vmclear_local_loaded_vmcss);
+#endif
+	vmx_check_vmcs12_offsets();
+
+	return 0;
+}
+module_init(vmx_init);
diff --git a/arch/x86/kvm/vmx/vmx.h b/arch/x86/kvm/vmx/vmx.h
new file mode 100644
index 000000000000..99328954c2fc
--- /dev/null
+++ b/arch/x86/kvm/vmx/vmx.h
@@ -0,0 +1,519 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __KVM_X86_VMX_H
+#define __KVM_X86_VMX_H
+
+#include <linux/kvm_host.h>
+
+#include <asm/kvm.h>
+#include <asm/intel_pt.h>
+
+#include "capabilities.h"
+#include "ops.h"
+#include "vmcs.h"
+
+extern const u32 vmx_msr_index[];
+extern u64 host_efer;
+
+#define MSR_TYPE_R	1
+#define MSR_TYPE_W	2
+#define MSR_TYPE_RW	3
+
+#define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
+
+#define NR_AUTOLOAD_MSRS 8
+
+struct vmx_msrs {
+	unsigned int		nr;
+	struct vmx_msr_entry	val[NR_AUTOLOAD_MSRS];
+};
+
+struct shared_msr_entry {
+	unsigned index;
+	u64 data;
+	u64 mask;
+};
+
+enum segment_cache_field {
+	SEG_FIELD_SEL = 0,
+	SEG_FIELD_BASE = 1,
+	SEG_FIELD_LIMIT = 2,
+	SEG_FIELD_AR = 3,
+
+	SEG_FIELD_NR = 4
+};
+
+/* Posted-Interrupt Descriptor */
+struct pi_desc {
+	u32 pir[8];     /* Posted interrupt requested */
+	union {
+		struct {
+				/* bit 256 - Outstanding Notification */
+			u16	on	: 1,
+				/* bit 257 - Suppress Notification */
+				sn	: 1,
+				/* bit 271:258 - Reserved */
+				rsvd_1	: 14;
+				/* bit 279:272 - Notification Vector */
+			u8	nv;
+				/* bit 287:280 - Reserved */
+			u8	rsvd_2;
+				/* bit 319:288 - Notification Destination */
+			u32	ndst;
+		};
+		u64 control;
+	};
+	u32 rsvd[6];
+} __aligned(64);
+
+#define RTIT_ADDR_RANGE		4
+
+struct pt_ctx {
+	u64 ctl;
+	u64 status;
+	u64 output_base;
+	u64 output_mask;
+	u64 cr3_match;
+	u64 addr_a[RTIT_ADDR_RANGE];
+	u64 addr_b[RTIT_ADDR_RANGE];
+};
+
+struct pt_desc {
+	u64 ctl_bitmask;
+	u32 addr_range;
+	u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
+	struct pt_ctx host;
+	struct pt_ctx guest;
+};
+
+/*
+ * The nested_vmx structure is part of vcpu_vmx, and holds information we need
+ * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
+ */
+struct nested_vmx {
+	/* Has the level1 guest done vmxon? */
+	bool vmxon;
+	gpa_t vmxon_ptr;
+	bool pml_full;
+
+	/* The guest-physical address of the current VMCS L1 keeps for L2 */
+	gpa_t current_vmptr;
+	/*
+	 * Cache of the guest's VMCS, existing outside of guest memory.
+	 * Loaded from guest memory during VMPTRLD. Flushed to guest
+	 * memory during VMCLEAR and VMPTRLD.
+	 */
+	struct vmcs12 *cached_vmcs12;
+	/*
+	 * Cache of the guest's shadow VMCS, existing outside of guest
+	 * memory. Loaded from guest memory during VM entry. Flushed
+	 * to guest memory during VM exit.
+	 */
+	struct vmcs12 *cached_shadow_vmcs12;
+	/*
+	 * Indicates if the shadow vmcs or enlightened vmcs must be updated
+	 * with the data held by struct vmcs12.
+	 */
+	bool need_vmcs12_sync;
+	bool dirty_vmcs12;
+
+	/*
+	 * vmcs02 has been initialized, i.e. state that is constant for
+	 * vmcs02 has been written to the backing VMCS.  Initialization
+	 * is delayed until L1 actually attempts to run a nested VM.
+	 */
+	bool vmcs02_initialized;
+
+	bool change_vmcs01_virtual_apic_mode;
+
+	/*
+	 * Enlightened VMCS has been enabled. It does not mean that L1 has to
+	 * use it. However, VMX features available to L1 will be limited based
+	 * on what the enlightened VMCS supports.
+	 */
+	bool enlightened_vmcs_enabled;
+
+	/* L2 must run next, and mustn't decide to exit to L1. */
+	bool nested_run_pending;
+
+	struct loaded_vmcs vmcs02;
+
+	/*
+	 * Guest pages referred to in the vmcs02 with host-physical
+	 * pointers, so we must keep them pinned while L2 runs.
+	 */
+	struct page *apic_access_page;
+	struct page *virtual_apic_page;
+	struct page *pi_desc_page;
+	struct pi_desc *pi_desc;
+	bool pi_pending;
+	u16 posted_intr_nv;
+
+	struct hrtimer preemption_timer;
+	bool preemption_timer_expired;
+
+	/* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
+	u64 vmcs01_debugctl;
+	u64 vmcs01_guest_bndcfgs;
+
+	u16 vpid02;
+	u16 last_vpid;
+
+	struct nested_vmx_msrs msrs;
+
+	/* SMM related state */
+	struct {
+		/* in VMX operation on SMM entry? */
+		bool vmxon;
+		/* in guest mode on SMM entry? */
+		bool guest_mode;
+	} smm;
+
+	gpa_t hv_evmcs_vmptr;
+	struct page *hv_evmcs_page;
+	struct hv_enlightened_vmcs *hv_evmcs;
+};
+
+struct vcpu_vmx {
+	struct kvm_vcpu       vcpu;
+	unsigned long         host_rsp;
+	u8                    fail;
+	u8		      msr_bitmap_mode;
+	u32                   exit_intr_info;
+	u32                   idt_vectoring_info;
+	ulong                 rflags;
+	struct shared_msr_entry *guest_msrs;
+	int                   nmsrs;
+	int                   save_nmsrs;
+	bool                  guest_msrs_dirty;
+	unsigned long	      host_idt_base;
+#ifdef CONFIG_X86_64
+	u64		      msr_host_kernel_gs_base;
+	u64		      msr_guest_kernel_gs_base;
+#endif
+
+	u64		      arch_capabilities;
+	u64		      spec_ctrl;
+
+	u32 vm_entry_controls_shadow;
+	u32 vm_exit_controls_shadow;
+	u32 secondary_exec_control;
+
+	/*
+	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
+	 * non-nested (L1) guest, it always points to vmcs01. For a nested
+	 * guest (L2), it points to a different VMCS.  loaded_cpu_state points
+	 * to the VMCS whose state is loaded into the CPU registers that only
+	 * need to be switched when transitioning to/from the kernel; a NULL
+	 * value indicates that host state is loaded.
+	 */
+	struct loaded_vmcs    vmcs01;
+	struct loaded_vmcs   *loaded_vmcs;
+	struct loaded_vmcs   *loaded_cpu_state;
+	bool                  __launched; /* temporary, used in vmx_vcpu_run */
+	struct msr_autoload {
+		struct vmx_msrs guest;
+		struct vmx_msrs host;
+	} msr_autoload;
+
+	struct {
+		int vm86_active;
+		ulong save_rflags;
+		struct kvm_segment segs[8];
+	} rmode;
+	struct {
+		u32 bitmask; /* 4 bits per segment (1 bit per field) */
+		struct kvm_save_segment {
+			u16 selector;
+			unsigned long base;
+			u32 limit;
+			u32 ar;
+		} seg[8];
+	} segment_cache;
+	int vpid;
+	bool emulation_required;
+
+	u32 exit_reason;
+
+	/* Posted interrupt descriptor */
+	struct pi_desc pi_desc;
+
+	/* Support for a guest hypervisor (nested VMX) */
+	struct nested_vmx nested;
+
+	/* Dynamic PLE window. */
+	int ple_window;
+	bool ple_window_dirty;
+
+	bool req_immediate_exit;
+
+	/* Support for PML */
+#define PML_ENTITY_NUM		512
+	struct page *pml_pg;
+
+	/* apic deadline value in host tsc */
+	u64 hv_deadline_tsc;
+
+	u64 current_tsc_ratio;
+
+	u32 host_pkru;
+
+	unsigned long host_debugctlmsr;
+
+	/*
+	 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
+	 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
+	 * in msr_ia32_feature_control_valid_bits.
+	 */
+	u64 msr_ia32_feature_control;
+	u64 msr_ia32_feature_control_valid_bits;
+	u64 ept_pointer;
+
+	struct pt_desc pt_desc;
+};
+
+enum ept_pointers_status {
+	EPT_POINTERS_CHECK = 0,
+	EPT_POINTERS_MATCH = 1,
+	EPT_POINTERS_MISMATCH = 2
+};
+
+struct kvm_vmx {
+	struct kvm kvm;
+
+	unsigned int tss_addr;
+	bool ept_identity_pagetable_done;
+	gpa_t ept_identity_map_addr;
+
+	enum ept_pointers_status ept_pointers_match;
+	spinlock_t ept_pointer_lock;
+};
+
+bool nested_vmx_allowed(struct kvm_vcpu *vcpu);
+void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
+void vmx_vcpu_put(struct kvm_vcpu *vcpu);
+int allocate_vpid(void);
+void free_vpid(int vpid);
+void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
+void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
+int vmx_get_cpl(struct kvm_vcpu *vcpu);
+unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
+void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
+u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
+void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
+void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
+void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
+void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
+int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
+void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
+void ept_save_pdptrs(struct kvm_vcpu *vcpu);
+void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
+void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
+u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
+void update_exception_bitmap(struct kvm_vcpu *vcpu);
+void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
+bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
+void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
+void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
+struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr);
+void pt_update_intercept_for_msr(struct vcpu_vmx *vmx);
+
+#define POSTED_INTR_ON  0
+#define POSTED_INTR_SN  1
+
+static inline bool pi_test_and_set_on(struct pi_desc *pi_desc)
+{
+	return test_and_set_bit(POSTED_INTR_ON,
+			(unsigned long *)&pi_desc->control);
+}
+
+static inline bool pi_test_and_clear_on(struct pi_desc *pi_desc)
+{
+	return test_and_clear_bit(POSTED_INTR_ON,
+			(unsigned long *)&pi_desc->control);
+}
+
+static inline int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
+{
+	return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
+}
+
+static inline void pi_clear_sn(struct pi_desc *pi_desc)
+{
+	return clear_bit(POSTED_INTR_SN,
+			(unsigned long *)&pi_desc->control);
+}
+
+static inline void pi_set_sn(struct pi_desc *pi_desc)
+{
+	return set_bit(POSTED_INTR_SN,
+			(unsigned long *)&pi_desc->control);
+}
+
+static inline void pi_clear_on(struct pi_desc *pi_desc)
+{
+	clear_bit(POSTED_INTR_ON,
+		(unsigned long *)&pi_desc->control);
+}
+
+static inline int pi_test_on(struct pi_desc *pi_desc)
+{
+	return test_bit(POSTED_INTR_ON,
+			(unsigned long *)&pi_desc->control);
+}
+
+static inline int pi_test_sn(struct pi_desc *pi_desc)
+{
+	return test_bit(POSTED_INTR_SN,
+			(unsigned long *)&pi_desc->control);
+}
+
+static inline u8 vmx_get_rvi(void)
+{
+	return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
+}
+
+static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
+{
+	vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
+}
+
+static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
+{
+	vmcs_write32(VM_ENTRY_CONTROLS, val);
+	vmx->vm_entry_controls_shadow = val;
+}
+
+static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
+{
+	if (vmx->vm_entry_controls_shadow != val)
+		vm_entry_controls_init(vmx, val);
+}
+
+static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
+{
+	return vmx->vm_entry_controls_shadow;
+}
+
+static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
+{
+	vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
+}
+
+static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
+{
+	vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
+}
+
+static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
+{
+	vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
+}
+
+static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
+{
+	vmcs_write32(VM_EXIT_CONTROLS, val);
+	vmx->vm_exit_controls_shadow = val;
+}
+
+static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
+{
+	if (vmx->vm_exit_controls_shadow != val)
+		vm_exit_controls_init(vmx, val);
+}
+
+static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
+{
+	return vmx->vm_exit_controls_shadow;
+}
+
+static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
+{
+	vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
+}
+
+static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
+{
+	vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
+}
+
+static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
+{
+	vmx->segment_cache.bitmask = 0;
+}
+
+static inline u32 vmx_vmentry_ctrl(void)
+{
+	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
+	if (pt_mode == PT_MODE_SYSTEM)
+		vmentry_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | VM_EXIT_CLEAR_IA32_RTIT_CTL);
+	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
+	return vmentry_ctrl &
+		~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
+}
+
+static inline u32 vmx_vmexit_ctrl(void)
+{
+	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
+	if (pt_mode == PT_MODE_SYSTEM)
+		vmexit_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | VM_ENTRY_LOAD_IA32_RTIT_CTL);
+	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
+	return vmcs_config.vmexit_ctrl &
+		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
+}
+
+u32 vmx_exec_control(struct vcpu_vmx *vmx);
+
+static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
+{
+	return container_of(kvm, struct kvm_vmx, kvm);
+}
+
+static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
+{
+	return container_of(vcpu, struct vcpu_vmx, vcpu);
+}
+
+static inline struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
+{
+	return &(to_vmx(vcpu)->pi_desc);
+}
+
+struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu);
+void free_vmcs(struct vmcs *vmcs);
+int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
+void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
+void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs);
+void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
+
+static inline struct vmcs *alloc_vmcs(bool shadow)
+{
+	return alloc_vmcs_cpu(shadow, raw_smp_processor_id());
+}
+
+u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
+
+static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid,
+				bool invalidate_gpa)
+{
+	if (enable_ept && (invalidate_gpa || !enable_vpid)) {
+		if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
+			return;
+		ept_sync_context(construct_eptp(vcpu,
+						vcpu->arch.mmu->root_hpa));
+	} else {
+		vpid_sync_context(vpid);
+	}
+}
+
+static inline void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
+{
+	__vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa);
+}
+
+static inline void decache_tsc_multiplier(struct vcpu_vmx *vmx)
+{
+	vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
+	vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
+}
+
+#endif /* __KVM_X86_VMX_H */
diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c
index 5cd5647120f2..02c8e095a239 100644
--- a/arch/x86/kvm/x86.c
+++ b/arch/x86/kvm/x86.c
@@ -69,6 +69,7 @@
 #include <asm/irq_remapping.h>
 #include <asm/mshyperv.h>
 #include <asm/hypervisor.h>
+#include <asm/intel_pt.h>
 
 #define CREATE_TRACE_POINTS
 #include "trace.h"
@@ -213,6 +214,9 @@ struct kvm_stats_debugfs_item debugfs_entries[] = {
 
 u64 __read_mostly host_xcr0;
 
+struct kmem_cache *x86_fpu_cache;
+EXPORT_SYMBOL_GPL(x86_fpu_cache);
+
 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
 
 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
@@ -1121,7 +1125,13 @@ static u32 msrs_to_save[] = {
 #endif
 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
-	MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
+	MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES,
+	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
+	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
+	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
+	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
+	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
+	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
 };
 
 static unsigned num_msrs_to_save;
@@ -1665,8 +1675,7 @@ EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
 
 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
 {
-	kvm_x86_ops->write_tsc_offset(vcpu, offset);
-	vcpu->arch.tsc_offset = offset;
+	vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
 }
 
 static inline bool kvm_check_tsc_unstable(void)
@@ -1794,7 +1803,8 @@ EXPORT_SYMBOL_GPL(kvm_write_tsc);
 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
 					   s64 adjustment)
 {
-	kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
+	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
+	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
 }
 
 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
@@ -2426,6 +2436,7 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 	case MSR_AMD64_PATCH_LOADER:
 	case MSR_AMD64_BU_CFG2:
 	case MSR_AMD64_DC_CFG:
+	case MSR_F15H_EX_CFG:
 		break;
 
 	case MSR_IA32_UCODE_REV:
@@ -2721,6 +2732,7 @@ int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 	case MSR_AMD64_BU_CFG2:
 	case MSR_IA32_PERF_CTL:
 	case MSR_AMD64_DC_CFG:
+	case MSR_F15H_EX_CFG:
 		msr_info->data = 0;
 		break;
 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
@@ -2997,6 +3009,7 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
 	case KVM_CAP_HYPERV_TLBFLUSH:
 	case KVM_CAP_HYPERV_SEND_IPI:
 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
+	case KVM_CAP_HYPERV_CPUID:
 	case KVM_CAP_PCI_SEGMENT:
 	case KVM_CAP_DEBUGREGS:
 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
@@ -3008,7 +3021,6 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
 	case KVM_CAP_HYPERV_TIME:
 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
 	case KVM_CAP_TSC_DEADLINE_TIMER:
-	case KVM_CAP_ENABLE_CAP_VM:
 	case KVM_CAP_DISABLE_QUIRKS:
 	case KVM_CAP_SET_BOOT_CPU_ID:
  	case KVM_CAP_SPLIT_IRQCHIP:
@@ -3630,7 +3642,7 @@ static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
 
 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
 {
-	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
+	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
 	u64 xstate_bv = xsave->header.xfeatures;
 	u64 valid;
 
@@ -3672,7 +3684,7 @@ static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
 
 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
 {
-	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
+	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
 	u64 valid;
 
@@ -3720,7 +3732,7 @@ static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
 		fill_xsave((u8 *) guest_xsave->region, vcpu);
 	} else {
 		memcpy(guest_xsave->region,
-			&vcpu->arch.guest_fpu.state.fxsave,
+			&vcpu->arch.guest_fpu->state.fxsave,
 			sizeof(struct fxregs_state));
 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
 			XFEATURE_MASK_FPSSE;
@@ -3750,7 +3762,7 @@ static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
 			mxcsr & ~mxcsr_feature_mask)
 			return -EINVAL;
-		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
+		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
 			guest_xsave->region, sizeof(struct fxregs_state));
 	}
 	return 0;
@@ -3828,6 +3840,8 @@ static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
 		return kvm_hv_activate_synic(vcpu, cap->cap ==
 					     KVM_CAP_HYPERV_SYNIC2);
 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
+		if (!kvm_x86_ops->nested_enable_evmcs)
+			return -ENOTTY;
 		r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
 		if (!r) {
 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
@@ -4190,6 +4204,25 @@ long kvm_arch_vcpu_ioctl(struct file *filp,
 		r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
 		break;
 	}
+	case KVM_GET_SUPPORTED_HV_CPUID: {
+		struct kvm_cpuid2 __user *cpuid_arg = argp;
+		struct kvm_cpuid2 cpuid;
+
+		r = -EFAULT;
+		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
+			goto out;
+
+		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
+						cpuid_arg->entries);
+		if (r)
+			goto out;
+
+		r = -EFAULT;
+		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
+			goto out;
+		r = 0;
+		break;
+	}
 	default:
 		r = -EINVAL;
 	}
@@ -4394,7 +4427,7 @@ static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  */
 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
 {
-	bool is_dirty = false;
+	bool flush = false;
 	int r;
 
 	mutex_lock(&kvm->slots_lock);
@@ -4405,14 +4438,41 @@ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
 	if (kvm_x86_ops->flush_log_dirty)
 		kvm_x86_ops->flush_log_dirty(kvm);
 
-	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
+	r = kvm_get_dirty_log_protect(kvm, log, &flush);
 
