summary refs log tree commit diff
path: root/arch/x86/kvm/mmu/mmu.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kvm/mmu/mmu.c')
-rw-r--r--arch/x86/kvm/mmu/mmu.c639
1 files changed, 358 insertions, 281 deletions
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c
index 62b1729277ef..0144c40d09c7 100644
--- a/arch/x86/kvm/mmu/mmu.c
+++ b/arch/x86/kvm/mmu/mmu.c
@@ -48,6 +48,7 @@
 #include <asm/memtype.h>
 #include <asm/cmpxchg.h>
 #include <asm/io.h>
+#include <asm/set_memory.h>
 #include <asm/vmx.h>
 #include <asm/kvm_page_track.h>
 #include "trace.h"
@@ -215,10 +216,10 @@ bool is_nx_huge_page_enabled(void)
 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
 			   unsigned int access)
 {
-	u64 mask = make_mmio_spte(vcpu, gfn, access);
+	u64 spte = make_mmio_spte(vcpu, gfn, access);
 
-	trace_mark_mmio_spte(sptep, gfn, mask);
-	mmu_spte_set(sptep, mask);
+	trace_mark_mmio_spte(sptep, gfn, spte);
+	mmu_spte_set(sptep, spte);
 }
 
 static gfn_t get_mmio_spte_gfn(u64 spte)
@@ -236,17 +237,6 @@ static unsigned get_mmio_spte_access(u64 spte)
 	return spte & shadow_mmio_access_mask;
 }
 
-static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
-			  kvm_pfn_t pfn, unsigned int access)
-{
-	if (unlikely(is_noslot_pfn(pfn))) {
-		mark_mmio_spte(vcpu, sptep, gfn, access);
-		return true;
-	}
-
-	return false;
-}
-
 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
 {
 	u64 kvm_gen, spte_gen, gen;
@@ -725,8 +715,7 @@ static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  * handling slots that are not large page aligned.
  */
 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
-					      struct kvm_memory_slot *slot,
-					      int level)
+		const struct kvm_memory_slot *slot, int level)
 {
 	unsigned long idx;
 
@@ -1118,7 +1107,7 @@ static bool spte_write_protect(u64 *sptep, bool pt_protect)
 	rmap_printk("spte %p %llx\n", sptep, *sptep);
 
 	if (pt_protect)
-		spte &= ~SPTE_MMU_WRITEABLE;
+		spte &= ~shadow_mmu_writable_mask;
 	spte = spte & ~PT_WRITABLE_MASK;
 
 	return mmu_spte_update(sptep, spte);
@@ -1308,26 +1297,25 @@ static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
 	return flush;
 }
 
-static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
-			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
-			   unsigned long data)
+static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
+			    pte_t unused)
 {
 	return kvm_zap_rmapp(kvm, rmap_head, slot);
 }
 
-static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
-			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
-			     unsigned long data)
+static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
+			      pte_t pte)
 {
 	u64 *sptep;
 	struct rmap_iterator iter;
 	int need_flush = 0;
 	u64 new_spte;
-	pte_t *ptep = (pte_t *)data;
 	kvm_pfn_t new_pfn;
 
-	WARN_ON(pte_huge(*ptep));
-	new_pfn = pte_pfn(*ptep);
+	WARN_ON(pte_huge(pte));
+	new_pfn = pte_pfn(pte);
 
 restart:
 	for_each_rmap_spte(rmap_head, &iter, sptep) {
@@ -1336,7 +1324,7 @@ restart:
 
 		need_flush = 1;
 
-		if (pte_write(*ptep)) {
+		if (pte_write(pte)) {
 			pte_list_remove(rmap_head, sptep);
 			goto restart;
 		} else {
@@ -1424,93 +1412,52 @@ static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
 	     slot_rmap_walk_okay(_iter_);				\
 	     slot_rmap_walk_next(_iter_))
 
