summary refs log tree commit diff
path: root/lib
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2022-05-26 12:32:41 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2022-05-26 12:32:41 -0700
commit98931dd95fd489fcbfa97da563505a6f071d7c77 (patch)
tree44683fc4a92efa614acdca2742a7ff19d26da1e3 /lib
parentdf202b452fe6c6d6f1351bad485e2367ef1e644e (diff)
parentf403f22f8ccb12860b2b62fec3173c6ccd45938b (diff)
downloadlinux-98931dd95fd489fcbfa97da563505a6f071d7c77.tar.gz
Merge tag 'mm-stable-2022-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
 "Almost all of MM here. A few things are still getting finished off,
  reviewed, etc.

   - Yang Shi has improved the behaviour of khugepaged collapsing of
     readonly file-backed transparent hugepages.

   - Johannes Weiner has arranged for zswap memory use to be tracked and
     managed on a per-cgroup basis.

   - Munchun Song adds a /proc knob ("hugetlb_optimize_vmemmap") for
     runtime enablement of the recent huge page vmemmap optimization
     feature.

   - Baolin Wang contributes a series to fix some issues around hugetlb
     pagetable invalidation.

   - Zhenwei Pi has fixed some interactions between hwpoisoned pages and
     virtualization.

   - Tong Tiangen has enabled the use of the presently x86-only
     page_table_check debugging feature on arm64 and riscv.

   - David Vernet has done some fixup work on the memcg selftests.

   - Peter Xu has taught userfaultfd to handle write protection faults
     against shmem- and hugetlbfs-backed files.

   - More DAMON development from SeongJae Park - adding online tuning of
     the feature and support for monitoring of fixed virtual address
     ranges. Also easier discovery of which monitoring operations are
     available.

   - Nadav Amit has done some optimization of TLB flushing during
     mprotect().

   - Neil Brown continues to labor away at improving our swap-over-NFS
     support.

   - David Hildenbrand has some fixes to anon page COWing versus
     get_user_pages().

   - Peng Liu fixed some errors in the core hugetlb code.

   - Joao Martins has reduced the amount of memory consumed by
     device-dax's compound devmaps.

   - Some cleanups of the arch-specific pagemap code from Anshuman
     Khandual.

   - Muchun Song has found and fixed some errors in the TLB flushing of
     transparent hugepages.

   - Roman Gushchin has done more work on the memcg selftests.

  ... and, of course, many smaller fixes and cleanups. Notably, the
  customary million cleanup serieses from Miaohe Lin"

* tag 'mm-stable-2022-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (381 commits)
  mm: kfence: use PAGE_ALIGNED helper
  selftests: vm: add the "settings" file with timeout variable
  selftests: vm: add "test_hmm.sh" to TEST_FILES
  selftests: vm: check numa_available() before operating "merge_across_nodes" in ksm_tests
  selftests: vm: add migration to the .gitignore
  selftests/vm/pkeys: fix typo in comment
  ksm: fix typo in comment
  selftests: vm: add process_mrelease tests
  Revert "mm/vmscan: never demote for memcg reclaim"
  mm/kfence: print disabling or re-enabling message
  include/trace/events/percpu.h: cleanup for "percpu: improve percpu_alloc_percpu event trace"
  include/trace/events/mmflags.h: cleanup for "tracing: incorrect gfp_t conversion"
  mm: fix a potential infinite loop in start_isolate_page_range()
  MAINTAINERS: add Muchun as co-maintainer for HugeTLB
  zram: fix Kconfig dependency warning
  mm/shmem: fix shmem folio swapoff hang
  cgroup: fix an error handling path in alloc_pagecache_max_30M()
  mm: damon: use HPAGE_PMD_SIZE
  tracing: incorrect isolate_mote_t cast in mm_vmscan_lru_isolate
  nodemask.h: fix compilation error with GCC12
  ...
Diffstat (limited to 'lib')
-rw-r--r--lib/Kconfig.kasan168
-rw-r--r--lib/fault-inject.c3
-rw-r--r--lib/kstrtox.c6
3 files changed, 90 insertions, 87 deletions
diff --git a/lib/Kconfig.kasan b/lib/Kconfig.kasan
index 1f3e620188a2..f0973da583e0 100644
--- a/lib/Kconfig.kasan
+++ b/lib/Kconfig.kasan
@@ -1,4 +1,5 @@
 # SPDX-License-Identifier: GPL-2.0-only
+
 # This config refers to the generic KASAN mode.
 config HAVE_ARCH_KASAN
 	bool
@@ -15,9 +16,8 @@ config HAVE_ARCH_KASAN_VMALLOC
 config ARCH_DISABLE_KASAN_INLINE
 	bool
 	help
-	  An architecture might not support inline instrumentation.
-	  When this option is selected, inline and stack instrumentation are
-	  disabled.
+	  Disables both inline and stack instrumentation. Selected by
+	  architectures that do not support these instrumentation types.
 