 	/*
 	 * All the TLBs can be flushed out of mmu lock, see the comments in
 	 * kvm_mmu_slot_remove_write_access().
 	 */
 	lockdep_assert_held(&kvm->slots_lock);
-	if (is_dirty)
+	if (flush)
+		kvm_flush_remote_tlbs(kvm);
+
+	mutex_unlock(&kvm->slots_lock);
+	return r;
+}
+
+int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
+{
+	bool flush = false;
+	int r;
+
+	mutex_lock(&kvm->slots_lock);
+
+	/*
+	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
+	 */
+	if (kvm_x86_ops->flush_log_dirty)
+		kvm_x86_ops->flush_log_dirty(kvm);
+
+	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
+
+	/*
+	 * All the TLBs can be flushed out of mmu lock, see the comments in
+	 * kvm_mmu_slot_remove_write_access().
+	 */
+	lockdep_assert_held(&kvm->slots_lock);
+	if (flush)
 		kvm_flush_remote_tlbs(kvm);
 
 	mutex_unlock(&kvm->slots_lock);
@@ -4431,8 +4491,8 @@ int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
 	return 0;
 }
 
-static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
-				   struct kvm_enable_cap *cap)
+int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
+			    struct kvm_enable_cap *cap)
 {
 	int r;
 
@@ -4765,15 +4825,6 @@ set_identity_unlock:
 		r = 0;
 		break;
 	}
-	case KVM_ENABLE_CAP: {
-		struct kvm_enable_cap cap;
-
-		r = -EFAULT;
-		if (copy_from_user(&cap, argp, sizeof(cap)))
-			goto out;
-		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
-		break;
-	}
 	case KVM_MEMORY_ENCRYPT_OP: {
 		r = -ENOTTY;
 		if (kvm_x86_ops->mem_enc_op)
@@ -4842,6 +4893,30 @@ static void kvm_init_msr_list(void)
 			if (!kvm_x86_ops->rdtscp_supported())
 				continue;
 			break;
+		case MSR_IA32_RTIT_CTL:
+		case MSR_IA32_RTIT_STATUS:
+			if (!kvm_x86_ops->pt_supported())
+				continue;
+			break;
+		case MSR_IA32_RTIT_CR3_MATCH:
+			if (!kvm_x86_ops->pt_supported() ||
+			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
+				continue;
+			break;
+		case MSR_IA32_RTIT_OUTPUT_BASE:
+		case MSR_IA32_RTIT_OUTPUT_MASK:
+			if (!kvm_x86_ops->pt_supported() ||
+				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
+				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
+				continue;
+			break;
+		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
+			if (!kvm_x86_ops->pt_supported() ||
+				msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
+				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
+				continue;
+			break;
+		}
 		default:
 			break;
 		}
@@ -6813,11 +6888,30 @@ int kvm_arch_init(void *opaque)
 		goto out;
 	}
 
+	/*
+	 * KVM explicitly assumes that the guest has an FPU and
+	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
+	 * vCPU's FPU state as a fxregs_state struct.
+	 */
+	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
+		printk(KERN_ERR "kvm: inadequate fpu\n");
+		r = -EOPNOTSUPP;
+		goto out;
+	}
+
 	r = -ENOMEM;
+	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
+					  __alignof__(struct fpu), SLAB_ACCOUNT,
+					  NULL);
+	if (!x86_fpu_cache) {
+		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
+		goto out;
+	}
+
 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
 	if (!shared_msrs) {
 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
-		goto out;
+		goto out_free_x86_fpu_cache;
 	}
 
 	r = kvm_mmu_module_init();
@@ -6850,6 +6944,8 @@ int kvm_arch_init(void *opaque)
 
 out_free_percpu:
 	free_percpu(shared_msrs);
+out_free_x86_fpu_cache:
+	kmem_cache_destroy(x86_fpu_cache);
 out:
 	return r;
 }
@@ -6873,6 +6969,7 @@ void kvm_arch_exit(void)
 	kvm_x86_ops = NULL;
 	kvm_mmu_module_exit();
 	free_percpu(shared_msrs);
+	kmem_cache_destroy(x86_fpu_cache);
 }
 
 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
@@ -6918,6 +7015,7 @@ static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
 	clock_pairing.nsec = ts.tv_nsec;
 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
 	clock_pairing.flags = 0;
+	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
 
 	ret = 0;
 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
@@ -7445,7 +7543,7 @@ void kvm_make_scan_ioapic_request(struct kvm *kvm)
 
 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
 {
-	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
+	if (!kvm_apic_present(vcpu))
 		return;
 
 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
@@ -7455,7 +7553,8 @@ static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
 	else {
 		if (vcpu->arch.apicv_active)
 			kvm_x86_ops->sync_pir_to_irr(vcpu);
-		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
+		if (ioapic_in_kernel(vcpu->kvm))
+			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
 	}
 
 	if (is_guest_mode(vcpu))
@@ -7994,9 +8093,9 @@ static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
 {
 	preempt_disable();
-	copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
+	copy_fpregs_to_fpstate(&current->thread.fpu);
 	/* PKRU is separately restored in kvm_x86_ops->run.  */
-	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
+	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
 				~XFEATURE_MASK_PKRU);
 	preempt_enable();
 	trace_kvm_fpu(1);
@@ -8006,8 +8105,8 @@ static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
 {
 	preempt_disable();
-	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
-	copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
+	copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
+	copy_kernel_to_fpregs(&current->thread.fpu.state);
 	preempt_enable();
 	++vcpu->stat.fpu_reload;
 	trace_kvm_fpu(0);
@@ -8501,7 +8600,7 @@ int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
 
 	vcpu_load(vcpu);
 
-	fxsave = &vcpu->arch.guest_fpu.state.fxsave;
+	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
 	memcpy(fpu->fpr, fxsave->st_space, 128);
 	fpu->fcw = fxsave->cwd;
 	fpu->fsw = fxsave->swd;
@@ -8521,7 +8620,7 @@ int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
 
 	vcpu_load(vcpu);
 
-	fxsave = &vcpu->arch.guest_fpu.state.fxsave;
+	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
 
 	memcpy(fxsave->st_space, fpu->fpr, 128);
 	fxsave->cwd = fpu->fcw;
@@ -8577,9 +8676,9 @@ static int sync_regs(struct kvm_vcpu *vcpu)
 
 static void fx_init(struct kvm_vcpu *vcpu)
 {
-	fpstate_init(&vcpu->arch.guest_fpu.state);
+	fpstate_init(&vcpu->arch.guest_fpu->state);
 	if (boot_cpu_has(X86_FEATURE_XSAVES))
-		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
+		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
 
 	/*
@@ -8617,6 +8716,7 @@ struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
 
 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
 {
+	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
 	kvm_vcpu_mtrr_init(vcpu);
 	vcpu_load(vcpu);
 	kvm_vcpu_reset(vcpu, false);
@@ -8703,11 +8803,11 @@ void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
 		 */
 		if (init_event)
 			kvm_put_guest_fpu(vcpu);
-		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
+		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
 					XFEATURE_MASK_BNDREGS);
 		if (mpx_state_buffer)
 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
-		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
+		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
 					XFEATURE_MASK_BNDCSR);
 		if (mpx_state_buffer)
 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
@@ -8719,7 +8819,6 @@ void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
 		kvm_pmu_reset(vcpu);
 		vcpu->arch.smbase = 0x30000;
 
-		vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
 		vcpu->arch.msr_misc_features_enables = 0;
 
 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
@@ -9278,7 +9377,7 @@ static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
 	 * with dirty logging disabled in order to eliminate unnecessary GPA
 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
 	 * guarantees leaving PML enabled during guest's lifetime won't have
-	 * any additonal overhead from PML when guest is running with dirty
+	 * any additional overhead from PML when guest is running with dirty
 	 * logging disabled for memory slots.
 	 *
 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
diff --git a/arch/x86/lib/Makefile b/arch/x86/lib/Makefile
index 25a972c61b0a..ce28829f1281 100644
--- a/arch/x86/lib/Makefile
+++ b/arch/x86/lib/Makefile
@@ -30,6 +30,7 @@ lib-$(CONFIG_FUNCTION_ERROR_INJECTION)	+= error-inject.o
 lib-$(CONFIG_RETPOLINE) += retpoline.o
 
 obj-y += msr.o msr-reg.o msr-reg-export.o hweight.o
+obj-y += iomem.o
 
 ifeq ($(CONFIG_X86_32),y)
         obj-y += atomic64_32.o
diff --git a/arch/x86/lib/csum-wrappers_64.c b/arch/x86/lib/csum-wrappers_64.c
index 8bd53589ecfb..a6a2b7dccbff 100644
--- a/arch/x86/lib/csum-wrappers_64.c
+++ b/arch/x86/lib/csum-wrappers_64.c
@@ -27,7 +27,7 @@ csum_partial_copy_from_user(const void __user *src, void *dst,
 	might_sleep();
 	*errp = 0;
 
-	if (!likely(access_ok(VERIFY_READ, src, len)))
+	if (!likely(access_ok(src, len)))
 		goto out_err;
 
 	/*
@@ -89,7 +89,7 @@ csum_partial_copy_to_user(const void *src, void __user *dst,
 
 	might_sleep();
 
-	if (unlikely(!access_ok(VERIFY_WRITE, dst, len))) {
+	if (unlikely(!access_ok(dst, len))) {
 		*errp = -EFAULT;
 		return 0;
 	}
diff --git a/arch/x86/lib/iomem.c b/arch/x86/lib/iomem.c
new file mode 100644
index 000000000000..66894675f3c8
--- /dev/null
+++ b/arch/x86/lib/iomem.c
@@ -0,0 +1,42 @@
+#include <linux/string.h>
+#include <linux/module.h>
+#include <linux/io.h>
+
+/* Originally from i386/string.h */
+static __always_inline void __iomem_memcpy(void *to, const void *from, size_t n)
+{
+	unsigned long d0, d1, d2;
+	asm volatile("rep ; movsl\n\t"
+		     "testb $2,%b4\n\t"
+		     "je 1f\n\t"
+		     "movsw\n"
+		     "1:\ttestb $1,%b4\n\t"
+		     "je 2f\n\t"
+		     "movsb\n"
+		     "2:"
+		     : "=&c" (d0), "=&D" (d1), "=&S" (d2)
+		     : "0" (n / 4), "q" (n), "1" ((long)to), "2" ((long)from)
+		     : "memory");
+}
+
+void memcpy_fromio(void *to, const volatile void __iomem *from, size_t n)
+{
+	__iomem_memcpy(to, (const void *)from, n);
+}
+EXPORT_SYMBOL(memcpy_fromio);
+
+void memcpy_toio(volatile void __iomem *to, const void *from, size_t n)
+{
+	__iomem_memcpy((void *)to, (const void *) from, n);
+}
+EXPORT_SYMBOL(memcpy_toio);
+
+void memset_io(volatile void __iomem *a, int b, size_t c)
+{
+	/*
+	 * TODO: memset can mangle the IO patterns quite a bit.
+	 * perhaps it would be better to use a dumb one:
+	 */
+	memset((void *)a, b, c);
+}
+EXPORT_SYMBOL(memset_io);
diff --git a/arch/x86/lib/usercopy_32.c b/arch/x86/lib/usercopy_32.c
index 71fb58d44d58..bfd94e7812fc 100644
--- a/arch/x86/lib/usercopy_32.c
+++ b/arch/x86/lib/usercopy_32.c
@@ -67,7 +67,7 @@ unsigned long
 clear_user(void __user *to, unsigned long n)
 {
 	might_fault();
-	if (access_ok(VERIFY_WRITE, to, n))
+	if (access_ok(to, n))
 		__do_clear_user(to, n);
 	return n;
 }
diff --git a/arch/x86/lib/usercopy_64.c b/arch/x86/lib/usercopy_64.c
index 1bd837cdc4b1..ee42bb0cbeb3 100644
--- a/arch/x86/lib/usercopy_64.c
+++ b/arch/x86/lib/usercopy_64.c
@@ -48,7 +48,7 @@ EXPORT_SYMBOL(__clear_user);
 
 unsigned long clear_user(void __user *to, unsigned long n)
 {
-	if (access_ok(VERIFY_WRITE, to, n))
+	if (access_ok(to, n))
 		return __clear_user(to, n);
 	return n;
 }
diff --git a/arch/x86/math-emu/fpu_system.h b/arch/x86/math-emu/fpu_system.h
index c8b1b31ed7c4..f98a0c956764 100644
--- a/arch/x86/math-emu/fpu_system.h
+++ b/arch/x86/math-emu/fpu_system.h
@@ -104,7 +104,7 @@ static inline bool seg_writable(struct desc_struct *d)
 #define instruction_address	(*(struct address *)&I387->soft.fip)
 #define operand_address		(*(struct address *)&I387->soft.foo)
 
-#define FPU_access_ok(x,y,z)	if ( !access_ok(x,y,z) ) \
+#define FPU_access_ok(y,z)	if ( !access_ok(y,z) ) \
 				math_abort(FPU_info,SIGSEGV)
 #define FPU_abort		math_abort(FPU_info, SIGSEGV)
 
@@ -119,7 +119,7 @@ static inline bool seg_writable(struct desc_struct *d)
 /* A simpler test than access_ok() can probably be done for
    FPU_code_access_ok() because the only possible error is to step
    past the upper boundary of a legal code area. */
-#define	FPU_code_access_ok(z) FPU_access_ok(VERIFY_READ,(void __user *)FPU_EIP,z)
+#define	FPU_code_access_ok(z) FPU_access_ok((void __user *)FPU_EIP,z)
 #endif
 
 #define FPU_get_user(x,y)       get_user((x),(y))
diff --git a/arch/x86/math-emu/load_store.c b/arch/x86/math-emu/load_store.c
index f821a9cd7753..f15263e158e8 100644
--- a/arch/x86/math-emu/load_store.c
+++ b/arch/x86/math-emu/load_store.c
@@ -251,7 +251,7 @@ int FPU_load_store(u_char type, fpu_addr_modes addr_modes,
 		break;
 	case 024:		/* fldcw */
 		RE_ENTRANT_CHECK_OFF;
-		FPU_access_ok(VERIFY_READ, data_address, 2);
+		FPU_access_ok(data_address, 2);
 		FPU_get_user(control_word,
 			     (unsigned short __user *)data_address);
 		RE_ENTRANT_CHECK_ON;
@@ -291,7 +291,7 @@ int FPU_load_store(u_char type, fpu_addr_modes addr_modes,
 		break;
 	case 034:		/* fstcw m16int */
 		RE_ENTRANT_CHECK_OFF;
-		FPU_access_ok(VERIFY_WRITE, data_address, 2);
+		FPU_access_ok(data_address, 2);
 		FPU_put_user(control_word,
 			     (unsigned short __user *)data_address);
 		RE_ENTRANT_CHECK_ON;
@@ -305,7 +305,7 @@ int FPU_load_store(u_char type, fpu_addr_modes addr_modes,
 		break;
 	case 036:		/* fstsw m2byte */
 		RE_ENTRANT_CHECK_OFF;
-		FPU_access_ok(VERIFY_WRITE, data_address, 2);
+		FPU_access_ok(data_address, 2);
 		FPU_put_user(status_word(),
 			     (unsigned short __user *)data_address);
 		RE_ENTRANT_CHECK_ON;
diff --git a/arch/x86/math-emu/reg_ld_str.c b/arch/x86/math-emu/reg_ld_str.c
index d40ff45497b9..f3779743d15e 100644
--- a/arch/x86/math-emu/reg_ld_str.c
+++ b/arch/x86/math-emu/reg_ld_str.c
@@ -84,7 +84,7 @@ int FPU_load_extended(long double __user *s, int stnr)
 	FPU_REG *sti_ptr = &st(stnr);
 
 	RE_ENTRANT_CHECK_OFF;
-	FPU_access_ok(VERIFY_READ, s, 10);
+	FPU_access_ok(s, 10);
 	__copy_from_user(sti_ptr, s, 10);
 	RE_ENTRANT_CHECK_ON;
 
@@ -98,7 +98,7 @@ int FPU_load_double(double __user *dfloat, FPU_REG *loaded_data)
 	unsigned m64, l64;
 
 	RE_ENTRANT_CHECK_OFF;
-	FPU_access_ok(VERIFY_READ, dfloat, 8);
+	FPU_access_ok(dfloat, 8);
 	FPU_get_user(m64, 1 + (unsigned long __user *)dfloat);
 	FPU_get_user(l64, (unsigned long __user *)dfloat);
 	RE_ENTRANT_CHECK_ON;
@@ -159,7 +159,7 @@ int FPU_load_single(float __user *single, FPU_REG *loaded_data)
 	int exp, tag, negative;
 
 	RE_ENTRANT_CHECK_OFF;
-	FPU_access_ok(VERIFY_READ, single, 4);
+	FPU_access_ok(single, 4);
 	FPU_get_user(m32, (unsigned long __user *)single);
 	RE_ENTRANT_CHECK_ON;
 
@@ -214,7 +214,7 @@ int FPU_load_int64(long long __user *_s)
 	FPU_REG *st0_ptr = &st(0);
 
 	RE_ENTRANT_CHECK_OFF;
-	FPU_access_ok(VERIFY_READ, _s, 8);
+	FPU_access_ok(_s, 8);
 	if (copy_from_user(&s, _s, 8))
 		FPU_abort;
 	RE_ENTRANT_CHECK_ON;
@@ -243,7 +243,7 @@ int FPU_load_int32(long __user *_s, FPU_REG *loaded_data)
 	int negative;
 
 	RE_ENTRANT_CHECK_OFF;
-	FPU_access_ok(VERIFY_READ, _s, 4);
+	FPU_access_ok(_s, 4);
 	FPU_get_user(s, _s);
 	RE_ENTRANT_CHECK_ON;
 
@@ -271,7 +271,7 @@ int FPU_load_int16(short __user *_s, FPU_REG *loaded_data)
 	int s, negative;
 
 	RE_ENTRANT_CHECK_OFF;
-	FPU_access_ok(VERIFY_READ, _s, 2);
+	FPU_access_ok(_s, 2);
 	/* Cast as short to get the sign extended. */
 	FPU_get_user(s, _s);
 	RE_ENTRANT_CHECK_ON;
@@ -304,7 +304,7 @@ int FPU_load_bcd(u_char __user *s)
 	int sign;
 
 	RE_ENTRANT_CHECK_OFF;
-	FPU_access_ok(VERIFY_READ, s, 10);
+	FPU_access_ok(s, 10);
 	RE_ENTRANT_CHECK_ON;
 	for (pos = 8; pos >= 0; pos--) {
 		l *= 10;
@@ -345,7 +345,7 @@ int FPU_store_extended(FPU_REG *st0_ptr, u_char st0_tag,
 
 	if (st0_tag != TAG_Empty) {
 		RE_ENTRANT_CHECK_OFF;
-		FPU_access_ok(VERIFY_WRITE, d, 10);
+		FPU_access_ok(d, 10);
 
 		FPU_put_user(st0_ptr->sigl, (unsigned long __user *)d);
 		FPU_put_user(st0_ptr->sigh,
@@ -364,7 +364,7 @@ int FPU_store_extended(FPU_REG *st0_ptr, u_char st0_tag,
 		/* The masked response */
 		/* Put out the QNaN indefinite */
 		RE_ENTRANT_CHECK_OFF;
-		FPU_access_ok(VERIFY_WRITE, d, 10);
+		FPU_access_ok(d, 10);
 		FPU_put_user(0, (unsigned long __user *)d);
 		FPU_put_user(0xc0000000, 1 + (unsigned long __user *)d);
 		FPU_put_user(0xffff, 4 + (short __user *)d);
@@ -539,7 +539,7 @@ denormal_arg:
 			/* The masked response */
 			/* Put out the QNaN indefinite */
 			RE_ENTRANT_CHECK_OFF;
-			FPU_access_ok(VERIFY_WRITE, dfloat, 8);
+			FPU_access_ok(dfloat, 8);
 			FPU_put_user(0, (unsigned long __user *)dfloat);
 			FPU_put_user(0xfff80000,
 				     1 + (unsigned long __user *)dfloat);
@@ -552,7 +552,7 @@ denormal_arg:
 		l[1] |= 0x80000000;
 
