summary refs log tree commit diff
path: root/drivers
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2009-06-11 10:33:36 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2009-06-11 10:33:36 -0700
commitc29f5ec022451546be1e0b24c330a0368e63e4a7 (patch)
treeaf3c2fc0ba3236fd4c1c2d1a4303fb5a3dc396ab /drivers
parentd3d07d941fd80c173b6d690ded00ee5fb8302e06 (diff)
parentc476c23b45a41eb4e3ea63af786cc4d74762fe11 (diff)
downloadlinux-c29f5ec022451546be1e0b24c330a0368e63e4a7.tar.gz
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp: (26 commits)
  amd64_edac: add MAINTAINERS entry
  EDAC: do not enable modules by default
  amd64_edac: do not enable module by default
  amd64_edac: add module registration routines
  amd64_edac: add ECC reporting initializers
  amd64_edac: add EDAC core-related initializers
  amd64_edac: add error decoding logic
  amd64_edac: add ECC chipkill syndrome mapping table
  amd64_edac: add per-family descriptors
  amd64_edac: add F10h-and-later methods-p3
  amd64_edac: add F10h-and-later methods-p2
  amd64_edac: add F10h-and-later methods-p1
  amd64_edac: add k8-specific methods
  amd64_edac: assign DRAM chip select base and mask in a family-specific way
  amd64_edac: add helper to dump relevant registers
  amd64_edac: add DRAM address type conversion facilities
  amd64_edac: add functionality to compute the DRAM hole
  amd64_edac: add sys addr to memory controller mapping helpers
  amd64_edac: add memory scrubber interface
  amd64_edac: add MCA error types
  ...
Diffstat (limited to 'drivers')
-rw-r--r--drivers/edac/Kconfig26
-rw-r--r--drivers/edac/Makefile7
-rw-r--r--drivers/edac/amd64_edac.c3354
-rw-r--r--drivers/edac/amd64_edac.h644
-rw-r--r--drivers/edac/amd64_edac_dbg.c255
-rw-r--r--drivers/edac/amd64_edac_err_types.c161
-rw-r--r--drivers/edac/amd64_edac_inj.c185
-rw-r--r--drivers/edac/edac_core.h9
8 files changed, 4636 insertions, 5 deletions
diff --git a/drivers/edac/Kconfig b/drivers/edac/Kconfig
index 956982f8739b..ab4f3592a11c 100644
--- a/drivers/edac/Kconfig
+++ b/drivers/edac/Kconfig
@@ -49,7 +49,6 @@ config EDAC_DEBUG_VERBOSE
 
 config EDAC_MM_EDAC
 	tristate "Main Memory EDAC (Error Detection And Correction) reporting"
-	default y
 	help
 	  Some systems are able to detect and correct errors in main
 	  memory.  EDAC can report statistics on memory error
@@ -58,6 +57,31 @@ config EDAC_MM_EDAC
 	  occurred so that a particular failing memory module can be
 	  replaced.  If unsure, select 'Y'.
 
+config EDAC_AMD64
+	tristate "AMD64 (Opteron, Athlon64) K8, F10h, F11h"
+	depends on EDAC_MM_EDAC && K8_NB && X86_64 && PCI
+	help
+	  Support for error detection and correction on the AMD 64
+	  Families of Memory Controllers (K8, F10h and F11h)
+
+config EDAC_AMD64_ERROR_INJECTION
+	bool "Sysfs Error Injection facilities"
+	depends on EDAC_AMD64
+	help
+	  Recent Opterons (Family 10h and later) provide for Memory Error
+	  Injection into the ECC detection circuits. The amd64_edac module
+	  allows the operator/user to inject Uncorrectable and Correctable
+	  errors into DRAM.
+
+	  When enabled, in each of the respective memory controller directories
+	  (/sys/devices/system/edac/mc/mcX), there are 3 input files:
+
+	  - inject_section (0..3, 16-byte section of 64-byte cacheline),
+	  - inject_word (0..8, 16-bit word of 16-byte section),
+	  - inject_ecc_vector (hex ecc vector: select bits of inject word)
+
+	  In addition, there are two control files, inject_read and inject_write,
+	  which trigger the DRAM ECC Read and Write respectively.
 
 config EDAC_AMD76X
 	tristate "AMD 76x (760, 762, 768)"
diff --git a/drivers/edac/Makefile b/drivers/edac/Makefile
index 59076819135d..633dc5604ee3 100644
--- a/drivers/edac/Makefile
+++ b/drivers/edac/Makefile
@@ -30,6 +30,13 @@ obj-$(CONFIG_EDAC_I3000)		+= i3000_edac.o
 obj-$(CONFIG_EDAC_X38)			+= x38_edac.o
 obj-$(CONFIG_EDAC_I82860)		+= i82860_edac.o
 obj-$(CONFIG_EDAC_R82600)		+= r82600_edac.o
+
+amd64_edac_mod-y :=  amd64_edac_err_types.o amd64_edac.o
+amd64_edac_mod-$(CONFIG_EDAC_DEBUG) += amd64_edac_dbg.o
+amd64_edac_mod-$(CONFIG_EDAC_AMD64_ERROR_INJECTION) += amd64_edac_inj.o
+
+obj-$(CONFIG_EDAC_AMD64)		+= amd64_edac_mod.o
+
 obj-$(CONFIG_EDAC_PASEMI)		+= pasemi_edac.o
 obj-$(CONFIG_EDAC_MPC85XX)		+= mpc85xx_edac.o
 obj-$(CONFIG_EDAC_MV64X60)		+= mv64x60_edac.o
diff --git a/drivers/edac/amd64_edac.c b/drivers/edac/amd64_edac.c
new file mode 100644
index 000000000000..c36bf40568cf
--- /dev/null
+++ b/drivers/edac/amd64_edac.c
@@ -0,0 +1,3354 @@
+#include "amd64_edac.h"
+#include <asm/k8.h>
+
+static struct edac_pci_ctl_info *amd64_ctl_pci;
+
+static int report_gart_errors;
+module_param(report_gart_errors, int, 0644);
+
+/*
+ * Set by command line parameter. If BIOS has enabled the ECC, this override is
+ * cleared to prevent re-enabling the hardware by this driver.
+ */
+static int ecc_enable_override;
+module_param(ecc_enable_override, int, 0644);
+
+/* Lookup table for all possible MC control instances */
+struct amd64_pvt;
+static struct mem_ctl_info *mci_lookup[MAX_NUMNODES];
+static struct amd64_pvt *pvt_lookup[MAX_NUMNODES];
+
+/*
+ * Memory scrubber control interface. For K8, memory scrubbing is handled by
+ * hardware and can involve L2 cache, dcache as well as the main memory. With
+ * F10, this is extended to L3 cache scrubbing on CPU models sporting that
+ * functionality.
+ *
+ * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
+ * (dram) over to cache lines. This is nasty, so we will use bandwidth in
+ * bytes/sec for the setting.
+ *
+ * Currently, we only do dram scrubbing. If the scrubbing is done in software on
+ * other archs, we might not have access to the caches directly.
+ */
+
+/*
+ * scan the scrub rate mapping table for a close or matching bandwidth value to
+ * issue. If requested is too big, then use last maximum value found.
+ */
+static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
+				       u32 min_scrubrate)
+{
+	u32 scrubval;
+	int i;
+
+	/*
+	 * map the configured rate (new_bw) to a value specific to the AMD64
+	 * memory controller and apply to register. Search for the first
+	 * bandwidth entry that is greater or equal than the setting requested
+	 * and program that. If at last entry, turn off DRAM scrubbing.
+	 */
+	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
+		/*
+		 * skip scrub rates which aren't recommended
+		 * (see F10 BKDG, F3x58)
+		 */
+		if (scrubrates[i].scrubval < min_scrubrate)
+			continue;
+
+		if (scrubrates[i].bandwidth <= new_bw)
+			break;
+
+		/*
+		 * if no suitable bandwidth found, turn off DRAM scrubbing
+		 * entirely by falling back to the last element in the
+		 * scrubrates array.
+		 */
+	}
+
+	scrubval = scrubrates[i].scrubval;
+	if (scrubval)
+		edac_printk(KERN_DEBUG, EDAC_MC,
+			    "Setting scrub rate bandwidth: %u\n",
+			    scrubrates[i].bandwidth);
+	else
+		edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
+
+	pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
+
+	return 0;
+}
+
+static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	u32 min_scrubrate = 0x0;
+
+	switch (boot_cpu_data.x86) {
+	case 0xf:
+		min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
+		break;
+	case 0x10:
+		min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
+		break;
+	case 0x11:
+		min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
+		break;
+
+	default:
+		amd64_printk(KERN_ERR, "Unsupported family!\n");
+		break;
+	}
+	return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
+			min_scrubrate);
+}
+
+static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	u32 scrubval = 0;
+	int status = -1, i, ret = 0;
+
+	ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
+	if (ret)
+		debugf0("Reading K8_SCRCTRL failed\n");
+
+	scrubval = scrubval & 0x001F;
+
+	edac_printk(KERN_DEBUG, EDAC_MC,
+		    "pci-read, sdram scrub control value: %d \n", scrubval);
+
+	for (i = 0; ARRAY_SIZE(scrubrates); i++) {
+		if (scrubrates[i].scrubval == scrubval) {
+			*bw = scrubrates[i].bandwidth;
+			status = 0;
+			break;
+		}
+	}
+
+	return status;
+}
+
+/* Map from a CSROW entry to the mask entry that operates on it */
+static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
+{
+	return csrow >> (pvt->num_dcsm >> 3);
+}
+
+/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
+static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
+{
+	if (dct == 0)
+		return pvt->dcsb0[csrow];
+	else
+		return pvt->dcsb1[csrow];
+}
+
+/*
+ * Return the 'mask' address the i'th CS entry. This function is needed because
+ * there number of DCSM registers on Rev E and prior vs Rev F and later is
+ * different.
+ */
+static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
+{
+	if (dct == 0)
+		return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
+	else
+		return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
+}
+
+
+/*
+ * In *base and *limit, pass back the full 40-bit base and limit physical
+ * addresses for the node given by node_id.  This information is obtained from
+ * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
+ * base and limit addresses are of type SysAddr, as defined at the start of
+ * section 3.4.4 (p. 70).  They are the lowest and highest physical addresses
+ * in the address range they represent.
+ */
+static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
+			       u64 *base, u64 *limit)
+{
+	*base = pvt->dram_base[node_id];
+	*limit = pvt->dram_limit[node_id];
+}
+
+/*
+ * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
+ * with node_id
+ */
+static int amd64_base_limit_match(struct amd64_pvt *pvt,
+					u64 sys_addr, int node_id)
+{
+	u64 base, limit, addr;
+
+	amd64_get_base_and_limit(pvt, node_id, &base, &limit);
+
+	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
+	 * all ones if the most significant implemented address bit is 1.
+	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
+	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
+	 * Application Programming.
+	 */
+	addr = sys_addr & 0x000000ffffffffffull;
+
+	return (addr >= base) && (addr <= limit);
+}
+
+/*
+ * Attempt to map a SysAddr to a node. On success, return a pointer to the
+ * mem_ctl_info structure for the node that the SysAddr maps to.
+ *
+ * On failure, return NULL.
+ */
+static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
+						u64 sys_addr)
+{
+	struct amd64_pvt *pvt;
+	int node_id;
+	u32 intlv_en, bits;
+
+	/*
+	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
+	 * 3.4.4.2) registers to map the SysAddr to a node ID.
+	 */
+	pvt = mci->pvt_info;
+
+	/*
+	 * The value of this field should be the same for all DRAM Base
+	 * registers.  Therefore we arbitrarily choose to read it from the
+	 * register for node 0.
+	 */
+	intlv_en = pvt->dram_IntlvEn[0];
+
+	if (intlv_en == 0) {
+		for (node_id = 0; ; ) {
+			if (amd64_base_limit_match(pvt, sys_addr, node_id))
+				break;
+
+			if (++node_id >= DRAM_REG_COUNT)
+				goto err_no_match;
+		}
+		goto found;
+	}
+
+	if (unlikely((intlv_en != (0x01 << 8)) &&
+		     (intlv_en != (0x03 << 8)) &&
+		     (intlv_en != (0x07 << 8)))) {
+		amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
+			     "IntlvEn field of DRAM Base Register for node 0: "
+			     "This probably indicates a BIOS bug.\n", intlv_en);
+		return NULL;
+	}
+
+	bits = (((u32) sys_addr) >> 12) & intlv_en;
+
+	for (node_id = 0; ; ) {
+		if ((pvt->dram_limit[node_id] & intlv_en) == bits)
+			break;	/* intlv_sel field matches */
+
+		if (++node_id >= DRAM_REG_COUNT)
+			goto err_no_match;
+	}
+
+	/* sanity test for sys_addr */
+	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
+		amd64_printk(KERN_WARNING,
+			  "%s(): sys_addr 0x%lx falls outside base/limit "
+			  "address range for node %d with node interleaving "
+			  "enabled.\n", __func__, (unsigned long)sys_addr,
+			  node_id);
+		return NULL;
+	}
+
+found:
+	return edac_mc_find(node_id);
+
+err_no_match:
+	debugf2("sys_addr 0x%lx doesn't match any node\n",
+		(unsigned long)sys_addr);
+
+	return NULL;
+}
+
+/*
+ * Extract the DRAM CS base address from selected csrow register.
+ */
+static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
+{
+	return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
+				pvt->dcs_shift;
+}
+
+/*
+ * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
+ */
+static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
+{
+	u64 dcsm_bits, other_bits;
+	u64 mask;
+
+	/* Extract bits from DRAM CS Mask. */
+	dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
+
+	other_bits = pvt->dcsm_mask;
+	other_bits = ~(other_bits << pvt->dcs_shift);
+
+	/*
+	 * The extracted bits from DCSM belong in the spaces represented by
+	 * the cleared bits in other_bits.
+	 */
+	mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
+
+	return mask;
+}
+
+/*
+ * @input_addr is an InputAddr associated with the node given by mci. Return the
+ * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
+ */
+static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
+{
+	struct amd64_pvt *pvt;
+	int csrow;
+	u64 base, mask;
+
+	pvt = mci->pvt_info;
+
+	/*
+	 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
+	 * base/mask register pair, test the condition shown near the start of
+	 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
+	 */
+	for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
+
+		/* This DRAM chip select is disabled on this node */
+		if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
+			continue;
+
+		base = base_from_dct_base(pvt, csrow);
+		mask = ~mask_from_dct_mask(pvt, csrow);
+
+		if ((input_addr & mask) == (base & mask)) {
+			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
+				(unsigned long)input_addr, csrow,
+				pvt->mc_node_id);
+
+			return csrow;
+		}
+	}
+
+	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
+		(unsigned long)input_addr, pvt->mc_node_id);
+
+	return -1;
+}
+
+/*
+ * Return the base value defined by the DRAM Base register for the node
+ * represented by mci.  This function returns the full 40-bit value despite the
+ * fact that the register only stores bits 39-24 of the value. See section
+ * 3.4.4.1 (BKDG #26094, K8, revA-E)
+ */
+static inline u64 get_dram_base(struct mem_ctl_info *mci)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+
+	return pvt->dram_base[pvt->mc_node_id];
+}
+
+/*
+ * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
+ * for the node represented by mci. Info is passed back in *hole_base,
+ * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
+ * info is invalid. Info may be invalid for either of the following reasons:
+ *
+ * - The revision of the node is not E or greater.  In this case, the DRAM Hole
+ *   Address Register does not exist.
+ *
+ * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
+ *   indicating that its contents are not valid.
+ *
+ * The values passed back in *hole_base, *hole_offset, and *hole_size are
+ * complete 32-bit values despite the fact that the bitfields in the DHAR
+ * only represent bits 31-24 of the base and offset values.