-static __always_inline int
-kvm_handle_hva_range(struct kvm *kvm,
-		     unsigned long start,
-		     unsigned long end,
-		     unsigned long data,
-		     int (*handler)(struct kvm *kvm,
-				    struct kvm_rmap_head *rmap_head,
-				    struct kvm_memory_slot *slot,
-				    gfn_t gfn,
-				    int level,
-				    unsigned long data))
+typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+			       struct kvm_memory_slot *slot, gfn_t gfn,
+			       int level, pte_t pte);
+
+static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
+						 struct kvm_gfn_range *range,
+						 rmap_handler_t handler)
 {
-	struct kvm_memslots *slots;
-	struct kvm_memory_slot *memslot;
 	struct slot_rmap_walk_iterator iterator;
-	int ret = 0;
-	int i;
-
-	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
-		slots = __kvm_memslots(kvm, i);
-		kvm_for_each_memslot(memslot, slots) {
-			unsigned long hva_start, hva_end;
-			gfn_t gfn_start, gfn_end;
+	bool ret = false;
 
-			hva_start = max(start, memslot->userspace_addr);
-			hva_end = min(end, memslot->userspace_addr +
-				      (memslot->npages << PAGE_SHIFT));
-			if (hva_start >= hva_end)
-				continue;
-			/*
-			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
-			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
-			 */
-			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
-			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
-
-			for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
-						 KVM_MAX_HUGEPAGE_LEVEL,
-						 gfn_start, gfn_end - 1,
-						 &iterator)
-				ret |= handler(kvm, iterator.rmap, memslot,
-					       iterator.gfn, iterator.level, data);
-		}
-	}
+	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
+				 range->start, range->end - 1, &iterator)
+		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
+			       iterator.level, range->pte);
 
 	return ret;
 }
 
-static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
-			  unsigned long data,
-			  int (*handler)(struct kvm *kvm,
-					 struct kvm_rmap_head *rmap_head,
-					 struct kvm_memory_slot *slot,
-					 gfn_t gfn, int level,
-					 unsigned long data))
+bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
 {
-	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
-}
-
-int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
-			unsigned flags)
-{
-	int r;
+	bool flush;
 
-	r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
+	flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
 
 	if (is_tdp_mmu_enabled(kvm))
-		r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
+		flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
 
-	return r;
+	return flush;
 }
 
-int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
+bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
 {
-	int r;
+	bool flush;
 
-	r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
+	flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
 
 	if (is_tdp_mmu_enabled(kvm))
-		r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
+		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
 
-	return r;
+	return flush;
 }
 
-static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
-			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
-			 unsigned long data)
+static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
+			  pte_t unused)
 {
 	u64 *sptep;
 	struct rmap_iterator iter;
@@ -1519,13 +1466,12 @@ static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
 	for_each_rmap_spte(rmap_head, &iter, sptep)
 		young |= mmu_spte_age(sptep);
 
-	trace_kvm_age_page(gfn, level, slot, young);
 	return young;
 }
 
-static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
-			      struct kvm_memory_slot *slot, gfn_t gfn,
-			      int level, unsigned long data)
+static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
+			       struct kvm_memory_slot *slot, gfn_t gfn,
+			       int level, pte_t unused)
 {
 	u64 *sptep;
 	struct rmap_iterator iter;
@@ -1547,29 +1493,31 @@ static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
 
 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
 
-	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
+	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
 	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
 			KVM_PAGES_PER_HPAGE(sp->role.level));
 }
 
-int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
+bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
 {
-	int young = false;
+	bool young;
+
+	young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
 
-	young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
 	if (is_tdp_mmu_enabled(kvm))
-		young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
+		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
 
 	return young;
 }
 
-int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
+bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
 {
-	int young = false;
+	bool young;
+
+	young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
 
-	young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
 	if (is_tdp_mmu_enabled(kvm))
-		young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
+		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
 
 	return young;
 }
@@ -2421,6 +2369,15 @@ static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
 
 	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
 
+	/*
+	 * Note, this check is intentionally soft, it only guarantees that one
+	 * page is available, while the caller may end up allocating as many as
+	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
+	 * exceeding the (arbitrary by default) limit will not harm the host,
+	 * being too agressive may unnecessarily kill the guest, and getting an
+	 * exact count is far more trouble than it's worth, especially in the
+	 * page fault paths.
+	 */
 	if (!kvm_mmu_available_pages(vcpu->kvm))
 		return -ENOSPC;
 	return 0;
@@ -2561,9 +2518,6 @@ static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
 	struct kvm_mmu_page *sp;
 	int ret;
 