 	RE_ENTRANT_CHECK_OFF;
-	FPU_access_ok(VERIFY_WRITE, dfloat, 8);
+	FPU_access_ok(dfloat, 8);
 	FPU_put_user(l[0], (unsigned long __user *)dfloat);
 	FPU_put_user(l[1], 1 + (unsigned long __user *)dfloat);
 	RE_ENTRANT_CHECK_ON;
@@ -724,7 +724,7 @@ int FPU_store_single(FPU_REG *st0_ptr, u_char st0_tag, float __user *single)
 			/* The masked response */
 			/* Put out the QNaN indefinite */
 			RE_ENTRANT_CHECK_OFF;
-			FPU_access_ok(VERIFY_WRITE, single, 4);
+			FPU_access_ok(single, 4);
 			FPU_put_user(0xffc00000,
 				     (unsigned long __user *)single);
 			RE_ENTRANT_CHECK_ON;
@@ -742,7 +742,7 @@ int FPU_store_single(FPU_REG *st0_ptr, u_char st0_tag, float __user *single)
 		templ |= 0x80000000;
 
 	RE_ENTRANT_CHECK_OFF;
-	FPU_access_ok(VERIFY_WRITE, single, 4);
+	FPU_access_ok(single, 4);
 	FPU_put_user(templ, (unsigned long __user *)single);
 	RE_ENTRANT_CHECK_ON;
 
@@ -791,7 +791,7 @@ int FPU_store_int64(FPU_REG *st0_ptr, u_char st0_tag, long long __user *d)
 	}
 
 	RE_ENTRANT_CHECK_OFF;
-	FPU_access_ok(VERIFY_WRITE, d, 8);
+	FPU_access_ok(d, 8);
 	if (copy_to_user(d, &tll, 8))
 		FPU_abort;
 	RE_ENTRANT_CHECK_ON;
@@ -838,7 +838,7 @@ int FPU_store_int32(FPU_REG *st0_ptr, u_char st0_tag, long __user *d)
 	}
 
 	RE_ENTRANT_CHECK_OFF;
-	FPU_access_ok(VERIFY_WRITE, d, 4);
+	FPU_access_ok(d, 4);
 	FPU_put_user(t.sigl, (unsigned long __user *)d);
 	RE_ENTRANT_CHECK_ON;
 
@@ -884,7 +884,7 @@ int FPU_store_int16(FPU_REG *st0_ptr, u_char st0_tag, short __user *d)
 	}
 
 	RE_ENTRANT_CHECK_OFF;
-	FPU_access_ok(VERIFY_WRITE, d, 2);
+	FPU_access_ok(d, 2);
 	FPU_put_user((short)t.sigl, d);
 	RE_ENTRANT_CHECK_ON;
 
@@ -925,7 +925,7 @@ int FPU_store_bcd(FPU_REG *st0_ptr, u_char st0_tag, u_char __user *d)
 		if (control_word & CW_Invalid) {
 			/* Produce the QNaN "indefinite" */
 			RE_ENTRANT_CHECK_OFF;
-			FPU_access_ok(VERIFY_WRITE, d, 10);
+			FPU_access_ok(d, 10);
 			for (i = 0; i < 7; i++)
 				FPU_put_user(0, d + i);	/* These bytes "undefined" */
 			FPU_put_user(0xc0, d + 7);	/* This byte "undefined" */
@@ -941,7 +941,7 @@ int FPU_store_bcd(FPU_REG *st0_ptr, u_char st0_tag, u_char __user *d)
 	}
 
 	RE_ENTRANT_CHECK_OFF;
-	FPU_access_ok(VERIFY_WRITE, d, 10);
+	FPU_access_ok(d, 10);
 	RE_ENTRANT_CHECK_ON;
 	for (i = 0; i < 9; i++) {
 		b = FPU_div_small(&ll, 10);
@@ -1034,7 +1034,7 @@ u_char __user *fldenv(fpu_addr_modes addr_modes, u_char __user *s)
 	    ((addr_modes.default_mode == PM16)
 	     ^ (addr_modes.override.operand_size == OP_SIZE_PREFIX))) {
 		RE_ENTRANT_CHECK_OFF;
-		FPU_access_ok(VERIFY_READ, s, 0x0e);
+		FPU_access_ok(s, 0x0e);
 		FPU_get_user(control_word, (unsigned short __user *)s);
 		FPU_get_user(partial_status, (unsigned short __user *)(s + 2));
 		FPU_get_user(tag_word, (unsigned short __user *)(s + 4));
@@ -1056,7 +1056,7 @@ u_char __user *fldenv(fpu_addr_modes addr_modes, u_char __user *s)
 		}
 	} else {
 		RE_ENTRANT_CHECK_OFF;
-		FPU_access_ok(VERIFY_READ, s, 0x1c);
+		FPU_access_ok(s, 0x1c);
 		FPU_get_user(control_word, (unsigned short __user *)s);
 		FPU_get_user(partial_status, (unsigned short __user *)(s + 4));
 		FPU_get_user(tag_word, (unsigned short __user *)(s + 8));
@@ -1125,7 +1125,7 @@ void frstor(fpu_addr_modes addr_modes, u_char __user *data_address)
 
 	/* Copy all registers in stack order. */
 	RE_ENTRANT_CHECK_OFF;
-	FPU_access_ok(VERIFY_READ, s, 80);
+	FPU_access_ok(s, 80);
 	__copy_from_user(register_base + offset, s, other);
 	if (offset)
 		__copy_from_user(register_base, s + other, offset);
@@ -1146,7 +1146,7 @@ u_char __user *fstenv(fpu_addr_modes addr_modes, u_char __user *d)
 	    ((addr_modes.default_mode == PM16)
 	     ^ (addr_modes.override.operand_size == OP_SIZE_PREFIX))) {
 		RE_ENTRANT_CHECK_OFF;
-		FPU_access_ok(VERIFY_WRITE, d, 14);
+		FPU_access_ok(d, 14);
 #ifdef PECULIAR_486
 		FPU_put_user(control_word & ~0xe080, (unsigned long __user *)d);
 #else
@@ -1174,7 +1174,7 @@ u_char __user *fstenv(fpu_addr_modes addr_modes, u_char __user *d)
 		d += 0x0e;
 	} else {
 		RE_ENTRANT_CHECK_OFF;
-		FPU_access_ok(VERIFY_WRITE, d, 7 * 4);
+		FPU_access_ok(d, 7 * 4);
 #ifdef PECULIAR_486
 		control_word &= ~0xe080;
 		/* An 80486 sets nearly all of the reserved bits to 1. */
@@ -1204,7 +1204,7 @@ void fsave(fpu_addr_modes addr_modes, u_char __user *data_address)
 	d = fstenv(addr_modes, data_address);
 
 	RE_ENTRANT_CHECK_OFF;
-	FPU_access_ok(VERIFY_WRITE, d, 80);
+	FPU_access_ok(d, 80);
 
 	/* Copy all registers in stack order. */
 	if (__copy_to_user(d, register_base + offset, other))
diff --git a/arch/x86/mm/debug_pagetables.c b/arch/x86/mm/debug_pagetables.c
index 225fe2f0bfec..cd84f067e41d 100644
--- a/arch/x86/mm/debug_pagetables.c
+++ b/arch/x86/mm/debug_pagetables.c
@@ -10,20 +10,9 @@ static int ptdump_show(struct seq_file *m, void *v)
 	return 0;
 }
 
-static int ptdump_open(struct inode *inode, struct file *filp)
-{
-	return single_open(filp, ptdump_show, NULL);
-}
-
-static const struct file_operations ptdump_fops = {
-	.owner		= THIS_MODULE,
-	.open		= ptdump_open,
-	.read		= seq_read,
-	.llseek		= seq_lseek,
-	.release	= single_release,
-};
+DEFINE_SHOW_ATTRIBUTE(ptdump);
 
-static int ptdump_show_curknl(struct seq_file *m, void *v)
+static int ptdump_curknl_show(struct seq_file *m, void *v)
 {
 	if (current->mm->pgd) {
 		down_read(&current->mm->mmap_sem);
@@ -33,23 +22,12 @@ static int ptdump_show_curknl(struct seq_file *m, void *v)
 	return 0;
 }
 
-static int ptdump_open_curknl(struct inode *inode, struct file *filp)
-{
-	return single_open(filp, ptdump_show_curknl, NULL);
-}
-
-static const struct file_operations ptdump_curknl_fops = {
-	.owner		= THIS_MODULE,
-	.open		= ptdump_open_curknl,
-	.read		= seq_read,
-	.llseek		= seq_lseek,
-	.release	= single_release,
-};
+DEFINE_SHOW_ATTRIBUTE(ptdump_curknl);
 
 #ifdef CONFIG_PAGE_TABLE_ISOLATION
 static struct dentry *pe_curusr;
 
-static int ptdump_show_curusr(struct seq_file *m, void *v)
+static int ptdump_curusr_show(struct seq_file *m, void *v)
 {
 	if (current->mm->pgd) {
 		down_read(&current->mm->mmap_sem);
@@ -59,42 +37,20 @@ static int ptdump_show_curusr(struct seq_file *m, void *v)
 	return 0;
 }
 
-static int ptdump_open_curusr(struct inode *inode, struct file *filp)
-{
-	return single_open(filp, ptdump_show_curusr, NULL);
-}
-
-static const struct file_operations ptdump_curusr_fops = {
-	.owner		= THIS_MODULE,
-	.open		= ptdump_open_curusr,
-	.read		= seq_read,
-	.llseek		= seq_lseek,
-	.release	= single_release,
-};
+DEFINE_SHOW_ATTRIBUTE(ptdump_curusr);
 #endif
 
 #if defined(CONFIG_EFI) && defined(CONFIG_X86_64)
 static struct dentry *pe_efi;
 
-static int ptdump_show_efi(struct seq_file *m, void *v)
+static int ptdump_efi_show(struct seq_file *m, void *v)
 {
 	if (efi_mm.pgd)
 		ptdump_walk_pgd_level_debugfs(m, efi_mm.pgd, false);
 	return 0;
 }
 
-static int ptdump_open_efi(struct inode *inode, struct file *filp)
-{
-	return single_open(filp, ptdump_show_efi, NULL);
-}
-
-static const struct file_operations ptdump_efi_fops = {
-	.owner		= THIS_MODULE,
-	.open		= ptdump_open_efi,
-	.read		= seq_read,
-	.llseek		= seq_lseek,
-	.release	= single_release,
-};
+DEFINE_SHOW_ATTRIBUTE(ptdump_efi);
 #endif
 
 static struct dentry *dir, *pe_knl, *pe_curknl;
diff --git a/arch/x86/mm/dump_pagetables.c b/arch/x86/mm/dump_pagetables.c
index fc37bbd23eb8..e3cdc85ce5b6 100644
--- a/arch/x86/mm/dump_pagetables.c
+++ b/arch/x86/mm/dump_pagetables.c
@@ -55,10 +55,10 @@ struct addr_marker {
 enum address_markers_idx {
 	USER_SPACE_NR = 0,
 	KERNEL_SPACE_NR,
-	LOW_KERNEL_NR,
-#if defined(CONFIG_MODIFY_LDT_SYSCALL) && defined(CONFIG_X86_5LEVEL)
+#ifdef CONFIG_MODIFY_LDT_SYSCALL
 	LDT_NR,
 #endif
+	LOW_KERNEL_NR,
 	VMALLOC_START_NR,
 	VMEMMAP_START_NR,
 #ifdef CONFIG_KASAN
@@ -66,9 +66,6 @@ enum address_markers_idx {
 	KASAN_SHADOW_END_NR,
 #endif
 	CPU_ENTRY_AREA_NR,
-#if defined(CONFIG_MODIFY_LDT_SYSCALL) && !defined(CONFIG_X86_5LEVEL)
-	LDT_NR,
-#endif
 #ifdef CONFIG_X86_ESPFIX64
 	ESPFIX_START_NR,
 #endif
@@ -380,7 +377,7 @@ static void walk_pte_level(struct seq_file *m, struct pg_state *st, pmd_t addr,
 
 /*
  * This is an optimization for KASAN=y case. Since all kasan page tables
- * eventually point to the kasan_zero_page we could call note_page()
+ * eventually point to the kasan_early_shadow_page we could call note_page()
  * right away without walking through lower level page tables. This saves
  * us dozens of seconds (minutes for 5-level config) while checking for
  * W+X mapping or reading kernel_page_tables debugfs file.
@@ -388,10 +385,11 @@ static void walk_pte_level(struct seq_file *m, struct pg_state *st, pmd_t addr,
 static inline bool kasan_page_table(struct seq_file *m, struct pg_state *st,
 				void *pt)
 {
-	if (__pa(pt) == __pa(kasan_zero_pmd) ||
-	    (pgtable_l5_enabled() && __pa(pt) == __pa(kasan_zero_p4d)) ||
-	    __pa(pt) == __pa(kasan_zero_pud)) {
-		pgprotval_t prot = pte_flags(kasan_zero_pte[0]);
+	if (__pa(pt) == __pa(kasan_early_shadow_pmd) ||
+	    (pgtable_l5_enabled() &&
+			__pa(pt) == __pa(kasan_early_shadow_p4d)) ||
+	    __pa(pt) == __pa(kasan_early_shadow_pud)) {
+		pgprotval_t prot = pte_flags(kasan_early_shadow_pte[0]);
 		note_page(m, st, __pgprot(prot), 0, 5);
 		return true;
 	}
@@ -512,11 +510,11 @@ static inline bool is_hypervisor_range(int idx)
 {
 #ifdef CONFIG_X86_64
 	/*
-	 * ffff800000000000 - ffff87ffffffffff is reserved for
-	 * the hypervisor.
+	 * A hole in the beginning of kernel address space reserved
+	 * for a hypervisor.
 	 */
-	return	(idx >= pgd_index(__PAGE_OFFSET) - 16) &&
-		(idx <  pgd_index(__PAGE_OFFSET));
+	return	(idx >= pgd_index(GUARD_HOLE_BASE_ADDR)) &&
+		(idx <  pgd_index(GUARD_HOLE_END_ADDR));
 #else
 	return false;
 #endif
diff --git a/arch/x86/mm/fault.c b/arch/x86/mm/fault.c
index 71d4b9d4d43f..2ff25ad33233 100644
--- a/arch/x86/mm/fault.c
+++ b/arch/x86/mm/fault.c
@@ -27,6 +27,7 @@
 #include <asm/vm86.h>			/* struct vm86			*/
 #include <asm/mmu_context.h>		/* vma_pkey()			*/
 #include <asm/efi.h>			/* efi_recover_from_page_fault()*/
+#include <asm/desc.h>			/* store_idt(), ...		*/
 
 #define CREATE_TRACE_POINTS
 #include <asm/trace/exceptions.h>
@@ -571,10 +572,55 @@ static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
 	return 0;
 }
 
+static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
+{
+	u32 offset = (index >> 3) * sizeof(struct desc_struct);
+	unsigned long addr;
+	struct ldttss_desc desc;
+
+	if (index == 0) {
+		pr_alert("%s: NULL\n", name);
+		return;
+	}
+
+	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
+		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
+		return;
+	}
+
+	if (probe_kernel_read(&desc, (void *)(gdt->address + offset),
+			      sizeof(struct ldttss_desc))) {
+		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
+			 name, index);
+		return;
+	}
+
+	addr = desc.base0 | (desc.base1 << 16) | (desc.base2 << 24);
+#ifdef CONFIG_X86_64
+	addr |= ((u64)desc.base3 << 32);
+#endif
+	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
+		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
+}
+
+/*
+ * This helper function transforms the #PF error_code bits into
+ * "[PROT] [USER]" type of descriptive, almost human-readable error strings:
+ */
+static void err_str_append(unsigned long error_code, char *buf, unsigned long mask, const char *txt)
+{
+	if (error_code & mask) {
+		if (buf[0])
+			strcat(buf, " ");
+		strcat(buf, txt);
+	}
+}
+
 static void
-show_fault_oops(struct pt_regs *regs, unsigned long error_code,
-		unsigned long address)
+show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 {
+	char err_txt[64];
+
 	if (!oops_may_print())
 		return;
 
@@ -602,6 +648,52 @@ show_fault_oops(struct pt_regs *regs, unsigned long error_code,
 		 address < PAGE_SIZE ? "NULL pointer dereference" : "paging request",
 		 (void *)address);
 
+	err_txt[0] = 0;
+
+	/*
+	 * Note: length of these appended strings including the separation space and the
+	 * zero delimiter must fit into err_txt[].
+	 */
+	err_str_append(error_code, err_txt, X86_PF_PROT,  "[PROT]" );
+	err_str_append(error_code, err_txt, X86_PF_WRITE, "[WRITE]");
+	err_str_append(error_code, err_txt, X86_PF_USER,  "[USER]" );
+	err_str_append(error_code, err_txt, X86_PF_RSVD,  "[RSVD]" );
+	err_str_append(error_code, err_txt, X86_PF_INSTR, "[INSTR]");
+	err_str_append(error_code, err_txt, X86_PF_PK,    "[PK]"   );
+
+	pr_alert("#PF error: %s\n", error_code ? err_txt : "[normal kernel read fault]");
+
+	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
+		struct desc_ptr idt, gdt;
+		u16 ldtr, tr;
+
+		pr_alert("This was a system access from user code\n");
+
+		/*
+		 * This can happen for quite a few reasons.  The more obvious
+		 * ones are faults accessing the GDT, or LDT.  Perhaps
+		 * surprisingly, if the CPU tries to deliver a benign or
+		 * contributory exception from user code and gets a page fault
+		 * during delivery, the page fault can be delivered as though
+		 * it originated directly from user code.  This could happen
+		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
+		 * kernel or IST stack.
+		 */
+		store_idt(&idt);
+
+		/* Usable even on Xen PV -- it's just slow. */
+		native_store_gdt(&gdt);
+
+		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
+			 idt.address, idt.size, gdt.address, gdt.size);
+
+		store_ldt(ldtr);
+		show_ldttss(&gdt, "LDTR", ldtr);
+
+		store_tr(tr);
+		show_ldttss(&gdt, "TR", tr);
+	}
+
 	dump_pagetable(address);
 }
 
@@ -621,16 +713,30 @@ pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 	       tsk->comm, address);
 	dump_pagetable(address);
 
-	tsk->thread.cr2		= address;
-	tsk->thread.trap_nr	= X86_TRAP_PF;
-	tsk->thread.error_code	= error_code;
-
 	if (__die("Bad pagetable", regs, error_code))
 		sig = 0;
 
 	oops_end(flags, regs, sig);
 }
 
+static void set_signal_archinfo(unsigned long address,
+				unsigned long error_code)
+{
+	struct task_struct *tsk = current;
+
+	/*
+	 * To avoid leaking information about the kernel page
+	 * table layout, pretend that user-mode accesses to
+	 * kernel addresses are always protection faults.
+	 */
+	if (address >= TASK_SIZE_MAX)
+		error_code |= X86_PF_PROT;
+
+	tsk->thread.trap_nr = X86_TRAP_PF;
+	tsk->thread.error_code = error_code | X86_PF_USER;
+	tsk->thread.cr2 = address;
+}
+
 static noinline void
 no_context(struct pt_regs *regs, unsigned long error_code,
 	   unsigned long address, int signal, int si_code)
@@ -639,6 +745,15 @@ no_context(struct pt_regs *regs, unsigned long error_code,
 	unsigned long flags;
 	int sig;
 
+	if (user_mode(regs)) {
+		/*
+		 * This is an implicit supervisor-mode access from user
+		 * mode.  Bypass all the kernel-mode recovery code and just
+		 * OOPS.
+		 */
+		goto oops;
+	}
+
 	/* Are we prepared to handle this kernel fault? */
 	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
 		/*
@@ -656,9 +771,7 @@ no_context(struct pt_regs *regs, unsigned long error_code,
 		 * faulting through the emulate_vsyscall() logic.
 		 */
 		if (current->thread.sig_on_uaccess_err && signal) {
-			tsk->thread.trap_nr = X86_TRAP_PF;
-			tsk->thread.error_code = error_code | X86_PF_USER;
-			tsk->thread.cr2 = address;
+			set_signal_archinfo(address, error_code);
 
 			/* XXX: hwpoison faults will set the wrong code. */
 			force_sig_fault(signal, si_code, (void __user *)address,
@@ -726,6 +839,7 @@ no_context(struct pt_regs *regs, unsigned long error_code,
 	if (IS_ENABLED(CONFIG_EFI))
 		efi_recover_from_page_fault(address);
 