 config CC_HAS_KASAN_GENERIC
 	def_bool $(cc-option, -fsanitize=kernel-address)
@@ -26,13 +26,13 @@ config CC_HAS_KASAN_SW_TAGS
 	def_bool $(cc-option, -fsanitize=kernel-hwaddress)
 
 # This option is only required for software KASAN modes.
-# Old GCC versions don't have proper support for no_sanitize_address.
+# Old GCC versions do not have proper support for no_sanitize_address.
 # See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=89124 for details.
 config CC_HAS_WORKING_NOSANITIZE_ADDRESS
 	def_bool !CC_IS_GCC || GCC_VERSION >= 80300
 
 menuconfig KASAN
-	bool "KASAN: runtime memory debugger"
+	bool "KASAN: dynamic memory safety error detector"
 	depends on (((HAVE_ARCH_KASAN && CC_HAS_KASAN_GENERIC) || \
 		     (HAVE_ARCH_KASAN_SW_TAGS && CC_HAS_KASAN_SW_TAGS)) && \
 		    CC_HAS_WORKING_NOSANITIZE_ADDRESS) || \
@@ -40,10 +40,13 @@ menuconfig KASAN
 	depends on (SLUB && SYSFS) || (SLAB && !DEBUG_SLAB)
 	select STACKDEPOT_ALWAYS_INIT
 	help
-	  Enables KASAN (KernelAddressSANitizer) - runtime memory debugger,
-	  designed to find out-of-bounds accesses and use-after-free bugs.
+	  Enables KASAN (Kernel Address Sanitizer) - a dynamic memory safety
+	  error detector designed to find out-of-bounds and use-after-free bugs.
+
 	  See Documentation/dev-tools/kasan.rst for details.
 
+	  For better error reports, also enable CONFIG_STACKTRACE.
+
 if KASAN
 
 choice
@@ -51,75 +54,71 @@ choice
 	default KASAN_GENERIC
 	help
 	  KASAN has three modes:
-	  1. generic KASAN (similar to userspace ASan,
-	     x86_64/arm64/xtensa, enabled with CONFIG_KASAN_GENERIC),
-	  2. software tag-based KASAN (arm64 only, based on software
-	     memory tagging (similar to userspace HWASan), enabled with
-	     CONFIG_KASAN_SW_TAGS), and
-	  3. hardware tag-based KASAN (arm64 only, based on hardware
-	     memory tagging, enabled with CONFIG_KASAN_HW_TAGS).
 
-	  All KASAN modes are strictly debugging features.
+	  1. Generic KASAN (supported by many architectures, enabled with
+	     CONFIG_KASAN_GENERIC, similar to userspace ASan),
+	  2. Software Tag-Based KASAN (arm64 only, based on software memory
+	     tagging, enabled with CONFIG_KASAN_SW_TAGS, similar to userspace
+	     HWASan), and
+	  3. Hardware Tag-Based KASAN (arm64 only, based on hardware memory
+	     tagging, enabled with CONFIG_KASAN_HW_TAGS).
 
