summary refs log tree commit diff
path: root/lib/raid6/algos.c
diff options
context:
space:
mode:
authorMarkus Stockhausen <stockhausen@collogia.de>2014-12-15 12:57:04 +1100
committerNeilBrown <neilb@suse.de>2015-04-22 08:00:41 +1000
commitfe5cbc6e06c7d8b3a86f6f5491d74766bb5c2827 (patch)
treee201265576408d2edc86ba6fc82b66ce0dfd9349 /lib/raid6/algos.c
parentdabc4ec6ba72418ebca6bf1884f344bba40c8709 (diff)
downloadlinux-fe5cbc6e06c7d8b3a86f6f5491d74766bb5c2827.tar.gz
md/raid6 algorithms: delta syndrome functions
v3: s-o-b comment, explanation of performance and descision for
the start/stop implementation

Implementing rmw functionality for RAID6 requires optimized syndrome
calculation. Up to now we can only generate a complete syndrome. The
target P/Q pages are always overwritten. With this patch we provide
a framework for inplace P/Q modification. In the first place simply
fill those functions with NULL values.

xor_syndrome() has two additional parameters: start & stop. These
will indicate the first and last page that are changing during a
rmw run. That makes it possible to avoid several unneccessary loops
and speed up calculation. The caller needs to implement the following
logic to make the functions work.

1) xor_syndrome(disks, start, stop, ...): "Remove" all data of source
blocks inside P/Q between (and including) start and end.

2) modify any block with start <= block <= stop

3) xor_syndrome(disks, start, stop, ...): "Reinsert" all data of
source blocks into P/Q between (and including) start and end.

Pages between start and stop that won't be changed should be filled
with a pointer to the kernel zero page. The reasons for not taking NULL
pages are:

1) Algorithms cross the whole source data line by line. Thus avoid
additional branches.

2) Having a NULL page avoids calculating the XOR P parity but still
need calulation steps for the Q parity. Depending on the algorithm
unrolling that might be only a difference of 2 instructions per loop.

The benchmark numbers of the gen_syndrome() functions are displayed in
the kernel log. Do the same for the xor_syndrome() functions. This
will help to analyze performance problems and give an rough estimate
how well the algorithm works. The choice of the fastest algorithm will
still depend on the gen_syndrome() performance.

With the start/stop page implementation the speed can vary a lot in real
life. E.g. a change of page 0 & page 15 on a stripe will be harder to
compute than the case where page 0 & page 1 are XOR candidates. To be not
to enthusiatic about the expected speeds we will run a worse case test
that simulates a change on the upper half of the stripe. So we do:

1) calculation of P/Q for the upper pages

2) continuation of Q for the lower (empty) pages

Signed-off-by: Markus Stockhausen <stockhausen@collogia.de>
Signed-off-by: NeilBrown <neilb@suse.de>
Diffstat (limited to 'lib/raid6/algos.c')
-rw-r--r--lib/raid6/algos.c41
1 files changed, 34 insertions, 7 deletions
diff --git a/lib/raid6/algos.c b/lib/raid6/algos.c
index dbef2314901e..975c6e0434bd 100644
--- a/lib/raid6/algos.c
+++ b/lib/raid6/algos.c
@@ -131,11 +131,12 @@ static inline const struct raid6_recov_calls *raid6_choose_recov(void)
 static inline const struct raid6_calls *raid6_choose_gen(
 	void *(*const dptrs)[(65536/PAGE_SIZE)+2], const int disks)
 {
-	unsigned long perf, bestperf, j0, j1;
+	unsigned long perf, bestgenperf, bestxorperf, j0, j1;
+	int start = (disks>>1)-1, stop = disks-3;	/* work on the second half of the disks */
 	const struct raid6_calls *const *algo;
 	const struct raid6_calls *best;
 
-	for (bestperf = 0, best = NULL, algo = raid6_algos; *algo; algo++) {
+	for (bestgenperf = 0, bestxorperf = 0, best = NULL, algo = raid6_algos; *algo; algo++) {
 		if (!best || (*algo)->prefer >= best->prefer) {
 			if ((*algo)->valid && !(*algo)->valid())
 				continue;
@@ -153,19 +154,45 @@ static inline const struct raid6_calls *raid6_choose_gen(
 			}
 			preempt_enable();
 
-			if (perf > bestperf) {
-				bestperf = perf;
+			if (perf > bestgenperf) {
+				bestgenperf = perf;
 				best = *algo;
 			}
-			pr_info("raid6: %-8s %5ld MB/s\n", (*algo)->name,
+			pr_info("raid6: %-8s gen() %5ld MB/s\n", (*algo)->name,
 			       (perf*HZ) >> (20-16+RAID6_TIME_JIFFIES_LG2));
+
+			if (!(*algo)->xor_syndrome)
+				continue;
+
+			perf = 0;
+
+			preempt_disable();
+			j0 = jiffies;
+			while ((j1 = jiffies) == j0)
+				cpu_relax();
+			while (time_before(jiffies,
+					    j1 + (1<<RAID6_TIME_JIFFIES_LG2))) {
+				(*algo)->xor_syndrome(disks, start, stop,
+						      PAGE_SIZE, *dptrs);
+				perf++;
+			}
+			preempt_enable();
+
+			if (best == *algo)
+				bestxorperf = perf;
+
+			pr_info("raid6: %-8s xor() %5ld MB/s\n", (*algo)->name,
+				(perf*HZ) >> (20-16+RAID6_TIME_JIFFIES_LG2+1));
 		}
 	}
 
 	if (best) {
-		pr_info("raid6: using algorithm %s (%ld MB/s)\n",
+		pr_info("raid6: using algorithm %s gen() %ld MB/s\n",
 		       best->name,
-		       (bestperf*HZ) >> (20-16+RAID6_TIME_JIFFIES_LG2));
+		       (bestgenperf*HZ) >> (20-16+RAID6_TIME_JIFFIES_LG2));
+		if (best->xor_syndrome)
+			pr_info("raid6: .... xor() %ld MB/s, rmw enabled\n",
+			       (bestxorperf*HZ) >> (20-16+RAID6_TIME_JIFFIES_LG2+1));
 		raid6_call = *best;
 	} else
 		pr_err("raid6: Yikes!  No algorithm found!\n");