+oops:
 	/*
 	 * Oops. The kernel tried to access some bad page. We'll have to
 	 * terminate things with extreme prejudice:
@@ -737,10 +851,6 @@ no_context(struct pt_regs *regs, unsigned long error_code,
 	if (task_stack_end_corrupted(tsk))
 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
 
-	tsk->thread.cr2		= address;
-	tsk->thread.trap_nr	= X86_TRAP_PF;
-	tsk->thread.error_code	= error_code;
-
 	sig = SIGKILL;
 	if (__die("Oops", regs, error_code))
 		sig = 0;
@@ -794,7 +904,7 @@ __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 	struct task_struct *tsk = current;
 
 	/* User mode accesses just cause a SIGSEGV */
-	if (error_code & X86_PF_USER) {
+	if (user_mode(regs) && (error_code & X86_PF_USER)) {
 		/*
 		 * It's possible to have interrupts off here:
 		 */
@@ -821,9 +931,7 @@ __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 		if (likely(show_unhandled_signals))
 			show_signal_msg(regs, error_code, address, tsk);
 
-		tsk->thread.cr2		= address;
-		tsk->thread.error_code	= error_code;
-		tsk->thread.trap_nr	= X86_TRAP_PF;
+		set_signal_archinfo(address, error_code);
 
 		if (si_code == SEGV_PKUERR)
 			force_sig_pkuerr((void __user *)address, pkey);
@@ -937,9 +1045,7 @@ do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 	if (is_prefetch(regs, error_code, address))
 		return;
 
-	tsk->thread.cr2		= address;
-	tsk->thread.error_code	= error_code;
-	tsk->thread.trap_nr	= X86_TRAP_PF;
+	set_signal_archinfo(address, error_code);
 
 #ifdef CONFIG_MEMORY_FAILURE
 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
@@ -1148,23 +1254,6 @@ static int fault_in_kernel_space(unsigned long address)
 	return address >= TASK_SIZE_MAX;
 }
 
-static inline bool smap_violation(int error_code, struct pt_regs *regs)
-{
-	if (!IS_ENABLED(CONFIG_X86_SMAP))
-		return false;
-
-	if (!static_cpu_has(X86_FEATURE_SMAP))
-		return false;
-
-	if (error_code & X86_PF_USER)
-		return false;
-
-	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
-		return false;
-
-	return true;
-}
-
 /*
  * Called for all faults where 'address' is part of the kernel address
  * space.  Might get called for faults that originate from *code* that
@@ -1230,7 +1319,6 @@ void do_user_addr_fault(struct pt_regs *regs,
 			unsigned long hw_error_code,
 			unsigned long address)
 {
-	unsigned long sw_error_code;
 	struct vm_area_struct *vma;
 	struct task_struct *tsk;
 	struct mm_struct *mm;
@@ -1252,10 +1340,16 @@ void do_user_addr_fault(struct pt_regs *regs,
 		pgtable_bad(regs, hw_error_code, address);
 
 	/*
-	 * Check for invalid kernel (supervisor) access to user
-	 * pages in the user address space.
+	 * If SMAP is on, check for invalid kernel (supervisor) access to user
+	 * pages in the user address space.  The odd case here is WRUSS,
+	 * which, according to the preliminary documentation, does not respect
+	 * SMAP and will have the USER bit set so, in all cases, SMAP
+	 * enforcement appears to be consistent with the USER bit.
 	 */
-	if (unlikely(smap_violation(hw_error_code, regs))) {
+	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
+		     !(hw_error_code & X86_PF_USER) &&
+		     !(regs->flags & X86_EFLAGS_AC)))
+	{
 		bad_area_nosemaphore(regs, hw_error_code, address);
 		return;
 	}
@@ -1270,13 +1364,6 @@ void do_user_addr_fault(struct pt_regs *regs,
 	}
 
 	/*
-	 * hw_error_code is literally the "page fault error code" passed to
-	 * the kernel directly from the hardware.  But, we will shortly be
-	 * modifying it in software, so give it a new name.
-	 */
-	sw_error_code = hw_error_code;
-
-	/*
 	 * It's safe to allow irq's after cr2 has been saved and the
 	 * vmalloc fault has been handled.
 	 *
@@ -1285,26 +1372,6 @@ void do_user_addr_fault(struct pt_regs *regs,
 	 */
 	if (user_mode(regs)) {
 		local_irq_enable();
-		/*
-		 * Up to this point, X86_PF_USER set in hw_error_code
-		 * indicated a user-mode access.  But, after this,
-		 * X86_PF_USER in sw_error_code will indicate either
-		 * that, *or* an implicit kernel(supervisor)-mode access
-		 * which originated from user mode.
-		 */
-		if (!(hw_error_code & X86_PF_USER)) {
-			/*
-			 * The CPU was in user mode, but the CPU says
-			 * the fault was not a user-mode access.
-			 * Must be an implicit kernel-mode access,
-			 * which we do not expect to happen in the
-			 * user address space.
-			 */
-			pr_warn_once("kernel-mode error from user-mode: %lx\n",
-					hw_error_code);
-
-			sw_error_code |= X86_PF_USER;
-		}
 		flags |= FAULT_FLAG_USER;
 	} else {
 		if (regs->flags & X86_EFLAGS_IF)
@@ -1313,9 +1380,9 @@ void do_user_addr_fault(struct pt_regs *regs,
 
 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
 
-	if (sw_error_code & X86_PF_WRITE)
+	if (hw_error_code & X86_PF_WRITE)
 		flags |= FAULT_FLAG_WRITE;
-	if (sw_error_code & X86_PF_INSTR)
+	if (hw_error_code & X86_PF_INSTR)
 		flags |= FAULT_FLAG_INSTRUCTION;
 
 #ifdef CONFIG_X86_64
@@ -1328,7 +1395,7 @@ void do_user_addr_fault(struct pt_regs *regs,
 	 * The vsyscall page does not have a "real" VMA, so do this
 	 * emulation before we go searching for VMAs.
 	 */
-	if ((sw_error_code & X86_PF_INSTR) && is_vsyscall_vaddr(address)) {
+	if ((hw_error_code & X86_PF_INSTR) && is_vsyscall_vaddr(address)) {
 		if (emulate_vsyscall(regs, address))
 			return;
 	}
@@ -1344,18 +1411,15 @@ void do_user_addr_fault(struct pt_regs *regs,
 	 * Only do the expensive exception table search when we might be at
 	 * risk of a deadlock.  This happens if we
 	 * 1. Failed to acquire mmap_sem, and
-	 * 2. The access did not originate in userspace.  Note: either the
-	 *    hardware or earlier page fault code may set X86_PF_USER
-	 *    in sw_error_code.
+	 * 2. The access did not originate in userspace.
 	 */
 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
-		if (!(sw_error_code & X86_PF_USER) &&
-		    !search_exception_tables(regs->ip)) {
+		if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
 			/*
 			 * Fault from code in kernel from
 			 * which we do not expect faults.
 			 */
-			bad_area_nosemaphore(regs, sw_error_code, address);
+			bad_area_nosemaphore(regs, hw_error_code, address);
 			return;
 		}
 retry:
@@ -1371,29 +1435,17 @@ retry:
 
 	vma = find_vma(mm, address);
 	if (unlikely(!vma)) {
-		bad_area(regs, sw_error_code, address);
+		bad_area(regs, hw_error_code, address);
 		return;
 	}
 	if (likely(vma->vm_start <= address))
 		goto good_area;
 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
-		bad_area(regs, sw_error_code, address);
+		bad_area(regs, hw_error_code, address);
 		return;
 	}
-	if (sw_error_code & X86_PF_USER) {
-		/*
-		 * Accessing the stack below %sp is always a bug.
-		 * The large cushion allows instructions like enter
-		 * and pusha to work. ("enter $65535, $31" pushes
-		 * 32 pointers and then decrements %sp by 65535.)
-		 */
-		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
-			bad_area(regs, sw_error_code, address);
-			return;
-		}
-	}
 	if (unlikely(expand_stack(vma, address))) {
-		bad_area(regs, sw_error_code, address);
+		bad_area(regs, hw_error_code, address);
 		return;
 	}
 
@@ -1402,8 +1454,8 @@ retry:
 	 * we can handle it..
 	 */
 good_area:
-	if (unlikely(access_error(sw_error_code, vma))) {
-		bad_area_access_error(regs, sw_error_code, address, vma);
+	if (unlikely(access_error(hw_error_code, vma))) {
+		bad_area_access_error(regs, hw_error_code, address, vma);
 		return;
 	}
 
@@ -1442,13 +1494,13 @@ good_area:
 			return;
 
 		/* Not returning to user mode? Handle exceptions or die: */
-		no_context(regs, sw_error_code, address, SIGBUS, BUS_ADRERR);
+		no_context(regs, hw_error_code, address, SIGBUS, BUS_ADRERR);
 		return;
 	}
 
 	up_read(&mm->mmap_sem);
 	if (unlikely(fault & VM_FAULT_ERROR)) {
-		mm_fault_error(regs, sw_error_code, address, fault);
+		mm_fault_error(regs, hw_error_code, address, fault);
 		return;
 	}
 
diff --git a/arch/x86/mm/init.c b/arch/x86/mm/init.c
index ef99f3892e1f..f905a2371080 100644
--- a/arch/x86/mm/init.c
+++ b/arch/x86/mm/init.c
@@ -742,7 +742,7 @@ int devmem_is_allowed(unsigned long pagenr)
 	return 1;
 }
 
-void free_init_pages(char *what, unsigned long begin, unsigned long end)
+void free_init_pages(const char *what, unsigned long begin, unsigned long end)
 {
 	unsigned long begin_aligned, end_aligned;
 
@@ -931,7 +931,7 @@ unsigned long max_swapfile_size(void)
 
 	pages = generic_max_swapfile_size();
 
-	if (boot_cpu_has_bug(X86_BUG_L1TF)) {
+	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
 		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
 		unsigned long long l1tf_limit = l1tf_pfn_limit();
 		/*
diff --git a/arch/x86/mm/init_32.c b/arch/x86/mm/init_32.c
index 49ecf5ecf6d3..85c94f9a87f8 100644
--- a/arch/x86/mm/init_32.c
+++ b/arch/x86/mm/init_32.c
@@ -860,7 +860,7 @@ int arch_add_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap,
 }
 
 #ifdef CONFIG_MEMORY_HOTREMOVE
-int arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
+int arch_remove_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap)
 {
 	unsigned long start_pfn = start >> PAGE_SHIFT;
 	unsigned long nr_pages = size >> PAGE_SHIFT;
diff --git a/arch/x86/mm/init_64.c b/arch/x86/mm/init_64.c
index 5fab264948c2..bccff68e3267 100644
--- a/arch/x86/mm/init_64.c
+++ b/arch/x86/mm/init_64.c
@@ -432,7 +432,7 @@ phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
 					     E820_TYPE_RAM) &&
 			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
 					     E820_TYPE_RESERVED_KERN))
-				set_pte(pte, __pte(0));
+				set_pte_safe(pte, __pte(0));
 			continue;
 		}
 
@@ -452,7 +452,7 @@ phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
 			pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
 				pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
 		pages++;
-		set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
+		set_pte_safe(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
 		paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
 	}
 
@@ -487,7 +487,7 @@ phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
 					     E820_TYPE_RAM) &&
 			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
 					     E820_TYPE_RESERVED_KERN))
-				set_pmd(pmd, __pmd(0));
+				set_pmd_safe(pmd, __pmd(0));
 			continue;
 		}
 
@@ -524,7 +524,7 @@ phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
 			pages++;
 			spin_lock(&init_mm.page_table_lock);
-			set_pte((pte_t *)pmd,
+			set_pte_safe((pte_t *)pmd,
 				pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
 					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
 			spin_unlock(&init_mm.page_table_lock);
@@ -536,7 +536,7 @@ phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
 		paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot);
 
 		spin_lock(&init_mm.page_table_lock);
-		pmd_populate_kernel(&init_mm, pmd, pte);
+		pmd_populate_kernel_safe(&init_mm, pmd, pte);
 		spin_unlock(&init_mm.page_table_lock);
 	}
 	update_page_count(PG_LEVEL_2M, pages);
@@ -573,7 +573,7 @@ phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
 					     E820_TYPE_RAM) &&
 			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
 					     E820_TYPE_RESERVED_KERN))
-				set_pud(pud, __pud(0));
+				set_pud_safe(pud, __pud(0));
 			continue;
 		}
 
@@ -584,7 +584,6 @@ phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
 							   paddr_end,
 							   page_size_mask,
 							   prot);
-				__flush_tlb_all();
 				continue;
 			}
 			/*
@@ -611,7 +610,7 @@ phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
 			pages++;
 			spin_lock(&init_mm.page_table_lock);
-			set_pte((pte_t *)pud,
+			set_pte_safe((pte_t *)pud,
 				pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
 					PAGE_KERNEL_LARGE));
 			spin_unlock(&init_mm.page_table_lock);
@@ -624,10 +623,9 @@ phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
 					   page_size_mask, prot);
 
 		spin_lock(&init_mm.page_table_lock);
-		pud_populate(&init_mm, pud, pmd);
+		pud_populate_safe(&init_mm, pud, pmd);
 		spin_unlock(&init_mm.page_table_lock);
 	}
-	__flush_tlb_all();
 
 	update_page_count(PG_LEVEL_1G, pages);
 
@@ -659,7 +657,7 @@ phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
 					     E820_TYPE_RAM) &&
 			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
 					     E820_TYPE_RESERVED_KERN))
-				set_p4d(p4d, __p4d(0));
+				set_p4d_safe(p4d, __p4d(0));
 			continue;
 		}
 
@@ -668,7 +666,6 @@ phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
 			paddr_last = phys_pud_init(pud, paddr,
 					paddr_end,
 					page_size_mask);
-			__flush_tlb_all();
 			continue;
 		}
 
@@ -677,10 +674,9 @@ phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
 					   page_size_mask);
 
 		spin_lock(&init_mm.page_table_lock);
-		p4d_populate(&init_mm, p4d, pud);
+		p4d_populate_safe(&init_mm, p4d, pud);
 		spin_unlock(&init_mm.page_table_lock);
 	}
-	__flush_tlb_all();
 
 	return paddr_last;
 }
@@ -723,9 +719,9 @@ kernel_physical_mapping_init(unsigned long paddr_start,
 
 		spin_lock(&init_mm.page_table_lock);
 		if (pgtable_l5_enabled())
-			pgd_populate(&init_mm, pgd, p4d);
+			pgd_populate_safe(&init_mm, pgd, p4d);
 		else
-			p4d_populate(&init_mm, p4d_offset(pgd, vaddr), (pud_t *) p4d);
+			p4d_populate_safe(&init_mm, p4d_offset(pgd, vaddr), (pud_t *) p4d);
 		spin_unlock(&init_mm.page_table_lock);
 		pgd_changed = true;
 	}
@@ -733,8 +729,6 @@ kernel_physical_mapping_init(unsigned long paddr_start,
 	if (pgd_changed)
 		sync_global_pgds(vaddr_start, vaddr_end - 1);
 
-	__flush_tlb_all();
-
 	return paddr_last;
 }
 
@@ -1147,7 +1141,8 @@ kernel_physical_mapping_remove(unsigned long start, unsigned long end)
 	remove_pagetable(start, end, true, NULL);
 }
 
-int __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
+int __ref arch_remove_memory(int nid, u64 start, u64 size,
+				struct vmem_altmap *altmap)
 {
 	unsigned long start_pfn = start >> PAGE_SHIFT;
 	unsigned long nr_pages = size >> PAGE_SHIFT;
diff --git a/arch/x86/mm/kasan_init_64.c b/arch/x86/mm/kasan_init_64.c
index 04a9cf6b034f..462fde83b515 100644
--- a/arch/x86/mm/kasan_init_64.c
+++ b/arch/x86/mm/kasan_init_64.c
@@ -211,7 +211,8 @@ static void __init kasan_early_p4d_populate(pgd_t *pgd,
 	unsigned long next;
 
 	if (pgd_none(*pgd)) {
-		pgd_entry = __pgd(_KERNPG_TABLE | __pa_nodebug(kasan_zero_p4d));
+		pgd_entry = __pgd(_KERNPG_TABLE |
+					__pa_nodebug(kasan_early_shadow_p4d));
 		set_pgd(pgd, pgd_entry);
 	}
 
@@ -222,7 +223,8 @@ static void __init kasan_early_p4d_populate(pgd_t *pgd,
 		if (!p4d_none(*p4d))
 			continue;
 
-		p4d_entry = __p4d(_KERNPG_TABLE | __pa_nodebug(kasan_zero_pud));
+		p4d_entry = __p4d(_KERNPG_TABLE |
+					__pa_nodebug(kasan_early_shadow_pud));
 		set_p4d(p4d, p4d_entry);
 	} while (p4d++, addr = next, addr != end && p4d_none(*p4d));
 }
@@ -261,10 +263,11 @@ static struct notifier_block kasan_die_notifier = {
 void __init kasan_early_init(void)
 {
 	int i;
-	pteval_t pte_val = __pa_nodebug(kasan_zero_page) | __PAGE_KERNEL | _PAGE_ENC;
-	pmdval_t pmd_val = __pa_nodebug(kasan_zero_pte) | _KERNPG_TABLE;
-	pudval_t pud_val = __pa_nodebug(kasan_zero_pmd) | _KERNPG_TABLE;
-	p4dval_t p4d_val = __pa_nodebug(kasan_zero_pud) | _KERNPG_TABLE;
+	pteval_t pte_val = __pa_nodebug(kasan_early_shadow_page) |
+				__PAGE_KERNEL | _PAGE_ENC;
+	pmdval_t pmd_val = __pa_nodebug(kasan_early_shadow_pte) | _KERNPG_TABLE;
+	pudval_t pud_val = __pa_nodebug(kasan_early_shadow_pmd) | _KERNPG_TABLE;
+	p4dval_t p4d_val = __pa_nodebug(kasan_early_shadow_pud) | _KERNPG_TABLE;
 
 	/* Mask out unsupported __PAGE_KERNEL bits: */
 	pte_val &= __default_kernel_pte_mask;
@@ -273,16 +276,16 @@ void __init kasan_early_init(void)
 	p4d_val &= __default_kernel_pte_mask;
 
 	for (i = 0; i < PTRS_PER_PTE; i++)
-		kasan_zero_pte[i] = __pte(pte_val);
+		kasan_early_shadow_pte[i] = __pte(pte_val);
 
 	for (i = 0; i < PTRS_PER_PMD; i++)
-		kasan_zero_pmd[i] = __pmd(pmd_val);
+		kasan_early_shadow_pmd[i] = __pmd(pmd_val);
 
 	for (i = 0; i < PTRS_PER_PUD; i++)
-		kasan_zero_pud[i] = __pud(pud_val);
+		kasan_early_shadow_pud[i] = __pud(pud_val);
 
 	for (i = 0; pgtable_l5_enabled() && i < PTRS_PER_P4D; i++)
-		kasan_zero_p4d[i] = __p4d(p4d_val);
+		kasan_early_shadow_p4d[i] = __p4d(p4d_val);
 
 	kasan_map_early_shadow(early_top_pgt);
 	kasan_map_early_shadow(init_top_pgt);
@@ -326,7 +329,7 @@ void __init kasan_init(void)
 
 	clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
 
-	kasan_populate_zero_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
+	kasan_populate_early_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
 			kasan_mem_to_shadow((void *)PAGE_OFFSET));
 
 	for (i = 0; i < E820_MAX_ENTRIES; i++) {
@@ -338,41 +341,41 @@ void __init kasan_init(void)
 
 	shadow_cpu_entry_begin = (void *)CPU_ENTRY_AREA_BASE;
 	shadow_cpu_entry_begin = kasan_mem_to_shadow(shadow_cpu_entry_begin);
-	shadow_cpu_entry_begin = (void *)round_down((unsigned long)shadow_cpu_entry_begin,
-						PAGE_SIZE);
+	shadow_cpu_entry_begin = (void *)round_down(
+			(unsigned long)shadow_cpu_entry_begin, PAGE_SIZE);
 
 	shadow_cpu_entry_end = (void *)(CPU_ENTRY_AREA_BASE +
 					CPU_ENTRY_AREA_MAP_SIZE);
 	shadow_cpu_entry_end = kasan_mem_to_shadow(shadow_cpu_entry_end);
-	shadow_cpu_entry_end = (void *)round_up((unsigned long)shadow_cpu_entry_end,
-					PAGE_SIZE);
+	shadow_cpu_entry_end = (void *)round_up(
+			(unsigned long)shadow_cpu_entry_end, PAGE_SIZE);
 