+ */
+int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
+			     u64 *hole_offset, u64 *hole_size)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	u64 base;
+
+	/* only revE and later have the DRAM Hole Address Register */
+	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
+		debugf1("  revision %d for node %d does not support DHAR\n",
+			pvt->ext_model, pvt->mc_node_id);
+		return 1;
+	}
+
+	/* only valid for Fam10h */
+	if (boot_cpu_data.x86 == 0x10 &&
+	    (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
+		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
+		return 1;
+	}
+
+	if ((pvt->dhar & DHAR_VALID) == 0) {
+		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
+			pvt->mc_node_id);
+		return 1;
+	}
+
+	/* This node has Memory Hoisting */
+
+	/* +------------------+--------------------+--------------------+-----
+	 * | memory           | DRAM hole          | relocated          |
+	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
+	 * |                  |                    | DRAM hole          |
+	 * |                  |                    | [0x100000000,      |
+	 * |                  |                    |  (0x100000000+     |
+	 * |                  |                    |   (0xffffffff-x))] |
+	 * +------------------+--------------------+--------------------+-----
+	 *
+	 * Above is a diagram of physical memory showing the DRAM hole and the
+	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
+	 * starts at address x (the base address) and extends through address
+	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
+	 * addresses in the hole so that they start at 0x100000000.
+	 */
+
+	base = dhar_base(pvt->dhar);
+
+	*hole_base = base;
+	*hole_size = (0x1ull << 32) - base;
+
+	if (boot_cpu_data.x86 > 0xf)
+		*hole_offset = f10_dhar_offset(pvt->dhar);
+	else
+		*hole_offset = k8_dhar_offset(pvt->dhar);
+
+	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
+		pvt->mc_node_id, (unsigned long)*hole_base,
+		(unsigned long)*hole_offset, (unsigned long)*hole_size);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
+
+/*
+ * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
+ * assumed that sys_addr maps to the node given by mci.
+ *
+ * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
+ * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
+ * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
+ * then it is also involved in translating a SysAddr to a DramAddr. Sections
+ * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
+ * These parts of the documentation are unclear. I interpret them as follows:
+ *
+ * When node n receives a SysAddr, it processes the SysAddr as follows:
+ *
+ * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
+ *    Limit registers for node n. If the SysAddr is not within the range
+ *    specified by the base and limit values, then node n ignores the Sysaddr
+ *    (since it does not map to node n). Otherwise continue to step 2 below.
+ *
+ * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
+ *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
+ *    the range of relocated addresses (starting at 0x100000000) from the DRAM
+ *    hole. If not, skip to step 3 below. Else get the value of the
+ *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
+ *    offset defined by this value from the SysAddr.
+ *
+ * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
+ *    Base register for node n. To obtain the DramAddr, subtract the base
+ *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
+ */
+static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
+{
+	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
+	int ret = 0;
+
+	dram_base = get_dram_base(mci);
+
+	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
+				      &hole_size);
+	if (!ret) {
+		if ((sys_addr >= (1ull << 32)) &&
+		    (sys_addr < ((1ull << 32) + hole_size))) {
+			/* use DHAR to translate SysAddr to DramAddr */
+			dram_addr = sys_addr - hole_offset;
+
+			debugf2("using DHAR to translate SysAddr 0x%lx to "
+				"DramAddr 0x%lx\n",
+				(unsigned long)sys_addr,
+				(unsigned long)dram_addr);
+
+			return dram_addr;
+		}
+	}
+
+	/*
+	 * Translate the SysAddr to a DramAddr as shown near the start of
+	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
+	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
+	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
+	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
+	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
+	 * Programmer's Manual Volume 1 Application Programming.
+	 */
+	dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
+
+	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
+		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
+		(unsigned long)dram_addr);
+	return dram_addr;
+}
+
+/*
+ * @intlv_en is the value of the IntlvEn field from a DRAM Base register
+ * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
+ * for node interleaving.
+ */
+static int num_node_interleave_bits(unsigned intlv_en)
+{
+	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
+	int n;
+
+	BUG_ON(intlv_en > 7);
+	n = intlv_shift_table[intlv_en];
+	return n;
+}
+
+/* Translate the DramAddr given by @dram_addr to an InputAddr. */
+static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
+{
+	struct amd64_pvt *pvt;
+	int intlv_shift;
+	u64 input_addr;
+
+	pvt = mci->pvt_info;
+
+	/*
+	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
+	 * concerning translating a DramAddr to an InputAddr.
+	 */
+	intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
+	input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
+	    (dram_addr & 0xfff);
+
+	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
+		intlv_shift, (unsigned long)dram_addr,
+		(unsigned long)input_addr);
+
+	return input_addr;
+}
+
+/*
+ * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
+ * assumed that @sys_addr maps to the node given by mci.
+ */
+static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
+{
+	u64 input_addr;
+
+	input_addr =
+	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
+
+	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
+		(unsigned long)sys_addr, (unsigned long)input_addr);
+
+	return input_addr;
+}
+
+
+/*
+ * @input_addr is an InputAddr associated with the node represented by mci.
+ * Translate @input_addr to a DramAddr and return the result.
+ */
+static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
+{
+	struct amd64_pvt *pvt;
+	int node_id, intlv_shift;
+	u64 bits, dram_addr;
+	u32 intlv_sel;
+
+	/*
+	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
+	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
+	 * this procedure. When translating from a DramAddr to an InputAddr, the
+	 * bits used for node interleaving are discarded.  Here we recover these
+	 * bits from the IntlvSel field of the DRAM Limit register (section
+	 * 3.4.4.2) for the node that input_addr is associated with.
+	 */
+	pvt = mci->pvt_info;
+	node_id = pvt->mc_node_id;
+	BUG_ON((node_id < 0) || (node_id > 7));
+
+	intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
+
+	if (intlv_shift == 0) {
+		debugf1("    InputAddr 0x%lx translates to DramAddr of "
+			"same value\n",	(unsigned long)input_addr);
+
+		return input_addr;
+	}
+
+	bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
+	    (input_addr & 0xfff);
+
+	intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
+	dram_addr = bits + (intlv_sel << 12);
+
+	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
+		"(%d node interleave bits)\n", (unsigned long)input_addr,
+		(unsigned long)dram_addr, intlv_shift);
+
+	return dram_addr;
+}
+
+/*
+ * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
+ * @dram_addr to a SysAddr.
+ */
+static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
+	int ret = 0;
+
+	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
+				      &hole_size);
+	if (!ret) {
+		if ((dram_addr >= hole_base) &&
+		    (dram_addr < (hole_base + hole_size))) {
+			sys_addr = dram_addr + hole_offset;
+
+			debugf1("using DHAR to translate DramAddr 0x%lx to "
+				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
+				(unsigned long)sys_addr);
+
+			return sys_addr;
+		}
+	}
+
+	amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
+	sys_addr = dram_addr + base;
+
+	/*
+	 * The sys_addr we have computed up to this point is a 40-bit value
+	 * because the k8 deals with 40-bit values.  However, the value we are
+	 * supposed to return is a full 64-bit physical address.  The AMD
+	 * x86-64 architecture specifies that the most significant implemented
+	 * address bit through bit 63 of a physical address must be either all
+	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
+	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
+	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
+	 * Programming.
+	 */
+	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
+
+	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
+		pvt->mc_node_id, (unsigned long)dram_addr,
+		(unsigned long)sys_addr);
+
+	return sys_addr;
+}
+
+/*
+ * @input_addr is an InputAddr associated with the node given by mci. Translate
+ * @input_addr to a SysAddr.
+ */
+static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
+					 u64 input_addr)
+{
+	return dram_addr_to_sys_addr(mci,
+				     input_addr_to_dram_addr(mci, input_addr));
+}
+
+/*
+ * Find the minimum and maximum InputAddr values that map to the given @csrow.
+ * Pass back these values in *input_addr_min and *input_addr_max.
+ */
+static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
+			      u64 *input_addr_min, u64 *input_addr_max)
+{
+	struct amd64_pvt *pvt;
+	u64 base, mask;
+
+	pvt = mci->pvt_info;
+	BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT));
+
+	base = base_from_dct_base(pvt, csrow);
+	mask = mask_from_dct_mask(pvt, csrow);
+
+	*input_addr_min = base & ~mask;
+	*input_addr_max = base | mask | pvt->dcs_mask_notused;
+}
+
+/*
+ * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
+ * Address High (section 3.6.4.6) register values and return the result. Address
+ * is located in the info structure (nbeah and nbeal), the encoding is device
+ * specific.
+ */
+static u64 extract_error_address(struct mem_ctl_info *mci,
+				 struct amd64_error_info_regs *info)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+
+	return pvt->ops->get_error_address(mci, info);
+}
+
+
+/* Map the Error address to a PAGE and PAGE OFFSET. */
+static inline void error_address_to_page_and_offset(u64 error_address,
+						    u32 *page, u32 *offset)
+{
+	*page = (u32) (error_address >> PAGE_SHIFT);
+	*offset = ((u32) error_address) & ~PAGE_MASK;
+}
+
+/*
+ * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
+ * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
+ * of a node that detected an ECC memory error.  mci represents the node that
+ * the error address maps to (possibly different from the node that detected
+ * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
+ * error.
+ */
+static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
+{
+	int csrow;
+
+	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
+
+	if (csrow == -1)
+		amd64_mc_printk(mci, KERN_ERR,
+			     "Failed to translate InputAddr to csrow for "
+			     "address 0x%lx\n", (unsigned long)sys_addr);
+	return csrow;
+}
+
+static int get_channel_from_ecc_syndrome(unsigned short syndrome);
+
+static void amd64_cpu_display_info(struct amd64_pvt *pvt)
+{
+	if (boot_cpu_data.x86 == 0x11)
+		edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
+	else if (boot_cpu_data.x86 == 0x10)
+		edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
+	else if (boot_cpu_data.x86 == 0xf)
+		edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
+			(pvt->ext_model >= OPTERON_CPU_REV_F) ?
+			"Rev F or later" : "Rev E or earlier");
+	else
+		/* we'll hardly ever ever get here */
+		edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
+}
+
+/*
+ * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
+ * are ECC capable.
+ */
+static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
+{
+	int bit;
+	enum dev_type edac_cap = EDAC_NONE;
+
+	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
+		? 19
+		: 17;
+
+	if (pvt->dclr0 >> BIT(bit))
+		edac_cap = EDAC_FLAG_SECDED;
+
+	return edac_cap;
+}
+
+
+static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
+					 int ganged);
+
+/* Display and decode various NB registers for debug purposes. */
+static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
+{
+	int ganged;
+
+	debugf1("  nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
+		pvt->nbcap,
+		(pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
+		(pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
+		(pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
+	debugf1("    ECC Capable=%s   ChipKill Capable=%s\n",
+		(pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
+		(pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
+	debugf1("  DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
+		pvt->dclr0,
+		(pvt->dclr0 & BIT(19)) ?  "Enabled" : "Disabled",
+		(pvt->dclr0 & BIT(8)) ?  "Enabled" : "Disabled",
+		(pvt->dclr0 & BIT(11)) ?  "128b" : "64b");
+	debugf1("    DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s  DIMM Type=%s\n",
+		(pvt->dclr0 & BIT(12)) ?  "Y" : "N",
+		(pvt->dclr0 & BIT(13)) ?  "Y" : "N",
+		(pvt->dclr0 & BIT(14)) ?  "Y" : "N",
+		(pvt->dclr0 & BIT(15)) ?  "Y" : "N",
+		(pvt->dclr0 & BIT(16)) ?  "UN-Buffered" : "Buffered");
+
+
+	debugf1("  online-spare: 0x%8.08x\n", pvt->online_spare);
+
+	if (boot_cpu_data.x86 == 0xf) {
+		debugf1("  dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
+			pvt->dhar, dhar_base(pvt->dhar),
+			k8_dhar_offset(pvt->dhar));
+		debugf1("      DramHoleValid=%s\n",
+			(pvt->dhar & DHAR_VALID) ?  "True" : "False");
+
+		debugf1("  dbam-dkt: 0x%8.08x\n", pvt->dbam0);
+
+		/* everything below this point is Fam10h and above */
+		return;
+
+	} else {
+		debugf1("  dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
+			pvt->dhar, dhar_base(pvt->dhar),
+			f10_dhar_offset(pvt->dhar));
+		debugf1("    DramMemHoistValid=%s DramHoleValid=%s\n",
+			(pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
+			"True" : "False",
+			(pvt->dhar & DHAR_VALID) ?
+			"True" : "False");
+	}
+
+	/* Only if NOT ganged does dcl1 have valid info */
+	if (!dct_ganging_enabled(pvt)) {
+		debugf1("  DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
+			"Width=%s\n", pvt->dclr1,
+			(pvt->dclr1 & BIT(19)) ?  "Enabled" : "Disabled",
+			(pvt->dclr1 & BIT(8)) ?  "Enabled" : "Disabled",
+			(pvt->dclr1 & BIT(11)) ?  "128b" : "64b");
+		debugf1("    DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s  "
+			"DIMM Type=%s\n",
+			(pvt->dclr1 & BIT(12)) ?  "Y" : "N",
+			(pvt->dclr1 & BIT(13)) ?  "Y" : "N",
+			(pvt->dclr1 & BIT(14)) ?  "Y" : "N",
+			(pvt->dclr1 & BIT(15)) ?  "Y" : "N",
+			(pvt->dclr1 & BIT(16)) ?  "UN-Buffered" : "Buffered");
+	}
+
+	/*
+	 * Determine if ganged and then dump memory sizes for first controller,
+	 * and if NOT ganged dump info for 2nd controller.
+	 */
+	ganged = dct_ganging_enabled(pvt);
+
+	f10_debug_display_dimm_sizes(0, pvt, ganged);
+
+	if (!ganged)
+		f10_debug_display_dimm_sizes(1, pvt, ganged);
+}
+
+/* Read in both of DBAM registers */
+static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
+{
+	int err = 0;
+	unsigned int reg;
+
+	reg = DBAM0;
+	err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
+	if (err)
+		goto err_reg;
+
+	if (boot_cpu_data.x86 >= 0x10) {
+		reg = DBAM1;
+		err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
+
+		if (err)
+			goto err_reg;
+	}
+
+err_reg:
+	debugf0("Error reading F2x%03x.\n", reg);
+}
+
+/*
+ * NOTE: CPU Revision Dependent code: Rev E and Rev F
+ *
+ * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
+ * set the shift factor for the DCSB and DCSM values.
+ *
+ * ->dcs_mask_notused, RevE:
+ *
+ * To find the max InputAddr for the csrow, start with the base address and set
+ * all bits that are "don't care" bits in the test at the start of section
+ * 3.5.4 (p. 84).
+ *
+ * The "don't care" bits are all set bits in the mask and all bits in the gaps
+ * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
+ * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
+ * gaps.
+ *
+ * ->dcs_mask_notused, RevF and later:
+ *
+ * To find the max InputAddr for the csrow, start with the base address and set
+ * all bits that are "don't care" bits in the test at the start of NPT section
+ * 4.5.4 (p. 87).
+ *
+ * The "don't care" bits are all set bits in the mask and all bits in the gaps
+ * between bit ranges [36:27] and [21:13].
+ *
+ * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
+ * which are all bits in the above-mentioned gaps.
