summary refs log tree commit diff
path: root/mm/memory.c
diff options
context:
space:
mode:
authorMichel Lespinasse <walken@google.com>2020-06-08 21:33:54 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2020-06-09 09:39:14 -0700
commitc1e8d7c6a7a682e1405e3e242d32fc377fd196ff (patch)
treeef02402b77990834fbb5bdb1f146fc0393cc8987 /mm/memory.c
parent3e4e28c5a8f01ee4174d639e36ed155ade489a6f (diff)
downloadlinux-c1e8d7c6a7a682e1405e3e242d32fc377fd196ff.tar.gz
mmap locking API: convert mmap_sem comments
Convert comments that reference mmap_sem to reference mmap_lock instead.

[akpm@linux-foundation.org: fix up linux-next leftovers]
[akpm@linux-foundation.org: s/lockaphore/lock/, per Vlastimil]
[akpm@linux-foundation.org: more linux-next fixups, per Michel]

Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-13-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/memory.c')
-rw-r--r--mm/memory.c40
1 files changed, 20 insertions, 20 deletions
diff --git a/mm/memory.c b/mm/memory.c
index 4e2e17bb1281..dc7f3543b1fd 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -1185,7 +1185,7 @@ static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
 		 * Here there can be other concurrent MADV_DONTNEED or
 		 * trans huge page faults running, and if the pmd is
 		 * none or trans huge it can change under us. This is
-		 * because MADV_DONTNEED holds the mmap_sem in read
+		 * because MADV_DONTNEED holds the mmap_lock in read
 		 * mode.
 		 */
 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
@@ -1636,7 +1636,7 @@ EXPORT_SYMBOL(vm_insert_pages);
  * The page does not need to be reserved.
  *
  * Usually this function is called from f_op->mmap() handler
- * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
+ * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
  * Caller must set VM_MIXEDMAP on vma if it wants to call this
  * function from other places, for example from page-fault handler.
  *
@@ -2573,7 +2573,7 @@ static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
 	 * mapping may be NULL here because some device drivers do not
 	 * set page.mapping but still dirty their pages
 	 *
-	 * Drop the mmap_sem before waiting on IO, if we can. The file
+	 * Drop the mmap_lock before waiting on IO, if we can. The file
 	 * is pinning the mapping, as per above.
 	 */
 	if ((dirtied || page_mkwrite) && mapping) {
@@ -2623,7 +2623,7 @@ static inline void wp_page_reuse(struct vm_fault *vmf)
 /*
  * Handle the case of a page which we actually need to copy to a new page.
  *
- * Called with mmap_sem locked and the old page referenced, but
+ * Called with mmap_lock locked and the old page referenced, but
  * without the ptl held.
  *
  * High level logic flow:
@@ -2887,9 +2887,9 @@ static vm_fault_t wp_page_shared(struct vm_fault *vmf)
  * change only once the write actually happens. This avoids a few races,
  * and potentially makes it more efficient.
  *
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * We enter with non-exclusive mmap_lock (to exclude vma changes,
  * but allow concurrent faults), with pte both mapped and locked.
- * We return with mmap_sem still held, but pte unmapped and unlocked.
+ * We return with mmap_lock still held, but pte unmapped and unlocked.
  */
 static vm_fault_t do_wp_page(struct vm_fault *vmf)
 	__releases(vmf->ptl)
@@ -3078,11 +3078,11 @@ void unmap_mapping_range(struct address_space *mapping,
 EXPORT_SYMBOL(unmap_mapping_range);
 
 /*
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * We enter with non-exclusive mmap_lock (to exclude vma changes,
  * but allow concurrent faults), and pte mapped but not yet locked.
  * We return with pte unmapped and unlocked.
  *
- * We return with the mmap_sem locked or unlocked in the same cases
+ * We return with the mmap_lock locked or unlocked in the same cases
  * as does filemap_fault().
  */
 vm_fault_t do_swap_page(struct vm_fault *vmf)
@@ -3303,9 +3303,9 @@ out_release:
 }
 
 /*
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * We enter with non-exclusive mmap_lock (to exclude vma changes,
  * but allow concurrent faults), and pte mapped but not yet locked.
- * We return with mmap_sem still held, but pte unmapped and unlocked.
+ * We return with mmap_lock still held, but pte unmapped and unlocked.
  */
 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
 {
@@ -3419,7 +3419,7 @@ oom:
 }
 
 /*
- * The mmap_sem must have been held on entry, and may have been
+ * The mmap_lock must have been held on entry, and may have been
  * released depending on flags and vma->vm_ops->fault() return value.
  * See filemap_fault() and __lock_page_retry().
  */
@@ -3928,11 +3928,11 @@ static vm_fault_t do_shared_fault(struct vm_fault *vmf)
 }
 
 /*
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * We enter with non-exclusive mmap_lock (to exclude vma changes,
  * but allow concurrent faults).
- * The mmap_sem may have been released depending on flags and our
+ * The mmap_lock may have been released depending on flags and our
  * return value.  See filemap_fault() and __lock_page_or_retry().
- * If mmap_sem is released, vma may become invalid (for example
+ * If mmap_lock is released, vma may become invalid (for example
  * by other thread calling munmap()).
  */
 static vm_fault_t do_fault(struct vm_fault *vmf)
@@ -4161,10 +4161,10 @@ static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
  * with external mmu caches can use to update those (ie the Sparc or
  * PowerPC hashed page tables that act as extended TLBs).
  *
- * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
+ * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
  * concurrent faults).
  *
- * The mmap_sem may have been released depending on flags and our return value.
+ * The mmap_lock may have been released depending on flags and our return value.
  * See filemap_fault() and __lock_page_or_retry().
  */
 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
@@ -4186,7 +4186,7 @@ static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
 		/*
 		 * A regular pmd is established and it can't morph into a huge
 		 * pmd from under us anymore at this point because we hold the
-		 * mmap_sem read mode and khugepaged takes it in write mode.
+		 * mmap_lock read mode and khugepaged takes it in write mode.
 		 * So now it's safe to run pte_offset_map().
 		 */
 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
@@ -4254,7 +4254,7 @@ unlock:
 /*
  * By the time we get here, we already hold the mm semaphore
  *
- * The mmap_sem may have been released depending on flags and our
+ * The mmap_lock may have been released depending on flags and our
  * return value.  See filemap_fault() and __lock_page_or_retry().
  */
 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
@@ -4349,7 +4349,7 @@ retry_pud:
 /*
  * By the time we get here, we already hold the mm semaphore
  *
- * The mmap_sem may have been released depending on flags and our
+ * The mmap_lock may have been released depending on flags and our
  * return value.  See filemap_fault() and __lock_page_or_retry().
  */
 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
@@ -4793,7 +4793,7 @@ void __might_fault(const char *file, int line)
 {
 	/*
 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
-	 * holding the mmap_sem, this is safe because kernel memory doesn't
+	 * holding the mmap_lock, this is safe because kernel memory doesn't
 	 * get paged out, therefore we'll never actually fault, and the
 	 * below annotations will generate false positives.
 	 */