summary refs log tree commit diff
path: root/kernel/bpf
diff options
context:
space:
mode:
authorDaniel Borkmann <daniel@iogearbox.net>2018-05-04 01:08:14 +0200
committerAlexei Starovoitov <ast@kernel.org>2018-05-03 16:49:19 -0700
commite0cea7ce988cf48cc4052235d2ad2550b3bc4fa0 (patch)
tree3feda57e257135a845c78d214590d7e665f03f22 /kernel/bpf
parent93731ef086cee90af594e62874bb98ae6d6eee91 (diff)
downloadlinux-e0cea7ce988cf48cc4052235d2ad2550b3bc4fa0.tar.gz
bpf: implement ld_abs/ld_ind in native bpf
The main part of this work is to finally allow removal of LD_ABS
and LD_IND from the BPF core by reimplementing them through native
eBPF instead. Both LD_ABS/LD_IND were carried over from cBPF and
keeping them around in native eBPF caused way more trouble than
actually worth it. To just list some of the security issues in
the past:

  * fdfaf64e7539 ("x86: bpf_jit: support negative offsets")
  * 35607b02dbef ("sparc: bpf_jit: fix loads from negative offsets")
  * e0ee9c12157d ("x86: bpf_jit: fix two bugs in eBPF JIT compiler")
  * 07aee9439454 ("bpf, sparc: fix usage of wrong reg for load_skb_regs after call")
  * 6d59b7dbf72e ("bpf, s390x: do not reload skb pointers in non-skb context")
  * 87338c8e2cbb ("bpf, ppc64: do not reload skb pointers in non-skb context")

For programs in native eBPF, LD_ABS/LD_IND are pretty much legacy
these days due to their limitations and more efficient/flexible
alternatives that have been developed over time such as direct
packet access. LD_ABS/LD_IND only cover 1/2/4 byte loads into a
register, the load happens in host endianness and its exception
handling can yield unexpected behavior. The latter is explained
in depth in f6b1b3bf0d5f ("bpf: fix subprog verifier bypass by
div/mod by 0 exception") with similar cases of exceptions we had.
In native eBPF more recent program types will disable LD_ABS/LD_IND
altogether through may_access_skb() in verifier, and given the
limitations in terms of exception handling, it's also disabled
in programs that use BPF to BPF calls.

In terms of cBPF, the LD_ABS/LD_IND is used in networking programs
to access packet data. It is not used in seccomp-BPF but programs
that use it for socket filtering or reuseport for demuxing with
cBPF. This is mostly relevant for applications that have not yet
migrated to native eBPF.

The main complexity and source of bugs in LD_ABS/LD_IND is coming
from their implementation in the various JITs. Most of them keep
the model around from cBPF times by implementing a fastpath written
in asm. They use typically two from the BPF program hidden CPU
registers for caching the skb's headlen (skb->len - skb->data_len)
and skb->data. Throughout the JIT phase this requires to keep track
whether LD_ABS/LD_IND are used and if so, the two registers need
to be recached each time a BPF helper would change the underlying
packet data in native eBPF case. At least in eBPF case, available
CPU registers are rare and the additional exit path out of the
asm written JIT helper makes it also inflexible since not all
parts of the JITer are in control from plain C. A LD_ABS/LD_IND
implementation in eBPF therefore allows to significantly reduce
the complexity in JITs with comparable performance results for
them, e.g.:

test_bpf             tcpdump port 22             tcpdump complex
x64      - before    15 21 10                    14 19  18
         - after      7 10 10                     7 10  15
arm64    - before    40 91 92                    40 91 151
         - after     51 64 73                    51 62 113

For cBPF we now track any usage of LD_ABS/LD_IND in bpf_convert_filter()
and cache the skb's headlen and data in the cBPF prologue. The
BPF_REG_TMP gets remapped from R8 to R2 since it's mainly just
used as a local temporary variable. This allows to shrink the
image on x86_64 also for seccomp programs slightly since mapping
to %rsi is not an ereg. In callee-saved R8 and R9 we now track
skb data and headlen, respectively. For normal prologue emission
in the JITs this does not add any extra instructions since R8, R9
are pushed to stack in any case from eBPF side. cBPF uses the
convert_bpf_ld_abs() emitter which probes the fast path inline
already and falls back to bpf_skb_load_helper_{8,16,32}() helper
relying on the cached skb data and headlen as well. R8 and R9
never need to be reloaded due to bpf_helper_changes_pkt_data()
since all skb access in cBPF is read-only. Then, for the case
of native eBPF, we use the bpf_gen_ld_abs() emitter, which calls
the bpf_skb_load_helper_{8,16,32}_no_cache() helper unconditionally,
does neither cache skb data and headlen nor has an inlined fast
path. The reason for the latter is that native eBPF does not have
any extra registers available anyway, but even if there were, it
avoids any reload of skb data and headlen in the first place.
Additionally, for the negative offsets, we provide an alternative
bpf_skb_load_bytes_relative() helper in eBPF which operates
similarly as bpf_skb_load_bytes() and allows for more flexibility.
Tested myself on x64, arm64, s390x, from Sandipan on ppc64.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Diffstat (limited to 'kernel/bpf')
-rw-r--r--kernel/bpf/core.c96
-rw-r--r--kernel/bpf/verifier.c24
2 files changed, 32 insertions, 88 deletions
diff --git a/kernel/bpf/core.c b/kernel/bpf/core.c
index 90feeba3a1a1..1127552c8033 100644
--- a/kernel/bpf/core.c
+++ b/kernel/bpf/core.c
@@ -634,23 +634,6 @@ static int bpf_jit_blind_insn(const struct bpf_insn *from,
 		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
 		break;
 