+ */
+static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
+{
+	if (pvt->ext_model >= OPTERON_CPU_REV_F) {
+		pvt->dcsb_base		= REV_F_F1Xh_DCSB_BASE_BITS;
+		pvt->dcsm_mask		= REV_F_F1Xh_DCSM_MASK_BITS;
+		pvt->dcs_mask_notused	= REV_F_F1Xh_DCS_NOTUSED_BITS;
+		pvt->dcs_shift		= REV_F_F1Xh_DCS_SHIFT;
+
+		switch (boot_cpu_data.x86) {
+		case 0xf:
+			pvt->num_dcsm = REV_F_DCSM_COUNT;
+			break;
+
+		case 0x10:
+			pvt->num_dcsm = F10_DCSM_COUNT;
+			break;
+
+		case 0x11:
+			pvt->num_dcsm = F11_DCSM_COUNT;
+			break;
+
+		default:
+			amd64_printk(KERN_ERR, "Unsupported family!\n");
+			break;
+		}
+	} else {
+		pvt->dcsb_base		= REV_E_DCSB_BASE_BITS;
+		pvt->dcsm_mask		= REV_E_DCSM_MASK_BITS;
+		pvt->dcs_mask_notused	= REV_E_DCS_NOTUSED_BITS;
+		pvt->dcs_shift		= REV_E_DCS_SHIFT;
+		pvt->num_dcsm		= REV_E_DCSM_COUNT;
+	}
+}
+
+/*
+ * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
+ */
+static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
+{
+	int cs, reg, err = 0;
+
+	amd64_set_dct_base_and_mask(pvt);
+
+	for (cs = 0; cs < CHIPSELECT_COUNT; cs++) {
+		reg = K8_DCSB0 + (cs * 4);
+		err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
+						&pvt->dcsb0[cs]);
+		if (unlikely(err))
+			debugf0("Reading K8_DCSB0[%d] failed\n", cs);
+		else
+			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
+				cs, pvt->dcsb0[cs], reg);
+
+		/* If DCT are NOT ganged, then read in DCT1's base */
+		if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
+			reg = F10_DCSB1 + (cs * 4);
+			err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
+							&pvt->dcsb1[cs]);
+			if (unlikely(err))
+				debugf0("Reading F10_DCSB1[%d] failed\n", cs);
+			else
+				debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
+					cs, pvt->dcsb1[cs], reg);
+		} else {
+			pvt->dcsb1[cs] = 0;
+		}
+	}
+
+	for (cs = 0; cs < pvt->num_dcsm; cs++) {
+		reg = K8_DCSB0 + (cs * 4);
+		err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
+					&pvt->dcsm0[cs]);
+		if (unlikely(err))
+			debugf0("Reading K8_DCSM0 failed\n");
+		else
+			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
+				cs, pvt->dcsm0[cs], reg);
+
+		/* If DCT are NOT ganged, then read in DCT1's mask */
+		if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
+			reg = F10_DCSM1 + (cs * 4);
+			err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
+					&pvt->dcsm1[cs]);
+			if (unlikely(err))
+				debugf0("Reading F10_DCSM1[%d] failed\n", cs);
+			else
+				debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
+					cs, pvt->dcsm1[cs], reg);
+		} else
+			pvt->dcsm1[cs] = 0;
+	}
+}
+
+static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
+{
+	enum mem_type type;
+
+	if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
+		/* Rev F and later */
+		type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
+	} else {
+		/* Rev E and earlier */
+		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
+	}
+
+	debugf1("  Memory type is: %s\n",
+		(type == MEM_DDR2) ? "MEM_DDR2" :
+		(type == MEM_RDDR2) ? "MEM_RDDR2" :
+		(type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
+
+	return type;
+}
+
+/*
+ * Read the DRAM Configuration Low register. It differs between CG, D & E revs
+ * and the later RevF memory controllers (DDR vs DDR2)
+ *
+ * Return:
+ *      number of memory channels in operation
+ * Pass back:
+ *      contents of the DCL0_LOW register
+ */
+static int k8_early_channel_count(struct amd64_pvt *pvt)
+{
+	int flag, err = 0;
+
+	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
+	if (err)
+		return err;
+
+	if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
+		/* RevF (NPT) and later */
+		flag = pvt->dclr0 & F10_WIDTH_128;
+	} else {
+		/* RevE and earlier */
+		flag = pvt->dclr0 & REVE_WIDTH_128;
+	}
+
+	/* not used */
+	pvt->dclr1 = 0;
+
+	return (flag) ? 2 : 1;
+}
+
+/* extract the ERROR ADDRESS for the K8 CPUs */
+static u64 k8_get_error_address(struct mem_ctl_info *mci,
+				struct amd64_error_info_regs *info)
+{
+	return (((u64) (info->nbeah & 0xff)) << 32) +
+			(info->nbeal & ~0x03);
+}
+
+/*
+ * Read the Base and Limit registers for K8 based Memory controllers; extract
+ * fields from the 'raw' reg into separate data fields
+ *
+ * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
+ */
+static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
+{
+	u32 low;
+	u32 off = dram << 3;	/* 8 bytes between DRAM entries */
+	int err;
+
+	err = pci_read_config_dword(pvt->addr_f1_ctl,
+				    K8_DRAM_BASE_LOW + off, &low);
+	if (err)
+		debugf0("Reading K8_DRAM_BASE_LOW failed\n");
+
+	/* Extract parts into separate data entries */
+	pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
+	pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
+	pvt->dram_rw_en[dram] = (low & 0x3);
+
+	err = pci_read_config_dword(pvt->addr_f1_ctl,
+				    K8_DRAM_LIMIT_LOW + off, &low);
+	if (err)
+		debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
+
+	/*
+	 * Extract parts into separate data entries. Limit is the HIGHEST memory
+	 * location of the region, so lower 24 bits need to be all ones
+	 */
+	pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
+	pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
+	pvt->dram_DstNode[dram] = (low & 0x7);
+}
+
+static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
+					struct amd64_error_info_regs *info,
+					u64 SystemAddress)
+{
+	struct mem_ctl_info *src_mci;
+	unsigned short syndrome;
+	int channel, csrow;
+	u32 page, offset;
+
+	/* Extract the syndrome parts and form a 16-bit syndrome */
+	syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8;
+	syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh);
+
+	/* CHIPKILL enabled */
+	if (info->nbcfg & K8_NBCFG_CHIPKILL) {
+		channel = get_channel_from_ecc_syndrome(syndrome);
+		if (channel < 0) {
+			/*
+			 * Syndrome didn't map, so we don't know which of the
+			 * 2 DIMMs is in error. So we need to ID 'both' of them
+			 * as suspect.
+			 */
+			amd64_mc_printk(mci, KERN_WARNING,
+				       "unknown syndrome 0x%x - possible error "
+				       "reporting race\n", syndrome);
+			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+			return;
+		}
+	} else {
+		/*
+		 * non-chipkill ecc mode
+		 *
+		 * The k8 documentation is unclear about how to determine the
+		 * channel number when using non-chipkill memory.  This method
+		 * was obtained from email communication with someone at AMD.
+		 * (Wish the email was placed in this comment - norsk)
+		 */
+		channel = ((SystemAddress & BIT(3)) != 0);
+	}
+
+	/*
+	 * Find out which node the error address belongs to. This may be
+	 * different from the node that detected the error.
+	 */
+	src_mci = find_mc_by_sys_addr(mci, SystemAddress);
+	if (src_mci) {
+		amd64_mc_printk(mci, KERN_ERR,
+			     "failed to map error address 0x%lx to a node\n",
+			     (unsigned long)SystemAddress);
+		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+		return;
+	}
+
+	/* Now map the SystemAddress to a CSROW */
+	csrow = sys_addr_to_csrow(src_mci, SystemAddress);
+	if (csrow < 0) {
+		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
+	} else {
+		error_address_to_page_and_offset(SystemAddress, &page, &offset);
+
+		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
+				  channel, EDAC_MOD_STR);
+	}
+}
+
+/*
+ * determrine the number of PAGES in for this DIMM's size based on its DRAM
+ * Address Mapping.
+ *
+ * First step is to calc the number of bits to shift a value of 1 left to
+ * indicate show many pages. Start with the DBAM value as the starting bits,
+ * then proceed to adjust those shift bits, based on CPU rev and the table.
+ * See BKDG on the DBAM
+ */
+static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
+{
+	int nr_pages;
+
+	if (pvt->ext_model >= OPTERON_CPU_REV_F) {
+		nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
+	} else {
+		/*
+		 * RevE and less section; this line is tricky. It collapses the
+		 * table used by RevD and later to one that matches revisions CG
+		 * and earlier.
+		 */
+		dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
+				(dram_map > 8 ? 4 : (dram_map > 5 ?
+				3 : (dram_map > 2 ? 1 : 0))) : 0;
+
+		/* 25 shift is 32MiB minimum DIMM size in RevE and prior */
+		nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
+	}
+
+	return nr_pages;
+}
+
+/*
+ * Get the number of DCT channels in use.
+ *
+ * Return:
+ *	number of Memory Channels in operation
+ * Pass back:
+ *	contents of the DCL0_LOW register
+ */
+static int f10_early_channel_count(struct amd64_pvt *pvt)
+{
+	int err = 0, channels = 0;
+	u32 dbam;
+
+	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
+	if (err)
+		goto err_reg;
+
+	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
+	if (err)
+		goto err_reg;
+
+	/* If we are in 128 bit mode, then we are using 2 channels */
+	if (pvt->dclr0 & F10_WIDTH_128) {
+		debugf0("Data WIDTH is 128 bits - 2 channels\n");
+		channels = 2;
+		return channels;
+	}
+
+	/*
+	 * Need to check if in UN-ganged mode: In such, there are 2 channels,
+	 * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
+	 * will be OFF.
+	 *
+	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
+	 * their CSEnable bit on. If so, then SINGLE DIMM case.
+	 */
+	debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
+
+	/*
+	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
+	 * is more than just one DIMM present in unganged mode. Need to check
+	 * both controllers since DIMMs can be placed in either one.
+	 */
+	channels = 0;
+	err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM0, &dbam);
+	if (err)
+		goto err_reg;
+
+	if (DBAM_DIMM(0, dbam) > 0)
+		channels++;
+	if (DBAM_DIMM(1, dbam) > 0)
+		channels++;
+	if (DBAM_DIMM(2, dbam) > 0)
+		channels++;
+	if (DBAM_DIMM(3, dbam) > 0)
+		channels++;
+
+	/* If more than 2 DIMMs are present, then we have 2 channels */
+	if (channels > 2)
+		channels = 2;
+	else if (channels == 0) {
+		/* No DIMMs on DCT0, so look at DCT1 */
+		err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM1, &dbam);
+		if (err)
+			goto err_reg;
+
+		if (DBAM_DIMM(0, dbam) > 0)
+			channels++;
+		if (DBAM_DIMM(1, dbam) > 0)
+			channels++;
+		if (DBAM_DIMM(2, dbam) > 0)
+			channels++;
+		if (DBAM_DIMM(3, dbam) > 0)
+			channels++;
+
+		if (channels > 2)
+			channels = 2;
+	}
+
+	/* If we found ALL 0 values, then assume just ONE DIMM-ONE Channel */
+	if (channels == 0)
+		channels = 1;
+
+	debugf0("DIMM count= %d\n", channels);
+
+	return channels;
+
+err_reg:
+	return -1;
+
+}
+
+static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
+{
+	return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
+}
+
+/* Enable extended configuration access via 0xCF8 feature */
+static void amd64_setup(struct amd64_pvt *pvt)
+{
+	u32 reg;
+
+	pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
+
+	pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
+	reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
+	pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
+}
+
+/* Restore the extended configuration access via 0xCF8 feature */
+static void amd64_teardown(struct amd64_pvt *pvt)
+{
+	u32 reg;
+
+	pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
+
+	reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
+	if (pvt->flags.cf8_extcfg)
+		reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
+	pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
+}
+
+static u64 f10_get_error_address(struct mem_ctl_info *mci,
+			struct amd64_error_info_regs *info)
+{
+	return (((u64) (info->nbeah & 0xffff)) << 32) +
+			(info->nbeal & ~0x01);
+}
+
+/*
+ * Read the Base and Limit registers for F10 based Memory controllers. Extract
+ * fields from the 'raw' reg into separate data fields.
+ *
+ * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
+ */
+static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
+{
+	u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
+
+	low_offset = K8_DRAM_BASE_LOW + (dram << 3);
+	high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
+
+	/* read the 'raw' DRAM BASE Address register */
+	pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);
+
+	/* Read from the ECS data register */
+	pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);
+
+	/* Extract parts into separate data entries */
+	pvt->dram_rw_en[dram] = (low_base & 0x3);
+
+	if (pvt->dram_rw_en[dram] == 0)
+		return;
+
+	pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
+
+	pvt->dram_base[dram] = (((((u64) high_base & 0x000000FF) << 32) |
+				((u64) low_base & 0xFFFF0000))) << 8;
+
+	low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
+	high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
+
+	/* read the 'raw' LIMIT registers */
+	pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);
+
+	/* Read from the ECS data register for the HIGH portion */
+	pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);
+
+	debugf0("  HW Regs: BASE=0x%08x-%08x      LIMIT=  0x%08x-%08x\n",
+		high_base, low_base, high_limit, low_limit);
+
+	pvt->dram_DstNode[dram] = (low_limit & 0x7);
+	pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
+
+	/*
+	 * Extract address values and form a LIMIT address. Limit is the HIGHEST
+	 * memory location of the region, so low 24 bits need to be all ones.
+	 */
+	low_limit |= 0x0000FFFF;
+	pvt->dram_limit[dram] =
+		((((u64) high_limit << 32) + (u64) low_limit) << 8) | (0xFF);
+}
+
+static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
+{
+	int err = 0;
+
+	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
+				    &pvt->dram_ctl_select_low);
+	if (err) {
+		debugf0("Reading F10_DCTL_SEL_LOW failed\n");
+	} else {
+		debugf0("DRAM_DCTL_SEL_LOW=0x%x  DctSelBaseAddr=0x%x\n",
+			pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt));
+
+		debugf0("  DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-"
+				"sel-hi-range=%s\n",
+			(dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"),
+			(dct_dram_enabled(pvt) ? "Enabled"   : "Disabled"),
+			(dct_high_range_enabled(pvt) ? "Enabled" : "Disabled"));
+
+		debugf0("  DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n",
+			(dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"),
+			(dct_memory_cleared(pvt) ? "True " : "False "),
+			dct_sel_interleave_addr(pvt));
+	}
+
+	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
+				    &pvt->dram_ctl_select_high);
+	if (err)
+		debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
+}
+
+/*
+ * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
+ * Interleaving Modes.
+ */
+static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
+				int hi_range_sel, u32 intlv_en)
+{
+	u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
+
+	if (dct_ganging_enabled(pvt))
+		cs = 0;
+	else if (hi_range_sel)
+		cs = dct_sel_high;
+	else if (dct_interleave_enabled(pvt)) {
+		/*
+		 * see F2x110[DctSelIntLvAddr] - channel interleave mode
+		 */
+		if (dct_sel_interleave_addr(pvt) == 0)
+			cs = sys_addr >> 6 & 1;
+		else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
+			temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
+
+			if (dct_sel_interleave_addr(pvt) & 1)
+				cs = (sys_addr >> 9 & 1) ^ temp;
+			else
+				cs = (sys_addr >> 6 & 1) ^ temp;
+		} else if (intlv_en & 4)
+			cs = sys_addr >> 15 & 1;
+		else if (intlv_en & 2)
+			cs = sys_addr >> 14 & 1;
+		else if (intlv_en & 1)
+			cs = sys_addr >> 13 & 1;
+		else
+			cs = sys_addr >> 12 & 1;
+	} else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
+		cs = ~dct_sel_high & 1;
+	else
+		cs = 0;
+
+	return cs;
+}
+
+static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
+{
+	if (intlv_en == 1)
+		return 1;
+	else if (intlv_en == 3)
+		return 2;
+	else if (intlv_en == 7)
+		return 3;
+
+	return 0;
+}
+
+/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
+static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
+						 u32 dct_sel_base_addr,
+						 u64 dct_sel_base_off,
+						 u32 hole_valid, u32 hole_off,
+						 u64 dram_base)
+{
+	u64 chan_off;
+
+	if (hi_range_sel) {
+		if (!(dct_sel_base_addr & 0xFFFFF800) &&
+		   hole_valid && (sys_addr >= 0x100000000ULL))
+			chan_off = hole_off << 16;
+		else
+			chan_off = dct_sel_base_off;
+	} else {
+		if (hole_valid && (sys_addr >= 0x100000000ULL))
+			chan_off = hole_off << 16;
+		else
+			chan_off = dram_base & 0xFFFFF8000000ULL;
+	}
+
+	return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
+			(chan_off & 0x0000FFFFFF800000ULL);
+}
+
+/* Hack for the time being - Can we get this from BIOS?? */
+#define	CH0SPARE_RANK	0
+#define	CH1SPARE_RANK	1
+
+/*
+ * checks if the csrow passed in is marked as SPARED, if so returns the new
+ * spare row
+ */
+static inline int f10_process_possible_spare(int csrow,
+				u32 cs, struct amd64_pvt *pvt)
+{
+	u32 swap_done;
+	u32 bad_dram_cs;
+
+	/* Depending on channel, isolate respective SPARING info */
+	if (cs) {
+		swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
+		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
+		if (swap_done && (csrow == bad_dram_cs))
+			csrow = CH1SPARE_RANK;
+	} else {
+		swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
+		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
+		if (swap_done && (csrow == bad_dram_cs))
+			csrow = CH0SPARE_RANK;
+	}
+	return csrow;
+}
+
+/*
+ * Iterate over the DRAM DCT "base" and "mask" registers looking for a
+ * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
+ *
+ * Return:
+ *	-EINVAL:  NOT FOUND
+ *	0..csrow = Chip-Select Row
+ */
+static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
+{
+	struct mem_ctl_info *mci;
+	struct amd64_pvt *pvt;
+	u32 cs_base, cs_mask;
+	int cs_found = -EINVAL;
+	int csrow;
+
+	mci = mci_lookup[nid];
+	if (!mci)
+		return cs_found;
+
+	pvt = mci->pvt_info;
+
+	debugf1("InputAddr=0x%x  channelselect=%d\n", in_addr, cs);
+
+	for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
+
+		cs_base = amd64_get_dct_base(pvt, cs, csrow);
+		if (!(cs_base & K8_DCSB_CS_ENABLE))
+			continue;
+
+		/*
+		 * We have an ENABLED CSROW, Isolate just the MASK bits of the
+		 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
+		 * of the actual address.