-	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
-		return 0;
-
 	sp = sptep_to_sp(sptep);
 
 	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
@@ -2593,6 +2547,11 @@ static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
 		 *sptep, write_fault, gfn);
 
+	if (unlikely(is_noslot_pfn(pfn))) {
+		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
+		return RET_PF_EMULATE;
+	}
+
 	if (is_shadow_present_pte(*sptep)) {
 		/*
 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
@@ -2626,9 +2585,6 @@ static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
 				KVM_PAGES_PER_HPAGE(level));
 
-	if (unlikely(is_mmio_spte(*sptep)))
-		ret = RET_PF_EMULATE;
-
 	/*
 	 * The fault is fully spurious if and only if the new SPTE and old SPTE
 	 * are identical, and emulation is not required.
@@ -2745,7 +2701,7 @@ static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
 }
 
 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
-				  struct kvm_memory_slot *slot)
+				  const struct kvm_memory_slot *slot)
 {
 	unsigned long hva;
 	pte_t *pte;
@@ -2771,8 +2727,9 @@ static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
 	return level;
 }
 
-int kvm_mmu_max_mapping_level(struct kvm *kvm, struct kvm_memory_slot *slot,
-			      gfn_t gfn, kvm_pfn_t pfn, int max_level)
+int kvm_mmu_max_mapping_level(struct kvm *kvm,
+			      const struct kvm_memory_slot *slot, gfn_t gfn,
+			      kvm_pfn_t pfn, int max_level)
 {
 	struct kvm_lpage_info *linfo;
 
@@ -2946,9 +2903,19 @@ static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
 		return true;
 	}
 
-	if (unlikely(is_noslot_pfn(pfn)))
+	if (unlikely(is_noslot_pfn(pfn))) {
 		vcpu_cache_mmio_info(vcpu, gva, gfn,
 				     access & shadow_mmio_access_mask);
+		/*
+		 * If MMIO caching is disabled, emulate immediately without
+		 * touching the shadow page tables as attempting to install an
+		 * MMIO SPTE will just be an expensive nop.
+		 */
+		if (unlikely(!shadow_mmio_value)) {
+			*ret_val = RET_PF_EMULATE;
+			return true;
+		}
+	}
 
 	return false;
 }
@@ -3061,6 +3028,9 @@ static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
 			if (!is_shadow_present_pte(spte))
 				break;
 
+		if (!is_shadow_present_pte(spte))
+			break;
+
 		sp = sptep_to_sp(iterator.sptep);
 		if (!is_last_spte(spte, sp->role.level))
 			break;
@@ -3150,12 +3120,10 @@ static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
 
 	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
 
-	if (kvm_mmu_put_root(kvm, sp)) {
-		if (is_tdp_mmu_page(sp))
-			kvm_tdp_mmu_free_root(kvm, sp);
-		else if (sp->role.invalid)
-			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
-	}
+	if (is_tdp_mmu_page(sp))
+		kvm_tdp_mmu_put_root(kvm, sp, false);
+	else if (!--sp->root_count && sp->role.invalid)
+		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
 
 	*root_hpa = INVALID_PAGE;
 }
@@ -3193,14 +3161,17 @@ void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
 		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
 			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
-		} else {
-			for (i = 0; i < 4; ++i)
-				if (mmu->pae_root[i] != 0)
-					mmu_free_root_page(kvm,
-							   &mmu->pae_root[i],
-							   &invalid_list);
-			mmu->root_hpa = INVALID_PAGE;
+		} else if (mmu->pae_root) {
+			for (i = 0; i < 4; ++i) {
+				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
+					continue;
+
+				mmu_free_root_page(kvm, &mmu->pae_root[i],
+						   &invalid_list);
+				mmu->pae_root[i] = INVALID_PAE_ROOT;
+			}
 		}
+		mmu->root_hpa = INVALID_PAGE;
 		mmu->root_pgd = 0;
 	}
 
