summary refs log tree commit diff
path: root/lib/raid6/sse2.c
diff options
context:
space:
mode:
authorMarkus Stockhausen <stockhausen@collogia.de>2014-12-15 12:57:04 +1100
committerNeilBrown <neilb@suse.de>2015-04-22 08:00:41 +1000
commitfe5cbc6e06c7d8b3a86f6f5491d74766bb5c2827 (patch)
treee201265576408d2edc86ba6fc82b66ce0dfd9349 /lib/raid6/sse2.c
parentdabc4ec6ba72418ebca6bf1884f344bba40c8709 (diff)
downloadlinux-fe5cbc6e06c7d8b3a86f6f5491d74766bb5c2827.tar.gz
md/raid6 algorithms: delta syndrome functions
v3: s-o-b comment, explanation of performance and descision for
the start/stop implementation

Implementing rmw functionality for RAID6 requires optimized syndrome
calculation. Up to now we can only generate a complete syndrome. The
target P/Q pages are always overwritten. With this patch we provide
a framework for inplace P/Q modification. In the first place simply
fill those functions with NULL values.

xor_syndrome() has two additional parameters: start & stop. These
will indicate the first and last page that are changing during a
rmw run. That makes it possible to avoid several unneccessary loops
and speed up calculation. The caller needs to implement the following
logic to make the functions work.

1) xor_syndrome(disks, start, stop, ...): "Remove" all data of source
blocks inside P/Q between (and including) start and end.

2) modify any block with start <= block <= stop

3) xor_syndrome(disks, start, stop, ...): "Reinsert" all data of
source blocks into P/Q between (and including) start and end.

Pages between start and stop that won't be changed should be filled
with a pointer to the kernel zero page. The reasons for not taking NULL
pages are:

1) Algorithms cross the whole source data line by line. Thus avoid
additional branches.

2) Having a NULL page avoids calculating the XOR P parity but still
need calulation steps for the Q parity. Depending on the algorithm
unrolling that might be only a difference of 2 instructions per loop.

The benchmark numbers of the gen_syndrome() functions are displayed in
the kernel log. Do the same for the xor_syndrome() functions. This
will help to analyze performance problems and give an rough estimate
how well the algorithm works. The choice of the fastest algorithm will
still depend on the gen_syndrome() performance.

With the start/stop page implementation the speed can vary a lot in real
life. E.g. a change of page 0 & page 15 on a stripe will be harder to
compute than the case where page 0 & page 1 are XOR candidates. To be not
to enthusiatic about the expected speeds we will run a worse case test
that simulates a change on the upper half of the stripe. So we do:

1) calculation of P/Q for the upper pages

2) continuation of Q for the lower (empty) pages

Signed-off-by: Markus Stockhausen <stockhausen@collogia.de>
Signed-off-by: NeilBrown <neilb@suse.de>
Diffstat (limited to 'lib/raid6/sse2.c')
-rw-r--r--lib/raid6/sse2.c3
1 files changed, 3 insertions, 0 deletions
diff --git a/lib/raid6/sse2.c b/lib/raid6/sse2.c
index 85b82c85f28e..31acd59a0ef7 100644
--- a/lib/raid6/sse2.c
+++ b/lib/raid6/sse2.c
@@ -90,6 +90,7 @@ static void raid6_sse21_gen_syndrome(int disks, size_t bytes, void **ptrs)
 
 const struct raid6_calls raid6_sse2x1 = {
 	raid6_sse21_gen_syndrome,
+	NULL,			/* XOR not yet implemented */
 	raid6_have_sse2,
 	"sse2x1",
 	1			/* Has cache hints */
@@ -152,6 +153,7 @@ static void raid6_sse22_gen_syndrome(int disks, size_t bytes, void **ptrs)
 
 const struct raid6_calls raid6_sse2x2 = {
 	raid6_sse22_gen_syndrome,
+	NULL,			/* XOR not yet implemented */
 	raid6_have_sse2,
 	"sse2x2",
 	1			/* Has cache hints */
@@ -250,6 +252,7 @@ static void raid6_sse24_gen_syndrome(int disks, size_t bytes, void **ptrs)
 
 const struct raid6_calls raid6_sse2x4 = {
 	raid6_sse24_gen_syndrome,
+	NULL,			/* XOR not yet implemented */
 	raid6_have_sse2,
 	"sse2x4",
 	1			/* Has cache hints */