+		 */
+		cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
+
+		/*
+		 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
+		 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
+		 */
+		cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
+
+		debugf1("    CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
+				csrow, cs_base, cs_mask);
+
+		cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
+
+		debugf1("              Final CSMask=0x%x\n", cs_mask);
+		debugf1("    (InputAddr & ~CSMask)=0x%x "
+				"(CSBase & ~CSMask)=0x%x\n",
+				(in_addr & ~cs_mask), (cs_base & ~cs_mask));
+
+		if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
+			cs_found = f10_process_possible_spare(csrow, cs, pvt);
+
+			debugf1(" MATCH csrow=%d\n", cs_found);
+			break;
+		}
+	}
+	return cs_found;
+}
+
+/* For a given @dram_range, check if @sys_addr falls within it. */
+static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
+				  u64 sys_addr, int *nid, int *chan_sel)
+{
+	int node_id, cs_found = -EINVAL, high_range = 0;
+	u32 intlv_en, intlv_sel, intlv_shift, hole_off;
+	u32 hole_valid, tmp, dct_sel_base, channel;
+	u64 dram_base, chan_addr, dct_sel_base_off;
+
+	dram_base = pvt->dram_base[dram_range];
+	intlv_en = pvt->dram_IntlvEn[dram_range];
+
+	node_id = pvt->dram_DstNode[dram_range];
+	intlv_sel = pvt->dram_IntlvSel[dram_range];
+
+	debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
+		dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
+
+	/*
+	 * This assumes that one node's DHAR is the same as all the other
+	 * nodes' DHAR.
+	 */
+	hole_off = (pvt->dhar & 0x0000FF80);
+	hole_valid = (pvt->dhar & 0x1);
+	dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
+
+	debugf1("   HoleOffset=0x%x  HoleValid=0x%x IntlvSel=0x%x\n",
+			hole_off, hole_valid, intlv_sel);
+
+	if (intlv_en ||
+	    (intlv_sel != ((sys_addr >> 12) & intlv_en)))
+		return -EINVAL;
+
+	dct_sel_base = dct_sel_baseaddr(pvt);
+
+	/*
+	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
+	 * select between DCT0 and DCT1.
+	 */
+	if (dct_high_range_enabled(pvt) &&
+	   !dct_ganging_enabled(pvt) &&
+	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
+		high_range = 1;
+
+	channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
+
+	chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
+					     dct_sel_base_off, hole_valid,
+					     hole_off, dram_base);
+
+	intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
+
+	/* remove Node ID (in case of memory interleaving) */
+	tmp = chan_addr & 0xFC0;
+
+	chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
+
+	/* remove channel interleave and hash */
+	if (dct_interleave_enabled(pvt) &&
+	   !dct_high_range_enabled(pvt) &&
+	   !dct_ganging_enabled(pvt)) {
+		if (dct_sel_interleave_addr(pvt) != 1)
+			chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
+		else {
+			tmp = chan_addr & 0xFC0;
+			chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
+					| tmp;
+		}
+	}
+
+	debugf1("   (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
+		chan_addr, (u32)(chan_addr >> 8));
+
+	cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
+
+	if (cs_found >= 0) {
+		*nid = node_id;
+		*chan_sel = channel;
+	}
+	return cs_found;
+}
+
+static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
+				       int *node, int *chan_sel)
+{
+	int dram_range, cs_found = -EINVAL;
+	u64 dram_base, dram_limit;
+
+	for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
+
+		if (!pvt->dram_rw_en[dram_range])
+			continue;
+
+		dram_base = pvt->dram_base[dram_range];
+		dram_limit = pvt->dram_limit[dram_range];
+
+		if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
+
+			cs_found = f10_match_to_this_node(pvt, dram_range,
+							  sys_addr, node,
+							  chan_sel);
+			if (cs_found >= 0)
+				break;
+		}
+	}
+	return cs_found;
+}
+
+/*
+ * This the F10h reference code from AMD to map a @sys_addr to NodeID,
+ * CSROW, Channel.
+ *
+ * The @sys_addr is usually an error address received from the hardware.
+ */
+static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
+				     struct amd64_error_info_regs *info,
+				     u64 sys_addr)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	u32 page, offset;
+	unsigned short syndrome;
+	int nid, csrow, chan = 0;
+
+	csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
+
+	if (csrow >= 0) {
+		error_address_to_page_and_offset(sys_addr, &page, &offset);
+
+		syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8;
+		syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh);
+
+		/*
+		 * Is CHIPKILL on? If so, then we can attempt to use the
+		 * syndrome to isolate which channel the error was on.
+		 */
+		if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
+			chan = get_channel_from_ecc_syndrome(syndrome);
+
+		if (chan >= 0) {
+			edac_mc_handle_ce(mci, page, offset, syndrome,
+					csrow, chan, EDAC_MOD_STR);
+		} else {
+			/*
+			 * Channel unknown, report all channels on this
+			 * CSROW as failed.
+			 */
+			for (chan = 0; chan < mci->csrows[csrow].nr_channels;
+								chan++) {
+					edac_mc_handle_ce(mci, page, offset,
+							syndrome,
+							csrow, chan,
+							EDAC_MOD_STR);
+			}
+		}
+
+	} else {
+		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+	}
+}
+
+/*
+ * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
+ * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
+ * indicates an empty DIMM slot, as reported by Hardware on empty slots.
+ *
+ * Normalize to 128MB by subracting 27 bit shift.
+ */
+static int map_dbam_to_csrow_size(int index)
+{
+	int mega_bytes = 0;
+
+	if (index > 0 && index <= DBAM_MAX_VALUE)
+		mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
+
+	return mega_bytes;
+}
+
+/*
+ * debug routine to display the memory sizes of a DIMM (ganged or not) and it
+ * CSROWs as well
+ */
+static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
+					 int ganged)
+{
+	int dimm, size0, size1;
+	u32 dbam;
+	u32 *dcsb;
+
+	debugf1("  dbam%d: 0x%8.08x  CSROW is %s\n", ctrl,
+			ctrl ? pvt->dbam1 : pvt->dbam0,
+			ganged ? "GANGED - dbam1 not used" : "NON-GANGED");
+
+	dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
+	dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
+
+	/* Dump memory sizes for DIMM and its CSROWs */
+	for (dimm = 0; dimm < 4; dimm++) {
+
+		size0 = 0;
+		if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
+			size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
+
+		size1 = 0;
+		if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
+			size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
+
+		debugf1("     CTRL-%d DIMM-%d=%5dMB   CSROW-%d=%5dMB "
+				"CSROW-%d=%5dMB\n",
+				ctrl,
+				dimm,
+				size0 + size1,
+				dimm * 2,
+				size0,
+				dimm * 2 + 1,
+				size1);
+	}
+}
+
+/*
+ * Very early hardware probe on pci_probe thread to determine if this module
+ * supports the hardware.
+ *
+ * Return:
+ *      0 for OK
+ *      1 for error
+ */
+static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
+{
+	int ret = 0;
+
+	/*
+	 * If we are on a DDR3 machine, we don't know yet if
+	 * we support that properly at this time
+	 */
+	if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
+	    (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
+
+		amd64_printk(KERN_WARNING,
+			"%s() This machine is running with DDR3 memory. "
+			"This is not currently supported. "
+			"DCHR0=0x%x DCHR1=0x%x\n",
+			__func__, pvt->dchr0, pvt->dchr1);
+
+		amd64_printk(KERN_WARNING,
+			"   Contact '%s' module MAINTAINER to help add"
+			" support.\n",
+			EDAC_MOD_STR);
+
+		ret = 1;
+
+	}
+	return ret;
+}
+
+/*
+ * There currently are 3 types type of MC devices for AMD Athlon/Opterons
+ * (as per PCI DEVICE_IDs):
+ *
+ * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
+ * DEVICE ID, even though there is differences between the different Revisions
+ * (CG,D,E,F).
+ *
+ * Family F10h and F11h.
+ *
+ */
+static struct amd64_family_type amd64_family_types[] = {
+	[K8_CPUS] = {
+		.ctl_name = "RevF",
+		.addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
+		.misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
+		.ops = {
+			.early_channel_count = k8_early_channel_count,
+			.get_error_address = k8_get_error_address,
+			.read_dram_base_limit = k8_read_dram_base_limit,
+			.map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
+			.dbam_map_to_pages = k8_dbam_map_to_pages,
+		}
+	},
+	[F10_CPUS] = {
+		.ctl_name = "Family 10h",
+		.addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
+		.misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
+		.ops = {
+			.probe_valid_hardware = f10_probe_valid_hardware,
+			.early_channel_count = f10_early_channel_count,
+			.get_error_address = f10_get_error_address,
+			.read_dram_base_limit = f10_read_dram_base_limit,
+			.read_dram_ctl_register = f10_read_dram_ctl_register,
+			.map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
+			.dbam_map_to_pages = f10_dbam_map_to_pages,
+		}
+	},
+	[F11_CPUS] = {
+		.ctl_name = "Family 11h",
+		.addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
+		.misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
+		.ops = {
+			.probe_valid_hardware = f10_probe_valid_hardware,
+			.early_channel_count = f10_early_channel_count,
+			.get_error_address = f10_get_error_address,
+			.read_dram_base_limit = f10_read_dram_base_limit,
+			.read_dram_ctl_register = f10_read_dram_ctl_register,
+			.map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
+			.dbam_map_to_pages = f10_dbam_map_to_pages,
+		}
+	},
+};
+
+static struct pci_dev *pci_get_related_function(unsigned int vendor,
+						unsigned int device,
+						struct pci_dev *related)
+{
+	struct pci_dev *dev = NULL;
+
+	dev = pci_get_device(vendor, device, dev);
+	while (dev) {
+		if ((dev->bus->number == related->bus->number) &&
+		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
+			break;
+		dev = pci_get_device(vendor, device, dev);
+	}
+
+	return dev;
+}
+
+/*
+ * syndrome mapping table for ECC ChipKill devices
+ *
+ * The comment in each row is the token (nibble) number that is in error.
+ * The least significant nibble of the syndrome is the mask for the bits
+ * that are in error (need to be toggled) for the particular nibble.
+ *
+ * Each row contains 16 entries.
+ * The first entry (0th) is the channel number for that row of syndromes.
+ * The remaining 15 entries are the syndromes for the respective Error
+ * bit mask index.
+ *
+ * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
+ * bit in error.
+ * The 2nd index entry is 0x0010 that the second bit is damaged.
+ * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
+ * are damaged.
+ * Thus so on until index 15, 0x1111, whose entry has the syndrome
+ * indicating that all 4 bits are damaged.
+ *
+ * A search is performed on this table looking for a given syndrome.
+ *
+ * See the AMD documentation for ECC syndromes. This ECC table is valid
+ * across all the versions of the AMD64 processors.
+ *
+ * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
+ * COLUMN index, then search all ROWS of that column, looking for a match
+ * with the input syndrome. The ROW value will be the token number.
+ *
+ * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
+ * error.
+ */
+#define NUMBER_ECC_ROWS  36
+static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
+	/* Channel 0 syndromes */
+	{/*0*/  0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
+	   0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
+	{/*1*/  0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
+	   0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
+	{/*2*/  0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
+	   0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
+	{/*3*/  0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
+	   0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
+	{/*4*/  0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
+	   0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
+	{/*5*/  0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
+	   0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
+	{/*6*/  0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
+	   0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
+	{/*7*/  0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
+	   0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
+	{/*8*/  0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
+	   0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
+	{/*9*/  0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
+	   0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
+	{/*a*/  0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
+	   0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
+	{/*b*/  0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
+	   0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
+	{/*c*/  0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
+	   0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
+	{/*d*/  0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
+	   0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
+	{/*e*/  0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
+	   0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
+	{/*f*/  0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
+	   0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
+
+	/* Channel 1 syndromes */
+	{/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
+	   0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
+	{/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
+	   0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
+	{/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
+	   0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
+	{/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
+	   0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
+	{/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
+	   0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
+	{/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
+	   0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
+	{/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
+	   0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
+	{/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
+	   0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
+	{/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
+	   0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
+	{/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
+	   0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
+	{/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
+	   0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
+	{/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
+	   0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
+	{/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
+	   0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
+	{/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
+	   0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
+	{/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
+	   0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
+	{/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
+	   0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
+
+	/* ECC bits are also in the set of tokens and they too can go bad
+	 * first 2 cover channel 0, while the second 2 cover channel 1
+	 */
+	{/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
+	   0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
+	{/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
+	   0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
+	{/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
+	   0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
+	{/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
+	   0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
+};
+
+/*
+ * Given the syndrome argument, scan each of the channel tables for a syndrome
+ * match. Depending on which table it is found, return the channel number.
+ */
+static int get_channel_from_ecc_syndrome(unsigned short syndrome)
+{
+	int row;
+	int column;
+
+	/* Determine column to scan */
+	column = syndrome & 0xF;
+
+	/* Scan all rows, looking for syndrome, or end of table */
+	for (row = 0; row < NUMBER_ECC_ROWS; row++) {
+		if (ecc_chipkill_syndromes[row][column] == syndrome)
+			return ecc_chipkill_syndromes[row][0];
+	}
+
+	debugf0("syndrome(%x) not found\n", syndrome);
+	return -1;
+}
+
+/*
+ * Check for valid error in the NB Status High register. If so, proceed to read
+ * NB Status Low, NB Address Low and NB Address High registers and store data
+ * into error structure.
+ *
+ * Returns:
+ *	- 1: if hardware regs contains valid error info
+ *	- 0: if no valid error is indicated
+ */
+static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
+				     struct amd64_error_info_regs *regs)
+{
+	struct amd64_pvt *pvt;
+	struct pci_dev *misc_f3_ctl;
+	int err = 0;
+
+	pvt = mci->pvt_info;
+	misc_f3_ctl = pvt->misc_f3_ctl;
+
+	err = pci_read_config_dword(misc_f3_ctl, K8_NBSH, &regs->nbsh);
+	if (err)
+		goto err_reg;
+
+	if (!(regs->nbsh & K8_NBSH_VALID_BIT))
+		return 0;
+
+	/* valid error, read remaining error information registers */
+	err = pci_read_config_dword(misc_f3_ctl, K8_NBSL, &regs->nbsl);
+	if (err)
+		goto err_reg;
+
+	err = pci_read_config_dword(misc_f3_ctl, K8_NBEAL, &regs->nbeal);
+	if (err)
+		goto err_reg;
+
+	err = pci_read_config_dword(misc_f3_ctl, K8_NBEAH, &regs->nbeah);
+	if (err)
+		goto err_reg;
+
+	err = pci_read_config_dword(misc_f3_ctl, K8_NBCFG, &regs->nbcfg);
+	if (err)
+		goto err_reg;
+
+	return 1;
+
+err_reg:
+	debugf0("Reading error info register failed\n");
+	return 0;
+}
+
+/*
+ * This function is called to retrieve the error data from hardware and store it
+ * in the info structure.
