summary refs log tree commit diff
path: root/arch/tile/mm/fault.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/tile/mm/fault.c')
-rw-r--r--arch/tile/mm/fault.c924
1 files changed, 0 insertions, 924 deletions
diff --git a/arch/tile/mm/fault.c b/arch/tile/mm/fault.c
deleted file mode 100644
index f58fa06a2214..000000000000
--- a/arch/tile/mm/fault.c
+++ /dev/null
@@ -1,924 +0,0 @@
-/*
- * Copyright 2010 Tilera Corporation. All Rights Reserved.
- *
- *   This program is free software; you can redistribute it and/or
- *   modify it under the terms of the GNU General Public License
- *   as published by the Free Software Foundation, version 2.
- *
- *   This program is distributed in the hope that it will be useful, but
- *   WITHOUT ANY WARRANTY; without even the implied warranty of
- *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
- *   NON INFRINGEMENT.  See the GNU General Public License for
- *   more details.
- *
- * From i386 code copyright (C) 1995  Linus Torvalds
- */
-
-#include <linux/signal.h>
-#include <linux/sched.h>
-#include <linux/sched/debug.h>
-#include <linux/sched/task.h>
-#include <linux/sched/task_stack.h>
-#include <linux/kernel.h>
-#include <linux/errno.h>
-#include <linux/string.h>
-#include <linux/types.h>
-#include <linux/ptrace.h>
-#include <linux/mman.h>
-#include <linux/mm.h>
-#include <linux/smp.h>
-#include <linux/interrupt.h>
-#include <linux/init.h>
-#include <linux/tty.h>
-#include <linux/vt_kern.h>		/* For unblank_screen() */
-#include <linux/highmem.h>
-#include <linux/extable.h>
-#include <linux/kprobes.h>
-#include <linux/hugetlb.h>
-#include <linux/syscalls.h>
-#include <linux/uaccess.h>
-#include <linux/kdebug.h>
-
-#include <asm/pgalloc.h>
-#include <asm/sections.h>
-#include <asm/traps.h>
-#include <asm/syscalls.h>
-
-#include <arch/interrupts.h>
-
-static noinline void force_sig_info_fault(const char *type, int si_signo,
-					  int si_code, unsigned long address,
-					  int fault_num,
-					  struct task_struct *tsk,
-					  struct pt_regs *regs)
-{
-	siginfo_t info;
-
-	if (unlikely(tsk->pid < 2)) {
-		panic("Signal %d (code %d) at %#lx sent to %s!",
-		      si_signo, si_code & 0xffff, address,
-		      is_idle_task(tsk) ? "the idle task" : "init");
-	}
-
-	info.si_signo = si_signo;
-	info.si_errno = 0;
-	info.si_code = si_code;
-	info.si_addr = (void __user *)address;
-	info.si_trapno = fault_num;
-	trace_unhandled_signal(type, regs, address, si_signo);
-	force_sig_info(si_signo, &info, tsk);
-}
-
-#ifndef __tilegx__
-/*
- * Synthesize the fault a PL0 process would get by doing a word-load of
- * an unaligned address or a high kernel address.
- */
-SYSCALL_DEFINE1(cmpxchg_badaddr, unsigned long, address)
-{
-	struct pt_regs *regs = current_pt_regs();
-
-	if (address >= PAGE_OFFSET)
-		force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
-				     address, INT_DTLB_MISS, current, regs);
-	else
-		force_sig_info_fault("atomic alignment fault", SIGBUS,
-				     BUS_ADRALN, address,
-				     INT_UNALIGN_DATA, current, regs);
-
-	/*
-	 * Adjust pc to point at the actual instruction, which is unusual
-	 * for syscalls normally, but is appropriate when we are claiming
-	 * that a syscall swint1 caused a page fault or bus error.
-	 */
-	regs->pc -= 8;
-
-	/*
-	 * Mark this as a caller-save interrupt, like a normal page fault,
-	 * so that when we go through the signal handler path we will
-	 * properly restore r0, r1, and r2 for the signal handler arguments.
