summary refs log tree commit diff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/device-mapper/cache.txt11
-rw-r--r--Documentation/device-mapper/thin-provisioning.txt29
2 files changed, 34 insertions, 6 deletions
diff --git a/Documentation/device-mapper/cache.txt b/Documentation/device-mapper/cache.txt
index e6b72d355151..68c0f517c60e 100644
--- a/Documentation/device-mapper/cache.txt
+++ b/Documentation/device-mapper/cache.txt
@@ -124,12 +124,11 @@ the default being 204800 sectors (or 100MB).
 Updating on-disk metadata
 -------------------------
 
-On-disk metadata is committed every time a REQ_SYNC or REQ_FUA bio is
-written.  If no such requests are made then commits will occur every
-second.  This means the cache behaves like a physical disk that has a
-write cache (the same is true of the thin-provisioning target).  If
-power is lost you may lose some recent writes.  The metadata should
-always be consistent in spite of any crash.
+On-disk metadata is committed every time a FLUSH or FUA bio is written.
+If no such requests are made then commits will occur every second.  This
+means the cache behaves like a physical disk that has a volatile write
+cache.  If power is lost you may lose some recent writes.  The metadata
+should always be consistent in spite of any crash.
 
 The 'dirty' state for a cache block changes far too frequently for us
 to keep updating it on the fly.  So we treat it as a hint.  In normal
diff --git a/Documentation/device-mapper/thin-provisioning.txt b/Documentation/device-mapper/thin-provisioning.txt
index 8a7a3d46e0da..3b34b4fbb54f 100644
--- a/Documentation/device-mapper/thin-provisioning.txt
+++ b/Documentation/device-mapper/thin-provisioning.txt
@@ -116,6 +116,35 @@ Resuming a device with a new table itself triggers an event so the
 userspace daemon can use this to detect a situation where a new table
 already exceeds the threshold.
 
+A low water mark for the metadata device is maintained in the kernel and
+will trigger a dm event if free space on the metadata device drops below
+it.
+
+Updating on-disk metadata
+-------------------------
+
+On-disk metadata is committed every time a FLUSH or FUA bio is written.
+If no such requests are made then commits will occur every second.  This
+means the thin-provisioning target behaves like a physical disk that has
+a volatile write cache.  If power is lost you may lose some recent
+writes.  The metadata should always be consistent in spite of any crash.
+
+If data space is exhausted the pool will either error or queue IO
+according to the configuration (see: error_if_no_space).  If metadata
+space is exhausted or a metadata operation fails: the pool will error IO
+until the pool is taken offline and repair is performed to 1) fix any
+potential inconsistencies and 2) clear the flag that imposes repair.
+Once the pool's metadata device is repaired it may be resized, which
+will allow the pool to return to normal operation.  Note that if a pool
+is flagged as needing repair, the pool's data and metadata devices
+cannot be resized until repair is performed.  It should also be noted
+that when the pool's metadata space is exhausted the current metadata
+transaction is aborted.  Given that the pool will cache IO whose
+completion may have already been acknowledged to upper IO layers
+(e.g. filesystem) it is strongly suggested that consistency checks
+(e.g. fsck) be performed on those layers when repair of the pool is
+required.
+
 Thin provisioning
 -----------------