-	kasan_populate_zero_shadow(
+	kasan_populate_early_shadow(
 		kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
 		shadow_cpu_entry_begin);
 
 	kasan_populate_shadow((unsigned long)shadow_cpu_entry_begin,
 			      (unsigned long)shadow_cpu_entry_end, 0);
 
-	kasan_populate_zero_shadow(shadow_cpu_entry_end,
-				kasan_mem_to_shadow((void *)__START_KERNEL_map));
+	kasan_populate_early_shadow(shadow_cpu_entry_end,
+			kasan_mem_to_shadow((void *)__START_KERNEL_map));
 
 	kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
 			      (unsigned long)kasan_mem_to_shadow(_end),
 			      early_pfn_to_nid(__pa(_stext)));
 
-	kasan_populate_zero_shadow(kasan_mem_to_shadow((void *)MODULES_END),
-				(void *)KASAN_SHADOW_END);
+	kasan_populate_early_shadow(kasan_mem_to_shadow((void *)MODULES_END),
+					(void *)KASAN_SHADOW_END);
 
 	load_cr3(init_top_pgt);
 	__flush_tlb_all();
 
 	/*
-	 * kasan_zero_page has been used as early shadow memory, thus it may
-	 * contain some garbage. Now we can clear and write protect it, since
-	 * after the TLB flush no one should write to it.
+	 * kasan_early_shadow_page has been used as early shadow memory, thus
+	 * it may contain some garbage. Now we can clear and write protect it,
+	 * since after the TLB flush no one should write to it.
 	 */
-	memset(kasan_zero_page, 0, PAGE_SIZE);
+	memset(kasan_early_shadow_page, 0, PAGE_SIZE);
 	for (i = 0; i < PTRS_PER_PTE; i++) {
 		pte_t pte;
 		pgprot_t prot;
@@ -380,8 +383,8 @@ void __init kasan_init(void)
 		prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC);
 		pgprot_val(prot) &= __default_kernel_pte_mask;
 
-		pte = __pte(__pa(kasan_zero_page) | pgprot_val(prot));
-		set_pte(&kasan_zero_pte[i], pte);
+		pte = __pte(__pa(kasan_early_shadow_page) | pgprot_val(prot));
+		set_pte(&kasan_early_shadow_pte[i], pte);
 	}
 	/* Flush TLBs again to be sure that write protection applied. */
 	__flush_tlb_all();
diff --git a/arch/x86/mm/mem_encrypt.c b/arch/x86/mm/mem_encrypt.c
index 006f373f54ab..385afa2b9e17 100644
--- a/arch/x86/mm/mem_encrypt.c
+++ b/arch/x86/mm/mem_encrypt.c
@@ -381,13 +381,6 @@ void __init mem_encrypt_init(void)
 	swiotlb_update_mem_attributes();
 
 	/*
-	 * With SEV, DMA operations cannot use encryption, we need to use
-	 * SWIOTLB to bounce buffer DMA operation.
-	 */
-	if (sev_active())
-		dma_ops = &swiotlb_dma_ops;
-
-	/*
 	 * With SEV, we need to unroll the rep string I/O instructions.
 	 */
 	if (sev_active())
diff --git a/arch/x86/mm/mm_internal.h b/arch/x86/mm/mm_internal.h
index 4e1f6e1b8159..319bde386d5f 100644
--- a/arch/x86/mm/mm_internal.h
+++ b/arch/x86/mm/mm_internal.h
@@ -19,4 +19,6 @@ extern int after_bootmem;
 
 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache);
 
+extern unsigned long tlb_single_page_flush_ceiling;
+
 #endif	/* __X86_MM_INTERNAL_H */
diff --git a/arch/x86/mm/mpx.c b/arch/x86/mm/mpx.c
index 2385538e8065..de1851d15699 100644
--- a/arch/x86/mm/mpx.c
+++ b/arch/x86/mm/mpx.c
@@ -495,7 +495,7 @@ static int get_bt_addr(struct mm_struct *mm,
 	unsigned long bd_entry;
 	unsigned long bt_addr;
 
-	if (!access_ok(VERIFY_READ, (bd_entry_ptr), sizeof(*bd_entry_ptr)))
+	if (!access_ok((bd_entry_ptr), sizeof(*bd_entry_ptr)))
 		return -EFAULT;
 
 	while (1) {
diff --git a/arch/x86/mm/pageattr-test.c b/arch/x86/mm/pageattr-test.c
index 08f8f76a4852..facce271e8b9 100644
--- a/arch/x86/mm/pageattr-test.c
+++ b/arch/x86/mm/pageattr-test.c
@@ -23,7 +23,8 @@
 static __read_mostly int print = 1;
 
 enum {
-	NTEST			= 400,
+	NTEST			= 3 * 100,
+	NPAGES			= 100,
 #ifdef CONFIG_X86_64
 	LPS			= (1 << PMD_SHIFT),
 #elif defined(CONFIG_X86_PAE)
@@ -110,6 +111,9 @@ static int print_split(struct split_state *s)
 static unsigned long addr[NTEST];
 static unsigned int len[NTEST];
 
+static struct page *pages[NPAGES];
+static unsigned long addrs[NPAGES];
+
 /* Change the global bit on random pages in the direct mapping */
 static int pageattr_test(void)
 {
@@ -120,7 +124,6 @@ static int pageattr_test(void)
 	unsigned int level;
 	int i, k;
 	int err;
-	unsigned long test_addr;
 
 	if (print)
 		printk(KERN_INFO "CPA self-test:\n");
@@ -137,7 +140,7 @@ static int pageattr_test(void)
 		unsigned long pfn = prandom_u32() % max_pfn_mapped;
 
 		addr[i] = (unsigned long)__va(pfn << PAGE_SHIFT);
-		len[i] = prandom_u32() % 100;
+		len[i] = prandom_u32() % NPAGES;
 		len[i] = min_t(unsigned long, len[i], max_pfn_mapped - pfn - 1);
 
 		if (len[i] == 0)
@@ -167,14 +170,29 @@ static int pageattr_test(void)
 				break;
 			}
 			__set_bit(pfn + k, bm);
+			addrs[k] = addr[i] + k*PAGE_SIZE;
+			pages[k] = pfn_to_page(pfn + k);
 		}
 		if (!addr[i] || !pte || !k) {
 			addr[i] = 0;
 			continue;
 		}
 
-		test_addr = addr[i];
-		err = change_page_attr_set(&test_addr, len[i], PAGE_CPA_TEST, 0);
+		switch (i % 3) {
+		case 0:
+			err = change_page_attr_set(&addr[i], len[i], PAGE_CPA_TEST, 0);
+			break;
+
+		case 1:
+			err = change_page_attr_set(addrs, len[1], PAGE_CPA_TEST, 1);
+			break;
+
+		case 2:
+			err = cpa_set_pages_array(pages, len[i], PAGE_CPA_TEST);
+			break;
+		}
+
+
 		if (err < 0) {
 			printk(KERN_ERR "CPA %d failed %d\n", i, err);
 			failed++;
@@ -206,8 +224,7 @@ static int pageattr_test(void)
 			failed++;
 			continue;
 		}
-		test_addr = addr[i];
-		err = change_page_attr_clear(&test_addr, len[i], PAGE_CPA_TEST, 0);
+		err = change_page_attr_clear(&addr[i], len[i], PAGE_CPA_TEST, 0);
 		if (err < 0) {
 			printk(KERN_ERR "CPA reverting failed: %d\n", err);
 			failed++;
diff --git a/arch/x86/mm/pageattr.c b/arch/x86/mm/pageattr.c
index db7a10082238..4f8972311a77 100644
--- a/arch/x86/mm/pageattr.c
+++ b/arch/x86/mm/pageattr.c
@@ -26,6 +26,8 @@
 #include <asm/pat.h>
 #include <asm/set_memory.h>
 
+#include "mm_internal.h"
+
 /*
  * The current flushing context - we pass it instead of 5 arguments:
  */
@@ -35,11 +37,11 @@ struct cpa_data {
 	pgprot_t	mask_set;
 	pgprot_t	mask_clr;
 	unsigned long	numpages;
-	int		flags;
+	unsigned long	curpage;
 	unsigned long	pfn;
-	unsigned	force_split		: 1,
+	unsigned int	flags;
+	unsigned int	force_split		: 1,
 			force_static_prot	: 1;
-	int		curpage;
 	struct page	**pages;
 };
 
@@ -228,19 +230,28 @@ static bool __cpa_pfn_in_highmap(unsigned long pfn)
 
 #endif
 
+static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
+{
+	if (cpa->flags & CPA_PAGES_ARRAY) {
+		struct page *page = cpa->pages[idx];
+
+		if (unlikely(PageHighMem(page)))
+			return 0;
+
+		return (unsigned long)page_address(page);
+	}
+
+	if (cpa->flags & CPA_ARRAY)
+		return cpa->vaddr[idx];
+
+	return *cpa->vaddr + idx * PAGE_SIZE;
+}
+
 /*
  * Flushing functions
  */
 
-/**
- * clflush_cache_range - flush a cache range with clflush
- * @vaddr:	virtual start address
- * @size:	number of bytes to flush
- *
- * clflushopt is an unordered instruction which needs fencing with mfence or
- * sfence to avoid ordering issues.
- */
-void clflush_cache_range(void *vaddr, unsigned int size)
+static void clflush_cache_range_opt(void *vaddr, unsigned int size)
 {
 	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
 	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
@@ -249,11 +260,22 @@ void clflush_cache_range(void *vaddr, unsigned int size)
 	if (p >= vend)
 		return;
 
-	mb();
-
 	for (; p < vend; p += clflush_size)
 		clflushopt(p);
+}
 
+/**
+ * clflush_cache_range - flush a cache range with clflush
+ * @vaddr:	virtual start address
+ * @size:	number of bytes to flush
+ *
+ * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
+ * SFENCE to avoid ordering issues.
+ */
+void clflush_cache_range(void *vaddr, unsigned int size)
+{
+	mb();
+	clflush_cache_range_opt(vaddr, size);
 	mb();
 }
 EXPORT_SYMBOL_GPL(clflush_cache_range);
@@ -285,79 +307,49 @@ static void cpa_flush_all(unsigned long cache)
 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
 }
 
-static bool __cpa_flush_range(unsigned long start, int numpages, int cache)
+void __cpa_flush_tlb(void *data)
 {
-	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
-
-	WARN_ON(PAGE_ALIGN(start) != start);
-
-	if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
-		cpa_flush_all(cache);
-		return true;
-	}
+	struct cpa_data *cpa = data;
+	unsigned int i;
 
-	flush_tlb_kernel_range(start, start + PAGE_SIZE * numpages);
-
-	return !cache;
+	for (i = 0; i < cpa->numpages; i++)
+		__flush_tlb_one_kernel(__cpa_addr(cpa, i));
 }
 
-static void cpa_flush_range(unsigned long start, int numpages, int cache)
+static void cpa_flush(struct cpa_data *data, int cache)
 {
-	unsigned int i, level;
-	unsigned long addr;
+	struct cpa_data *cpa = data;
+	unsigned int i;
 
-	if (__cpa_flush_range(start, numpages, cache))
-		return;
-
-	/*
-	 * We only need to flush on one CPU,
-	 * clflush is a MESI-coherent instruction that
-	 * will cause all other CPUs to flush the same
-	 * cachelines:
-	 */
-	for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
-		pte_t *pte = lookup_address(addr, &level);
+	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 
-		/*
-		 * Only flush present addresses:
-		 */
-		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
-			clflush_cache_range((void *) addr, PAGE_SIZE);
+	if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
+		cpa_flush_all(cache);
+		return;
 	}
-}
 
-static void cpa_flush_array(unsigned long baddr, unsigned long *start,
-			    int numpages, int cache,
-			    int in_flags, struct page **pages)
-{
-	unsigned int i, level;
+	if (cpa->numpages <= tlb_single_page_flush_ceiling)
+		on_each_cpu(__cpa_flush_tlb, cpa, 1);
+	else
+		flush_tlb_all();
 
-	if (__cpa_flush_range(baddr, numpages, cache))
+	if (!cache)
 		return;
 
-	/*
-	 * We only need to flush on one CPU,
-	 * clflush is a MESI-coherent instruction that
-	 * will cause all other CPUs to flush the same
-	 * cachelines:
-	 */
-	for (i = 0; i < numpages; i++) {
-		unsigned long addr;
-		pte_t *pte;
-
-		if (in_flags & CPA_PAGES_ARRAY)
-			addr = (unsigned long)page_address(pages[i]);
-		else
-			addr = start[i];
+	mb();
+	for (i = 0; i < cpa->numpages; i++) {
+		unsigned long addr = __cpa_addr(cpa, i);
+		unsigned int level;
 
-		pte = lookup_address(addr, &level);
+		pte_t *pte = lookup_address(addr, &level);
 
 		/*
 		 * Only flush present addresses:
 		 */
 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
-			clflush_cache_range((void *)addr, PAGE_SIZE);
+			clflush_cache_range_opt((void *)addr, PAGE_SIZE);
 	}
+	mb();
 }
 
 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
@@ -1468,15 +1460,7 @@ static int __change_page_attr(struct cpa_data *cpa, int primary)
 	unsigned int level;
 	pte_t *kpte, old_pte;
 
-	if (cpa->flags & CPA_PAGES_ARRAY) {
-		struct page *page = cpa->pages[cpa->curpage];
-		if (unlikely(PageHighMem(page)))
-			return 0;
-		address = (unsigned long)page_address(page);
-	} else if (cpa->flags & CPA_ARRAY)
-		address = cpa->vaddr[cpa->curpage];
-	else
-		address = *cpa->vaddr;
+	address = __cpa_addr(cpa, cpa->curpage);
 repeat:
 	kpte = _lookup_address_cpa(cpa, address, &level);
 	if (!kpte)
@@ -1557,22 +1541,14 @@ static int cpa_process_alias(struct cpa_data *cpa)
 	 * No need to redo, when the primary call touched the direct
 	 * mapping already:
 	 */
-	if (cpa->flags & CPA_PAGES_ARRAY) {
-		struct page *page = cpa->pages[cpa->curpage];
-		if (unlikely(PageHighMem(page)))
-			return 0;
-		vaddr = (unsigned long)page_address(page);
-	} else if (cpa->flags & CPA_ARRAY)
-		vaddr = cpa->vaddr[cpa->curpage];
-	else
-		vaddr = *cpa->vaddr;
-
+	vaddr = __cpa_addr(cpa, cpa->curpage);
 	if (!(within(vaddr, PAGE_OFFSET,
 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
 
 		alias_cpa = *cpa;
 		alias_cpa.vaddr = &laddr;
 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
+		alias_cpa.curpage = 0;
 
 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
 		if (ret)
@@ -1592,6 +1568,7 @@ static int cpa_process_alias(struct cpa_data *cpa)
 		alias_cpa = *cpa;
 		alias_cpa.vaddr = &temp_cpa_vaddr;
 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
+		alias_cpa.curpage = 0;
 
 		/*
 		 * The high mapping range is imprecise, so ignore the
@@ -1607,14 +1584,15 @@ static int cpa_process_alias(struct cpa_data *cpa)
 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
 {
 	unsigned long numpages = cpa->numpages;
-	int ret;
+	unsigned long rempages = numpages;
+	int ret = 0;
 
-	while (numpages) {
+	while (rempages) {
 		/*
 		 * Store the remaining nr of pages for the large page
 		 * preservation check.
 		 */
-		cpa->numpages = numpages;
+		cpa->numpages = rempages;
 		/* for array changes, we can't use large page */
 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
 			cpa->numpages = 1;
@@ -1625,12 +1603,12 @@ static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
 		if (!debug_pagealloc_enabled())
 			spin_unlock(&cpa_lock);
 		if (ret)
-			return ret;
+			goto out;
 
 		if (checkalias) {
 			ret = cpa_process_alias(cpa);
 			if (ret)
-				return ret;
+				goto out;
 		}
 
 		/*
@@ -1638,15 +1616,15 @@ static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
 		 * CPA operation. Either a large page has been
 		 * preserved or a single page update happened.
 		 */
-		BUG_ON(cpa->numpages > numpages || !cpa->numpages);
-		numpages -= cpa->numpages;
-		if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
-			cpa->curpage++;
-		else
-			*cpa->vaddr += cpa->numpages * PAGE_SIZE;
-
+		BUG_ON(cpa->numpages > rempages || !cpa->numpages);
+		rempages -= cpa->numpages;
+		cpa->curpage += cpa->numpages;
 	}
-	return 0;
+
+out:
+	/* Restore the original numpages */
+	cpa->numpages = numpages;
+	return ret;
 }
 
 /*
@@ -1679,7 +1657,6 @@ static int change_page_attr_set_clr(unsigned long *addr, int numpages,
 {
 	struct cpa_data cpa;
 	int ret, cache, checkalias;
-	unsigned long baddr = 0;
 
 	memset(&cpa, 0, sizeof(cpa));
 
@@ -1704,7 +1681,7 @@ static int change_page_attr_set_clr(unsigned long *addr, int numpages,
 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
 		/*
 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
-		 * No need to cehck in that case
+		 * No need to check in that case
 		 */
 		if (*addr & ~PAGE_MASK) {
 			*addr &= PAGE_MASK;
@@ -1713,11 +1690,6 @@ static int change_page_attr_set_clr(unsigned long *addr, int numpages,
 			 */
 			WARN_ON_ONCE(1);
 		}
-		/*
-		 * Save address for cache flush. *addr is modified in the call
-		 * to __change_page_attr_set_clr() below.
-		 */
-		baddr = make_addr_canonical_again(*addr);
 	}
 
 	/* Must avoid aliasing mappings in the highmem code */
@@ -1765,13 +1737,7 @@ static int change_page_attr_set_clr(unsigned long *addr, int numpages,
 		goto out;
 	}
 
-	if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
-		cpa_flush_array(baddr, addr, numpages, cache,
-				cpa.flags, pages);
-	} else {
-		cpa_flush_range(baddr, numpages, cache);
-	}
-
+	cpa_flush(&cpa, cache);
 out:
 	return ret;
 }
@@ -1842,14 +1808,14 @@ out_err:
 }
 EXPORT_SYMBOL(set_memory_uc);
 
-static int _set_memory_array(unsigned long *addr, int addrinarray,
+static int _set_memory_array(unsigned long *addr, int numpages,
 		enum page_cache_mode new_type)
 {
 	enum page_cache_mode set_type;
 	int i, j;
 	int ret;
 
-	for (i = 0; i < addrinarray; i++) {
+	for (i = 0; i < numpages; i++) {
 		ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
 					new_type, NULL);
 		if (ret)
@@ -1860,11 +1826,11 @@ static int _set_memory_array(unsigned long *addr, int addrinarray,
 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
 
-	ret = change_page_attr_set(addr, addrinarray,
+	ret = change_page_attr_set(addr, numpages,
 				   cachemode2pgprot(set_type), 1);
 
 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
-		ret = change_page_attr_set_clr(addr, addrinarray,
+		ret = change_page_attr_set_clr(addr, numpages,
 					       cachemode2pgprot(
 						_PAGE_CACHE_MODE_WC),
 					       __pgprot(_PAGE_CACHE_MASK),
@@ -1881,36 +1847,34 @@ out_free:
 	return ret;
 }
 
-int set_memory_array_uc(unsigned long *addr, int addrinarray)
+int set_memory_array_uc(unsigned long *addr, int numpages)
 {
-	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
+	return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_UC_MINUS);
 }
 EXPORT_SYMBOL(set_memory_array_uc);
 
-int set_memory_array_wc(unsigned long *addr, int addrinarray)
+int set_memory_array_wc(unsigned long *addr, int numpages)
 {
-	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
+	return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_WC);
 }
 EXPORT_SYMBOL(set_memory_array_wc);
 