-	 */
-	regs->flags |= PT_FLAGS_CALLER_SAVES;
-
-	return 0;
-}
-#endif
-
-static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
-{
-	unsigned index = pgd_index(address);
-	pgd_t *pgd_k;
-	pud_t *pud, *pud_k;
-	pmd_t *pmd, *pmd_k;
-
-	pgd += index;
-	pgd_k = init_mm.pgd + index;
-
-	if (!pgd_present(*pgd_k))
-		return NULL;
-
-	pud = pud_offset(pgd, address);
-	pud_k = pud_offset(pgd_k, address);
-	if (!pud_present(*pud_k))
-		return NULL;
-
-	pmd = pmd_offset(pud, address);
-	pmd_k = pmd_offset(pud_k, address);
-	if (!pmd_present(*pmd_k))
-		return NULL;
-	if (!pmd_present(*pmd))
-		set_pmd(pmd, *pmd_k);
-	else
-		BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
-	return pmd_k;
-}
-
-/*
- * Handle a fault on the vmalloc area.
- */
-static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
-{
-	pmd_t *pmd_k;
-	pte_t *pte_k;
-
-	/* Make sure we are in vmalloc area */
-	if (!(address >= VMALLOC_START && address < VMALLOC_END))
-		return -1;
-
-	/*
-	 * Synchronize this task's top level page-table
-	 * with the 'reference' page table.
-	 */
-	pmd_k = vmalloc_sync_one(pgd, address);
-	if (!pmd_k)
-		return -1;
-	pte_k = pte_offset_kernel(pmd_k, address);
-	if (!pte_present(*pte_k))
-		return -1;
-	return 0;
-}
-
-/* Wait until this PTE has completed migration. */
-static void wait_for_migration(pte_t *pte)
-{
-	if (pte_migrating(*pte)) {
-		/*
-		 * Wait until the migrater fixes up this pte.
-		 * We scale the loop count by the clock rate so we'll wait for
-		 * a few seconds here.
-		 */
-		int retries = 0;
-		int bound = get_clock_rate();
-		while (pte_migrating(*pte)) {
-			barrier();
-			if (++retries > bound)
-				panic("Hit migrating PTE (%#llx) and page PFN %#lx still migrating",
-				      pte->val, pte_pfn(*pte));
-		}
-	}
-}
-
-/*
- * It's not generally safe to use "current" to get the page table pointer,
- * since we might be running an oprofile interrupt in the middle of a
- * task switch.
- */
-static pgd_t *get_current_pgd(void)
-{
-	HV_Context ctx = hv_inquire_context();
-	unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
-	struct page *pgd_page = pfn_to_page(pgd_pfn);
-	BUG_ON(PageHighMem(pgd_page));
-	return (pgd_t *) __va(ctx.page_table);
-}
-
-/*
- * We can receive a page fault from a migrating PTE at any time.
- * Handle it by just waiting until the fault resolves.
- *
- * It's also possible to get a migrating kernel PTE that resolves
- * itself during the downcall from hypervisor to Linux.  We just check
- * here to see if the PTE seems valid, and if so we retry it.
- *
- * NOTE! We MUST NOT take any locks for this case.  We may be in an
- * interrupt or a critical region, and must do as little as possible.
- * Similarly, we can't use atomic ops here, since we may be handling a
- * fault caused by an atomic op access.
- *
- * If we find a migrating PTE while we're in an NMI context, and we're
- * at a PC that has a registered exception handler, we don't wait,
- * since this thread may (e.g.) have been interrupted while migrating
- * its own stack, which would then cause us to self-deadlock.