+ *
+ * Returns:
+ *	- 1: if a valid error is found
+ *	- 0: if no error is found
+ */
+static int amd64_get_error_info(struct mem_ctl_info *mci,
+				struct amd64_error_info_regs *info)
+{
+	struct amd64_pvt *pvt;
+	struct amd64_error_info_regs regs;
+
+	pvt = mci->pvt_info;
+
+	if (!amd64_get_error_info_regs(mci, info))
+		return 0;
+
+	/*
+	 * Here's the problem with the K8's EDAC reporting: There are four
+	 * registers which report pieces of error information. They are shared
+	 * between CEs and UEs. Furthermore, contrary to what is stated in the
+	 * BKDG, the overflow bit is never used! Every error always updates the
+	 * reporting registers.
+	 *
+	 * Can you see the race condition? All four error reporting registers
+	 * must be read before a new error updates them! There is no way to read
+	 * all four registers atomically. The best than can be done is to detect
+	 * that a race has occured and then report the error without any kind of
+	 * precision.
+	 *
+	 * What is still positive is that errors are still reported and thus
+	 * problems can still be detected - just not localized because the
+	 * syndrome and address are spread out across registers.
+	 *
+	 * Grrrrr!!!!!  Here's hoping that AMD fixes this in some future K8 rev.
+	 * UEs and CEs should have separate register sets with proper overflow
+	 * bits that are used! At very least the problem can be fixed by
+	 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
+	 * set the overflow bit - unless the current error is CE and the new
+	 * error is UE which would be the only situation for overwriting the
+	 * current values.
+	 */
+
+	regs = *info;
+
+	/* Use info from the second read - most current */
+	if (unlikely(!amd64_get_error_info_regs(mci, info)))
+		return 0;
+
+	/* clear the error bits in hardware */
+	pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
+
+	/* Check for the possible race condition */
+	if ((regs.nbsh != info->nbsh) ||
+	     (regs.nbsl != info->nbsl) ||
+	     (regs.nbeah != info->nbeah) ||
+	     (regs.nbeal != info->nbeal)) {
+		amd64_mc_printk(mci, KERN_WARNING,
+				"hardware STATUS read access race condition "
+				"detected!\n");
+		return 0;
+	}
+	return 1;
+}
+
+static inline void amd64_decode_gart_tlb_error(struct mem_ctl_info *mci,
+					 struct amd64_error_info_regs *info)
+{
+	u32 err_code;
+	u32 ec_tt;		/* error code transaction type (2b) */
+	u32 ec_ll;		/* error code cache level (2b) */
+
+	err_code = EXTRACT_ERROR_CODE(info->nbsl);
+	ec_ll = EXTRACT_LL_CODE(err_code);
+	ec_tt = EXTRACT_TT_CODE(err_code);
+
+	amd64_mc_printk(mci, KERN_ERR,
+		     "GART TLB event: transaction type(%s), "
+		     "cache level(%s)\n", tt_msgs[ec_tt], ll_msgs[ec_ll]);
+}
+
+static inline void amd64_decode_mem_cache_error(struct mem_ctl_info *mci,
+				      struct amd64_error_info_regs *info)
+{
+	u32 err_code;
+	u32 ec_rrrr;		/* error code memory transaction (4b) */
+	u32 ec_tt;		/* error code transaction type (2b) */
+	u32 ec_ll;		/* error code cache level (2b) */
+
+	err_code = EXTRACT_ERROR_CODE(info->nbsl);
+	ec_ll = EXTRACT_LL_CODE(err_code);
+	ec_tt = EXTRACT_TT_CODE(err_code);
+	ec_rrrr = EXTRACT_RRRR_CODE(err_code);
+
+	amd64_mc_printk(mci, KERN_ERR,
+		     "cache hierarchy error: memory transaction type(%s), "
+		     "transaction type(%s), cache level(%s)\n",
+		     rrrr_msgs[ec_rrrr], tt_msgs[ec_tt], ll_msgs[ec_ll]);
+}
+
+
+/*
+ * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
+ * ADDRESS and process.
+ */
+static void amd64_handle_ce(struct mem_ctl_info *mci,
+			    struct amd64_error_info_regs *info)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	u64 SystemAddress;
+
+	/* Ensure that the Error Address is VALID */
+	if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
+		amd64_mc_printk(mci, KERN_ERR,
+			"HW has no ERROR_ADDRESS available\n");
+		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+		return;
+	}
+
+	SystemAddress = extract_error_address(mci, info);
+
+	amd64_mc_printk(mci, KERN_ERR,
+		"CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
+
+	pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
+}
+
+/* Handle any Un-correctable Errors (UEs) */
+static void amd64_handle_ue(struct mem_ctl_info *mci,
+			    struct amd64_error_info_regs *info)
+{
+	int csrow;
+	u64 SystemAddress;
+	u32 page, offset;
+	struct mem_ctl_info *log_mci, *src_mci = NULL;
+
+	log_mci = mci;
+
+	if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
+		amd64_mc_printk(mci, KERN_CRIT,
+			"HW has no ERROR_ADDRESS available\n");
+		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
+		return;
+	}
+
+	SystemAddress = extract_error_address(mci, info);
+
+	/*
+	 * Find out which node the error address belongs to. This may be
+	 * different from the node that detected the error.
+	 */
+	src_mci = find_mc_by_sys_addr(mci, SystemAddress);
+	if (!src_mci) {
+		amd64_mc_printk(mci, KERN_CRIT,
+			"ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
+			(unsigned long)SystemAddress);
+		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
+		return;
+	}
+
+	log_mci = src_mci;
+
+	csrow = sys_addr_to_csrow(log_mci, SystemAddress);
+	if (csrow < 0) {
+		amd64_mc_printk(mci, KERN_CRIT,
+			"ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
+			(unsigned long)SystemAddress);
+		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
+	} else {
+		error_address_to_page_and_offset(SystemAddress, &page, &offset);
+		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
+	}
+}
+
+static void amd64_decode_bus_error(struct mem_ctl_info *mci,
+				   struct amd64_error_info_regs *info)
+{
+	u32 err_code, ext_ec;
+	u32 ec_pp;		/* error code participating processor (2p) */
+	u32 ec_to;		/* error code timed out (1b) */
+	u32 ec_rrrr;		/* error code memory transaction (4b) */
+	u32 ec_ii;		/* error code memory or I/O (2b) */
+	u32 ec_ll;		/* error code cache level (2b) */
+
+	ext_ec = EXTRACT_EXT_ERROR_CODE(info->nbsl);
+	err_code = EXTRACT_ERROR_CODE(info->nbsl);
+
+	ec_ll = EXTRACT_LL_CODE(err_code);
+	ec_ii = EXTRACT_II_CODE(err_code);
+	ec_rrrr = EXTRACT_RRRR_CODE(err_code);
+	ec_to = EXTRACT_TO_CODE(err_code);
+	ec_pp = EXTRACT_PP_CODE(err_code);
+
+	amd64_mc_printk(mci, KERN_ERR,
+		"BUS ERROR:\n"
+		"  time-out(%s) mem or i/o(%s)\n"
+		"  participating processor(%s)\n"
+		"  memory transaction type(%s)\n"
+		"  cache level(%s) Error Found by: %s\n",
+		to_msgs[ec_to],
+		ii_msgs[ec_ii],
+		pp_msgs[ec_pp],
+		rrrr_msgs[ec_rrrr],
+		ll_msgs[ec_ll],
+		(info->nbsh & K8_NBSH_ERR_SCRUBER) ?
+			"Scrubber" : "Normal Operation");
+
+	/* If this was an 'observed' error, early out */
+	if (ec_pp == K8_NBSL_PP_OBS)
+		return;		/* We aren't the node involved */
+
+	/* Parse out the extended error code for ECC events */
+	switch (ext_ec) {
+	/* F10 changed to one Extended ECC error code */
+	case F10_NBSL_EXT_ERR_RES:		/* Reserved field */
+	case F10_NBSL_EXT_ERR_ECC:		/* F10 ECC ext err code */
+		break;
+
+	default:
+		amd64_mc_printk(mci, KERN_ERR, "NOT ECC: no special error "
+					       "handling for this error\n");
+		return;
+	}
+
+	if (info->nbsh & K8_NBSH_CECC)
+		amd64_handle_ce(mci, info);
+	else if (info->nbsh & K8_NBSH_UECC)
+		amd64_handle_ue(mci, info);
+
+	/*
+	 * If main error is CE then overflow must be CE.  If main error is UE
+	 * then overflow is unknown.  We'll call the overflow a CE - if
+	 * panic_on_ue is set then we're already panic'ed and won't arrive
+	 * here. Else, then apparently someone doesn't think that UE's are
+	 * catastrophic.
+	 */
+	if (info->nbsh & K8_NBSH_OVERFLOW)
+		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR
+					  "Error Overflow set");
+}
+
+int amd64_process_error_info(struct mem_ctl_info *mci,
+			     struct amd64_error_info_regs *info,
+			     int handle_errors)
+{
+	struct amd64_pvt *pvt;
+	struct amd64_error_info_regs *regs;
+	u32 err_code, ext_ec;
+	int gart_tlb_error = 0;
+
+	pvt = mci->pvt_info;
+
+	/* If caller doesn't want us to process the error, return */
+	if (!handle_errors)
+		return 1;
+
+	regs = info;
+
+	debugf1("NorthBridge ERROR: mci(0x%p)\n", mci);
+	debugf1("  MC node(%d) Error-Address(0x%.8x-%.8x)\n",
+		pvt->mc_node_id, regs->nbeah, regs->nbeal);
+	debugf1("  nbsh(0x%.8x) nbsl(0x%.8x)\n",
+		regs->nbsh, regs->nbsl);
+	debugf1("  Valid Error=%s Overflow=%s\n",
+		(regs->nbsh & K8_NBSH_VALID_BIT) ? "True" : "False",
+		(regs->nbsh & K8_NBSH_OVERFLOW) ? "True" : "False");
+	debugf1("  Err Uncorrected=%s MCA Error Reporting=%s\n",
+		(regs->nbsh & K8_NBSH_UNCORRECTED_ERR) ?
+			"True" : "False",
+		(regs->nbsh & K8_NBSH_ERR_ENABLE) ?
+			"True" : "False");
+	debugf1("  MiscErr Valid=%s ErrAddr Valid=%s PCC=%s\n",
+		(regs->nbsh & K8_NBSH_MISC_ERR_VALID) ?
+			"True" : "False",
+		(regs->nbsh & K8_NBSH_VALID_ERROR_ADDR) ?
+			"True" : "False",
+		(regs->nbsh & K8_NBSH_PCC) ?
+			"True" : "False");
+	debugf1("  CECC=%s UECC=%s Found by Scruber=%s\n",
+		(regs->nbsh & K8_NBSH_CECC) ?
+			"True" : "False",
+		(regs->nbsh & K8_NBSH_UECC) ?
+			"True" : "False",
+		(regs->nbsh & K8_NBSH_ERR_SCRUBER) ?
+			"True" : "False");
+	debugf1("  CORE0=%s CORE1=%s CORE2=%s CORE3=%s\n",
+		(regs->nbsh & K8_NBSH_CORE0) ? "True" : "False",
+		(regs->nbsh & K8_NBSH_CORE1) ? "True" : "False",
+		(regs->nbsh & K8_NBSH_CORE2) ? "True" : "False",
+		(regs->nbsh & K8_NBSH_CORE3) ? "True" : "False");
+
+
+	err_code = EXTRACT_ERROR_CODE(regs->nbsl);
+
+	/* Determine which error type:
+	 *	1) GART errors - non-fatal, developmental events
+	 *	2) MEMORY errors
+	 *	3) BUS errors
+	 *	4) Unknown error
+	 */
+	if (TEST_TLB_ERROR(err_code)) {
+		/*
+		 * GART errors are intended to help graphics driver developers
+		 * to detect bad GART PTEs. It is recommended by AMD to disable
+		 * GART table walk error reporting by default[1] (currently
+		 * being disabled in mce_cpu_quirks()) and according to the
+		 * comment in mce_cpu_quirks(), such GART errors can be
+		 * incorrectly triggered. We may see these errors anyway and
+		 * unless requested by the user, they won't be reported.
+		 *
+		 * [1] section 13.10.1 on BIOS and Kernel Developers Guide for
+		 *     AMD NPT family 0Fh processors
+		 */
+		if (report_gart_errors == 0)
+			return 1;
+
+		/*
+		 * Only if GART error reporting is requested should we generate
+		 * any logs.
+		 */
+		gart_tlb_error = 1;
+
+		debugf1("GART TLB error\n");
+		amd64_decode_gart_tlb_error(mci, info);
+	} else if (TEST_MEM_ERROR(err_code)) {
+		debugf1("Memory/Cache error\n");
+		amd64_decode_mem_cache_error(mci, info);
+	} else if (TEST_BUS_ERROR(err_code)) {
+		debugf1("Bus (Link/DRAM) error\n");
+		amd64_decode_bus_error(mci, info);
+	} else {
+		/* shouldn't reach here! */
+		amd64_mc_printk(mci, KERN_WARNING,
+			     "%s(): unknown MCE error 0x%x\n", __func__,
+			     err_code);
+	}
+
+	ext_ec = EXTRACT_EXT_ERROR_CODE(regs->nbsl);
+	amd64_mc_printk(mci, KERN_ERR,
+		"ExtErr=(0x%x) %s\n", ext_ec, ext_msgs[ext_ec]);
+
+	if (((ext_ec >= F10_NBSL_EXT_ERR_CRC &&
+			ext_ec <= F10_NBSL_EXT_ERR_TGT) ||
+			(ext_ec == F10_NBSL_EXT_ERR_RMW)) &&
+			EXTRACT_LDT_LINK(info->nbsh)) {
+
+		amd64_mc_printk(mci, KERN_ERR,
+			"Error on hypertransport link: %s\n",
+			htlink_msgs[
+			EXTRACT_LDT_LINK(info->nbsh)]);
+	}
+
+	/*
+	 * Check the UE bit of the NB status high register, if set generate some
+	 * logs. If NOT a GART error, then process the event as a NO-INFO event.
+	 * If it was a GART error, skip that process.
+	 */
+	if (regs->nbsh & K8_NBSH_UNCORRECTED_ERR) {
+		amd64_mc_printk(mci, KERN_CRIT, "uncorrected error\n");
+		if (!gart_tlb_error)
+			edac_mc_handle_ue_no_info(mci, "UE bit is set\n");
+	}
+
+	if (regs->nbsh & K8_NBSH_PCC)
+		amd64_mc_printk(mci, KERN_CRIT,
+			"PCC (processor context corrupt) set\n");
+
+	return 1;
+}
+EXPORT_SYMBOL_GPL(amd64_process_error_info);
+
+/*
+ * The main polling 'check' function, called FROM the edac core to perform the
+ * error checking and if an error is encountered, error processing.