-int set_memory_array_wt(unsigned long *addr, int addrinarray)
+int set_memory_array_wt(unsigned long *addr, int numpages)
 {
-	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
+	return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_WT);
 }
 EXPORT_SYMBOL_GPL(set_memory_array_wt);
 
 int _set_memory_wc(unsigned long addr, int numpages)
 {
 	int ret;
-	unsigned long addr_copy = addr;
 
 	ret = change_page_attr_set(&addr, numpages,
 				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
 				   0);
 	if (!ret) {
-		ret = change_page_attr_set_clr(&addr_copy, numpages,
-					       cachemode2pgprot(
-						_PAGE_CACHE_MODE_WC),
+		ret = change_page_attr_set_clr(&addr, numpages,
+					       cachemode2pgprot(_PAGE_CACHE_MODE_WC),
 					       __pgprot(_PAGE_CACHE_MASK),
 					       0, 0, NULL);
 	}
@@ -1977,18 +1941,18 @@ int set_memory_wb(unsigned long addr, int numpages)
 }
 EXPORT_SYMBOL(set_memory_wb);
 
-int set_memory_array_wb(unsigned long *addr, int addrinarray)
+int set_memory_array_wb(unsigned long *addr, int numpages)
 {
 	int i;
 	int ret;
 
 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
-	ret = change_page_attr_clear(addr, addrinarray,
+	ret = change_page_attr_clear(addr, numpages,
 				      __pgprot(_PAGE_CACHE_MASK), 1);
 	if (ret)
 		return ret;
 
-	for (i = 0; i < addrinarray; i++)
+	for (i = 0; i < numpages; i++)
 		free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
 
 	return 0;
@@ -2058,7 +2022,6 @@ int set_memory_global(unsigned long addr, int numpages)
 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
 {
 	struct cpa_data cpa;
-	unsigned long start;
 	int ret;
 
 	/* Nothing to do if memory encryption is not active */
@@ -2069,8 +2032,6 @@ static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
 	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
 		addr &= PAGE_MASK;
 
-	start = addr;
-
 	memset(&cpa, 0, sizeof(cpa));
 	cpa.vaddr = &addr;
 	cpa.numpages = numpages;
@@ -2085,18 +2046,18 @@ static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
 	/*
 	 * Before changing the encryption attribute, we need to flush caches.
 	 */
-	cpa_flush_range(start, numpages, 1);
+	cpa_flush(&cpa, 1);
 
 	ret = __change_page_attr_set_clr(&cpa, 1);
 
 	/*
-	 * After changing the encryption attribute, we need to flush TLBs
-	 * again in case any speculative TLB caching occurred (but no need
-	 * to flush caches again).  We could just use cpa_flush_all(), but
-	 * in case TLB flushing gets optimized in the cpa_flush_range()
-	 * path use the same logic as above.
+	 * After changing the encryption attribute, we need to flush TLBs again
+	 * in case any speculative TLB caching occurred (but no need to flush
+	 * caches again).  We could just use cpa_flush_all(), but in case TLB
+	 * flushing gets optimized in the cpa_flush() path use the same logic
+	 * as above.
 	 */
-	cpa_flush_range(start, numpages, 0);
+	cpa_flush(&cpa, 0);
 
 	return ret;
 }
@@ -2121,7 +2082,7 @@ int set_pages_uc(struct page *page, int numpages)
 }
 EXPORT_SYMBOL(set_pages_uc);
 
-static int _set_pages_array(struct page **pages, int addrinarray,
+static int _set_pages_array(struct page **pages, int numpages,
 		enum page_cache_mode new_type)
 {
 	unsigned long start;
@@ -2131,7 +2092,7 @@ static int _set_pages_array(struct page **pages, int addrinarray,
 	int free_idx;
 	int ret;
 
-	for (i = 0; i < addrinarray; i++) {
+	for (i = 0; i < numpages; i++) {
 		if (PageHighMem(pages[i]))
 			continue;
 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
@@ -2144,10 +2105,10 @@ static int _set_pages_array(struct page **pages, int addrinarray,
 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
 
-	ret = cpa_set_pages_array(pages, addrinarray,
+	ret = cpa_set_pages_array(pages, numpages,
 				  cachemode2pgprot(set_type));
 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
-		ret = change_page_attr_set_clr(NULL, addrinarray,
+		ret = change_page_attr_set_clr(NULL, numpages,
 					       cachemode2pgprot(
 						_PAGE_CACHE_MODE_WC),
 					       __pgprot(_PAGE_CACHE_MASK),
@@ -2167,21 +2128,21 @@ err_out:
 	return -EINVAL;
 }
 
-int set_pages_array_uc(struct page **pages, int addrinarray)
+int set_pages_array_uc(struct page **pages, int numpages)
 {
-	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
+	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
 }
 EXPORT_SYMBOL(set_pages_array_uc);
 
-int set_pages_array_wc(struct page **pages, int addrinarray)
+int set_pages_array_wc(struct page **pages, int numpages)
 {
-	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
+	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
 }
 EXPORT_SYMBOL(set_pages_array_wc);
 
-int set_pages_array_wt(struct page **pages, int addrinarray)
+int set_pages_array_wt(struct page **pages, int numpages)
 {
-	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
+	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
 }
 EXPORT_SYMBOL_GPL(set_pages_array_wt);
 
@@ -2193,7 +2154,7 @@ int set_pages_wb(struct page *page, int numpages)
 }
 EXPORT_SYMBOL(set_pages_wb);
 
-int set_pages_array_wb(struct page **pages, int addrinarray)
+int set_pages_array_wb(struct page **pages, int numpages)
 {
 	int retval;
 	unsigned long start;
@@ -2201,12 +2162,12 @@ int set_pages_array_wb(struct page **pages, int addrinarray)
 	int i;
 
 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
-	retval = cpa_clear_pages_array(pages, addrinarray,
+	retval = cpa_clear_pages_array(pages, numpages,
 			__pgprot(_PAGE_CACHE_MASK));
 	if (retval)
 		return retval;
 
-	for (i = 0; i < addrinarray; i++) {
+	for (i = 0; i < numpages; i++) {
 		if (PageHighMem(pages[i]))
 			continue;
 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
@@ -2338,8 +2299,8 @@ bool kernel_page_present(struct page *page)
 
 #endif /* CONFIG_DEBUG_PAGEALLOC */
 
-int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
-			    unsigned numpages, unsigned long page_flags)
+int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
+				   unsigned numpages, unsigned long page_flags)
 {
 	int retval = -EINVAL;
 
@@ -2353,6 +2314,8 @@ int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
 		.flags = 0,
 	};
 
+	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
+
 	if (!(__supported_pte_mask & _PAGE_NX))
 		goto out;
 
@@ -2375,6 +2338,40 @@ out:
 }
 
 /*
+ * __flush_tlb_all() flushes mappings only on current CPU and hence this
+ * function shouldn't be used in an SMP environment. Presently, it's used only
+ * during boot (way before smp_init()) by EFI subsystem and hence is ok.
+ */
+int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
+				     unsigned long numpages)
+{
+	int retval;
+
+	/*
+	 * The typical sequence for unmapping is to find a pte through
+	 * lookup_address_in_pgd() (ideally, it should never return NULL because
+	 * the address is already mapped) and change it's protections. As pfn is
+	 * the *target* of a mapping, it's not useful while unmapping.
+	 */
+	struct cpa_data cpa = {
+		.vaddr		= &address,
+		.pfn		= 0,
+		.pgd		= pgd,
+		.numpages	= numpages,
+		.mask_set	= __pgprot(0),
+		.mask_clr	= __pgprot(_PAGE_PRESENT | _PAGE_RW),
+		.flags		= 0,
+	};
+
+	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
+
+	retval = __change_page_attr_set_clr(&cpa, 0);
+	__flush_tlb_all();
+
+	return retval;
+}
+
+/*
  * The testcases use internal knowledge of the implementation that shouldn't
  * be exposed to the rest of the kernel. Include these directly here.
  */
diff --git a/arch/x86/mm/pat.c b/arch/x86/mm/pat.c
index 08013524fba1..4fe956a63b25 100644
--- a/arch/x86/mm/pat.c
+++ b/arch/x86/mm/pat.c
@@ -519,8 +519,13 @@ static u64 sanitize_phys(u64 address)
 	 * for a "decoy" virtual address (bit 63 clear) passed to
 	 * set_memory_X(). __pa() on a "decoy" address results in a
 	 * physical address with bit 63 set.
+	 *
+	 * Decoy addresses are not present for 32-bit builds, see
+	 * set_mce_nospec().
 	 */
-	return address & __PHYSICAL_MASK;
+	if (IS_ENABLED(CONFIG_X86_64))
+		return address & __PHYSICAL_MASK;
+	return address;
 }
 
 /*
@@ -546,7 +551,11 @@ int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
 
 	start = sanitize_phys(start);
 	end = sanitize_phys(end);
-	BUG_ON(start >= end); /* end is exclusive */
+	if (start >= end) {
+		WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__,
+				start, end - 1, cattr_name(req_type));
+		return -EINVAL;
+	}
 
 	if (!pat_enabled()) {
 		/* This is identical to page table setting without PAT */
diff --git a/arch/x86/mm/pgtable.c b/arch/x86/mm/pgtable.c
index 59274e2c1ac4..7bd01709a091 100644
--- a/arch/x86/mm/pgtable.c
+++ b/arch/x86/mm/pgtable.c
@@ -23,12 +23,12 @@ EXPORT_SYMBOL(physical_mask);
 
 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
 
-pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
+pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
 {
 	return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
 }
 
-pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
+pgtable_t pte_alloc_one(struct mm_struct *mm)
 {
 	struct page *pte;
 
@@ -794,6 +794,14 @@ int pmd_clear_huge(pmd_t *pmd)
 	return 0;
 }
 
+/*
+ * Until we support 512GB pages, skip them in the vmap area.
+ */
+int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
+{
+	return 0;
+}
+
 #ifdef CONFIG_X86_64
 /**
  * pud_free_pmd_page - Clear pud entry and free pmd page.
@@ -811,9 +819,6 @@ int pud_free_pmd_page(pud_t *pud, unsigned long addr)
 	pte_t *pte;
 	int i;
 
-	if (pud_none(*pud))
-		return 1;
-
 	pmd = (pmd_t *)pud_page_vaddr(*pud);
 	pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
 	if (!pmd_sv)
@@ -855,9 +860,6 @@ int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
 {
 	pte_t *pte;
 
-	if (pmd_none(*pmd))
-		return 1;
-
 	pte = (pte_t *)pmd_page_vaddr(*pmd);
 	pmd_clear(pmd);
 
diff --git a/arch/x86/mm/pkeys.c b/arch/x86/mm/pkeys.c
index 6e98e0a7c923..047a77f6a10c 100644
--- a/arch/x86/mm/pkeys.c
+++ b/arch/x86/mm/pkeys.c
@@ -131,6 +131,7 @@ int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot, int pkey
  * in the process's lifetime will not accidentally get access
  * to data which is pkey-protected later on.
  */
+static
 u32 init_pkru_value = PKRU_AD_KEY( 1) | PKRU_AD_KEY( 2) | PKRU_AD_KEY( 3) |
 		      PKRU_AD_KEY( 4) | PKRU_AD_KEY( 5) | PKRU_AD_KEY( 6) |
 		      PKRU_AD_KEY( 7) | PKRU_AD_KEY( 8) | PKRU_AD_KEY( 9) |
diff --git a/arch/x86/mm/tlb.c b/arch/x86/mm/tlb.c
index bddd6b3cee1d..999d6d8f0bef 100644
--- a/arch/x86/mm/tlb.c
+++ b/arch/x86/mm/tlb.c
@@ -7,7 +7,6 @@
 #include <linux/export.h>
 #include <linux/cpu.h>
 #include <linux/debugfs.h>
-#include <linux/ptrace.h>
 
 #include <asm/tlbflush.h>
 #include <asm/mmu_context.h>
@@ -16,6 +15,8 @@
 #include <asm/apic.h>
 #include <asm/uv/uv.h>
 
+#include "mm_internal.h"
+
 /*
  *	TLB flushing, formerly SMP-only
  *		c/o Linus Torvalds.
@@ -31,6 +32,12 @@
  */
 
 /*
+ * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
+ * stored in cpu_tlb_state.last_user_mm_ibpb.
+ */
+#define LAST_USER_MM_IBPB	0x1UL
+
+/*
  * We get here when we do something requiring a TLB invalidation
  * but could not go invalidate all of the contexts.  We do the
  * necessary invalidation by clearing out the 'ctx_id' which
@@ -181,17 +188,87 @@ static void sync_current_stack_to_mm(struct mm_struct *mm)
 	}
 }
 
-static bool ibpb_needed(struct task_struct *tsk, u64 last_ctx_id)
+static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
+{
+	unsigned long next_tif = task_thread_info(next)->flags;
+	unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
+
+	return (unsigned long)next->mm | ibpb;
+}
+
+static void cond_ibpb(struct task_struct *next)
 {
+	if (!next || !next->mm)
+		return;
+
 	/*
-	 * Check if the current (previous) task has access to the memory
-	 * of the @tsk (next) task. If access is denied, make sure to
-	 * issue a IBPB to stop user->user Spectre-v2 attacks.
-	 *
-	 * Note: __ptrace_may_access() returns 0 or -ERRNO.
+	 * Both, the conditional and the always IBPB mode use the mm
+	 * pointer to avoid the IBPB when switching between tasks of the
+	 * same process. Using the mm pointer instead of mm->context.ctx_id
+	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
+	 * less impossible to control by an attacker. Aside of that it
+	 * would only affect the first schedule so the theoretically
+	 * exposed data is not really interesting.
 	 */
-	return (tsk && tsk->mm && tsk->mm->context.ctx_id != last_ctx_id &&
-		ptrace_may_access_sched(tsk, PTRACE_MODE_SPEC_IBPB));
+	if (static_branch_likely(&switch_mm_cond_ibpb)) {
+		unsigned long prev_mm, next_mm;
+
+		/*
+		 * This is a bit more complex than the always mode because
+		 * it has to handle two cases:
+		 *
+		 * 1) Switch from a user space task (potential attacker)
+		 *    which has TIF_SPEC_IB set to a user space task
+		 *    (potential victim) which has TIF_SPEC_IB not set.
+		 *
+		 * 2) Switch from a user space task (potential attacker)
+		 *    which has TIF_SPEC_IB not set to a user space task
+		 *    (potential victim) which has TIF_SPEC_IB set.
+		 *
+		 * This could be done by unconditionally issuing IBPB when
+		 * a task which has TIF_SPEC_IB set is either scheduled in
+		 * or out. Though that results in two flushes when:
+		 *
+		 * - the same user space task is scheduled out and later
+		 *   scheduled in again and only a kernel thread ran in
+		 *   between.
+		 *
+		 * - a user space task belonging to the same process is
+		 *   scheduled in after a kernel thread ran in between
+		 *
+		 * - a user space task belonging to the same process is
+		 *   scheduled in immediately.
+		 *
+		 * Optimize this with reasonably small overhead for the
+		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
+		 * pointer of the incoming task which is stored in
+		 * cpu_tlbstate.last_user_mm_ibpb for comparison.
+		 */
+		next_mm = mm_mangle_tif_spec_ib(next);
+		prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
+
+		/*
+		 * Issue IBPB only if the mm's are different and one or
+		 * both have the IBPB bit set.
+		 */
+		if (next_mm != prev_mm &&
+		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
+			indirect_branch_prediction_barrier();
+
+		this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
+	}
+
+	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
+		/*
+		 * Only flush when switching to a user space task with a
+		 * different context than the user space task which ran
+		 * last on this CPU.
+		 */
+		if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
+			indirect_branch_prediction_barrier();
+			this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
+		}
+	}
 }
 
 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
@@ -292,22 +369,12 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
 		new_asid = prev_asid;
 		need_flush = true;
 	} else {
-		u64 last_ctx_id = this_cpu_read(cpu_tlbstate.last_ctx_id);
-
 		/*
 		 * Avoid user/user BTB poisoning by flushing the branch
 		 * predictor when switching between processes. This stops
 		 * one process from doing Spectre-v2 attacks on another.
-		 *
-		 * As an optimization, flush indirect branches only when
-		 * switching into a processes that can't be ptrace by the
-		 * current one (as in such case, attacker has much more
-		 * convenient way how to tamper with the next process than
-		 * branch buffer poisoning).
 		 */
-		if (static_cpu_has(X86_FEATURE_USE_IBPB) &&
-				ibpb_needed(tsk, last_ctx_id))
-			indirect_branch_prediction_barrier();
+		cond_ibpb(tsk);
 
 		if (IS_ENABLED(CONFIG_VMAP_STACK)) {
 			/*
@@ -365,14 +432,6 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
 		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
 	}
 
-	/*
-	 * Record last user mm's context id, so we can avoid
-	 * flushing branch buffer with IBPB if we switch back
-	 * to the same user.
-	 */
-	if (next != &init_mm)
-		this_cpu_write(cpu_tlbstate.last_ctx_id, next->context.ctx_id);
-
 	/* Make sure we write CR3 before loaded_mm. */
 	barrier();
 
@@ -441,7 +500,7 @@ void initialize_tlbstate_and_flush(void)
 	write_cr3(build_cr3(mm->pgd, 0));
 
 	/* Reinitialize tlbstate. */
-	this_cpu_write(cpu_tlbstate.last_ctx_id, mm->context.ctx_id);
+	this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
 	this_cpu_write(cpu_tlbstate.next_asid, 1);
 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
@@ -664,7 +723,7 @@ void native_flush_tlb_others(const struct cpumask *cpumask,
  *
  * This is in units of pages.
  */
-static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
+unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
 
 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
 				unsigned long end, unsigned int stride_shift,
diff --git a/arch/x86/net/bpf_jit_comp.c b/arch/x86/net/bpf_jit_comp.c
index 2580cd2e98b1..5542303c43d9 100644
--- a/arch/x86/net/bpf_jit_comp.c
+++ b/arch/x86/net/bpf_jit_comp.c
@@ -1181,6 +1181,8 @@ out_image:
 	}
 
 	if (!image || !prog->is_func || extra_pass) {
+		if (image)
+			bpf_prog_fill_jited_linfo(prog, addrs);
 out_addrs:
 		kfree(addrs);
 		kfree(jit_data);
diff --git a/arch/x86/pci/i386.c b/arch/x86/pci/i386.c
index 8cd66152cdb0..9df652d3d927 100644
--- a/arch/x86/pci/i386.c
+++ b/arch/x86/pci/i386.c
@@ -59,7 +59,7 @@ static struct pcibios_fwaddrmap *pcibios_fwaddrmap_lookup(struct pci_dev *dev)
 {
 	struct pcibios_fwaddrmap *map;
 
-	WARN_ON_SMP(!spin_is_locked(&pcibios_fwaddrmap_lock));
+	lockdep_assert_held(&pcibios_fwaddrmap_lock);
 
 	list_for_each_entry(map, &pcibios_fwaddrmappings, list)
 		if (map->dev == dev)
diff --git a/arch/x86/pci/sta2x11-fixup.c b/arch/x86/pci/sta2x11-fixup.c
index 7a5bafb76d77..3cdafea55ab6 100644
--- a/arch/x86/pci/sta2x11-fixup.c
+++ b/arch/x86/pci/sta2x11-fixup.c
@@ -168,7 +168,6 @@ static void sta2x11_setup_pdev(struct pci_dev *pdev)
 		return;
 	pci_set_consistent_dma_mask(pdev, STA2X11_AMBA_SIZE - 1);
 	pci_set_dma_mask(pdev, STA2X11_AMBA_SIZE - 1);
-	pdev->dev.dma_ops = &swiotlb_dma_ops;
 	pdev->dev.archdata.is_sta2x11 = true;
 