- */
-static int handle_migrating_pte(pgd_t *pgd, int fault_num,
-				unsigned long address, unsigned long pc,
-				int is_kernel_mode, int write)
-{
-	pud_t *pud;
-	pmd_t *pmd;
-	pte_t *pte;
-	pte_t pteval;
-
-	if (pgd_addr_invalid(address))
-		return 0;
-
-	pgd += pgd_index(address);
-	pud = pud_offset(pgd, address);
-	if (!pud || !pud_present(*pud))
-		return 0;
-	pmd = pmd_offset(pud, address);
-	if (!pmd || !pmd_present(*pmd))
-		return 0;
-	pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
-		pte_offset_kernel(pmd, address);
-	pteval = *pte;
-	if (pte_migrating(pteval)) {
-		if (in_nmi() && search_exception_tables(pc))
-			return 0;
-		wait_for_migration(pte);
-		return 1;
-	}
-
-	if (!is_kernel_mode || !pte_present(pteval))
-		return 0;
-	if (fault_num == INT_ITLB_MISS) {
-		if (pte_exec(pteval))
-			return 1;
-	} else if (write) {
-		if (pte_write(pteval))
-			return 1;
-	} else {
-		if (pte_read(pteval))
-			return 1;
-	}
-
-	return 0;
-}
-
-/*
- * This routine is responsible for faulting in user pages.
- * It passes the work off to one of the appropriate routines.
- * It returns true if the fault was successfully handled.
- */
-static int handle_page_fault(struct pt_regs *regs,
-			     int fault_num,
-			     int is_page_fault,
-			     unsigned long address,
-			     int write)
-{
-	struct task_struct *tsk;
-	struct mm_struct *mm;
-	struct vm_area_struct *vma;
-	unsigned long stack_offset;
-	int fault;
-	int si_code;
-	int is_kernel_mode;
-	pgd_t *pgd;
-	unsigned int flags;
-
-	/* on TILE, protection faults are always writes */
-	if (!is_page_fault)
-		write = 1;
-
-	flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
-
-	is_kernel_mode = !user_mode(regs);
-
-	tsk = validate_current();
-
-	/*
-	 * Check to see if we might be overwriting the stack, and bail
-	 * out if so.  The page fault code is a relatively likely
-	 * place to get trapped in an infinite regress, and once we
-	 * overwrite the whole stack, it becomes very hard to recover.
-	 */
-	stack_offset = stack_pointer & (THREAD_SIZE-1);
-	if (stack_offset < THREAD_SIZE / 8) {
-		pr_alert("Potential stack overrun: sp %#lx\n", stack_pointer);
-		show_regs(regs);
-		pr_alert("Killing current process %d/%s\n",
-			 tsk->pid, tsk->comm);
-		do_group_exit(SIGKILL);
-	}
-
-	/*
-	 * Early on, we need to check for migrating PTE entries;
-	 * see homecache.c.  If we find a migrating PTE, we wait until
-	 * the backing page claims to be done migrating, then we proceed.
-	 * For kernel PTEs, we rewrite the PTE and return and retry.
-	 * Otherwise, we treat the fault like a normal "no PTE" fault,
-	 * rather than trying to patch up the existing PTE.
-	 */
-	pgd = get_current_pgd();
-	if (handle_migrating_pte(pgd, fault_num, address, regs->pc,
-				 is_kernel_mode, write))
-		return 1;
-
-	si_code = SEGV_MAPERR;
-
-	/*
-	 * We fault-in kernel-space virtual memory on-demand. The
-	 * 'reference' page table is init_mm.pgd.
-	 *
-	 * NOTE! We MUST NOT take any locks for this case. We may
-	 * be in an interrupt or a critical region, and should
-	 * only copy the information from the master page table,
-	 * nothing more.
-	 *
-	 * This verifies that the fault happens in kernel space
-	 * and that the fault was not a protection fault.
-	 */
-	if (unlikely(address >= TASK_SIZE &&
-		     !is_arch_mappable_range(address, 0))) {
-		if (is_kernel_mode && is_page_fault &&
-		    vmalloc_fault(pgd, address) >= 0)
-			return 1;
-		/*
-		 * Don't take the mm semaphore here. If we fixup a prefetch
-		 * fault we could otherwise deadlock.
-		 */
-		mm = NULL;  /* happy compiler */
-		vma = NULL;
-		goto bad_area_nosemaphore;
-	}
-
-	/*
-	 * If we're trying to touch user-space addresses, we must
-	 * be either at PL0, or else with interrupts enabled in the
-	 * kernel, so either way we can re-enable interrupts here
-	 * unless we are doing atomic access to user space with
-	 * interrupts disabled.