+ */
+static void amd64_check(struct mem_ctl_info *mci)
+{
+	struct amd64_error_info_regs info;
+
+	if (amd64_get_error_info(mci, &info))
+		amd64_process_error_info(mci, &info, 1);
+}
+
+/*
+ * Input:
+ *	1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
+ *	2) AMD Family index value
+ *
+ * Ouput:
+ *	Upon return of 0, the following filled in:
+ *
+ *		struct pvt->addr_f1_ctl
+ *		struct pvt->misc_f3_ctl
+ *
+ *	Filled in with related device funcitions of 'dram_f2_ctl'
+ *	These devices are "reserved" via the pci_get_device()
+ *
+ *	Upon return of 1 (error status):
+ *
+ *		Nothing reserved
+ */
+static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
+{
+	const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
+
+	/* Reserve the ADDRESS MAP Device */
+	pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
+						    amd64_dev->addr_f1_ctl,
+						    pvt->dram_f2_ctl);
+
+	if (!pvt->addr_f1_ctl) {
+		amd64_printk(KERN_ERR, "error address map device not found: "
+			     "vendor %x device 0x%x (broken BIOS?)\n",
+			     PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
+		return 1;
+	}
+
+	/* Reserve the MISC Device */
+	pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
+						    amd64_dev->misc_f3_ctl,
+						    pvt->dram_f2_ctl);
+
+	if (!pvt->misc_f3_ctl) {
+		pci_dev_put(pvt->addr_f1_ctl);
+		pvt->addr_f1_ctl = NULL;
+
+		amd64_printk(KERN_ERR, "error miscellaneous device not found: "
+			     "vendor %x device 0x%x (broken BIOS?)\n",
+			     PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
+		return 1;
+	}
+
+	debugf1("    Addr Map device PCI Bus ID:\t%s\n",
+		pci_name(pvt->addr_f1_ctl));
+	debugf1("    DRAM MEM-CTL PCI Bus ID:\t%s\n",
+		pci_name(pvt->dram_f2_ctl));
+	debugf1("    Misc device PCI Bus ID:\t%s\n",
+		pci_name(pvt->misc_f3_ctl));
+
+	return 0;
+}
+
+static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
+{
+	pci_dev_put(pvt->addr_f1_ctl);
+	pci_dev_put(pvt->misc_f3_ctl);
+}
+
+/*
+ * Retrieve the hardware registers of the memory controller (this includes the
+ * 'Address Map' and 'Misc' device regs)
+ */
+static void amd64_read_mc_registers(struct amd64_pvt *pvt)
+{
+	u64 msr_val;
+	int dram, err = 0;
+
+	/*
+	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
+	 * those are Read-As-Zero
+	 */
+	rdmsrl(MSR_K8_TOP_MEM1, msr_val);
+	pvt->top_mem = msr_val >> 23;
+	debugf0("  TOP_MEM=0x%08llx\n", pvt->top_mem);
+
+	/* check first whether TOP_MEM2 is enabled */
+	rdmsrl(MSR_K8_SYSCFG, msr_val);
+	if (msr_val & (1U << 21)) {
+		rdmsrl(MSR_K8_TOP_MEM2, msr_val);
+		pvt->top_mem2 = msr_val >> 23;
+		debugf0("  TOP_MEM2=0x%08llx\n", pvt->top_mem2);
+	} else
+		debugf0("  TOP_MEM2 disabled.\n");
+
+	amd64_cpu_display_info(pvt);
+
+	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
+	if (err)
+		goto err_reg;
+
+	if (pvt->ops->read_dram_ctl_register)
+		pvt->ops->read_dram_ctl_register(pvt);
+
+	for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
+		/*
+		 * Call CPU specific READ function to get the DRAM Base and
+		 * Limit values from the DCT.
+		 */
+		pvt->ops->read_dram_base_limit(pvt, dram);
+
+		/*
+		 * Only print out debug info on rows with both R and W Enabled.
+		 * Normal processing, compiler should optimize this whole 'if'
+		 * debug output block away.
+		 */
+		if (pvt->dram_rw_en[dram] != 0) {
+			debugf1("  DRAM_BASE[%d]: 0x%8.08x-%8.08x "
+				"DRAM_LIMIT:  0x%8.08x-%8.08x\n",
+				dram,
+				(u32)(pvt->dram_base[dram] >> 32),
+				(u32)(pvt->dram_base[dram] & 0xFFFFFFFF),
+				(u32)(pvt->dram_limit[dram] >> 32),
+				(u32)(pvt->dram_limit[dram] & 0xFFFFFFFF));
+			debugf1("        IntlvEn=%s %s %s "
+				"IntlvSel=%d DstNode=%d\n",
+				pvt->dram_IntlvEn[dram] ?
+					"Enabled" : "Disabled",
+				(pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
+				(pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
+				pvt->dram_IntlvSel[dram],
+				pvt->dram_DstNode[dram]);
+		}
+	}
+
+	amd64_read_dct_base_mask(pvt);
+
+	err = pci_read_config_dword(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
+	if (err)
+		goto err_reg;
+
+	amd64_read_dbam_reg(pvt);
+
+	err = pci_read_config_dword(pvt->misc_f3_ctl,
+				F10_ONLINE_SPARE, &pvt->online_spare);
+	if (err)
+		goto err_reg;
+
+	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
+	if (err)
+		goto err_reg;
+
+	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
+	if (err)
+		goto err_reg;
+
+	if (!dct_ganging_enabled(pvt)) {
+		err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1,
+						&pvt->dclr1);
+		if (err)
+			goto err_reg;
+
+		err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_1,
+						&pvt->dchr1);
+		if (err)
+			goto err_reg;
+	}
+
+	amd64_dump_misc_regs(pvt);
+
+err_reg:
+	debugf0("Reading an MC register failed\n");
+
+}
+
+/*
+ * NOTE: CPU Revision Dependent code
+ *
+ * Input:
+ *	@csrow_nr ChipSelect Row Number (0..CHIPSELECT_COUNT-1)
+ *	k8 private pointer to -->
+ *			DRAM Bank Address mapping register
+ *			node_id
+ *			DCL register where dual_channel_active is
+ *
+ * The DBAM register consists of 4 sets of 4 bits each definitions:
+ *
+ * Bits:	CSROWs
+ * 0-3		CSROWs 0 and 1
+ * 4-7		CSROWs 2 and 3
+ * 8-11		CSROWs 4 and 5
+ * 12-15	CSROWs 6 and 7
+ *
+ * Values range from: 0 to 15
+ * The meaning of the values depends on CPU revision and dual-channel state,
+ * see relevant BKDG more info.
+ *
+ * The memory controller provides for total of only 8 CSROWs in its current
+ * architecture. Each "pair" of CSROWs normally represents just one DIMM in
+ * single channel or two (2) DIMMs in dual channel mode.
+ *
+ * The following code logic collapses the various tables for CSROW based on CPU
+ * revision.
+ *
+ * Returns:
+ *	The number of PAGE_SIZE pages on the specified CSROW number it
+ *	encompasses
+ *
+ */
+static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
+{
+	u32 dram_map, nr_pages;
+
+	/*
+	 * The math on this doesn't look right on the surface because x/2*4 can
+	 * be simplified to x*2 but this expression makes use of the fact that
+	 * it is integral math where 1/2=0. This intermediate value becomes the
+	 * number of bits to shift the DBAM register to extract the proper CSROW
+	 * field.
+	 */
+	dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
+
+	nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map);
+
+	/*
+	 * If dual channel then double the memory size of single channel.
+	 * Channel count is 1 or 2
+	 */
+	nr_pages <<= (pvt->channel_count - 1);
+
+	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map);
+	debugf0("    nr_pages= %u  channel-count = %d\n",
+		nr_pages, pvt->channel_count);
+
+	return nr_pages;
+}
+
+/*
+ * Initialize the array of csrow attribute instances, based on the values
+ * from pci config hardware registers.
+ */
+static int amd64_init_csrows(struct mem_ctl_info *mci)
+{
+	struct csrow_info *csrow;
+	struct amd64_pvt *pvt;
+	u64 input_addr_min, input_addr_max, sys_addr;
+	int i, err = 0, empty = 1;
+
+	pvt = mci->pvt_info;
+
+	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
+	if (err)
+		debugf0("Reading K8_NBCFG failed\n");
+
+	debugf0("NBCFG= 0x%x  CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
+		(pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
+		(pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
+		);
+
+	for (i = 0; i < CHIPSELECT_COUNT; i++) {
+		csrow = &mci->csrows[i];
+
+		if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
+			debugf1("----CSROW %d EMPTY for node %d\n", i,
+				pvt->mc_node_id);
+			continue;
+		}
+
+		debugf1("----CSROW %d VALID for MC node %d\n",
+			i, pvt->mc_node_id);
+
+		empty = 0;
+		csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
+		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
+		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
+		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
+		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
+		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
+		csrow->page_mask = ~mask_from_dct_mask(pvt, i);
+		/* 8 bytes of resolution */
+
+		csrow->mtype = amd64_determine_memory_type(pvt);
+
+		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
+		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
+			(unsigned long)input_addr_min,
+			(unsigned long)input_addr_max);
+		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
+			(unsigned long)sys_addr, csrow->page_mask);
+		debugf1("    nr_pages: %u  first_page: 0x%lx "
+			"last_page: 0x%lx\n",
+			(unsigned)csrow->nr_pages,
+			csrow->first_page, csrow->last_page);
+
+		/*
+		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
+		 */
+		if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
+			csrow->edac_mode =
+			    (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
+			    EDAC_S4ECD4ED : EDAC_SECDED;
+		else
+			csrow->edac_mode = EDAC_NONE;
+	}
+
+	return empty;
+}
+
+/*
+ * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
+ * enable it.
+ */
+static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
+	int cpu, idx = 0, err = 0;
+	struct msr msrs[cpumask_weight(cpumask)];
+	u32 value;
+	u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
+
+	if (!ecc_enable_override)
+		return;
+
+	memset(msrs, 0, sizeof(msrs));
+
+	amd64_printk(KERN_WARNING,
+		"'ecc_enable_override' parameter is active, "
+		"Enabling AMD ECC hardware now: CAUTION\n");
+
+	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
+	if (err)
+		debugf0("Reading K8_NBCTL failed\n");
+
+	/* turn on UECCn and CECCEn bits */
+	pvt->old_nbctl = value & mask;
+	pvt->nbctl_mcgctl_saved = 1;
+
+	value |= mask;
+	pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
+
+	rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
+
+	for_each_cpu(cpu, cpumask) {
+		if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
+			set_bit(idx, &pvt->old_mcgctl);
+
+		msrs[idx].l |= K8_MSR_MCGCTL_NBE;
+		idx++;
+	}
+	wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
+
+	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
+	if (err)
+		debugf0("Reading K8_NBCFG failed\n");
+
+	debugf0("NBCFG(1)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value,
+		(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
+		(value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
+
+	if (!(value & K8_NBCFG_ECC_ENABLE)) {
+		amd64_printk(KERN_WARNING,
+			"This node reports that DRAM ECC is "
+			"currently Disabled; ENABLING now\n");
+
+		/* Attempt to turn on DRAM ECC Enable */
+		value |= K8_NBCFG_ECC_ENABLE;
+		pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
+
+		err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
+		if (err)
+			debugf0("Reading K8_NBCFG failed\n");
+
+		if (!(value & K8_NBCFG_ECC_ENABLE)) {
+			amd64_printk(KERN_WARNING,
+				"Hardware rejects Enabling DRAM ECC checking\n"
+				"Check memory DIMM configuration\n");
+		} else {
+			amd64_printk(KERN_DEBUG,
+				"Hardware accepted DRAM ECC Enable\n");
+		}
+	}
+	debugf0("NBCFG(2)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value,
+		(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
+		(value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
+
+	pvt->ctl_error_info.nbcfg = value;
+}
+
+static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
+{
+	const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
+	int cpu, idx = 0, err = 0;
+	struct msr msrs[cpumask_weight(cpumask)];
+	u32 value;
+	u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
+
+	if (!pvt->nbctl_mcgctl_saved)
+		return;
+
+	memset(msrs, 0, sizeof(msrs));
+
+	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
+	if (err)
+		debugf0("Reading K8_NBCTL failed\n");
+	value &= ~mask;
+	value |= pvt->old_nbctl;
+
+	/* restore the NB Enable MCGCTL bit */
+	pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
+
+	rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
+
+	for_each_cpu(cpu, cpumask) {
+		msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
+		msrs[idx].l |=
+			test_bit(idx, &pvt->old_mcgctl) << K8_MSR_MCGCTL_NBE;
+		idx++;
+	}
+
+	wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
+}
+
+static void check_mcg_ctl(void *ret)
+{
+	u64 msr_val = 0;
+	u8 nbe;
+
+	rdmsrl(MSR_IA32_MCG_CTL, msr_val);
+	nbe = msr_val & K8_MSR_MCGCTL_NBE;
+
+	debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
+		raw_smp_processor_id(), msr_val,
+		(nbe ? "enabled" : "disabled"));
+
+	if (!nbe)
+		*(int *)ret = 0;
+}
+
+/* check MCG_CTL on all the cpus on this node */
+static int amd64_mcg_ctl_enabled_on_cpus(const cpumask_t *mask)
+{
+	int ret = 1;
+	preempt_disable();
+	smp_call_function_many(mask, check_mcg_ctl, &ret, 1);
+	preempt_enable();
+
+	return ret;
+}
+
+/*
+ * EDAC requires that the BIOS have ECC enabled before taking over the
+ * processing of ECC errors. This is because the BIOS can properly initialize
+ * the memory system completely. A command line option allows to force-enable
+ * hardware ECC later in amd64_enable_ecc_error_reporting().
+ */
+static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
+{
+	u32 value;
+	int err = 0, ret = 0;
+	u8 ecc_enabled = 0;
+
+	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
+	if (err)
+		debugf0("Reading K8_NBCTL failed\n");
+
+	ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
+
+	ret = amd64_mcg_ctl_enabled_on_cpus(cpumask_of_node(pvt->mc_node_id));
+
+	debugf0("K8_NBCFG=0x%x,  DRAM ECC is %s\n", value,
+			(value & K8_NBCFG_ECC_ENABLE ? "enabled" : "disabled"));
+
+	if (!ecc_enabled || !ret) {
+		if (!ecc_enabled) {
+			amd64_printk(KERN_WARNING, "This node reports that "
+						   "Memory ECC is currently "
+						   "disabled.\n");
+
+			amd64_printk(KERN_WARNING, "bit 0x%lx in register "
+				"F3x%x of the MISC_CONTROL device (%s) "
+				"should be enabled\n", K8_NBCFG_ECC_ENABLE,
+				K8_NBCFG, pci_name(pvt->misc_f3_ctl));
+		}
+		if (!ret) {
+			amd64_printk(KERN_WARNING, "bit 0x%016lx in MSR 0x%08x "
+					"of node %d should be enabled\n",
+					K8_MSR_MCGCTL_NBE, MSR_IA32_MCG_CTL,
+					pvt->mc_node_id);
+		}
+		if (!ecc_enable_override) {
+			amd64_printk(KERN_WARNING, "WARNING: ECC is NOT "
+				"currently enabled by the BIOS. Module "
+				"will NOT be loaded.\n"
+				"    Either Enable ECC in the BIOS, "
+				"or use the 'ecc_enable_override' "
+				"parameter.\n"
+				"    Might be a BIOS bug, if BIOS says "
+				"ECC is enabled\n"
+				"    Use of the override can cause "
+				"unknown side effects.\n");
+			ret = -ENODEV;
+		}
+	} else {
+		amd64_printk(KERN_INFO,
+			"ECC is enabled by BIOS, Proceeding "
+			"with EDAC module initialization\n");
+
+		/* CLEAR the override, since BIOS controlled it */
+		ecc_enable_override = 0;
+	}
+
+	return ret;
+}
+
+struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
+					  ARRAY_SIZE(amd64_inj_attrs) +
+					  1];
+
+struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
+
+static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
+{
+	unsigned int i = 0, j = 0;
+
+	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
+		sysfs_attrs[i] = amd64_dbg_attrs[i];
+
+	for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
+		sysfs_attrs[i] = amd64_inj_attrs[j];
+
+	sysfs_attrs[i] = terminator;
+
+	mci->mc_driver_sysfs_attributes = sysfs_attrs;
+}
+
+static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+
+	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
+	mci->edac_ctl_cap	= EDAC_FLAG_NONE;
+	mci->edac_cap		= EDAC_FLAG_NONE;
+
+	if (pvt->nbcap & K8_NBCAP_SECDED)
+		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
+
+	if (pvt->nbcap & K8_NBCAP_CHIPKILL)
+		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
+
+	mci->edac_cap		= amd64_determine_edac_cap(pvt);
+	mci->mod_name		= EDAC_MOD_STR;
+	mci->mod_ver		= EDAC_AMD64_VERSION;
+	mci->ctl_name		= get_amd_family_name(pvt->mc_type_index);
+	mci->dev_name		= pci_name(pvt->dram_f2_ctl);
+	mci->ctl_page_to_phys	= NULL;
+
+	/* IMPORTANT: Set the polling 'check' function in this module */
+	mci->edac_check		= amd64_check;
+
+	/* memory scrubber interface */
+	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
+	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
+}
+
+/*
+ * Init stuff for this DRAM Controller device.