-	  For better error reports enable CONFIG_STACKTRACE.
+	  See Documentation/dev-tools/kasan.rst for details about each mode.
 
 config KASAN_GENERIC
-	bool "Generic mode"
+	bool "Generic KASAN"
 	depends on HAVE_ARCH_KASAN && CC_HAS_KASAN_GENERIC
 	depends on CC_HAS_WORKING_NOSANITIZE_ADDRESS
 	select SLUB_DEBUG if SLUB
 	select CONSTRUCTORS
 	help
-	  Enables generic KASAN mode.
+	  Enables Generic KASAN.
 
-	  This mode is supported in both GCC and Clang. With GCC it requires
-	  version 8.3.0 or later. Any supported Clang version is compatible,
-	  but detection of out-of-bounds accesses for global variables is
-	  supported only since Clang 11.
+	  Requires GCC 8.3.0+ or Clang.
 
-	  This mode consumes about 1/8th of available memory at kernel start
-	  and introduces an overhead of ~x1.5 for the rest of the allocations.
+	  Consumes about 1/8th of available memory at kernel start and adds an
+	  overhead of ~50% for dynamic allocations.
 	  The performance slowdown is ~x3.
 
-	  Currently CONFIG_KASAN_GENERIC doesn't work with CONFIG_DEBUG_SLAB
-	  (the resulting kernel does not boot).
+	  (Incompatible with CONFIG_DEBUG_SLAB: the kernel does not boot.)
 
 config KASAN_SW_TAGS
-	bool "Software tag-based mode"
+	bool "Software Tag-Based KASAN"
 	depends on HAVE_ARCH_KASAN_SW_TAGS && CC_HAS_KASAN_SW_TAGS
 	depends on CC_HAS_WORKING_NOSANITIZE_ADDRESS
 	select SLUB_DEBUG if SLUB
 	select CONSTRUCTORS
 	help
-	  Enables software tag-based KASAN mode.
+	  Enables Software Tag-Based KASAN.
 
-	  This mode require software memory tagging support in the form of
-	  HWASan-like compiler instrumentation.
+	  Requires GCC 11+ or Clang.
 
-	  Currently this mode is only implemented for arm64 CPUs and relies on
-	  Top Byte Ignore. This mode requires Clang.
+	  Supported only on arm64 CPUs and relies on Top Byte Ignore.
 
-	  This mode consumes about 1/16th of available memory at kernel start
-	  and introduces an overhead of ~20% for the rest of the allocations.
-	  This mode may potentially introduce problems relating to pointer
-	  casting and comparison, as it embeds tags into the top byte of each
-	  pointer.
+	  Consumes about 1/16th of available memory at kernel start and
+	  add an overhead of ~20% for dynamic allocations.
 
-	  Currently CONFIG_KASAN_SW_TAGS doesn't work with CONFIG_DEBUG_SLAB
-	  (the resulting kernel does not boot).
+	  May potentially introduce problems related to pointer casting and
+	  comparison, as it embeds a tag into the top byte of each pointer.
+
+	  (Incompatible with CONFIG_DEBUG_SLAB: the kernel does not boot.)
 
 config KASAN_HW_TAGS
-	bool "Hardware tag-based mode"
+	bool "Hardware Tag-Based KASAN"
 	depends on HAVE_ARCH_KASAN_HW_TAGS
 	depends on SLUB
 	help
-	  Enables hardware tag-based KASAN mode.
+	  Enables Hardware Tag-Based KASAN.
+
+	  Requires GCC 10+ or Clang 12+.
 
-	  This mode requires hardware memory tagging support, and can be used
-	  by any architecture that provides it.
+	  Supported only on arm64 CPUs starting from ARMv8.5 and relies on
+	  Memory Tagging Extension and Top Byte Ignore.
 