@@ -3226,155 +3197,208 @@ static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
 {
 	struct kvm_mmu_page *sp;
 
-	write_lock(&vcpu->kvm->mmu_lock);
-
-	if (make_mmu_pages_available(vcpu)) {
-		write_unlock(&vcpu->kvm->mmu_lock);
-		return INVALID_PAGE;
-	}
 	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
 	++sp->root_count;
 
-	write_unlock(&vcpu->kvm->mmu_lock);
 	return __pa(sp->spt);
 }
 
 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
 {
-	u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
+	struct kvm_mmu *mmu = vcpu->arch.mmu;
+	u8 shadow_root_level = mmu->shadow_root_level;
 	hpa_t root;
 	unsigned i;
+	int r;
+
+	write_lock(&vcpu->kvm->mmu_lock);
+	r = make_mmu_pages_available(vcpu);
+	if (r < 0)
+		goto out_unlock;
 
 	if (is_tdp_mmu_enabled(vcpu->kvm)) {
 		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
-
-		if (!VALID_PAGE(root))
-			return -ENOSPC;
-		vcpu->arch.mmu->root_hpa = root;
+		mmu->root_hpa = root;
 	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
-		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
-				      true);
-
-		if (!VALID_PAGE(root))
-			return -ENOSPC;
-		vcpu->arch.mmu->root_hpa = root;
+		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
+		mmu->root_hpa = root;
 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
+		if (WARN_ON_ONCE(!mmu->pae_root)) {
+			r = -EIO;
+			goto out_unlock;
+		}
+
 		for (i = 0; i < 4; ++i) {
-			MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
+			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
 
 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
 					      i << 30, PT32_ROOT_LEVEL, true);
-			if (!VALID_PAGE(root))
-				return -ENOSPC;
-			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
+			mmu->pae_root[i] = root | PT_PRESENT_MASK |
+					   shadow_me_mask;
 		}
-		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
-	} else
-		BUG();
+		mmu->root_hpa = __pa(mmu->pae_root);
+	} else {
+		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
+		r = -EIO;
+		goto out_unlock;
+	}
 
 	/* root_pgd is ignored for direct MMUs. */
-	vcpu->arch.mmu->root_pgd = 0;
-
-	return 0;
+	mmu->root_pgd = 0;
+out_unlock:
+	write_unlock(&vcpu->kvm->mmu_lock);
+	return r;
 }
 
 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
 {
-	u64 pdptr, pm_mask;
+	struct kvm_mmu *mmu = vcpu->arch.mmu;
+	u64 pdptrs[4], pm_mask;
 	gfn_t root_gfn, root_pgd;
 	hpa_t root;
-	int i;
+	unsigned i;
+	int r;
 
-	root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
+	root_pgd = mmu->get_guest_pgd(vcpu);
 	root_gfn = root_pgd >> PAGE_SHIFT;
 
 	if (mmu_check_root(vcpu, root_gfn))
 		return 1;
 
 	/*
+	 * On SVM, reading PDPTRs might access guest memory, which might fault
+	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
+	 */
+	if (mmu->root_level == PT32E_ROOT_LEVEL) {
+		for (i = 0; i < 4; ++i) {
+			pdptrs[i] = mmu->get_pdptr(vcpu, i);
+			if (!(pdptrs[i] & PT_PRESENT_MASK))
+				continue;
+
+			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
+				return 1;
+		}
+	}
+
+	write_lock(&vcpu->kvm->mmu_lock);
+	r = make_mmu_pages_available(vcpu);
+	if (r < 0)
+		goto out_unlock;
+
+	/*
 	 * Do we shadow a long mode page table? If so we need to
 	 * write-protect the guests page table root.
 	 */
-	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
-		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
-
+	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
 		root = mmu_alloc_root(vcpu, root_gfn, 0,
-				      vcpu->arch.mmu->shadow_root_level, false);
-		if (!VALID_PAGE(root))
-			return -ENOSPC;
-		vcpu->arch.mmu->root_hpa = root;
+				      mmu->shadow_root_level, false);
+		mmu->root_hpa = root;
 		goto set_root_pgd;
 	}
 