+ *
+ * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
+ * Space feature MUST be enabled on ALL Processors prior to actually reading
+ * from the ECS registers. Since the loading of the module can occur on any
+ * 'core', and cores don't 'see' all the other processors ECS data when the
+ * others are NOT enabled. Our solution is to first enable ECS access in this
+ * routine on all processors, gather some data in a amd64_pvt structure and
+ * later come back in a finish-setup function to perform that final
+ * initialization. See also amd64_init_2nd_stage() for that.
+ */
+static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
+				    int mc_type_index)
+{
+	struct amd64_pvt *pvt = NULL;
+	int err = 0, ret;
+
+	ret = -ENOMEM;
+	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
+	if (!pvt)
+		goto err_exit;
+
+	pvt->mc_node_id = get_mc_node_id_from_pdev(dram_f2_ctl);
+
+	pvt->dram_f2_ctl	= dram_f2_ctl;
+	pvt->ext_model		= boot_cpu_data.x86_model >> 4;
+	pvt->mc_type_index	= mc_type_index;
+	pvt->ops		= family_ops(mc_type_index);
+	pvt->old_mcgctl		= 0;
+
+	/*
+	 * We have the dram_f2_ctl device as an argument, now go reserve its
+	 * sibling devices from the PCI system.
+	 */
+	ret = -ENODEV;
+	err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
+	if (err)
+		goto err_free;
+
+	ret = -EINVAL;
+	err = amd64_check_ecc_enabled(pvt);
+	if (err)
+		goto err_put;
+
+	/*
+	 * Key operation here: setup of HW prior to performing ops on it. Some
+	 * setup is required to access ECS data. After this is performed, the
+	 * 'teardown' function must be called upon error and normal exit paths.
+	 */
+	if (boot_cpu_data.x86 >= 0x10)
+		amd64_setup(pvt);
+
+	/*
+	 * Save the pointer to the private data for use in 2nd initialization
+	 * stage
+	 */
+	pvt_lookup[pvt->mc_node_id] = pvt;
+
+	return 0;
+
+err_put:
+	amd64_free_mc_sibling_devices(pvt);
+
+err_free:
+	kfree(pvt);
+
+err_exit:
+	return ret;
+}
+
+/*
+ * This is the finishing stage of the init code. Needs to be performed after all
+ * MCs' hardware have been prepped for accessing extended config space.
+ */
+static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
+{
+	int node_id = pvt->mc_node_id;
+	struct mem_ctl_info *mci;
+	int ret, err = 0;
+
+	amd64_read_mc_registers(pvt);
+
+	ret = -ENODEV;
+	if (pvt->ops->probe_valid_hardware) {
+		err = pvt->ops->probe_valid_hardware(pvt);
+		if (err)
+			goto err_exit;
+	}
+
+	/*
+	 * We need to determine how many memory channels there are. Then use
+	 * that information for calculating the size of the dynamic instance
+	 * tables in the 'mci' structure
+	 */
+	pvt->channel_count = pvt->ops->early_channel_count(pvt);
+	if (pvt->channel_count < 0)
+		goto err_exit;
+
+	ret = -ENOMEM;
+	mci = edac_mc_alloc(0, CHIPSELECT_COUNT, pvt->channel_count, node_id);
+	if (!mci)
+		goto err_exit;
+
+	mci->pvt_info = pvt;
+
+	mci->dev = &pvt->dram_f2_ctl->dev;
+	amd64_setup_mci_misc_attributes(mci);
+
+	if (amd64_init_csrows(mci))
+		mci->edac_cap = EDAC_FLAG_NONE;
+
+	amd64_enable_ecc_error_reporting(mci);
+	amd64_set_mc_sysfs_attributes(mci);
+
+	ret = -ENODEV;
+	if (edac_mc_add_mc(mci)) {
+		debugf1("failed edac_mc_add_mc()\n");
+		goto err_add_mc;
+	}
+
+	mci_lookup[node_id] = mci;
+	pvt_lookup[node_id] = NULL;
+	return 0;
+
+err_add_mc:
+	edac_mc_free(mci);
+
+err_exit:
+	debugf0("failure to init 2nd stage: ret=%d\n", ret);
+
+	amd64_restore_ecc_error_reporting(pvt);
+
+	if (boot_cpu_data.x86 > 0xf)
+		amd64_teardown(pvt);
+
+	amd64_free_mc_sibling_devices(pvt);
+
+	kfree(pvt_lookup[pvt->mc_node_id]);
+	pvt_lookup[node_id] = NULL;
+
+	return ret;
+}
+
+
+static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
+				 const struct pci_device_id *mc_type)
+{
+	int ret = 0;
+
+	debugf0("(MC node=%d,mc_type='%s')\n",
+		get_mc_node_id_from_pdev(pdev),
+		get_amd_family_name(mc_type->driver_data));
+
+	ret = pci_enable_device(pdev);
+	if (ret < 0)
+		ret = -EIO;
+	else
+		ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
+
+	if (ret < 0)
+		debugf0("ret=%d\n", ret);
+
+	return ret;
+}
+
+static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
+{
+	struct mem_ctl_info *mci;
+	struct amd64_pvt *pvt;
+
+	/* Remove from EDAC CORE tracking list */
+	mci = edac_mc_del_mc(&pdev->dev);
+	if (!mci)
+		return;
+
+	pvt = mci->pvt_info;
+
+	amd64_restore_ecc_error_reporting(pvt);
+
+	if (boot_cpu_data.x86 > 0xf)
+		amd64_teardown(pvt);
+
+	amd64_free_mc_sibling_devices(pvt);
+
+	kfree(pvt);
+	mci->pvt_info = NULL;
+
+	mci_lookup[pvt->mc_node_id] = NULL;
+
+	/* Free the EDAC CORE resources */
+	edac_mc_free(mci);
+}
+
+/*
+ * This table is part of the interface for loading drivers for PCI devices. The
+ * PCI core identifies what devices are on a system during boot, and then
+ * inquiry this table to see if this driver is for a given device found.
+ */
+static const struct pci_device_id amd64_pci_table[] __devinitdata = {
+	{
+		.vendor		= PCI_VENDOR_ID_AMD,
+		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
+		.subvendor	= PCI_ANY_ID,
+		.subdevice	= PCI_ANY_ID,
+		.class		= 0,
+		.class_mask	= 0,
+		.driver_data	= K8_CPUS
+	},
+	{
+		.vendor		= PCI_VENDOR_ID_AMD,
+		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
+		.subvendor	= PCI_ANY_ID,
+		.subdevice	= PCI_ANY_ID,
+		.class		= 0,
+		.class_mask	= 0,
+		.driver_data	= F10_CPUS
+	},
+	{
+		.vendor		= PCI_VENDOR_ID_AMD,
+		.device		= PCI_DEVICE_ID_AMD_11H_NB_DRAM,
+		.subvendor	= PCI_ANY_ID,
+		.subdevice	= PCI_ANY_ID,
+		.class		= 0,
+		.class_mask	= 0,
+		.driver_data	= F11_CPUS
+	},
+	{0, }
+};
+MODULE_DEVICE_TABLE(pci, amd64_pci_table);
+
+static struct pci_driver amd64_pci_driver = {
+	.name		= EDAC_MOD_STR,
+	.probe		= amd64_init_one_instance,
+	.remove		= __devexit_p(amd64_remove_one_instance),
+	.id_table	= amd64_pci_table,
+};
+
+static void amd64_setup_pci_device(void)
+{
+	struct mem_ctl_info *mci;
+	struct amd64_pvt *pvt;
+
+	if (amd64_ctl_pci)
+		return;
+
+	mci = mci_lookup[0];
+	if (mci) {
+
+		pvt = mci->pvt_info;
+		amd64_ctl_pci =
+			edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
+						    EDAC_MOD_STR);
+
+		if (!amd64_ctl_pci) {
+			pr_warning("%s(): Unable to create PCI control\n",
+				   __func__);
+
+			pr_warning("%s(): PCI error report via EDAC not set\n",
+				   __func__);
+			}
+	}
+}
+
+static int __init amd64_edac_init(void)
+{
+	int nb, err = -ENODEV;
+
+	edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
+
+	opstate_init();
+
+	if (cache_k8_northbridges() < 0)
+		goto err_exit;
+
+	err = pci_register_driver(&amd64_pci_driver);
+	if (err)
+		return err;
+
+	/*
+	 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
+	 * amd64_pvt structs. These will be used in the 2nd stage init function
+	 * to finish initialization of the MC instances.
+	 */
+	for (nb = 0; nb < num_k8_northbridges; nb++) {
+		if (!pvt_lookup[nb])
+			continue;
+
+		err = amd64_init_2nd_stage(pvt_lookup[nb]);
+		if (err)
+			goto err_exit;
+	}
+
+	amd64_setup_pci_device();
+
+	return 0;
+
+err_exit:
+	debugf0("'finish_setup' stage failed\n");
+	pci_unregister_driver(&amd64_pci_driver);
+
+	return err;
+}
+
+static void __exit amd64_edac_exit(void)
+{
+	if (amd64_ctl_pci)
+		edac_pci_release_generic_ctl(amd64_ctl_pci);
+
+	pci_unregister_driver(&amd64_pci_driver);
+}
+
+module_init(amd64_edac_init);
+module_exit(amd64_edac_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
+		"Dave Peterson, Thayne Harbaugh");
+MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
+		EDAC_AMD64_VERSION);
+
+module_param(edac_op_state, int, 0444);
+MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
diff --git a/drivers/edac/amd64_edac.h b/drivers/edac/amd64_edac.h
new file mode 100644
index 000000000000..a159957e167b
--- /dev/null
+++ b/drivers/edac/amd64_edac.h
@@ -0,0 +1,644 @@
+/*
+ * AMD64 class Memory Controller kernel module
+ *
+ * Copyright (c) 2009 SoftwareBitMaker.
+ * Copyright (c) 2009 Advanced Micro Devices, Inc.
+ *
+ * This file may be distributed under the terms of the
+ * GNU General Public License.
+ *
+ *	Originally Written by Thayne Harbaugh
+ *
+ *      Changes by Douglas "norsk" Thompson  <dougthompson@xmission.com>:
+ *		- K8 CPU Revision D and greater support
+ *
+ *      Changes by Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>:
+ *		- Module largely rewritten, with new (and hopefully correct)
+ *		code for dealing with node and chip select interleaving,
+ *		various code cleanup, and bug fixes
+ *		- Added support for memory hoisting using DRAM hole address
+ *		register
+ *
+ *	Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
+ *		-K8 Rev (1207) revision support added, required Revision
+ *		specific mini-driver code to support Rev F as well as
+ *		prior revisions
+ *
+ *	Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
+ *		-Family 10h revision support added. New PCI Device IDs,
+ *		indicating new changes. Actual registers modified
+ *		were slight, less than the Rev E to Rev F transition
+ *		but changing the PCI Device ID was the proper thing to
+ *		do, as it provides for almost automactic family
+ *		detection. The mods to Rev F required more family
+ *		information detection.
+ *
+ *	Changes/Fixes by Borislav Petkov <borislav.petkov@amd.com>:
+ *		- misc fixes and code cleanups
+ *
+ * This module is based on the following documents
+ * (available from http://www.amd.com/):
+ *
+ *	Title:	BIOS and Kernel Developer's Guide for AMD Athlon 64 and AMD
+ *		Opteron Processors
+ *	AMD publication #: 26094
+ *`	Revision: 3.26
+ *
+ *	Title:	BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh
+ *		Processors
+ *	AMD publication #: 32559
+ *	Revision: 3.00
+ *	Issue Date: May 2006
+ *
+ *	Title:	BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h
+ *		Processors
+ *	AMD publication #: 31116
+ *	Revision: 3.00
+ *	Issue Date: September 07, 2007
+ *
+ * Sections in the first 2 documents are no longer in sync with each other.
+ * The Family 10h BKDG was totally re-written from scratch with a new
+ * presentation model.
+ * Therefore, comments that refer to a Document section might be off.
+ */
+
+#include <linux/module.h>
+#include <linux/ctype.h>
+#include <linux/init.h>
+#include <linux/pci.h>
+#include <linux/pci_ids.h>
+#include <linux/slab.h>
+#include <linux/mmzone.h>
+#include <linux/edac.h>
+#include <asm/msr.h>
+#include "edac_core.h"
+
+#define amd64_printk(level, fmt, arg...) \
+	edac_printk(level, "amd64", fmt, ##arg)
+
+#define amd64_mc_printk(mci, level, fmt, arg...) \
+	edac_mc_chipset_printk(mci, level, "amd64", fmt, ##arg)
+
+/*
+ * Throughout the comments in this code, the following terms are used:
+ *
+ *	SysAddr, DramAddr, and InputAddr
+ *
+ *  These terms come directly from the amd64 documentation
+ * (AMD publication #26094).  They are defined as follows:
+ *
+ *     SysAddr:
+ *         This is a physical address generated by a CPU core or a device
+ *         doing DMA.  If generated by a CPU core, a SysAddr is the result of
+ *         a virtual to physical address translation by the CPU core's address
+ *         translation mechanism (MMU).
+ *
+ *     DramAddr:
+ *         A DramAddr is derived from a SysAddr by subtracting an offset that
+ *         depends on which node the SysAddr maps to and whether the SysAddr
+ *         is within a range affected by memory hoisting.  The DRAM Base
+ *         (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers
+ *         determine which node a SysAddr maps to.
+ *
+ *         If the DRAM Hole Address Register (DHAR) is enabled and the SysAddr
+ *         is within the range of addresses specified by this register, then
+ *         a value x from the DHAR is subtracted from the SysAddr to produce a
+ *         DramAddr.  Here, x represents the base address for the node that
+ *         the SysAddr maps to plus an offset due to memory hoisting.  See
+ *         section 3.4.8 and the comments in amd64_get_dram_hole_info() and
+ *         sys_addr_to_dram_addr() below for more information.
+ *
+ *         If the SysAddr is not affected by the DHAR then a value y is
+ *         subtracted from the SysAddr to produce a DramAddr.  Here, y is the
+ *         base address for the node that the SysAddr maps to.  See section
+ *         3.4.4 and the comments in sys_addr_to_dram_addr() below for more
+ *         information.
+ *
+ *     InputAddr:
+ *         A DramAddr is translated to an InputAddr before being passed to the
+ *         memory controller for the node that the DramAddr is associated
+ *         with.  The memory controller then maps the InputAddr to a csrow.
+ *         If node interleaving is not in use, then the InputAddr has the same
+ *         value as the DramAddr.  Otherwise, the InputAddr is produced by
+ *         discarding the bits used for node interleaving from the DramAddr.
+ *         See section 3.4.4 for more information.
+ *
+ *         The memory controller for a given node uses its DRAM CS Base and
+ *         DRAM CS Mask registers to map an InputAddr to a csrow.  See
+ *         sections 3.5.4 and 3.5.5 for more information.
