summary refs log tree commit diff
path: root/Documentation/spi/spidev
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/spi/spidev')
-rw-r--r--Documentation/spi/spidev307
1 files changed, 307 insertions, 0 deletions
diff --git a/Documentation/spi/spidev b/Documentation/spi/spidev
new file mode 100644
index 000000000000..5c8e1b988a08
--- /dev/null
+++ b/Documentation/spi/spidev
@@ -0,0 +1,307 @@
+SPI devices have a limited userspace API, supporting basic half-duplex
+read() and write() access to SPI slave devices.  Using ioctl() requests,
+full duplex transfers and device I/O configuration are also available.
+
+	#include <fcntl.h>
+	#include <unistd.h>
+	#include <sys/ioctl.h>
+	#include <linux/types.h>
+	#include <linux/spi/spidev.h>
+
+Some reasons you might want to use this programming interface include:
+
+ * Prototyping in an environment that's not crash-prone; stray pointers
+   in userspace won't normally bring down any Linux system.
+
+ * Developing simple protocols used to talk to microcontrollers acting
+   as SPI slaves, which you may need to change quite often.
+
+Of course there are drivers that can never be written in userspace, because
+they need to access kernel interfaces (such as IRQ handlers or other layers
+of the driver stack) that are not accessible to userspace.
+
+
+DEVICE CREATION, DRIVER BINDING
+===============================
+The simplest way to arrange to use this driver is to just list it in the
+spi_board_info for a device as the driver it should use:  the "modalias"
+entry is "spidev", matching the name of the driver exposing this API.
+Set up the other device characteristics (bits per word, SPI clocking,
+chipselect polarity, etc) as usual, so you won't always need to override
+them later.
+
+(Sysfs also supports userspace driven binding/unbinding of drivers to
+devices.  That mechanism might be supported here in the future.)
+
+When you do that, the sysfs node for the SPI device will include a child
+device node with a "dev" attribute that will be understood by udev or mdev.
+(Larger systems will have "udev".  Smaller ones may configure "mdev" into
+busybox; it's less featureful, but often enough.)  For a SPI device with
+chipselect C on bus B, you should see:
+
+    /dev/spidevB.C ... character special device, major number 153 with
+	a dynamically chosen minor device number.  This is the node
+	that userspace programs will open, created by "udev" or "mdev".
+
+    /sys/devices/.../spiB.C ... as usual, the SPI device node will
+	be a child of its SPI master controller.
+
+    /sys/class/spidev/spidevB.C ... created when the "spidev" driver
+	binds to that device.  (Directory or symlink, based on whether
+	or not you enabled the "deprecated sysfs files" Kconfig option.)
+
+Do not try to manage the /dev character device special file nodes by hand.
+That's error prone, and you'd need to pay careful attention to system
+security issues; udev/mdev should already be configured securely.
+
+If you unbind the "spidev" driver from that device, those two "spidev" nodes
+(in sysfs and in /dev) should automatically be removed (respectively by the
+kernel and by udev/mdev).  You can unbind by removing the "spidev" driver
+module, which will affect all devices using this driver.  You can also unbind
+by having kernel code remove the SPI device, probably by removing the driver
+for its SPI controller (so its spi_master vanishes).
+
+Since this is a standard Linux device driver -- even though it just happens
+to expose a low level API to userspace -- it can be associated with any number
+of devices at a time.  Just provide one spi_board_info record for each such
+SPI device, and you'll get a /dev device node for each device.
+
+
+BASIC CHARACTER DEVICE API
+==========================
+Normal open() and close() operations on /dev/spidevB.D files work as you
+would expect.
+
+Standard read() and write() operations are obviously only half-duplex, and
+the chipselect is deactivated between those operations.  Full-duplex access,
+and composite operation without chipselect de-activation, is available using
+the SPI_IOC_MESSAGE(N) request.
+
+Several ioctl() requests let your driver read or override the device's current
+settings for data transfer parameters:
+
+    SPI_IOC_RD_MODE, SPI_IOC_WR_MODE ... pass a pointer to a byte which will
+	return (RD) or assign (WR) the SPI transfer mode.  Use the constants
+	SPI_MODE_0..SPI_MODE_3; or if you prefer you can combine SPI_CPOL
+	(clock polarity, idle high iff this is set) or SPI_CPHA (clock phase,
+	sample on trailing edge iff this is set) flags.
+
+    SPI_IOC_RD_LSB_FIRST, SPI_IOC_WR_LSB_FIRST ... pass a pointer to a byte
+	which will return (RD) or assign (WR) the bit justification used to
+	transfer SPI words.  Zero indicates MSB-first; other values indicate
+	the less common LSB-first encoding.  In both cases the specified value
+	is right-justified in each word, so that unused (TX) or undefined (RX)
+	bits are in the MSBs.
+
+    SPI_IOC_RD_BITS_PER_WORD, SPI_IOC_WR_BITS_PER_WORD ... pass a pointer to
+	a byte which will return (RD) or assign (WR) the number of bits in
+	each SPI transfer word.  The value zero signifies eight bits.
+
+    SPI_IOC_RD_MAX_SPEED_HZ, SPI_IOC_WR_MAX_SPEED_HZ ... pass a pointer to a
+	u32 which will return (RD) or assign (WR) the maximum SPI transfer
+	speed, in Hz.  The controller can't necessarily assign that specific
+	clock speed.
+
+NOTES:
+
+    - At this time there is no async I/O support; everything is purely
+      synchronous.
+
+    - There's currently no way to report the actual bit rate used to
+      shift data to/from a given device.