-	  Currently this mode is only implemented for arm64 CPUs starting from
-	  ARMv8.5 and relies on Memory Tagging Extension and Top Byte Ignore.
+	  Consumes about 1/32nd of available memory.
+
+	  May potentially introduce problems related to pointer casting and
+	  comparison, as it embeds a tag into the top byte of each pointer.
 
 endchoice
 
@@ -131,83 +130,80 @@ choice
 config KASAN_OUTLINE
 	bool "Outline instrumentation"
 	help
-	  Before every memory access compiler insert function call
-	  __asan_load*/__asan_store*. These functions performs check
-	  of shadow memory. This is slower than inline instrumentation,
-	  however it doesn't bloat size of kernel's .text section so
-	  much as inline does.
+	  Makes the compiler insert function calls that check whether the memory
+	  is accessible before each memory access. Slower than KASAN_INLINE, but
+	  does not bloat the size of the kernel's .text section so much.
 
 config KASAN_INLINE
 	bool "Inline instrumentation"
 	depends on !ARCH_DISABLE_KASAN_INLINE
 	help
-	  Compiler directly inserts code checking shadow memory before
-	  memory accesses. This is faster than outline (in some workloads
-	  it gives about x2 boost over outline instrumentation), but
-	  make kernel's .text size much bigger.
+	  Makes the compiler directly insert memory accessibility checks before
+	  each memory access. Faster than KASAN_OUTLINE (gives ~x2 boost for
+	  some workloads), but makes the kernel's .text size much bigger.
 
 endchoice
 
 config KASAN_STACK
-	bool "Enable stack instrumentation (unsafe)" if CC_IS_CLANG && !COMPILE_TEST
+	bool "Stack instrumentation (unsafe)" if CC_IS_CLANG && !COMPILE_TEST
 	depends on KASAN_GENERIC || KASAN_SW_TAGS
 	depends on !ARCH_DISABLE_KASAN_INLINE
 	default y if CC_IS_GCC
 	help
-	  The LLVM stack address sanitizer has a know problem that
-	  causes excessive stack usage in a lot of functions, see
-	  https://bugs.llvm.org/show_bug.cgi?id=38809
-	  Disabling asan-stack makes it safe to run kernels build
-	  with clang-8 with KASAN enabled, though it loses some of
-	  the functionality.
-	  This feature is always disabled when compile-testing with clang
-	  to avoid cluttering the output in stack overflow warnings,
-	  but clang users can still enable it for builds without
-	  CONFIG_COMPILE_TEST.	On gcc it is assumed to always be safe
-	  to use and enabled by default.
-	  If the architecture disables inline instrumentation, stack
-	  instrumentation is also disabled as it adds inline-style
-	  instrumentation that is run unconditionally.
+	  Disables stack instrumentation and thus KASAN's ability to detect
+	  out-of-bounds bugs in stack variables.
+
+	  With Clang, stack instrumentation has a problem that causes excessive
+	  stack usage, see https://bugs.llvm.org/show_bug.cgi?id=38809. Thus,
+	  with Clang, this option is deemed unsafe.
+
+	  This option is always disabled when compile-testing with Clang to
+	  avoid cluttering the log with stack overflow warnings.
+
+	  With GCC, enabling stack instrumentation is assumed to be safe.
+
+	  If the architecture disables inline instrumentation via
+	  ARCH_DISABLE_KASAN_INLINE, stack instrumentation gets disabled
+	  as well, as it adds inline-style instrumentation that is run
+	  unconditionally.
 
 config KASAN_TAGS_IDENTIFY
-	bool "Enable memory corruption identification"
+	bool "Memory corruption type identification"
 	depends on KASAN_SW_TAGS || KASAN_HW_TAGS
 	help
-	  This option enables best-effort identification of bug type
-	  (use-after-free or out-of-bounds) at the cost of increased
-	  memory consumption.
+	  Enables best-effort identification of the bug types (use-after-free
+	  or out-of-bounds) at the cost of increased memory consumption.
+	  Only applicable for the tag-based KASAN modes.
 
 config KASAN_VMALLOC
 	bool "Check accesses to vmalloc allocations"
 	depends on HAVE_ARCH_KASAN_VMALLOC
 	help
-	  This mode makes KASAN check accesses to vmalloc allocations for
-	  validity.
+	  Makes KASAN check the validity of accesses to vmalloc allocations.
 