 	/* We must enable all devices as master, for audio DMA to work */
diff --git a/arch/x86/platform/ce4100/ce4100.c b/arch/x86/platform/ce4100/ce4100.c
index ce4b06733c09..b3233b1835ea 100644
--- a/arch/x86/platform/ce4100/ce4100.c
+++ b/arch/x86/platform/ce4100/ce4100.c
@@ -84,7 +84,7 @@ static void ce4100_mem_serial_out(struct uart_port *p, int offset, int value)
 }
 
 static void ce4100_serial_fixup(int port, struct uart_port *up,
-	u32 *capabilites)
+	u32 *capabilities)
 {
 #ifdef CONFIG_EARLY_PRINTK
 	/*
@@ -111,7 +111,7 @@ static void ce4100_serial_fixup(int port, struct uart_port *up,
 	up->serial_in = ce4100_mem_serial_in;
 	up->serial_out = ce4100_mem_serial_out;
 
-	*capabilites |= (1 << 12);
+	*capabilities |= (1 << 12);
 }
 
 static __init void sdv_serial_fixup(void)
diff --git a/arch/x86/platform/efi/early_printk.c b/arch/x86/platform/efi/early_printk.c
index 7476b3b097e1..7138bc7a265c 100644
--- a/arch/x86/platform/efi/early_printk.c
+++ b/arch/x86/platform/efi/early_printk.c
@@ -183,7 +183,7 @@ early_efi_write(struct console *con, const char *str, unsigned int num)
 			num--;
 		}
 
-		if (efi_x >= si->lfb_width) {
+		if (efi_x + font->width > si->lfb_width) {
 			efi_x = 0;
 			efi_y += font->height;
 		}
diff --git a/arch/x86/platform/efi/efi.c b/arch/x86/platform/efi/efi.c
index 7ae939e353cd..e1cb01a22fa8 100644
--- a/arch/x86/platform/efi/efi.c
+++ b/arch/x86/platform/efi/efi.c
@@ -993,6 +993,8 @@ static void __init __efi_enter_virtual_mode(void)
 		panic("EFI call to SetVirtualAddressMap() failed!");
 	}
 
+	efi_free_boot_services();
+
 	/*
 	 * Now that EFI is in virtual mode, update the function
 	 * pointers in the runtime service table to the new virtual addresses.
diff --git a/arch/x86/platform/efi/quirks.c b/arch/x86/platform/efi/quirks.c
index 95e77a667ba5..17456a1d3f04 100644
--- a/arch/x86/platform/efi/quirks.c
+++ b/arch/x86/platform/efi/quirks.c
@@ -369,6 +369,40 @@ void __init efi_reserve_boot_services(void)
 	}
 }
 
+/*
+ * Apart from having VA mappings for EFI boot services code/data regions,
+ * (duplicate) 1:1 mappings were also created as a quirk for buggy firmware. So,
+ * unmap both 1:1 and VA mappings.
+ */
+static void __init efi_unmap_pages(efi_memory_desc_t *md)
+{
+	pgd_t *pgd = efi_mm.pgd;
+	u64 pa = md->phys_addr;
+	u64 va = md->virt_addr;
+
+	/*
+	 * To Do: Remove this check after adding functionality to unmap EFI boot
+	 * services code/data regions from direct mapping area because
+	 * "efi=old_map" maps EFI regions in swapper_pg_dir.
+	 */
+	if (efi_enabled(EFI_OLD_MEMMAP))
+		return;
+
+	/*
+	 * EFI mixed mode has all RAM mapped to access arguments while making
+	 * EFI runtime calls, hence don't unmap EFI boot services code/data
+	 * regions.
+	 */
+	if (!efi_is_native())
+		return;
+
+	if (kernel_unmap_pages_in_pgd(pgd, pa, md->num_pages))
+		pr_err("Failed to unmap 1:1 mapping for 0x%llx\n", pa);
+
+	if (kernel_unmap_pages_in_pgd(pgd, va, md->num_pages))
+		pr_err("Failed to unmap VA mapping for 0x%llx\n", va);
+}
+
 void __init efi_free_boot_services(void)
 {
 	phys_addr_t new_phys, new_size;
@@ -394,6 +428,13 @@ void __init efi_free_boot_services(void)
 		}
 
 		/*
+		 * Before calling set_virtual_address_map(), EFI boot services
+		 * code/data regions were mapped as a quirk for buggy firmware.
+		 * Unmap them from efi_pgd before freeing them up.
+		 */
+		efi_unmap_pages(md);
+
+		/*
 		 * Nasty quirk: if all sub-1MB memory is used for boot
 		 * services, we can get here without having allocated the
 		 * real mode trampoline.  It's too late to hand boot services
diff --git a/arch/x86/platform/intel-mid/device_libs/platform_bcm43xx.c b/arch/x86/platform/intel-mid/device_libs/platform_bcm43xx.c
index dbfc5cf2aa93..96f438d4b026 100644
--- a/arch/x86/platform/intel-mid/device_libs/platform_bcm43xx.c
+++ b/arch/x86/platform/intel-mid/device_libs/platform_bcm43xx.c
@@ -1,5 +1,5 @@
 /*
- * platform_bcm43xx.c: bcm43xx platform data initilization file
+ * platform_bcm43xx.c: bcm43xx platform data initialization file
  *
  * (C) Copyright 2016 Intel Corporation
  * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
diff --git a/arch/x86/platform/intel-mid/device_libs/platform_mrfld_spidev.c b/arch/x86/platform/intel-mid/device_libs/platform_mrfld_spidev.c
index 27186ad654c9..7a7fc54c449b 100644
--- a/arch/x86/platform/intel-mid/device_libs/platform_mrfld_spidev.c
+++ b/arch/x86/platform/intel-mid/device_libs/platform_mrfld_spidev.c
@@ -1,5 +1,5 @@
 /*
- * spidev platform data initilization file
+ * spidev platform data initialization file
  *
  * (C) Copyright 2014, 2016 Intel Corporation
  * Authors: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
diff --git a/arch/x86/platform/intel-mid/device_libs/platform_pcal9555a.c b/arch/x86/platform/intel-mid/device_libs/platform_pcal9555a.c
index 429a94192671..8344d5a928c9 100644
--- a/arch/x86/platform/intel-mid/device_libs/platform_pcal9555a.c
+++ b/arch/x86/platform/intel-mid/device_libs/platform_pcal9555a.c
@@ -1,5 +1,5 @@
 /*
- * PCAL9555a platform data initilization file
+ * PCAL9555a platform data initialization file
  *
  * Copyright (C) 2016, Intel Corporation
  *
diff --git a/arch/x86/platform/intel/iosf_mbi.c b/arch/x86/platform/intel/iosf_mbi.c
index 2e569d10f2d0..a9f2e888e135 100644
--- a/arch/x86/platform/intel/iosf_mbi.c
+++ b/arch/x86/platform/intel/iosf_mbi.c
@@ -13,7 +13,7 @@
  *
  *
  * The IOSF-SB is a fabric bus available on Atom based SOC's that uses a
- * mailbox interface (MBI) to communicate with mutiple devices. This
+ * mailbox interface (MBI) to communicate with multiple devices. This
  * driver implements access to this interface for those platforms that can
  * enumerate the device using PCI.
  */
diff --git a/arch/x86/platform/olpc/olpc-xo1-sci.c b/arch/x86/platform/olpc/olpc-xo1-sci.c
index 7fa8b3b53bc0..d9b8a1c1ab0f 100644
--- a/arch/x86/platform/olpc/olpc-xo1-sci.c
+++ b/arch/x86/platform/olpc/olpc-xo1-sci.c
@@ -109,7 +109,7 @@ static void detect_lid_state(void)
 	 * the edge detector hookup on the gpio inputs on the geode is
 	 * odd, to say the least.  See http://dev.laptop.org/ticket/5703
 	 * for details, but in a nutshell:  we don't use the edge
-	 * detectors.  instead, we make use of an anomoly:  with the both
+	 * detectors.  instead, we make use of an anomaly:  with the both
 	 * edge detectors turned off, we still get an edge event on a
 	 * positive edge transition.  to take advantage of this, we use the
 	 * front-end inverter to ensure that that's the edge we're always
diff --git a/arch/x86/platform/olpc/olpc_dt.c b/arch/x86/platform/olpc/olpc_dt.c
index 24d2175a9480..b4ab779f1d47 100644
--- a/arch/x86/platform/olpc/olpc_dt.c
+++ b/arch/x86/platform/olpc/olpc_dt.c
@@ -19,7 +19,6 @@
 #include <linux/kernel.h>
 #include <linux/memblock.h>
 #include <linux/of.h>
-#include <linux/of_platform.h>
 #include <linux/of_pdt.h>
 #include <asm/olpc.h>
 #include <asm/olpc_ofw.h>
@@ -285,20 +284,3 @@ void __init olpc_dt_build_devicetree(void)
 	pr_info("PROM DT: Built device tree with %u bytes of memory.\n",
 			prom_early_allocated);
 }
-
-/* A list of DT node/bus matches that we want to expose as platform devices */
-static struct of_device_id __initdata of_ids[] = {
-	{ .compatible = "olpc,xo1-battery" },
-	{ .compatible = "olpc,xo1-dcon" },
-	{ .compatible = "olpc,xo1-rtc" },
-	{},
-};
-
-static int __init olpc_create_platform_devices(void)
-{
-	if (machine_is_olpc())
-		return of_platform_bus_probe(NULL, of_ids, NULL);
-	else
-		return 0;
-}
-device_initcall(olpc_create_platform_devices);
diff --git a/arch/x86/platform/pvh/Makefile b/arch/x86/platform/pvh/Makefile
new file mode 100644
index 000000000000..5dec5067c9fb
--- /dev/null
+++ b/arch/x86/platform/pvh/Makefile
@@ -0,0 +1,5 @@
+# SPDX-License-Identifier: GPL-2.0
+OBJECT_FILES_NON_STANDARD_head.o := y
+
+obj-$(CONFIG_PVH) += enlighten.o
+obj-$(CONFIG_PVH) += head.o
diff --git a/arch/x86/platform/pvh/enlighten.c b/arch/x86/platform/pvh/enlighten.c
new file mode 100644
index 000000000000..62f5c7045944
--- /dev/null
+++ b/arch/x86/platform/pvh/enlighten.c
@@ -0,0 +1,137 @@
+// SPDX-License-Identifier: GPL-2.0
+#include <linux/acpi.h>
+
+#include <xen/hvc-console.h>
+
+#include <asm/io_apic.h>
+#include <asm/hypervisor.h>
+#include <asm/e820/api.h>
+#include <asm/x86_init.h>
+
+#include <asm/xen/interface.h>
+
+#include <xen/xen.h>
+#include <xen/interface/hvm/start_info.h>
+
+/*
+ * PVH variables.
+ *
+ * pvh_bootparams and pvh_start_info need to live in the data segment since
+ * they are used after startup_{32|64}, which clear .bss, are invoked.
+ */
+struct boot_params pvh_bootparams __attribute__((section(".data")));
+struct hvm_start_info pvh_start_info __attribute__((section(".data")));
+
+unsigned int pvh_start_info_sz = sizeof(pvh_start_info);
+
+static u64 pvh_get_root_pointer(void)
+{
+	return pvh_start_info.rsdp_paddr;
+}
+
+/*
+ * Xen guests are able to obtain the memory map from the hypervisor via the
+ * HYPERVISOR_memory_op hypercall.
+ * If we are trying to boot a Xen PVH guest, it is expected that the kernel
+ * will have been configured to provide an override for this routine to do
+ * just that.
+ */
+void __init __weak mem_map_via_hcall(struct boot_params *ptr __maybe_unused)
+{
+	xen_raw_printk("Error: Could not find memory map\n");
+	BUG();
+}
+
+static void __init init_pvh_bootparams(bool xen_guest)
+{
+	memset(&pvh_bootparams, 0, sizeof(pvh_bootparams));
+
+	if ((pvh_start_info.version > 0) && (pvh_start_info.memmap_entries)) {
+		struct hvm_memmap_table_entry *ep;
+		int i;
+
+		ep = __va(pvh_start_info.memmap_paddr);
+		pvh_bootparams.e820_entries = pvh_start_info.memmap_entries;
+
+		for (i = 0; i < pvh_bootparams.e820_entries ; i++, ep++) {
+			pvh_bootparams.e820_table[i].addr = ep->addr;
+			pvh_bootparams.e820_table[i].size = ep->size;
+			pvh_bootparams.e820_table[i].type = ep->type;
+		}
+	} else if (xen_guest) {
+		mem_map_via_hcall(&pvh_bootparams);
+	} else {
+		/* Non-xen guests are not supported by version 0 */
+		BUG();
+	}
+
+	if (pvh_bootparams.e820_entries < E820_MAX_ENTRIES_ZEROPAGE - 1) {
+		pvh_bootparams.e820_table[pvh_bootparams.e820_entries].addr =
+			ISA_START_ADDRESS;
+		pvh_bootparams.e820_table[pvh_bootparams.e820_entries].size =
+			ISA_END_ADDRESS - ISA_START_ADDRESS;
+		pvh_bootparams.e820_table[pvh_bootparams.e820_entries].type =
+			E820_TYPE_RESERVED;
+		pvh_bootparams.e820_entries++;
+	} else
+		xen_raw_printk("Warning: Can fit ISA range into e820\n");
+
+	pvh_bootparams.hdr.cmd_line_ptr =
+		pvh_start_info.cmdline_paddr;
+
+	/* The first module is always ramdisk. */
+	if (pvh_start_info.nr_modules) {
+		struct hvm_modlist_entry *modaddr =
+			__va(pvh_start_info.modlist_paddr);
+		pvh_bootparams.hdr.ramdisk_image = modaddr->paddr;
+		pvh_bootparams.hdr.ramdisk_size = modaddr->size;
+	}
+
+	/*
+	 * See Documentation/x86/boot.txt.
+	 *
+	 * Version 2.12 supports Xen entry point but we will use default x86/PC
+	 * environment (i.e. hardware_subarch 0).
+	 */
+	pvh_bootparams.hdr.version = (2 << 8) | 12;
+	pvh_bootparams.hdr.type_of_loader = ((xen_guest ? 0x9 : 0xb) << 4) | 0;
+
+	x86_init.acpi.get_root_pointer = pvh_get_root_pointer;
+}
+
+/*
+ * If we are trying to boot a Xen PVH guest, it is expected that the kernel
+ * will have been configured to provide the required override for this routine.
+ */
+void __init __weak xen_pvh_init(void)
+{
+	xen_raw_printk("Error: Missing xen PVH initialization\n");
+	BUG();
+}
+
+static void hypervisor_specific_init(bool xen_guest)
+{
+	if (xen_guest)
+		xen_pvh_init();
+}
+
+/*
+ * This routine (and those that it might call) should not use
+ * anything that lives in .bss since that segment will be cleared later.
+ */
+void __init xen_prepare_pvh(void)
+{
+
+	u32 msr = xen_cpuid_base();
+	bool xen_guest = !!msr;
+
+	if (pvh_start_info.magic != XEN_HVM_START_MAGIC_VALUE) {
+		xen_raw_printk("Error: Unexpected magic value (0x%08x)\n",
+				pvh_start_info.magic);
+		BUG();
+	}
+
+	hypervisor_specific_init(xen_guest);
+
+	init_pvh_bootparams(xen_guest);
+}
diff --git a/arch/x86/xen/xen-pvh.S b/arch/x86/platform/pvh/head.S
index 1f8825bbaffb..1f8825bbaffb 100644
--- a/arch/x86/xen/xen-pvh.S
+++ b/arch/x86/platform/pvh/head.S
diff --git a/arch/x86/platform/uv/uv_nmi.c b/arch/x86/platform/uv/uv_nmi.c
index 5f64f30873e2..b21a932c220c 100644
--- a/arch/x86/platform/uv/uv_nmi.c
+++ b/arch/x86/platform/uv/uv_nmi.c
@@ -560,7 +560,7 @@ static inline void uv_clear_nmi(int cpu)
 	}
 }
 
-/* Ping non-responding CPU's attemping to force them into the NMI handler */
+/* Ping non-responding CPU's attempting to force them into the NMI handler */
 static void uv_nmi_nr_cpus_ping(void)
 {
 	int cpu;
diff --git a/arch/x86/um/Makefile b/arch/x86/um/Makefile
index c2d3d7c51e9e..2d686ae54681 100644
--- a/arch/x86/um/Makefile
+++ b/arch/x86/um/Makefile
@@ -36,9 +36,12 @@ subarch-$(CONFIG_MODULES) += ../kernel/module.o
 
 USER_OBJS := bugs_$(BITS).o ptrace_user.o fault.o
 
-extra-y += user-offsets.s
 $(obj)/user-offsets.s: c_flags = -Wp,-MD,$(depfile) $(USER_CFLAGS) \
 	-Iarch/x86/include/generated
+targets += user-offsets.s
+
+include/generated/user_constants.h: $(obj)/user-offsets.s
+	$(call filechk,offsets,__USER_CONSTANT_H__)
 
 UNPROFILE_OBJS := stub_segv.o
 CFLAGS_stub_segv.o := $(CFLAGS_NO_HARDENING)
diff --git a/arch/x86/um/asm/checksum_32.h b/arch/x86/um/asm/checksum_32.h
index 83a75f8a1233..b9ac7c9eb72c 100644
--- a/arch/x86/um/asm/checksum_32.h
+++ b/arch/x86/um/asm/checksum_32.h
@@ -43,7 +43,7 @@ static __inline__ __wsum csum_and_copy_to_user(const void *src,
 						     void __user *dst,
 						     int len, __wsum sum, int *err_ptr)
 {
-	if (access_ok(VERIFY_WRITE, dst, len)) {
+	if (access_ok(dst, len)) {
 		if (copy_to_user(dst, src, len)) {
 			*err_ptr = -EFAULT;
 			return (__force __wsum)-1;
diff --git a/arch/x86/um/signal.c b/arch/x86/um/signal.c
index 727ed442e0a5..8b4a71efe7ee 100644
--- a/arch/x86/um/signal.c
+++ b/arch/x86/um/signal.c
@@ -367,7 +367,7 @@ int setup_signal_stack_sc(unsigned long stack_top, struct ksignal *ksig,
 	/* This is the same calculation as i386 - ((sp + 4) & 15) == 0 */
 	stack_top = ((stack_top + 4) & -16UL) - 4;
 	frame = (struct sigframe __user *) stack_top - 1;
-	if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
+	if (!access_ok(frame, sizeof(*frame)))
 		return 1;
 
 	restorer = frame->retcode;
@@ -412,7 +412,7 @@ int setup_signal_stack_si(unsigned long stack_top, struct ksignal *ksig,
 
 	stack_top &= -8UL;
 	frame = (struct rt_sigframe __user *) stack_top - 1;
-	if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
+	if (!access_ok(frame, sizeof(*frame)))
 		return 1;
 
 	restorer = frame->retcode;
@@ -497,7 +497,7 @@ int setup_signal_stack_si(unsigned long stack_top, struct ksignal *ksig,
 	/* Subtract 128 for a red zone and 8 for proper alignment */
 	frame = (struct rt_sigframe __user *) ((unsigned long) frame - 128 - 8);
 
-	if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
+	if (!access_ok(frame, sizeof(*frame)))
 		goto out;
 
 	if (ksig->ka.sa.sa_flags & SA_SIGINFO) {
diff --git a/arch/x86/um/vdso/Makefile b/arch/x86/um/vdso/Makefile
index 822ccdba93ad..bf94060fc06f 100644
--- a/arch/x86/um/vdso/Makefile
+++ b/arch/x86/um/vdso/Makefile
@@ -26,7 +26,7 @@ targets += vdso.so vdso.so.dbg vdso.lds $(vobjs-y)
 CPPFLAGS_vdso.lds += -P -C
 
 VDSO_LDFLAGS_vdso.lds = -m64 -Wl,-soname=linux-vdso.so.1 \
-       -Wl,-z,max-page-size=4096 -Wl,-z,common-page-size=4096
+       -Wl,-z,max-page-size=4096
 
 $(obj)/vdso.o: $(src)/vdso.S $(obj)/vdso.so
 
diff --git a/arch/x86/xen/Kconfig b/arch/x86/xen/Kconfig
index 1ef391aa184d..e07abefd3d26 100644
--- a/arch/x86/xen/Kconfig
+++ b/arch/x86/xen/Kconfig
@@ -74,6 +74,7 @@ config XEN_DEBUG_FS
 	  Enabling this option may incur a significant performance overhead.
 
