summary refs log tree commit diff
path: root/arch/x86/mm/tlb.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/mm/tlb.c')
-rw-r--r--arch/x86/mm/tlb.c167
1 files changed, 102 insertions, 65 deletions
diff --git a/arch/x86/mm/tlb.c b/arch/x86/mm/tlb.c
index e96b99eb800c..7d68489cfdb1 100644
--- a/arch/x86/mm/tlb.c
+++ b/arch/x86/mm/tlb.c
@@ -185,8 +185,11 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
 {
 	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
+	bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
 	unsigned cpu = smp_processor_id();
 	u64 next_tlb_gen;
+	bool need_flush;
+	u16 new_asid;
 
 	/*
 	 * NB: The scheduler will call us with prev == next when switching
@@ -240,20 +243,41 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
 			   next->context.ctx_id);
 
 		/*
-		 * We don't currently support having a real mm loaded without
-		 * our cpu set in mm_cpumask().  We have all the bookkeeping
-		 * in place to figure out whether we would need to flush
-		 * if our cpu were cleared in mm_cpumask(), but we don't
-		 * currently use it.
+		 * Even in lazy TLB mode, the CPU should stay set in the
+		 * mm_cpumask. The TLB shootdown code can figure out from
+		 * from cpu_tlbstate.is_lazy whether or not to send an IPI.
 		 */
 		if (WARN_ON_ONCE(real_prev != &init_mm &&
 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
 			cpumask_set_cpu(cpu, mm_cpumask(next));
 
-		return;
+		/*
+		 * If the CPU is not in lazy TLB mode, we are just switching
+		 * from one thread in a process to another thread in the same
+		 * process. No TLB flush required.
+		 */
+		if (!was_lazy)
+			return;
+
+		/*
+		 * Read the tlb_gen to check whether a flush is needed.
+		 * If the TLB is up to date, just use it.
+		 * The barrier synchronizes with the tlb_gen increment in
+		 * the TLB shootdown code.
+		 */
+		smp_mb();
+		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
+		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
+				next_tlb_gen)
+			return;
+
+		/*
+		 * TLB contents went out of date while we were in lazy
+		 * mode. Fall through to the TLB switching code below.
+		 */
+		new_asid = prev_asid;
+		need_flush = true;
 	} else {
-		u16 new_asid;
-		bool need_flush;
 		u64 last_ctx_id = this_cpu_read(cpu_tlbstate.last_ctx_id);
 
 		/*
@@ -308,46 +332,48 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
 		/* Let nmi_uaccess_okay() know that we're changing CR3. */
 		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
 		barrier();
+	}
 
-		if (need_flush) {
-			this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
-			this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
-			load_new_mm_cr3(next->pgd, new_asid, true);
-
-			/*
-			 * NB: This gets called via leave_mm() in the idle path
-			 * where RCU functions differently.  Tracing normally
-			 * uses RCU, so we need to use the _rcuidle variant.
-			 *
-			 * (There is no good reason for this.  The idle code should
-			 *  be rearranged to call this before rcu_idle_enter().)
-			 */
-			trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
-		} else {
-			/* The new ASID is already up to date. */
-			load_new_mm_cr3(next->pgd, new_asid, false);
-
-			/* See above wrt _rcuidle. */
-			trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
-		}
+	if (need_flush) {
+		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
+		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
+		load_new_mm_cr3(next->pgd, new_asid, true);
 
 		/*
-		 * Record last user mm's context id, so we can avoid
-		 * flushing branch buffer with IBPB if we switch back
-		 * to the same user.
+		 * NB: This gets called via leave_mm() in the idle path
+		 * where RCU functions differently.  Tracing normally
+		 * uses RCU, so we need to use the _rcuidle variant.
+		 *
+		 * (There is no good reason for this.  The idle code should
+		 *  be rearranged to call this before rcu_idle_enter().)
 		 */
-		if (next != &init_mm)
-			this_cpu_write(cpu_tlbstate.last_ctx_id, next->context.ctx_id);
-
-		/* Make sure we write CR3 before loaded_mm. */
-		barrier();
+		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
+	} else {
+		/* The new ASID is already up to date. */
+		load_new_mm_cr3(next->pgd, new_asid, false);
 
-		this_cpu_write(cpu_tlbstate.loaded_mm, next);
-		this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
+		/* See above wrt _rcuidle. */
+		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
 	}
 