+
+    - From userspace, you can't currently change the chip select polarity;
+      that could corrupt transfers to other devices sharing the SPI bus.
+      Each SPI device is deselected when it's not in active use, allowing
+      other drivers to talk to other devices.
+
+    - There's a limit on the number of bytes each I/O request can transfer
+      to the SPI device.  It defaults to one page, but that can be changed
+      using a module parameter.
+
+    - Because SPI has no low-level transfer acknowledgement, you usually
+      won't see any I/O errors when talking to a non-existent device.
+
+
+FULL DUPLEX CHARACTER DEVICE API
+================================
+
+See the sample program below for one example showing the use of the full
+duplex programming interface.  (Although it doesn't perform a full duplex
+transfer.)  The model is the same as that used in the kernel spi_sync()
+request; the individual transfers offer the same capabilities as are
+available to kernel drivers (except that it's not asynchronous).
+
+The example shows one half-duplex RPC-style request and response message.
+These requests commonly require that the chip not be deselected between
+the request and response.  Several such requests could be chained into
+a single kernel request, even allowing the chip to be deselected after
+each response.  (Other protocol options include changing the word size
+and bitrate for each transfer segment.)
+
+To make a full duplex request, provide both rx_buf and tx_buf for the
+same transfer.  It's even OK if those are the same buffer.
+
+
+SAMPLE PROGRAM
+==============
+
+--------------------------------	CUT HERE
+#include <stdio.h>
+#include <unistd.h>
+#include <stdlib.h>
+#include <fcntl.h>
+#include <string.h>
+
+#include <sys/ioctl.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+
+#include <linux/types.h>
+#include <linux/spi/spidev.h>
+
+
+static int verbose;
+
+static void do_read(int fd, int len)
+{
+	unsigned char	buf[32], *bp;
+	int		status;
+
+	/* read at least 2 bytes, no more than 32 */
+	if (len < 2)
+		len = 2;
+	else if (len > sizeof(buf))
+		len = sizeof(buf);
+	memset(buf, 0, sizeof buf);
+
+	status = read(fd, buf, len);
+	if (status < 0) {
+		perror("read");
+		return;
+	}
+	if (status != len) {
+		fprintf(stderr, "short read\n");
+		return;
+	}
+
+	printf("read(%2d, %2d): %02x %02x,", len, status,
+		buf[0], buf[1]);
+	status -= 2;
+	bp = buf + 2;
+	while (status-- > 0)
+		printf(" %02x", *bp++);
+	printf("\n");
+}
+
+static void do_msg(int fd, int len)
+{
+	struct spi_ioc_transfer	xfer[2];
+	unsigned char		buf[32], *bp;
+	int			status;
+
+	memset(xfer, 0, sizeof xfer);
+	memset(buf, 0, sizeof buf);
+
+	if (len > sizeof buf)
+		len = sizeof buf;
+
+	buf[0] = 0xaa;
+	xfer[0].tx_buf = (__u64) buf;
+	xfer[0].len = 1;
+
+	xfer[1].rx_buf = (__u64) buf;
+	xfer[1].len = len;
+
+	status = ioctl(fd, SPI_IOC_MESSAGE(2), xfer);
+	if (status < 0) {
+		perror("SPI_IOC_MESSAGE");
+		return;
+	}
+
+	printf("response(%2d, %2d): ", len, status);
+	for (bp = buf; len; len--)
+		printf(" %02x", *bp++);
+	printf("\n");
+}
+
+static void dumpstat(const char *name, int fd)
+{
+	__u8	mode, lsb, bits;
+	__u32	speed;
+
+	if (ioctl(fd, SPI_IOC_RD_MODE, &mode) < 0) {
+		perror("SPI rd_mode");
+		return;
+	}
+	if (ioctl(fd, SPI_IOC_RD_LSB_FIRST, &lsb) < 0) {
+		perror("SPI rd_lsb_fist");
+		return;
+	}
+	if (ioctl(fd, SPI_IOC_RD_BITS_PER_WORD, &bits) < 0) {
+		perror("SPI bits_per_word");
+		return;
+	}
+	if (ioctl(fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed) < 0) {
+		perror("SPI max_speed_hz");
+		return;
+	}
+
+	printf("%s: spi mode %d, %d bits %sper word, %d Hz max\n",
+		name, mode, bits, lsb ? "(lsb first) " : "", speed);
+}
+
+int main(int argc, char **argv)
+{
+	int		c;
+	int		readcount = 0;
+	int		msglen = 0;
+	int		fd;
+	const char	*name;
+
+	while ((c = getopt(argc, argv, "hm:r:v")) != EOF) {
+		switch (c) {
+		case 'm':
+			msglen = atoi(optarg);
+			if (msglen < 0)
+				goto usage;
+			continue;
+		case 'r':
+			readcount = atoi(optarg);
+			if (readcount < 0)
+				goto usage;
+			continue;
+		case 'v':
+			verbose++;
+			continue;
+		case 'h':
+		case '?':
+usage:
+			fprintf(stderr,
+				"usage: %s [-h] [-m N] [-r N] /dev/spidevB.D\n",
+				argv[0]);
+			return 1;
+		}
+	}
+
+	if ((optind + 1) != argc)
+		goto usage;
+	name = argv[optind];
+
+	fd = open(name, O_RDWR);
+	if (fd < 0) {
+		perror("open");
+		return 1;
+	}
+
+	dumpstat(name, fd);
+
+	if (msglen)
+		do_msg(fd, msglen);
+
+	if (readcount)
+		do_read(fd, readcount);
+
+	close(fd);
+	return 0;
+}