+	if (WARN_ON_ONCE(!mmu->pae_root)) {
+		r = -EIO;
+		goto out_unlock;
+	}
+
 	/*
 	 * We shadow a 32 bit page table. This may be a legacy 2-level
 	 * or a PAE 3-level page table. In either case we need to be aware that
 	 * the shadow page table may be a PAE or a long mode page table.
 	 */
-	pm_mask = PT_PRESENT_MASK;
-	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
+	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
+	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
 
+		if (WARN_ON_ONCE(!mmu->pml4_root)) {
+			r = -EIO;
+			goto out_unlock;
+		}
+
+		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
+	}
+
 	for (i = 0; i < 4; ++i) {
-		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
-		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
-			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
-			if (!(pdptr & PT_PRESENT_MASK)) {
-				vcpu->arch.mmu->pae_root[i] = 0;
+		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
+
+		if (mmu->root_level == PT32E_ROOT_LEVEL) {
+			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
+				mmu->pae_root[i] = INVALID_PAE_ROOT;
 				continue;
 			}
-			root_gfn = pdptr >> PAGE_SHIFT;
-			if (mmu_check_root(vcpu, root_gfn))
-				return 1;
+			root_gfn = pdptrs[i] >> PAGE_SHIFT;
 		}
 
 		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
 				      PT32_ROOT_LEVEL, false);
-		if (!VALID_PAGE(root))
-			return -ENOSPC;
-		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
+		mmu->pae_root[i] = root | pm_mask;
 	}
-	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
+
+	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
+		mmu->root_hpa = __pa(mmu->pml4_root);
+	else
+		mmu->root_hpa = __pa(mmu->pae_root);
+
+set_root_pgd:
+	mmu->root_pgd = root_pgd;
+out_unlock:
+	write_unlock(&vcpu->kvm->mmu_lock);
+
+	return 0;
+}
+
+static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
+{
+	struct kvm_mmu *mmu = vcpu->arch.mmu;
+	u64 *pml4_root, *pae_root;
 
 	/*
-	 * If we shadow a 32 bit page table with a long mode page
-	 * table we enter this path.
+	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
+	 * tables are allocated and initialized at root creation as there is no
+	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
+	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
 	 */
-	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
-		if (vcpu->arch.mmu->lm_root == NULL) {
-			/*
-			 * The additional page necessary for this is only
-			 * allocated on demand.
-			 */
+	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
+	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
+		return 0;
 
-			u64 *lm_root;
+	/*
+	 * This mess only works with 4-level paging and needs to be updated to
+	 * work with 5-level paging.
+	 */
+	if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
+		return -EIO;
 
-			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
-			if (lm_root == NULL)
-				return 1;
+	if (mmu->pae_root && mmu->pml4_root)
+		return 0;
 
-			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
+	/*
+	 * The special roots should always be allocated in concert.  Yell and
+	 * bail if KVM ends up in a state where only one of the roots is valid.
+	 */
+	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root))
+		return -EIO;
 
-			vcpu->arch.mmu->lm_root = lm_root;
-		}
+	/*
+	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
+	 * doesn't need to be decrypted.
+	 */
+	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
+	if (!pae_root)
+		return -ENOMEM;
 
-		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
+	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
+	if (!pml4_root) {
+		free_page((unsigned long)pae_root);
+		return -ENOMEM;
 	}
 
-set_root_pgd:
-	vcpu->arch.mmu->root_pgd = root_pgd;
+	mmu->pae_root = pae_root;
+	mmu->pml4_root = pml4_root;
 
 	return 0;
 }
 
-static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
-{
-	if (vcpu->arch.mmu->direct_map)
-		return mmu_alloc_direct_roots(vcpu);
-	else
-		return mmu_alloc_shadow_roots(vcpu);
-}
-
 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
 {
 	int i;
@@ -3422,7 +3446,7 @@ void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
 	for (i = 0; i < 4; ++i) {
 		hpa_t root = vcpu->arch.mmu->pae_root[i];
 