 config XEN_PVH
-	bool "Support for running as a PVH guest"
+	bool "Support for running as a Xen PVH guest"
 	depends on XEN && XEN_PVHVM && ACPI
+	select PVH
 	def_bool n
diff --git a/arch/x86/xen/Makefile b/arch/x86/xen/Makefile
index dd2550d33b38..084de77a109e 100644
--- a/arch/x86/xen/Makefile
+++ b/arch/x86/xen/Makefile
@@ -1,6 +1,5 @@
 # SPDX-License-Identifier: GPL-2.0
 OBJECT_FILES_NON_STANDARD_xen-asm_$(BITS).o := y
-OBJECT_FILES_NON_STANDARD_xen-pvh.o := y
 
 ifdef CONFIG_FUNCTION_TRACER
 # Do not profile debug and lowlevel utilities
@@ -38,7 +37,6 @@ obj-$(CONFIG_XEN_PV)		+= xen-asm.o
 obj-$(CONFIG_XEN_PV)		+= xen-asm_$(BITS).o
 
 obj-$(CONFIG_XEN_PVH)		+= enlighten_pvh.o
-obj-$(CONFIG_XEN_PVH)	 	+= xen-pvh.o
 
 obj-$(CONFIG_EVENT_TRACING)	+= trace.o
 
diff --git a/arch/x86/xen/enlighten.c b/arch/x86/xen/enlighten.c
index e996e8e744cb..750f46ad018a 100644
--- a/arch/x86/xen/enlighten.c
+++ b/arch/x86/xen/enlighten.c
@@ -10,7 +10,6 @@
 #include <xen/xen.h>
 #include <xen/features.h>
 #include <xen/page.h>
-#include <xen/interface/memory.h>
 
 #include <asm/xen/hypercall.h>
 #include <asm/xen/hypervisor.h>
@@ -346,80 +345,3 @@ void xen_arch_unregister_cpu(int num)
 }
 EXPORT_SYMBOL(xen_arch_unregister_cpu);
 #endif
-
-#ifdef CONFIG_XEN_BALLOON_MEMORY_HOTPLUG
-void __init arch_xen_balloon_init(struct resource *hostmem_resource)
-{
-	struct xen_memory_map memmap;
-	int rc;
-	unsigned int i, last_guest_ram;
-	phys_addr_t max_addr = PFN_PHYS(max_pfn);
-	struct e820_table *xen_e820_table;
-	const struct e820_entry *entry;
-	struct resource *res;
-
-	if (!xen_initial_domain())
-		return;
-
-	xen_e820_table = kmalloc(sizeof(*xen_e820_table), GFP_KERNEL);
-	if (!xen_e820_table)
-		return;
-
-	memmap.nr_entries = ARRAY_SIZE(xen_e820_table->entries);
-	set_xen_guest_handle(memmap.buffer, xen_e820_table->entries);
-	rc = HYPERVISOR_memory_op(XENMEM_machine_memory_map, &memmap);
-	if (rc) {
-		pr_warn("%s: Can't read host e820 (%d)\n", __func__, rc);
-		goto out;
-	}
-
-	last_guest_ram = 0;
-	for (i = 0; i < memmap.nr_entries; i++) {
-		if (xen_e820_table->entries[i].addr >= max_addr)
-			break;
-		if (xen_e820_table->entries[i].type == E820_TYPE_RAM)
-			last_guest_ram = i;
-	}
-
-	entry = &xen_e820_table->entries[last_guest_ram];
-	if (max_addr >= entry->addr + entry->size)
-		goto out; /* No unallocated host RAM. */
-
-	hostmem_resource->start = max_addr;
-	hostmem_resource->end = entry->addr + entry->size;
-
-	/*
-	 * Mark non-RAM regions between the end of dom0 RAM and end of host RAM
-	 * as unavailable. The rest of that region can be used for hotplug-based
-	 * ballooning.
-	 */
-	for (; i < memmap.nr_entries; i++) {
-		entry = &xen_e820_table->entries[i];
-
-		if (entry->type == E820_TYPE_RAM)
-			continue;
-
-		if (entry->addr >= hostmem_resource->end)
-			break;
-
-		res = kzalloc(sizeof(*res), GFP_KERNEL);
-		if (!res)
-			goto out;
-
-		res->name = "Unavailable host RAM";
-		res->start = entry->addr;
-		res->end = (entry->addr + entry->size < hostmem_resource->end) ?
-			    entry->addr + entry->size : hostmem_resource->end;
-		rc = insert_resource(hostmem_resource, res);
-		if (rc) {
-			pr_warn("%s: Can't insert [%llx - %llx) (%d)\n",
-				__func__, res->start, res->end, rc);
-			kfree(res);
-			goto  out;
-		}
-	}
-
- out:
-	kfree(xen_e820_table);
-}
-#endif /* CONFIG_XEN_BALLOON_MEMORY_HOTPLUG */
diff --git a/arch/x86/xen/enlighten_pvh.c b/arch/x86/xen/enlighten_pvh.c
index 02e3ab7ff242..35b7599d2d0b 100644
--- a/arch/x86/xen/enlighten_pvh.c
+++ b/arch/x86/xen/enlighten_pvh.c
@@ -6,103 +6,45 @@
 #include <asm/io_apic.h>
 #include <asm/hypervisor.h>
 #include <asm/e820/api.h>
-#include <asm/x86_init.h>
 
+#include <xen/xen.h>
 #include <asm/xen/interface.h>
 #include <asm/xen/hypercall.h>
 
-#include <xen/xen.h>
 #include <xen/interface/memory.h>
-#include <xen/interface/hvm/start_info.h>
 
 /*
  * PVH variables.
  *
- * xen_pvh pvh_bootparams and pvh_start_info need to live in data segment
- * since they are used after startup_{32|64}, which clear .bss, are invoked.
+ * The variable xen_pvh needs to live in the data segment since it is used
+ * after startup_{32|64} is invoked, which will clear the .bss segment.
  */
 bool xen_pvh __attribute__((section(".data"))) = 0;
-struct boot_params pvh_bootparams __attribute__((section(".data")));
-struct hvm_start_info pvh_start_info __attribute__((section(".data")));
-
-unsigned int pvh_start_info_sz = sizeof(pvh_start_info);
 
-static u64 pvh_get_root_pointer(void)
+void __init xen_pvh_init(void)
 {
-	return pvh_start_info.rsdp_paddr;
+	u32 msr;
+	u64 pfn;
+
+	xen_pvh = 1;
+	xen_start_flags = pvh_start_info.flags;
+
+	msr = cpuid_ebx(xen_cpuid_base() + 2);
+	pfn = __pa(hypercall_page);
+	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
 }
 
-static void __init init_pvh_bootparams(void)
+void __init mem_map_via_hcall(struct boot_params *boot_params_p)
 {
 	struct xen_memory_map memmap;
 	int rc;
 
-	memset(&pvh_bootparams, 0, sizeof(pvh_bootparams));
-
-	memmap.nr_entries = ARRAY_SIZE(pvh_bootparams.e820_table);
-	set_xen_guest_handle(memmap.buffer, pvh_bootparams.e820_table);
+	memmap.nr_entries = ARRAY_SIZE(boot_params_p->e820_table);
+	set_xen_guest_handle(memmap.buffer, boot_params_p->e820_table);
 	rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap);
 	if (rc) {
 		xen_raw_printk("XENMEM_memory_map failed (%d)\n", rc);
 		BUG();
 	}
-	pvh_bootparams.e820_entries = memmap.nr_entries;
-
-	if (pvh_bootparams.e820_entries < E820_MAX_ENTRIES_ZEROPAGE - 1) {
-		pvh_bootparams.e820_table[pvh_bootparams.e820_entries].addr =
-			ISA_START_ADDRESS;
-		pvh_bootparams.e820_table[pvh_bootparams.e820_entries].size =
-			ISA_END_ADDRESS - ISA_START_ADDRESS;
-		pvh_bootparams.e820_table[pvh_bootparams.e820_entries].type =
-			E820_TYPE_RESERVED;
-		pvh_bootparams.e820_entries++;
-	} else
-		xen_raw_printk("Warning: Can fit ISA range into e820\n");
-
-	pvh_bootparams.hdr.cmd_line_ptr =
-		pvh_start_info.cmdline_paddr;
-
-	/* The first module is always ramdisk. */
-	if (pvh_start_info.nr_modules) {
-		struct hvm_modlist_entry *modaddr =
-			__va(pvh_start_info.modlist_paddr);
-		pvh_bootparams.hdr.ramdisk_image = modaddr->paddr;
-		pvh_bootparams.hdr.ramdisk_size = modaddr->size;
-	}
-
-	/*
-	 * See Documentation/x86/boot.txt.
-	 *
-	 * Version 2.12 supports Xen entry point but we will use default x86/PC
-	 * environment (i.e. hardware_subarch 0).
-	 */
-	pvh_bootparams.hdr.version = (2 << 8) | 12;
-	pvh_bootparams.hdr.type_of_loader = (9 << 4) | 0; /* Xen loader */
-
-	x86_init.acpi.get_root_pointer = pvh_get_root_pointer;
-}
-
-/*
- * This routine (and those that it might call) should not use
- * anything that lives in .bss since that segment will be cleared later.
- */
-void __init xen_prepare_pvh(void)
-{
-	u32 msr;
-	u64 pfn;
-
-	if (pvh_start_info.magic != XEN_HVM_START_MAGIC_VALUE) {
-		xen_raw_printk("Error: Unexpected magic value (0x%08x)\n",
-				pvh_start_info.magic);
-		BUG();
-	}
-
-	xen_pvh = 1;
-	xen_start_flags = pvh_start_info.flags;
-
-	msr = cpuid_ebx(xen_cpuid_base() + 2);
-	pfn = __pa(hypercall_page);
-	wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
-
-	init_pvh_bootparams();
+	boot_params_p->e820_entries = memmap.nr_entries;
 }
diff --git a/arch/x86/xen/mmu_pv.c b/arch/x86/xen/mmu_pv.c
index 0d7b3ae4960b..0f4fe206dcc2 100644
--- a/arch/x86/xen/mmu_pv.c
+++ b/arch/x86/xen/mmu_pv.c
@@ -648,19 +648,20 @@ static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
 			  unsigned long limit)
 {
 	int i, nr, flush = 0;
-	unsigned hole_low, hole_high;
+	unsigned hole_low = 0, hole_high = 0;
 
 	/* The limit is the last byte to be touched */
 	limit--;
 	BUG_ON(limit >= FIXADDR_TOP);
 
+#ifdef CONFIG_X86_64
 	/*
 	 * 64-bit has a great big hole in the middle of the address
-	 * space, which contains the Xen mappings.  On 32-bit these
-	 * will end up making a zero-sized hole and so is a no-op.
+	 * space, which contains the Xen mappings.
 	 */
-	hole_low = pgd_index(USER_LIMIT);
-	hole_high = pgd_index(PAGE_OFFSET);
+	hole_low = pgd_index(GUARD_HOLE_BASE_ADDR);
+	hole_high = pgd_index(GUARD_HOLE_END_ADDR);
+#endif
 
 	nr = pgd_index(limit) + 1;
 	for (i = 0; i < nr; i++) {
@@ -1905,7 +1906,7 @@ void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
 	init_top_pgt[0] = __pgd(0);
 
 	/* Pre-constructed entries are in pfn, so convert to mfn */
-	/* L4[272] -> level3_ident_pgt  */
+	/* L4[273] -> level3_ident_pgt  */
 	/* L4[511] -> level3_kernel_pgt */
 	convert_pfn_mfn(init_top_pgt);
 
@@ -1925,8 +1926,8 @@ void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
 	addr[0] = (unsigned long)pgd;
 	addr[1] = (unsigned long)l3;
 	addr[2] = (unsigned long)l2;
-	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
-	 * Both L4[272][0] and L4[511][510] have entries that point to the same
+	/* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
+	 * Both L4[273][0] and L4[511][510] have entries that point to the same
 	 * L2 (PMD) tables. Meaning that if you modify it in __va space
 	 * it will be also modified in the __ka space! (But if you just
 	 * modify the PMD table to point to other PTE's or none, then you
diff --git a/arch/x86/xen/multicalls.c b/arch/x86/xen/multicalls.c
index 2bce7958ce8b..0766a08bdf45 100644
--- a/arch/x86/xen/multicalls.c
+++ b/arch/x86/xen/multicalls.c
@@ -69,6 +69,11 @@ void xen_mc_flush(void)
 
 	trace_xen_mc_flush(b->mcidx, b->argidx, b->cbidx);
 
+#if MC_DEBUG
+	memcpy(b->debug, b->entries,
+	       b->mcidx * sizeof(struct multicall_entry));
+#endif
+
 	switch (b->mcidx) {
 	case 0:
 		/* no-op */
@@ -87,32 +92,34 @@ void xen_mc_flush(void)
 		break;
 
 	default:
-#if MC_DEBUG
-		memcpy(b->debug, b->entries,
-		       b->mcidx * sizeof(struct multicall_entry));
-#endif
-
 		if (HYPERVISOR_multicall(b->entries, b->mcidx) != 0)
 			BUG();
 		for (i = 0; i < b->mcidx; i++)
 			if (b->entries[i].result < 0)
 				ret++;
+	}
 
+	if (WARN_ON(ret)) {
+		pr_err("%d of %d multicall(s) failed: cpu %d\n",
+		       ret, b->mcidx, smp_processor_id());
+		for (i = 0; i < b->mcidx; i++) {
+			if (b->entries[i].result < 0) {
 #if MC_DEBUG
-		if (ret) {
-			printk(KERN_ERR "%d multicall(s) failed: cpu %d\n",
-			       ret, smp_processor_id());
-			dump_stack();
-			for (i = 0; i < b->mcidx; i++) {
-				printk(KERN_DEBUG "  call %2d/%d: op=%lu arg=[%lx] result=%ld\t%pF\n",
-				       i+1, b->mcidx,
+				pr_err("  call %2d: op=%lu arg=[%lx] result=%ld\t%pF\n",
+				       i + 1,
 				       b->debug[i].op,
 				       b->debug[i].args[0],
 				       b->entries[i].result,
 				       b->caller[i]);
+#else
+				pr_err("  call %2d: op=%lu arg=[%lx] result=%ld\n",
+				       i + 1,
+				       b->entries[i].op,
+				       b->entries[i].args[0],
+				       b->entries[i].result);
+#endif
 			}
 		}
-#endif
 	}
 
 	b->mcidx = 0;
@@ -126,8 +133,6 @@ void xen_mc_flush(void)
 	b->cbidx = 0;
 
 	local_irq_restore(flags);
-
-	WARN_ON(ret);
 }
 
 struct multicall_space __xen_mc_entry(size_t args)
diff --git a/arch/x86/xen/p2m.c b/arch/x86/xen/p2m.c
index b06731705529..055e37e43541 100644
--- a/arch/x86/xen/p2m.c
+++ b/arch/x86/xen/p2m.c
@@ -656,8 +656,7 @@ bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn)
 
 	/*
 	 * The interface requires atomic updates on p2m elements.
-	 * xen_safe_write_ulong() is using __put_user which does an atomic
-	 * store via asm().
+	 * xen_safe_write_ulong() is using an atomic store via asm().
 	 */
 	if (likely(!xen_safe_write_ulong(xen_p2m_addr + pfn, mfn)))
 		return true;
diff --git a/arch/x86/xen/setup.c b/arch/x86/xen/setup.c
index 1163e33121fb..d5f303c0e656 100644
--- a/arch/x86/xen/setup.c
+++ b/arch/x86/xen/setup.c
@@ -493,7 +493,7 @@ static unsigned long __init xen_foreach_remap_area(unsigned long nr_pages,
  * The remap information (which mfn remap to which pfn) is contained in the
  * to be remapped memory itself in a linked list anchored at xen_remap_mfn.
  * This scheme allows to remap the different chunks in arbitrary order while
- * the resulting mapping will be independant from the order.
+ * the resulting mapping will be independent from the order.
  */
 void __init xen_remap_memory(void)
 {
@@ -808,6 +808,7 @@ char * __init xen_memory_setup(void)
 	addr = xen_e820_table.entries[0].addr;
 	size = xen_e820_table.entries[0].size;
 	while (i < xen_e820_table.nr_entries) {
+		bool discard = false;
 
 		chunk_size = size;
 		type = xen_e820_table.entries[i].type;
@@ -823,10 +824,11 @@ char * __init xen_memory_setup(void)
 				xen_add_extra_mem(pfn_s, n_pfns);
 				xen_max_p2m_pfn = pfn_s + n_pfns;
 			} else
-				type = E820_TYPE_UNUSABLE;
+				discard = true;
 		}
 
-		xen_align_and_add_e820_region(addr, chunk_size, type);
+		if (!discard)
+			xen_align_and_add_e820_region(addr, chunk_size, type);
 
 		addr += chunk_size;
 		size -= chunk_size;
diff --git a/arch/x86/xen/spinlock.c b/arch/x86/xen/spinlock.c
index 441c88262169..3776122c87cc 100644
--- a/arch/x86/xen/spinlock.c
+++ b/arch/x86/xen/spinlock.c
@@ -3,24 +3,21 @@
  * Split spinlock implementation out into its own file, so it can be
  * compiled in a FTRACE-compatible way.
  */
-#include <linux/kernel_stat.h>
+#include <linux/kernel.h>
 #include <linux/spinlock.h>
-#include <linux/debugfs.h>
-#include <linux/log2.h>
-#include <linux/gfp.h>
 #include <linux/slab.h>
+#include <linux/atomic.h>
 
 #include <asm/paravirt.h>
 #include <asm/qspinlock.h>
 
-#include <xen/interface/xen.h>
 #include <xen/events.h>
 
 #include "xen-ops.h"
-#include "debugfs.h"
 
 static DEFINE_PER_CPU(int, lock_kicker_irq) = -1;
 static DEFINE_PER_CPU(char *, irq_name);
+static DEFINE_PER_CPU(atomic_t, xen_qlock_wait_nest);
 static bool xen_pvspin = true;
 
 static void xen_qlock_kick(int cpu)
@@ -39,25 +36,25 @@ static void xen_qlock_kick(int cpu)
  */
 static void xen_qlock_wait(u8 *byte, u8 val)
 {
-	unsigned long flags;
 	int irq = __this_cpu_read(lock_kicker_irq);
+	atomic_t *nest_cnt = this_cpu_ptr(&xen_qlock_wait_nest);
 
 	/* If kicker interrupts not initialized yet, just spin */
 	if (irq == -1 || in_nmi())
 		return;
 
-	/* Guard against reentry. */
-	local_irq_save(flags);
+	/* Detect reentry. */
+	atomic_inc(nest_cnt);
 
-	/* If irq pending already clear it. */
-	if (xen_test_irq_pending(irq)) {
+	/* If irq pending already and no nested call clear it. */
+	if (atomic_read(nest_cnt) == 1 && xen_test_irq_pending(irq)) {
 		xen_clear_irq_pending(irq);
 	} else if (READ_ONCE(*byte) == val) {
 		/* Block until irq becomes pending (or a spurious wakeup) */
 		xen_poll_irq(irq);
 	}
 
-	local_irq_restore(flags);
+	atomic_dec(nest_cnt);
 }
 
 static irqreturn_t dummy_handler(int irq, void *dev_id)
diff --git a/arch/x86/xen/xen-asm_64.S b/arch/x86/xen/xen-asm_64.S
index bb1c2da0381d..1e9ef0ba30a5 100644
--- a/arch/x86/xen/xen-asm_64.S
+++ b/arch/x86/xen/xen-asm_64.S
@@ -12,6 +12,7 @@
 #include <asm/segment.h>
 #include <asm/asm-offsets.h>
 #include <asm/thread_info.h>
+#include <asm/asm.h>
 
 #include <xen/interface/xen.h>
 
@@ -24,6 +25,7 @@ ENTRY(xen_\name)
 	pop %r11
 	jmp  \name
 END(xen_\name)
+_ASM_NOKPROBE(xen_\name)
 .endm
 
 xen_pv_trap divide_error