-	 */
-	if (!(regs->flags & PT_FLAGS_DISABLE_IRQ))
-		local_irq_enable();
-
-	mm = tsk->mm;
-
-	/*
-	 * If we're in an interrupt, have no user context or are running in an
-	 * region with pagefaults disabled then we must not take the fault.
-	 */
-	if (pagefault_disabled() || !mm) {
-		vma = NULL;  /* happy compiler */
-		goto bad_area_nosemaphore;
-	}
-
-	if (!is_kernel_mode)
-		flags |= FAULT_FLAG_USER;
-
-	/*
-	 * When running in the kernel we expect faults to occur only to
-	 * addresses in user space.  All other faults represent errors in the
-	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
-	 * erroneous fault occurring in a code path which already holds mmap_sem
-	 * we will deadlock attempting to validate the fault against the
-	 * address space.  Luckily the kernel only validly references user
-	 * space from well defined areas of code, which are listed in the
-	 * exceptions table.
-	 *
-	 * As the vast majority of faults will be valid we will only perform
-	 * the source reference check when there is a possibility of a deadlock.
-	 * Attempt to lock the address space, if we cannot we then validate the
-	 * source.  If this is invalid we can skip the address space check,
-	 * thus avoiding the deadlock.
-	 */
-	if (!down_read_trylock(&mm->mmap_sem)) {
-		if (is_kernel_mode &&
-		    !search_exception_tables(regs->pc)) {
-			vma = NULL;  /* happy compiler */
-			goto bad_area_nosemaphore;
-		}
-
-retry:
-		down_read(&mm->mmap_sem);
-	}
-
-	vma = find_vma(mm, address);
-	if (!vma)
-		goto bad_area;
-	if (vma->vm_start <= address)
-		goto good_area;
-	if (!(vma->vm_flags & VM_GROWSDOWN))
-		goto bad_area;
-	if (regs->sp < PAGE_OFFSET) {
-		/*
-		 * accessing the stack below sp is always a bug.
-		 */
-		if (address < regs->sp)
-			goto bad_area;
-	}
-	if (expand_stack(vma, address))
-		goto bad_area;
-
-/*
- * Ok, we have a good vm_area for this memory access, so
- * we can handle it..
- */
-good_area:
-	si_code = SEGV_ACCERR;
-	if (fault_num == INT_ITLB_MISS) {
-		if (!(vma->vm_flags & VM_EXEC))
-			goto bad_area;
-	} else if (write) {
-#ifdef TEST_VERIFY_AREA
-		if (!is_page_fault && regs->cs == KERNEL_CS)
-			pr_err("WP fault at " REGFMT "\n", regs->eip);
-#endif
-		if (!(vma->vm_flags & VM_WRITE))
-			goto bad_area;
-		flags |= FAULT_FLAG_WRITE;
-	} else {
-		if (!is_page_fault || !(vma->vm_flags & VM_READ))
-			goto bad_area;
-	}
-
-	/*
-	 * If for any reason at all we couldn't handle the fault,
-	 * make sure we exit gracefully rather than endlessly redo
-	 * the fault.
-	 */
-	fault = handle_mm_fault(vma, address, flags);
-
-	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
-		return 0;
-
-	if (unlikely(fault & VM_FAULT_ERROR)) {
-		if (fault & VM_FAULT_OOM)
-			goto out_of_memory;
-		else if (fault & VM_FAULT_SIGSEGV)
-			goto bad_area;
-		else if (fault & VM_FAULT_SIGBUS)
-			goto do_sigbus;
-		BUG();
-	}
-	if (flags & FAULT_FLAG_ALLOW_RETRY) {
-		if (fault & VM_FAULT_MAJOR)
-			tsk->maj_flt++;
-		else
-			tsk->min_flt++;
-		if (fault & VM_FAULT_RETRY) {
-			flags &= ~FAULT_FLAG_ALLOW_RETRY;
-			flags |= FAULT_FLAG_TRIED;
-
-			 /*
-			  * No need to up_read(&mm->mmap_sem) as we would
-			  * have already released it in __lock_page_or_retry
-			  * in mm/filemap.c.