-		if (root && VALID_PAGE(root)) {
+		if (IS_VALID_PAE_ROOT(root)) {
 			root &= PT64_BASE_ADDR_MASK;
 			sp = to_shadow_page(root);
 			mmu_sync_children(vcpu, sp);
@@ -3554,11 +3578,12 @@ static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
 			    __is_rsvd_bits_set(rsvd_check, sptes[level], level);
 
 	if (reserved) {
-		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
+		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
 		       __func__, addr);
 		for (level = root; level >= leaf; level--)
-			pr_err("------ spte 0x%llx level %d.\n",
-			       sptes[level], level);
+			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
+			       sptes[level], level,
+			       rsvd_check->rsvd_bits_mask[(sptes[level] >> 7) & 1][level-1]);
 	}
 
 	return reserved;
@@ -3653,6 +3678,14 @@ static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
 	bool async;
 
+	/*
+	 * Retry the page fault if the gfn hit a memslot that is being deleted
+	 * or moved.  This ensures any existing SPTEs for the old memslot will
+	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
+	 */
+	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
+		return true;
+
 	/* Don't expose private memslots to L2. */
 	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
 		*pfn = KVM_PFN_NOSLOT;
@@ -4615,12 +4648,17 @@ void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
 	union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
 
-	context->shadow_root_level = new_role.base.level;
-
 	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
 
-	if (new_role.as_u64 != context->mmu_role.as_u64)
+	if (new_role.as_u64 != context->mmu_role.as_u64) {
 		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
+
+		/*
+		 * Override the level set by the common init helper, nested TDP
+		 * always uses the host's TDP configuration.
+		 */
+		context->shadow_root_level = new_role.base.level;
+	}
 }
 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
 
@@ -4802,16 +4840,23 @@ int kvm_mmu_load(struct kvm_vcpu *vcpu)
 	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
 	if (r)
 		goto out;
-	r = mmu_alloc_roots(vcpu);
-	kvm_mmu_sync_roots(vcpu);
+	r = mmu_alloc_special_roots(vcpu);
+	if (r)
+		goto out;
+	if (vcpu->arch.mmu->direct_map)
+		r = mmu_alloc_direct_roots(vcpu);
+	else
+		r = mmu_alloc_shadow_roots(vcpu);
 	if (r)
 		goto out;
+
+	kvm_mmu_sync_roots(vcpu);
+
 	kvm_mmu_load_pgd(vcpu);
 	static_call(kvm_x86_tlb_flush_current)(vcpu);
 out:
 	return r;
 }
-EXPORT_SYMBOL_GPL(kvm_mmu_load);
 
 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
 {
@@ -4820,7 +4865,6 @@ void kvm_mmu_unload(struct kvm_vcpu *vcpu)
 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
 	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
 }
-EXPORT_SYMBOL_GPL(kvm_mmu_unload);
 
 static bool need_remote_flush(u64 old, u64 new)
 {
@@ -5169,10 +5213,10 @@ typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_
 static __always_inline bool
 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
 			slot_level_handler fn, int start_level, int end_level,
-			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
+			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
+			bool flush)
 {
 	struct slot_rmap_walk_iterator iterator;
-	bool flush = false;
 
 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
 			end_gfn, &iterator) {
@@ -5180,7 +5224,7 @@ slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
 			flush |= fn(kvm, iterator.rmap, memslot);
 
 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
-			if (flush && lock_flush_tlb) {
+			if (flush && flush_on_yield) {
 				kvm_flush_remote_tlbs_with_address(kvm,
 						start_gfn,
 						iterator.gfn - start_gfn + 1);
@@ -5190,38 +5234,34 @@ slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
 		}
 	}
 