-	load_mm_cr4(next);
-	switch_ldt(real_prev, next);
+	/*
+	 * Record last user mm's context id, so we can avoid
+	 * flushing branch buffer with IBPB if we switch back
+	 * to the same user.
+	 */
+	if (next != &init_mm)
+		this_cpu_write(cpu_tlbstate.last_ctx_id, next->context.ctx_id);
+
+	/* Make sure we write CR3 before loaded_mm. */
+	barrier();
+
+	this_cpu_write(cpu_tlbstate.loaded_mm, next);
+	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
+
+	if (next != real_prev) {
+		load_mm_cr4(next);
+		switch_ldt(real_prev, next);
+	}
 }
 
 /*
@@ -368,20 +394,7 @@ void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
 		return;
 
-	if (tlb_defer_switch_to_init_mm()) {
-		/*
-		 * There's a significant optimization that may be possible
-		 * here.  We have accurate enough TLB flush tracking that we
-		 * don't need to maintain coherence of TLB per se when we're
-		 * lazy.  We do, however, need to maintain coherence of
-		 * paging-structure caches.  We could, in principle, leave our
-		 * old mm loaded and only switch to init_mm when
-		 * tlb_remove_page() happens.
-		 */
-		this_cpu_write(cpu_tlbstate.is_lazy, true);
-	} else {
-		switch_mm(NULL, &init_mm, NULL);
-	}
+	this_cpu_write(cpu_tlbstate.is_lazy, true);
 }
 
 /*
@@ -468,6 +481,9 @@ static void flush_tlb_func_common(const struct flush_tlb_info *f,
 		 * paging-structure cache to avoid speculatively reading
 		 * garbage into our TLB.  Since switching to init_mm is barely
 		 * slower than a minimal flush, just switch to init_mm.
+		 *
+		 * This should be rare, with native_flush_tlb_others skipping
+		 * IPIs to lazy TLB mode CPUs.
 		 */
 		switch_mm_irqs_off(NULL, &init_mm, NULL);
 		return;
@@ -528,17 +544,16 @@ static void flush_tlb_func_common(const struct flush_tlb_info *f,
 	    f->new_tlb_gen == local_tlb_gen + 1 &&
 	    f->new_tlb_gen == mm_tlb_gen) {
 		/* Partial flush */
-		unsigned long addr;
-		unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
+		unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
+		unsigned long addr = f->start;
 
-		addr = f->start;
 		while (addr < f->end) {
 			__flush_tlb_one_user(addr);
-			addr += PAGE_SIZE;
+			addr += 1UL << f->stride_shift;
 		}
 		if (local)
-			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
-		trace_tlb_flush(reason, nr_pages);
+			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
+		trace_tlb_flush(reason, nr_invalidate);
 	} else {
 		/* Full flush. */
 		local_flush_tlb();
@@ -571,6 +586,11 @@ static void flush_tlb_func_remote(void *info)
 	flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
 }
 
+static bool tlb_is_not_lazy(int cpu, void *data)
+{
+	return !per_cpu(cpu_tlbstate.is_lazy, cpu);
+}
+
 void native_flush_tlb_others(const struct cpumask *cpumask,
 			     const struct flush_tlb_info *info)
 {
@@ -606,8 +626,23 @@ void native_flush_tlb_others(const struct cpumask *cpumask,
 					       (void *)info, 1);
 		return;
 	}
-	smp_call_function_many(cpumask, flush_tlb_func_remote,
+
+	/*
+	 * If no page tables were freed, we can skip sending IPIs to
+	 * CPUs in lazy TLB mode. They will flush the CPU themselves
+	 * at the next context switch.
+	 *
+	 * However, if page tables are getting freed, we need to send the
+	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
+	 * up on the new contents of what used to be page tables, while
+	 * doing a speculative memory access.
+	 */
+	if (info->freed_tables)
+		smp_call_function_many(cpumask, flush_tlb_func_remote,
 			       (void *)info, 1);
+	else
+		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
+				(void *)info, 1, GFP_ATOMIC, cpumask);
 }
 
 /*
@@ -623,12 +658,15 @@ void native_flush_tlb_others(const struct cpumask *cpumask,
 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
 
 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
-				unsigned long end, unsigned long vmflag)
+				unsigned long end, unsigned int stride_shift,
+				bool freed_tables)
 {
 	int cpu;
 
 	struct flush_tlb_info info __aligned(SMP_CACHE_BYTES) = {
 		.mm = mm,
+		.stride_shift = stride_shift,
+		.freed_tables = freed_tables,
 	};
 
 	cpu = get_cpu();
@@ -638,8 +676,7 @@ void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
 
 	/* Should we flush just the requested range? */
 	if ((end != TLB_FLUSH_ALL) &&
-	    !(vmflag & VM_HUGETLB) &&
-	    ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
+	    ((end - start) >> stride_shift) <= tlb_single_page_flush_ceiling) {
 		info.start = start;
 		info.end = end;
 	} else {