-			  */
-			goto retry;
-		}
-	}
-
-#if CHIP_HAS_TILE_DMA()
-	/* If this was a DMA TLB fault, restart the DMA engine. */
-	switch (fault_num) {
-	case INT_DMATLB_MISS:
-	case INT_DMATLB_MISS_DWNCL:
-	case INT_DMATLB_ACCESS:
-	case INT_DMATLB_ACCESS_DWNCL:
-		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
-		break;
-	}
-#endif
-
-	up_read(&mm->mmap_sem);
-	return 1;
-
-/*
- * Something tried to access memory that isn't in our memory map..
- * Fix it, but check if it's kernel or user first..
- */
-bad_area:
-	up_read(&mm->mmap_sem);
-
-bad_area_nosemaphore:
-	/* User mode accesses just cause a SIGSEGV */
-	if (!is_kernel_mode) {
-		/*
-		 * It's possible to have interrupts off here.
-		 */
-		local_irq_enable();
-
-		force_sig_info_fault("segfault", SIGSEGV, si_code, address,
-				     fault_num, tsk, regs);
-		return 0;
-	}
-
-no_context:
-	/* Are we prepared to handle this kernel fault?  */
-	if (fixup_exception(regs))
-		return 0;
-
-/*
- * Oops. The kernel tried to access some bad page. We'll have to
- * terminate things with extreme prejudice.
- */
-
-	bust_spinlocks(1);
-
-	/* FIXME: no lookup_address() yet */
-#ifdef SUPPORT_LOOKUP_ADDRESS
-	if (fault_num == INT_ITLB_MISS) {
-		pte_t *pte = lookup_address(address);
-
-		if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
-			pr_crit("kernel tried to execute non-executable page - exploit attempt? (uid: %d)\n",
-				current->uid);
-	}
-#endif
-	if (address < PAGE_SIZE)
-		pr_alert("Unable to handle kernel NULL pointer dereference\n");
-	else
-		pr_alert("Unable to handle kernel paging request\n");
-	pr_alert(" at virtual address " REGFMT ", pc " REGFMT "\n",
-		 address, regs->pc);
-
-	show_regs(regs);
-
-	if (unlikely(tsk->pid < 2)) {
-		panic("Kernel page fault running %s!",
-		      is_idle_task(tsk) ? "the idle task" : "init");
-	}
-
-	/*
-	 * More FIXME: we should probably copy the i386 here and
-	 * implement a generic die() routine.  Not today.
-	 */
-#ifdef SUPPORT_DIE
-	die("Oops", regs);
-#endif
-	bust_spinlocks(1);
-
-	do_group_exit(SIGKILL);
-
-/*
- * We ran out of memory, or some other thing happened to us that made
- * us unable to handle the page fault gracefully.
- */
-out_of_memory:
-	up_read(&mm->mmap_sem);
-	if (is_kernel_mode)
-		goto no_context;
-	pagefault_out_of_memory();
-	return 0;
-
-do_sigbus:
-	up_read(&mm->mmap_sem);
-
-	/* Kernel mode? Handle exceptions or die */
-	if (is_kernel_mode)
-		goto no_context;
-
-	force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
-			     fault_num, tsk, regs);
-	return 0;
-}
-
-#ifndef __tilegx__
-
-/* We must release ICS before panicking or we won't get anywhere. */
-#define ics_panic(fmt, ...)					\
-do {								\
-	__insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0);	\
-	panic(fmt, ##__VA_ARGS__);				\
-} while (0)
-
-/*
- * When we take an ITLB or DTLB fault or access violation in the
- * supervisor while the critical section bit is set, the hypervisor is
- * reluctant to write new values into the EX_CONTEXT_K_x registers,
- * since that might indicate we have not yet squirreled the SPR
- * contents away and can thus safely take a recursive interrupt.
- * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
- *
- * Note that this routine is called before homecache_tlb_defer_enter(),
- * which means that we can properly unlock any atomics that might
- * be used there (good), but also means we must be very sensitive
- * to not touch any data structures that might be located in memory
- * that could migrate, as we could be entering the kernel on a dataplane
- * cpu that has been deferring kernel TLB updates.  This means, for
- * example, that we can't migrate init_mm or its pgd.
- */
-struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
-				      unsigned long address,
-				      unsigned long info)
-{
-	unsigned long pc = info & ~1;
-	int write = info & 1;
-	pgd_t *pgd = get_current_pgd();
-
-	/* Retval is 1 at first since we will handle the fault fully. */
-	struct intvec_state state = {
-		do_page_fault, fault_num, address, write, 1
-	};
-
-	/* Validate that we are plausibly in the right routine. */
-	if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
-	    (fault_num != INT_DTLB_MISS &&
-	     fault_num != INT_DTLB_ACCESS)) {
-		unsigned long old_pc = regs->pc;
-		regs->pc = pc;
-		ics_panic("Bad ICS page fault args: old PC %#lx, fault %d/%d at %#lx",
-			  old_pc, fault_num, write, address);
-	}
-
-	/* We might be faulting on a vmalloc page, so check that first. */
-	if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
-		return state;
-
-	/*
-	 * If we faulted with ICS set in sys_cmpxchg, we are providing
-	 * a user syscall service that should generate a signal on
-	 * fault.  We didn't set up a kernel stack on initial entry to
-	 * sys_cmpxchg, but instead had one set up by the fault, which
-	 * (because sys_cmpxchg never releases ICS) came to us via the
-	 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
-	 * still referencing the original user code.  We release the
-	 * atomic lock and rewrite pt_regs so that it appears that we
-	 * came from user-space directly, and after we finish the
-	 * fault we'll go back to user space and re-issue the swint.
-	 * This way the backtrace information is correct if we need to
-	 * emit a stack dump at any point while handling this.
-	 *
-	 * Must match register use in sys_cmpxchg().
-	 */
-	if (pc >= (unsigned long) sys_cmpxchg &&
-	    pc < (unsigned long) __sys_cmpxchg_end) {
-#ifdef CONFIG_SMP
-		/* Don't unlock before we could have locked. */
-		if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
-			int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
-			__atomic_fault_unlock(lock_ptr);
-		}
-#endif
-		regs->sp = regs->regs[27];
-	}
-
-	/*
-	 * We can also fault in the atomic assembly, in which
-	 * case we use the exception table to do the first-level fixup.
-	 * We may re-fixup again in the real fault handler if it
-	 * turns out the faulting address is just bad, and not,
-	 * for example, migrating.
-	 */
-	else if (pc >= (unsigned long) __start_atomic_asm_code &&
-		   pc < (unsigned long) __end_atomic_asm_code) {
-		const struct exception_table_entry *fixup;
-#ifdef CONFIG_SMP
-		/* Unlock the atomic lock. */
-		int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
-		__atomic_fault_unlock(lock_ptr);
-#endif
-		fixup = search_exception_tables(pc);
-		if (!fixup)
-			ics_panic("ICS atomic fault not in table: PC %#lx, fault %d",
-				  pc, fault_num);
-		regs->pc = fixup->fixup;
-		regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
-	}
-
-	/*
-	 * Now that we have released the atomic lock (if necessary),
-	 * it's safe to spin if the PTE that caused the fault was migrating.
-	 */
-	if (fault_num == INT_DTLB_ACCESS)
-		write = 1;
-	if (handle_migrating_pte(pgd, fault_num, address, pc, 1, write))
-		return state;
-
-	/* Return zero so that we continue on with normal fault handling. */
-	state.retval = 0;
-	return state;
-}
-
-#endif /* !__tilegx__ */
-
-/*
- * This routine handles page faults.  It determines the address, and the
- * problem, and then passes it handle_page_fault() for normal DTLB and
- * ITLB issues, and for DMA or SN processor faults when we are in user
- * space.  For the latter, if we're in kernel mode, we just save the
- * interrupt away appropriately and return immediately.  We can't do
- * page faults for user code while in kernel mode.