-	if (flush && lock_flush_tlb) {
-		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
-						   end_gfn - start_gfn + 1);
-		flush = false;
-	}
-
 	return flush;
 }
 
 static __always_inline bool
 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
 		  slot_level_handler fn, int start_level, int end_level,
-		  bool lock_flush_tlb)
+		  bool flush_on_yield)
 {
 	return slot_handle_level_range(kvm, memslot, fn, start_level,
 			end_level, memslot->base_gfn,
 			memslot->base_gfn + memslot->npages - 1,
-			lock_flush_tlb);
+			flush_on_yield, false);
 }
 
 static __always_inline bool
 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
-		 slot_level_handler fn, bool lock_flush_tlb)
+		 slot_level_handler fn, bool flush_on_yield)
 {
 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
-				 PG_LEVEL_4K, lock_flush_tlb);
+				 PG_LEVEL_4K, flush_on_yield);
 }
 
 static void free_mmu_pages(struct kvm_mmu *mmu)
 {
+	if (!tdp_enabled && mmu->pae_root)
+		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
 	free_page((unsigned long)mmu->pae_root);
-	free_page((unsigned long)mmu->lm_root);
+	free_page((unsigned long)mmu->pml4_root);
 }
 
 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
@@ -5240,9 +5280,11 @@ static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
 	 * x86_64.  Therefore we need to allocate the PDP table in the first
-	 * 4GB of memory, which happens to fit the DMA32 zone.  Except for
-	 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
-	 * skip allocating the PDP table.
+	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
+	 * generally doesn't use PAE paging and can skip allocating the PDP
+	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
+	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
+	 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
 	 */
 	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
 		return 0;
@@ -5252,8 +5294,22 @@ static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
 		return -ENOMEM;
 
 	mmu->pae_root = page_address(page);
+
+	/*
+	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
+	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
+	 * that KVM's writes and the CPU's reads get along.  Note, this is
+	 * only necessary when using shadow paging, as 64-bit NPT can get at
+	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
+	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
+	 */
+	if (!tdp_enabled)
+		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
+	else
+		WARN_ON_ONCE(shadow_me_mask);
+
 	for (i = 0; i < 4; ++i)
-		mmu->pae_root[i] = INVALID_PAGE;
+		mmu->pae_root[i] = INVALID_PAE_ROOT;
 
 	return 0;
 }
@@ -5365,6 +5421,15 @@ static void kvm_mmu_zap_all_fast(struct kvm *kvm)
 	 */
 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
 
+	/* In order to ensure all threads see this change when
+	 * handling the MMU reload signal, this must happen in the
+	 * same critical section as kvm_reload_remote_mmus, and
+	 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
+	 * could drop the MMU lock and yield.
+	 */
+	if (is_tdp_mmu_enabled(kvm))
+		kvm_tdp_mmu_invalidate_all_roots(kvm);
+
 	/*
 	 * Notify all vcpus to reload its shadow page table and flush TLB.
 	 * Then all vcpus will switch to new shadow page table with the new
@@ -5377,10 +5442,13 @@ static void kvm_mmu_zap_all_fast(struct kvm *kvm)
 
 	kvm_zap_obsolete_pages(kvm);
 
-	if (is_tdp_mmu_enabled(kvm))
-		kvm_tdp_mmu_zap_all(kvm);
-
 	write_unlock(&kvm->mmu_lock);
+
+	if (is_tdp_mmu_enabled(kvm)) {
+		read_lock(&kvm->mmu_lock);
+		kvm_tdp_mmu_zap_invalidated_roots(kvm);
+		read_unlock(&kvm->mmu_lock);
+	}
 }
 
 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
@@ -5420,7 +5488,7 @@ void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
 	struct kvm_memslots *slots;
 	struct kvm_memory_slot *memslot;
 	int i;
-	bool flush;
+	bool flush = false;
 
 	write_lock(&kvm->mmu_lock);
 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
@@ -5433,20 +5501,31 @@ void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
 			if (start >= end)
 				continue;
 
-			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
-						PG_LEVEL_4K,
-						KVM_MAX_HUGEPAGE_LEVEL,
-						start, end - 1, true);
+			flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
+							PG_LEVEL_4K,
+							KVM_MAX_HUGEPAGE_LEVEL,
+							start, end - 1, true, flush);
 		}
 	}
 
+	if (flush)
+		kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
+
+	write_unlock(&kvm->mmu_lock);
+
 	if (is_tdp_mmu_enabled(kvm)) {
-		flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
+		flush = false;
+
+		read_lock(&kvm->mmu_lock);
+		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
+			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
+							  gfn_end, flush, true);
 		if (flush)
-			kvm_flush_remote_tlbs(kvm);
-	}
+			kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
+							   gfn_end);
 