-	  With software KASAN modes, checking is done for all types of vmalloc
-	  allocations. Enabling this option leads to higher memory usage.
+	  With software KASAN modes, all types vmalloc allocations are
+	  checked. Enabling this option leads to higher memory usage.
 
-	  With hardware tag-based KASAN, only VM_ALLOC mappings are checked.
-	  There is no additional memory usage.
+	  With Hardware Tag-Based KASAN, only non-executable VM_ALLOC mappings
+	  are checked. There is no additional memory usage.
 
 config KASAN_KUNIT_TEST
 	tristate "KUnit-compatible tests of KASAN bug detection capabilities" if !KUNIT_ALL_TESTS
 	depends on KASAN && KUNIT
 	default KUNIT_ALL_TESTS
 	help
-	  This is a KUnit test suite doing various nasty things like
-	  out of bounds and use after free accesses. It is useful for testing
-	  kernel debugging features like KASAN.
+	  A KUnit-based KASAN test suite. Triggers different kinds of
+	  out-of-bounds and use-after-free accesses. Useful for testing whether
+	  KASAN can detect certain bug types.
 
 	  For more information on KUnit and unit tests in general, please refer
-	  to the KUnit documentation in Documentation/dev-tools/kunit.
+	  to the KUnit documentation in Documentation/dev-tools/kunit/.
 
 config KASAN_MODULE_TEST
 	tristate "KUnit-incompatible tests of KASAN bug detection capabilities"
 	depends on m && KASAN && !KASAN_HW_TAGS
 	help
-	  This is a part of the KASAN test suite that is incompatible with
-	  KUnit. Currently includes tests that do bad copy_from/to_user
-	  accesses.
+	  A part of the KASAN test suite that is not integrated with KUnit.
+	  Incompatible with Hardware Tag-Based KASAN.
 
 endif # KASAN
diff --git a/lib/fault-inject.c b/lib/fault-inject.c
index ce12621b4275..423784d9c058 100644
--- a/lib/fault-inject.c
+++ b/lib/fault-inject.c
@@ -41,6 +41,9 @@ EXPORT_SYMBOL_GPL(setup_fault_attr);
 
 static void fail_dump(struct fault_attr *attr)
 {
+	if (attr->no_warn)
+		return;
+
 	if (attr->verbose > 0 && __ratelimit(&attr->ratelimit_state)) {
 		printk(KERN_NOTICE "FAULT_INJECTION: forcing a failure.\n"
 		       "name %pd, interval %lu, probability %lu, "
diff --git a/lib/kstrtox.c b/lib/kstrtox.c
index 886510d248e5..08c14019841a 100644
--- a/lib/kstrtox.c
+++ b/lib/kstrtox.c
@@ -340,7 +340,7 @@ EXPORT_SYMBOL(kstrtos8);
  * @s: input string
  * @res: result
  *
- * This routine returns 0 iff the first character is one of 'Yy1Nn0', or
+ * This routine returns 0 iff the first character is one of 'YyTt1NnFf0', or
  * [oO][NnFf] for "on" and "off". Otherwise it will return -EINVAL.  Value
  * pointed to by res is updated upon finding a match.
  */
@@ -353,11 +353,15 @@ int kstrtobool(const char *s, bool *res)
 	switch (s[0]) {
 	case 'y':
 	case 'Y':
+	case 't':
+	case 'T':
 	case '1':
 		*res = true;
 		return 0;
 	case 'n':
 	case 'N':
+	case 'f':
+	case 'F':
 	case '0':
 		*res = false;
 		return 0;