- */
-static inline void __do_page_fault(struct pt_regs *regs, int fault_num,
-				   unsigned long address, unsigned long write)
-{
-	int is_page_fault;
-
-#ifdef CONFIG_KPROBES
-	/*
-	 * This is to notify the fault handler of the kprobes.  The
-	 * exception code is redundant as it is also carried in REGS,
-	 * but we pass it anyhow.
-	 */
-	if (notify_die(DIE_PAGE_FAULT, "page fault", regs, -1,
-		       regs->faultnum, SIGSEGV) == NOTIFY_STOP)
-		return;
-#endif
-
-#ifdef __tilegx__
-	/*
-	 * We don't need early do_page_fault_ics() support, since unlike
-	 * Pro we don't need to worry about unlocking the atomic locks.
-	 * There is only one current case in GX where we touch any memory
-	 * under ICS other than our own kernel stack, and we handle that
-	 * here.  (If we crash due to trying to touch our own stack,
-	 * we're in too much trouble for C code to help out anyway.)
-	 */
-	if (write & ~1) {
-		unsigned long pc = write & ~1;
-		if (pc >= (unsigned long) __start_unalign_asm_code &&
-		    pc < (unsigned long) __end_unalign_asm_code) {
-			struct thread_info *ti = current_thread_info();
-			/*
-			 * Our EX_CONTEXT is still what it was from the
-			 * initial unalign exception, but now we've faulted
-			 * on the JIT page.  We would like to complete the
-			 * page fault however is appropriate, and then retry
-			 * the instruction that caused the unalign exception.
-			 * Our state has been "corrupted" by setting the low
-			 * bit in "sp", and stashing r0..r3 in the
-			 * thread_info area, so we revert all of that, then
-			 * continue as if this were a normal page fault.
-			 */
-			regs->sp &= ~1UL;
-			regs->regs[0] = ti->unalign_jit_tmp[0];
-			regs->regs[1] = ti->unalign_jit_tmp[1];
-			regs->regs[2] = ti->unalign_jit_tmp[2];
-			regs->regs[3] = ti->unalign_jit_tmp[3];
-			write &= 1;
-		} else {
-			pr_alert("%s/%d: ICS set at page fault at %#lx: %#lx\n",
-				 current->comm, current->pid, pc, address);
-			show_regs(regs);
-			do_group_exit(SIGKILL);
-		}
-	}
-#else
-	/* This case should have been handled by do_page_fault_ics(). */
-	BUG_ON(write & ~1);
-#endif
-
-#if CHIP_HAS_TILE_DMA()
-	/*
-	 * If it's a DMA fault, suspend the transfer while we're
-	 * handling the miss; we'll restart after it's handled.  If we
-	 * don't suspend, it's possible that this process could swap
-	 * out and back in, and restart the engine since the DMA is
-	 * still 'running'.
-	 */
-	if (fault_num == INT_DMATLB_MISS ||
-	    fault_num == INT_DMATLB_ACCESS ||
-	    fault_num == INT_DMATLB_MISS_DWNCL ||
-	    fault_num == INT_DMATLB_ACCESS_DWNCL) {
-		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
-		while (__insn_mfspr(SPR_DMA_USER_STATUS) &
-		       SPR_DMA_STATUS__BUSY_MASK)
-			;
-	}
-#endif
-
-	/* Validate fault num and decide if this is a first-time page fault. */
-	switch (fault_num) {
-	case INT_ITLB_MISS:
-	case INT_DTLB_MISS:
-#if CHIP_HAS_TILE_DMA()
-	case INT_DMATLB_MISS:
-	case INT_DMATLB_MISS_DWNCL:
-#endif
-		is_page_fault = 1;
-		break;
-
-	case INT_DTLB_ACCESS:
-#if CHIP_HAS_TILE_DMA()
-	case INT_DMATLB_ACCESS:
-	case INT_DMATLB_ACCESS_DWNCL:
-#endif
-		is_page_fault = 0;
-		break;
-
-	default:
-		panic("Bad fault number %d in do_page_fault", fault_num);
-	}
-
-#if CHIP_HAS_TILE_DMA()
-	if (!user_mode(regs)) {
-		struct async_tlb *async;
-		switch (fault_num) {
-#if CHIP_HAS_TILE_DMA()
-		case INT_DMATLB_MISS:
-		case INT_DMATLB_ACCESS:
-		case INT_DMATLB_MISS_DWNCL:
-		case INT_DMATLB_ACCESS_DWNCL:
-			async = &current->thread.dma_async_tlb;
-			break;
-#endif
-		default:
-			async = NULL;
-		}
-		if (async) {
-
-			/*
-			 * No vmalloc check required, so we can allow
-			 * interrupts immediately at this point.