-	write_unlock(&kvm->mmu_lock);
+		read_unlock(&kvm->mmu_lock);
+	}
 }
 
 static bool slot_rmap_write_protect(struct kvm *kvm,
@@ -5465,10 +5544,14 @@ void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
 	write_lock(&kvm->mmu_lock);
 	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
 				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
-	if (is_tdp_mmu_enabled(kvm))
-		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
 	write_unlock(&kvm->mmu_lock);
 
+	if (is_tdp_mmu_enabled(kvm)) {
+		read_lock(&kvm->mmu_lock);
+		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
+		read_unlock(&kvm->mmu_lock);
+	}
+
 	/*
 	 * We can flush all the TLBs out of the mmu lock without TLB
 	 * corruption since we just change the spte from writable to
@@ -5476,9 +5559,9 @@ void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
 	 * spte from present to present (changing the spte from present
 	 * to nonpresent will flush all the TLBs immediately), in other
 	 * words, the only case we care is mmu_spte_update() where we
-	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
-	 * instead of PT_WRITABLE_MASK, that means it does not depend
-	 * on PT_WRITABLE_MASK anymore.
+	 * have checked Host-writable | MMU-writable instead of
+	 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
+	 * anymore.
 	 */
 	if (flush)
 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
@@ -5529,21 +5612,32 @@ void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
 {
 	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
 	struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
+	bool flush;
 
 	write_lock(&kvm->mmu_lock);
-	slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
+	flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
 
-	if (is_tdp_mmu_enabled(kvm))
-		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
+	if (flush)
+		kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
 	write_unlock(&kvm->mmu_lock);
+
+	if (is_tdp_mmu_enabled(kvm)) {
+		flush = false;
+
+		read_lock(&kvm->mmu_lock);
+		flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
+		if (flush)
+			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
+		read_unlock(&kvm->mmu_lock);
+	}
 }
 
 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
-					struct kvm_memory_slot *memslot)
+					const struct kvm_memory_slot *memslot)
 {
 	/*
 	 * All current use cases for flushing the TLBs for a specific memslot
-	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
+	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
 	 * The interaction between the various operations on memslot must be
 	 * serialized by slots_locks to ensure the TLB flush from one operation
 	 * is observed by any other operation on the same memslot.
@@ -5560,10 +5654,14 @@ void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
 
 	write_lock(&kvm->mmu_lock);
 	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
-	if (is_tdp_mmu_enabled(kvm))
-		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
 	write_unlock(&kvm->mmu_lock);
 
+	if (is_tdp_mmu_enabled(kvm)) {
+		read_lock(&kvm->mmu_lock);
+		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
+		read_unlock(&kvm->mmu_lock);
+	}
+
 	/*
 	 * It's also safe to flush TLBs out of mmu lock here as currently this
 	 * function is only used for dirty logging, in which case flushing TLB
@@ -5701,25 +5799,6 @@ static void mmu_destroy_caches(void)
 	kmem_cache_destroy(mmu_page_header_cache);
 }
 
-static void kvm_set_mmio_spte_mask(void)
-{
-	u64 mask;
-
-	/*
-	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
-	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
-	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
-	 * 52-bit physical addresses then there are no reserved PA bits in the
-	 * PTEs and so the reserved PA approach must be disabled.
-	 */
-	if (shadow_phys_bits < 52)
-		mask = BIT_ULL(51) | PT_PRESENT_MASK;
-	else
-		mask = 0;
-
-	kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
-}
-
 static bool get_nx_auto_mode(void)
 {
 	/* Return true when CPU has the bug, and mitigations are ON */
@@ -5785,8 +5864,6 @@ int kvm_mmu_module_init(void)
 
 	kvm_mmu_reset_all_pte_masks();
 
-	kvm_set_mmio_spte_mask();
-
 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
 					    sizeof(struct pte_list_desc),
 					    0, SLAB_ACCOUNT, NULL);