-	case BPF_LD | BPF_ABS | BPF_W:
-	case BPF_LD | BPF_ABS | BPF_H:
-	case BPF_LD | BPF_ABS | BPF_B:
-		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
-		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
-		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
-		break;
-
-	case BPF_LD | BPF_IND | BPF_W:
-	case BPF_LD | BPF_IND | BPF_H:
-	case BPF_LD | BPF_IND | BPF_B:
-		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
-		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
-		*to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
-		*to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
-		break;
-
 	case BPF_LD | BPF_IMM | BPF_DW:
 		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
 		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
@@ -891,14 +874,7 @@ EXPORT_SYMBOL_GPL(__bpf_call_base);
 	INSN_3(LDX, MEM, W),			\
 	INSN_3(LDX, MEM, DW),			\
 	/*   Immediate based. */		\
-	INSN_3(LD, IMM, DW),			\
-	/*   Misc (old cBPF carry-over). */	\
-	INSN_3(LD, ABS, B),			\
-	INSN_3(LD, ABS, H),			\
-	INSN_3(LD, ABS, W),			\
-	INSN_3(LD, IND, B),			\
-	INSN_3(LD, IND, H),			\
-	INSN_3(LD, IND, W)
+	INSN_3(LD, IMM, DW)
 
 bool bpf_opcode_in_insntable(u8 code)
 {
@@ -908,6 +884,13 @@ bool bpf_opcode_in_insntable(u8 code)
 		[0 ... 255] = false,
 		/* Now overwrite non-defaults ... */
 		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
+		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
+		[BPF_LD | BPF_ABS | BPF_B] = true,
+		[BPF_LD | BPF_ABS | BPF_H] = true,
+		[BPF_LD | BPF_ABS | BPF_W] = true,
+		[BPF_LD | BPF_IND | BPF_B] = true,
+		[BPF_LD | BPF_IND | BPF_H] = true,
+		[BPF_LD | BPF_IND | BPF_W] = true,
 	};
 #undef BPF_INSN_3_TBL
 #undef BPF_INSN_2_TBL
@@ -938,8 +921,6 @@ static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
 #undef BPF_INSN_3_LBL
 #undef BPF_INSN_2_LBL
 	u32 tail_call_cnt = 0;
-	void *ptr;
-	int off;
 
 #define CONT	 ({ insn++; goto select_insn; })
 #define CONT_JMP ({ insn++; goto select_insn; })
@@ -1266,67 +1247,6 @@ out:
 		atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
 			     (DST + insn->off));
 		CONT;
-	LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
-		off = IMM;
-load_word:
-		/* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only
-		 * appearing in the programs where ctx == skb
-		 * (see may_access_skb() in the verifier). All programs
-		 * keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6,
-		 * bpf_convert_filter() saves it in BPF_R6, internal BPF
-		 * verifier will check that BPF_R6 == ctx.
-		 *
-		 * BPF_ABS and BPF_IND are wrappers of function calls,
-		 * so they scratch BPF_R1-BPF_R5 registers, preserve
-		 * BPF_R6-BPF_R9, and store return value into BPF_R0.
-		 *
-		 * Implicit input:
-		 *   ctx == skb == BPF_R6 == CTX
-		 *
-		 * Explicit input:
-		 *   SRC == any register
-		 *   IMM == 32-bit immediate
-		 *
-		 * Output:
-		 *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
-		 */
-
-		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
-		if (likely(ptr != NULL)) {
-			BPF_R0 = get_unaligned_be32(ptr);
-			CONT;
-		}
-
-		return 0;
-	LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
-		off = IMM;
-load_half:
-		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
-		if (likely(ptr != NULL)) {
-			BPF_R0 = get_unaligned_be16(ptr);
-			CONT;
-		}
-
-		return 0;
-	LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
-		off = IMM;
-load_byte:
-		ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
-		if (likely(ptr != NULL)) {
-			BPF_R0 = *(u8 *)ptr;
-			CONT;
-		}
-
-		return 0;
-	LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
-		off = IMM + SRC;
-		goto load_word;
-	LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
-		off = IMM + SRC;
-		goto load_half;
-	LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
-		off = IMM + SRC;
-		goto load_byte;
 
 	default_label:
 		/* If we ever reach this, we have a bug somewhere. Die hard here
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
index 0d91f18b2eb5..6ba10a83909d 100644
--- a/kernel/bpf/verifier.c
+++ b/kernel/bpf/verifier.c
@@ -3884,6 +3884,11 @@ static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
 		return -EINVAL;
 	}
 
+	if (!env->ops->gen_ld_abs) {
+		verbose(env, "bpf verifier is misconfigured\n");
+		return -EINVAL;
+	}
+
 	if (env->subprog_cnt) {
 		/* when program has LD_ABS insn JITs and interpreter assume
 		 * that r1 == ctx == skb which is not the case for callees
@@ -5519,6 +5524,25 @@ static int fixup_bpf_calls(struct bpf_verifier_env *env)
 			continue;
 		}
 
+		if (BPF_CLASS(insn->code) == BPF_LD &&
+		    (BPF_MODE(insn->code) == BPF_ABS ||
+		     BPF_MODE(insn->code) == BPF_IND)) {
+			cnt = env->ops->gen_ld_abs(insn, insn_buf);
+			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
+				verbose(env, "bpf verifier is misconfigured\n");
+				return -EINVAL;
+			}
+
+			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
+			if (!new_prog)
+				return -ENOMEM;
+
+			delta    += cnt - 1;
+			env->prog = prog = new_prog;
+			insn      = new_prog->insnsi + i + delta;
+			continue;
+		}
+
 		if (insn->code != (BPF_JMP | BPF_CALL))
 			continue;
 		if (insn->src_reg == BPF_PSEUDO_CALL)