-			 */
-			local_irq_enable();
-
-			set_thread_flag(TIF_ASYNC_TLB);
-			if (async->fault_num != 0) {
-				panic("Second async fault %d; old fault was %d (%#lx/%ld)",
-				      fault_num, async->fault_num,
-				      address, write);
-			}
-			BUG_ON(fault_num == 0);
-			async->fault_num = fault_num;
-			async->is_fault = is_page_fault;
-			async->is_write = write;
-			async->address = address;
-			return;
-		}
-	}
-#endif
-
-	handle_page_fault(regs, fault_num, is_page_fault, address, write);
-}
-
-void do_page_fault(struct pt_regs *regs, int fault_num,
-		   unsigned long address, unsigned long write)
-{
-	__do_page_fault(regs, fault_num, address, write);
-}
-
-#if CHIP_HAS_TILE_DMA()
-/*
- * This routine effectively re-issues asynchronous page faults
- * when we are returning to user space.
- */
-void do_async_page_fault(struct pt_regs *regs)
-{
-	struct async_tlb *async = &current->thread.dma_async_tlb;
-
-	/*
-	 * Clear thread flag early.  If we re-interrupt while processing
-	 * code here, we will reset it and recall this routine before
-	 * returning to user space.
-	 */
-	clear_thread_flag(TIF_ASYNC_TLB);
-
-	if (async->fault_num) {
-		/*
-		 * Clear async->fault_num before calling the page-fault
-		 * handler so that if we re-interrupt before returning
-		 * from the function we have somewhere to put the
-		 * information from the new interrupt.
-		 */
-		int fault_num = async->fault_num;
-		async->fault_num = 0;
-		handle_page_fault(regs, fault_num, async->is_fault,
-				  async->address, async->is_write);
-	}
-}
-#endif /* CHIP_HAS_TILE_DMA() */
-
-
-void vmalloc_sync_all(void)
-{
-#ifdef __tilegx__
-	/* Currently all L1 kernel pmd's are static and shared. */
-	BUILD_BUG_ON(pgd_index(VMALLOC_END - PAGE_SIZE) !=
-		     pgd_index(VMALLOC_START));
-#else
-	/*
-	 * Note that races in the updates of insync and start aren't
-	 * problematic: insync can only get set bits added, and updates to
-	 * start are only improving performance (without affecting correctness
-	 * if undone).
-	 */
-	static DECLARE_BITMAP(insync, PTRS_PER_PGD);
-	static unsigned long start = PAGE_OFFSET;
-	unsigned long address;
-
-	BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
-	for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
-		if (!test_bit(pgd_index(address), insync)) {
-			unsigned long flags;
-			struct list_head *pos;
-
-			spin_lock_irqsave(&pgd_lock, flags);
-			list_for_each(pos, &pgd_list)
-				if (!vmalloc_sync_one(list_to_pgd(pos),
-								address)) {
-					/* Must be at first entry in list. */
-					BUG_ON(pos != pgd_list.next);
-					break;
-				}
-			spin_unlock_irqrestore(&pgd_lock, flags);
-			if (pos != pgd_list.next)
-				set_bit(pgd_index(address), insync);
-		}
-		if (address == start && test_bit(pgd_index(address), insync))
-			start = address + PGDIR_SIZE;
-	}
-#endif
-}