+ */
+
+#define EDAC_AMD64_VERSION		" Ver: 3.2.0 " __DATE__
+#define EDAC_MOD_STR			"amd64_edac"
+
+/* Extended Model from CPUID, for CPU Revision numbers */
+#define OPTERON_CPU_LE_REV_C		0
+#define OPTERON_CPU_REV_D		1
+#define OPTERON_CPU_REV_E		2
+
+/* NPT processors have the following Extended Models */
+#define OPTERON_CPU_REV_F		4
+#define OPTERON_CPU_REV_FA		5
+
+/* Hardware limit on ChipSelect rows per MC and processors per system */
+#define CHIPSELECT_COUNT		8
+#define DRAM_REG_COUNT			8
+
+
+/*
+ * PCI-defined configuration space registers
+ */
+
+
+/*
+ * Function 1 - Address Map
+ */
+#define K8_DRAM_BASE_LOW		0x40
+#define K8_DRAM_LIMIT_LOW		0x44
+#define K8_DHAR				0xf0
+
+#define DHAR_VALID			BIT(0)
+#define F10_DRAM_MEM_HOIST_VALID	BIT(1)
+
+#define DHAR_BASE_MASK			0xff000000
+#define dhar_base(dhar)			(dhar & DHAR_BASE_MASK)
+
+#define K8_DHAR_OFFSET_MASK		0x0000ff00
+#define k8_dhar_offset(dhar)		((dhar & K8_DHAR_OFFSET_MASK) << 16)
+
+#define F10_DHAR_OFFSET_MASK		0x0000ff80
+					/* NOTE: Extra mask bit vs K8 */
+#define f10_dhar_offset(dhar)		((dhar & F10_DHAR_OFFSET_MASK) << 16)
+
+
+/* F10 High BASE/LIMIT registers */
+#define F10_DRAM_BASE_HIGH		0x140
+#define F10_DRAM_LIMIT_HIGH		0x144
+
+
+/*
+ * Function 2 - DRAM controller
+ */
+#define K8_DCSB0			0x40
+#define F10_DCSB1			0x140
+
+#define K8_DCSB_CS_ENABLE		BIT(0)
+#define K8_DCSB_NPT_SPARE		BIT(1)
+#define K8_DCSB_NPT_TESTFAIL		BIT(2)
+
+/*
+ * REV E: select [31:21] and [15:9] from DCSB and the shift amount to form
+ * the address
+ */
+#define REV_E_DCSB_BASE_BITS		(0xFFE0FE00ULL)
+#define REV_E_DCS_SHIFT			4
+#define REV_E_DCSM_COUNT		8
+
+#define REV_F_F1Xh_DCSB_BASE_BITS	(0x1FF83FE0ULL)
+#define REV_F_F1Xh_DCS_SHIFT		8
+
+/*
+ * REV F and later: selects [28:19] and [13:5] from DCSB and the shift amount
+ * to form the address
+ */
+#define REV_F_DCSB_BASE_BITS		(0x1FF83FE0ULL)
+#define REV_F_DCS_SHIFT			8
+#define REV_F_DCSM_COUNT		4
+#define F10_DCSM_COUNT			4
+#define F11_DCSM_COUNT			2
+
+/* DRAM CS Mask Registers */
+#define K8_DCSM0			0x60
+#define F10_DCSM1			0x160
+
+/* REV E: select [29:21] and [15:9] from DCSM */
+#define REV_E_DCSM_MASK_BITS		0x3FE0FE00
+
+/* unused bits [24:20] and [12:0] */
+#define REV_E_DCS_NOTUSED_BITS		0x01F01FFF
+
+/* REV F and later: select [28:19] and [13:5] from DCSM */
+#define REV_F_F1Xh_DCSM_MASK_BITS	0x1FF83FE0
+
+/* unused bits [26:22] and [12:0] */
+#define REV_F_F1Xh_DCS_NOTUSED_BITS	0x07C01FFF
+
+#define DBAM0				0x80
+#define DBAM1				0x180
+
+/* Extract the DIMM 'type' on the i'th DIMM from the DBAM reg value passed */
+#define DBAM_DIMM(i, reg)		((((reg) >> (4*i))) & 0xF)
+
+#define DBAM_MAX_VALUE			11
+
+
+#define F10_DCLR_0			0x90
+#define F10_DCLR_1			0x190
+#define REVE_WIDTH_128			BIT(16)
+#define F10_WIDTH_128			BIT(11)
+
+
+#define F10_DCHR_0			0x94
+#define F10_DCHR_1			0x194
+
+#define F10_DCHR_FOUR_RANK_DIMM		BIT(18)
+#define F10_DCHR_Ddr3Mode		BIT(8)
+#define F10_DCHR_MblMode		BIT(6)
+
+
+#define F10_DCTL_SEL_LOW		0x110
+
+#define dct_sel_baseaddr(pvt)    \
+	((pvt->dram_ctl_select_low) & 0xFFFFF800)
+
+#define dct_sel_interleave_addr(pvt)    \
+	(((pvt->dram_ctl_select_low) >> 6) & 0x3)
+
+enum {
+	F10_DCTL_SEL_LOW_DctSelHiRngEn	= BIT(0),
+	F10_DCTL_SEL_LOW_DctSelIntLvEn	= BIT(2),
+	F10_DCTL_SEL_LOW_DctGangEn	= BIT(4),
+	F10_DCTL_SEL_LOW_DctDatIntLv	= BIT(5),
+	F10_DCTL_SEL_LOW_DramEnable	= BIT(8),
+	F10_DCTL_SEL_LOW_MemCleared	= BIT(10),
+};
+
+#define    dct_high_range_enabled(pvt)    \
+	(pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctSelHiRngEn)
+
+#define dct_interleave_enabled(pvt)	   \
+	(pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctSelIntLvEn)
+
+#define dct_ganging_enabled(pvt)        \
+	(pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctGangEn)
+
+#define dct_data_intlv_enabled(pvt)    \
+	(pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DctDatIntLv)
+
+#define dct_dram_enabled(pvt)    \
+	(pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_DramEnable)
+
+#define dct_memory_cleared(pvt)    \
+	(pvt->dram_ctl_select_low & F10_DCTL_SEL_LOW_MemCleared)
+
+
+#define F10_DCTL_SEL_HIGH		0x114
+
+
+/*
+ * Function 3 - Misc Control
+ */
+#define K8_NBCTL			0x40
+
+/* Correctable ECC error reporting enable */
+#define K8_NBCTL_CECCEn			BIT(0)
+
+/* UnCorrectable ECC error reporting enable */
+#define K8_NBCTL_UECCEn			BIT(1)
+
+#define K8_NBCFG			0x44
+#define K8_NBCFG_CHIPKILL		BIT(23)
+#define K8_NBCFG_ECC_ENABLE		BIT(22)
+
+#define K8_NBSL				0x48
+
+
+#define EXTRACT_HIGH_SYNDROME(x)	(((x) >> 24) & 0xff)
+#define EXTRACT_EXT_ERROR_CODE(x)	(((x) >> 16) & 0x1f)
+
+/* Family F10h: Normalized Extended Error Codes */
+#define F10_NBSL_EXT_ERR_RES		0x0
+#define F10_NBSL_EXT_ERR_CRC		0x1
+#define F10_NBSL_EXT_ERR_SYNC		0x2
+#define F10_NBSL_EXT_ERR_MST		0x3
+#define F10_NBSL_EXT_ERR_TGT		0x4
+#define F10_NBSL_EXT_ERR_GART		0x5
+#define F10_NBSL_EXT_ERR_RMW		0x6
+#define F10_NBSL_EXT_ERR_WDT		0x7
+#define F10_NBSL_EXT_ERR_ECC		0x8
+#define F10_NBSL_EXT_ERR_DEV		0x9
+#define F10_NBSL_EXT_ERR_LINK_DATA	0xA
+
+/* Next two are overloaded values */
+#define F10_NBSL_EXT_ERR_LINK_PROTO	0xB
+#define F10_NBSL_EXT_ERR_L3_PROTO	0xB
+
+#define F10_NBSL_EXT_ERR_NB_ARRAY	0xC
+#define F10_NBSL_EXT_ERR_DRAM_PARITY	0xD
+#define F10_NBSL_EXT_ERR_LINK_RETRY	0xE
+
+/* Next two are overloaded values */
+#define F10_NBSL_EXT_ERR_GART_WALK	0xF
+#define F10_NBSL_EXT_ERR_DEV_WALK	0xF
+
+/* 0x10 to 0x1B: Reserved */
+#define F10_NBSL_EXT_ERR_L3_DATA	0x1C
+#define F10_NBSL_EXT_ERR_L3_TAG		0x1D
+#define F10_NBSL_EXT_ERR_L3_LRU		0x1E
+
+/* K8: Normalized Extended Error Codes */
+#define K8_NBSL_EXT_ERR_ECC		0x0
+#define K8_NBSL_EXT_ERR_CRC		0x1
+#define K8_NBSL_EXT_ERR_SYNC		0x2
+#define K8_NBSL_EXT_ERR_MST		0x3
+#define K8_NBSL_EXT_ERR_TGT		0x4
+#define K8_NBSL_EXT_ERR_GART		0x5
+#define K8_NBSL_EXT_ERR_RMW		0x6
+#define K8_NBSL_EXT_ERR_WDT		0x7
+#define K8_NBSL_EXT_ERR_CHIPKILL_ECC	0x8
+#define K8_NBSL_EXT_ERR_DRAM_PARITY	0xD
+
+#define EXTRACT_ERROR_CODE(x)		((x) & 0xffff)
+#define	TEST_TLB_ERROR(x)		(((x) & 0xFFF0) == 0x0010)
+#define	TEST_MEM_ERROR(x)		(((x) & 0xFF00) == 0x0100)
+#define	TEST_BUS_ERROR(x)		(((x) & 0xF800) == 0x0800)
+#define	EXTRACT_TT_CODE(x)		(((x) >> 2) & 0x3)
+#define	EXTRACT_II_CODE(x)		(((x) >> 2) & 0x3)
+#define	EXTRACT_LL_CODE(x)		(((x) >> 0) & 0x3)
+#define	EXTRACT_RRRR_CODE(x)		(((x) >> 4) & 0xf)
+#define	EXTRACT_TO_CODE(x)		(((x) >> 8) & 0x1)
+#define	EXTRACT_PP_CODE(x)		(((x) >> 9) & 0x3)
+
+/*
+ * The following are for BUS type errors AFTER values have been normalized by
+ * shifting right
+ */
+#define K8_NBSL_PP_SRC			0x0
+#define K8_NBSL_PP_RES			0x1
+#define K8_NBSL_PP_OBS			0x2
+#define K8_NBSL_PP_GENERIC		0x3
+
+
+#define K8_NBSH				0x4C
+
+#define K8_NBSH_VALID_BIT		BIT(31)
+#define K8_NBSH_OVERFLOW		BIT(30)
+#define K8_NBSH_UNCORRECTED_ERR		BIT(29)
+#define K8_NBSH_ERR_ENABLE		BIT(28)
+#define K8_NBSH_MISC_ERR_VALID		BIT(27)
+#define K8_NBSH_VALID_ERROR_ADDR	BIT(26)
+#define K8_NBSH_PCC			BIT(25)
+#define K8_NBSH_CECC			BIT(14)
+#define K8_NBSH_UECC			BIT(13)
+#define K8_NBSH_ERR_SCRUBER		BIT(8)
+#define K8_NBSH_CORE3			BIT(3)
+#define K8_NBSH_CORE2			BIT(2)
+#define K8_NBSH_CORE1			BIT(1)
+#define K8_NBSH_CORE0			BIT(0)
+
+#define EXTRACT_LDT_LINK(x)		(((x) >> 4) & 0x7)
+#define EXTRACT_ERR_CPU_MAP(x)		((x) & 0xF)
+#define EXTRACT_LOW_SYNDROME(x)		(((x) >> 15) & 0xff)
+
+
+#define K8_NBEAL			0x50
+#define K8_NBEAH			0x54
+#define K8_SCRCTRL			0x58
+
+#define F10_NB_CFG_LOW			0x88
+#define	F10_NB_CFG_LOW_ENABLE_EXT_CFG	BIT(14)
+
+#define F10_NB_CFG_HIGH			0x8C
+
+#define F10_ONLINE_SPARE		0xB0
+#define F10_ONLINE_SPARE_SWAPDONE0(x)	((x) & BIT(1))
+#define F10_ONLINE_SPARE_SWAPDONE1(x)	((x) & BIT(3))
+#define F10_ONLINE_SPARE_BADDRAM_CS0(x) (((x) >> 4) & 0x00000007)
+#define F10_ONLINE_SPARE_BADDRAM_CS1(x) (((x) >> 8) & 0x00000007)
+
+#define F10_NB_ARRAY_ADDR		0xB8
+
+#define F10_NB_ARRAY_DRAM_ECC		0x80000000
+
+/* Bits [2:1] are used to select 16-byte section within a 64-byte cacheline  */
+#define SET_NB_ARRAY_ADDRESS(section)	(((section) & 0x3) << 1)
+
+#define F10_NB_ARRAY_DATA		0xBC
+
+#define SET_NB_DRAM_INJECTION_WRITE(word, bits)  \
+					(BIT(((word) & 0xF) + 20) | \
+					BIT(17) |  \
+					((bits) & 0xF))
+
+#define SET_NB_DRAM_INJECTION_READ(word, bits)  \
+					(BIT(((word) & 0xF) + 20) | \
+					BIT(16) |  \
+					((bits) & 0xF))
+
+#define K8_NBCAP			0xE8
+#define K8_NBCAP_CORES			(BIT(12)|BIT(13))
+#define K8_NBCAP_CHIPKILL		BIT(4)
+#define K8_NBCAP_SECDED			BIT(3)
+#define K8_NBCAP_8_NODE			BIT(2)
+#define K8_NBCAP_DUAL_NODE		BIT(1)
+#define K8_NBCAP_DCT_DUAL		BIT(0)
+
+/*
+ * MSR Regs
+ */
+#define K8_MSR_MCGCTL			0x017b
+#define K8_MSR_MCGCTL_NBE		BIT(4)
+
+#define K8_MSR_MC4CTL			0x0410
+#define K8_MSR_MC4STAT			0x0411
+#define K8_MSR_MC4ADDR			0x0412
+
+/* AMD sets the first MC device at device ID 0x18. */
+static inline int get_mc_node_id_from_pdev(struct pci_dev *pdev)
+{
+	return PCI_SLOT(pdev->devfn) - 0x18;
+}
+
+enum amd64_chipset_families {
+	K8_CPUS = 0,
+	F10_CPUS,
+	F11_CPUS,
+};
+
+/*
+ * Structure to hold:
+ *
+ * 1) dynamically read status and error address HW registers
+ * 2) sysfs entered values
+ * 3) MCE values
+ *
+ * Depends on entry into the modules
+ */
+struct amd64_error_info_regs {
+	u32 nbcfg;
+	u32 nbsh;
+	u32 nbsl;
+	u32 nbeah;
+	u32 nbeal;
+};
+
+/* Error injection control structure */
+struct error_injection {
+	u32	section;
+	u32	word;
+	u32	bit_map;
+};
+
+struct amd64_pvt {
+	/* pci_device handles which we utilize */
+	struct pci_dev *addr_f1_ctl;
+	struct pci_dev *dram_f2_ctl;
+	struct pci_dev *misc_f3_ctl;
+
+	int mc_node_id;		/* MC index of this MC node */
+	int ext_model;		/* extended model value of this node */
+
+	struct low_ops *ops;	/* pointer to per PCI Device ID func table */
+
+	int channel_count;
+
+	/* Raw registers */
+	u32 dclr0;		/* DRAM Configuration Low DCT0 reg */
+	u32 dclr1;		/* DRAM Configuration Low DCT1 reg */
+	u32 dchr0;		/* DRAM Configuration High DCT0 reg */
+	u32 dchr1;		/* DRAM Configuration High DCT1 reg */
+	u32 nbcap;		/* North Bridge Capabilities */
+	u32 nbcfg;		/* F10 North Bridge Configuration */
+	u32 ext_nbcfg;		/* Extended F10 North Bridge Configuration */
+	u32 dhar;		/* DRAM Hoist reg */
+	u32 dbam0;		/* DRAM Base Address Mapping reg for DCT0 */
+	u32 dbam1;		/* DRAM Base Address Mapping reg for DCT1 */
+
+	/* DRAM CS Base Address Registers F2x[1,0][5C:40] */
+	u32 dcsb0[CHIPSELECT_COUNT];
+	u32 dcsb1[CHIPSELECT_COUNT];
+
+	/* DRAM CS Mask Registers F2x[1,0][6C:60] */
+	u32 dcsm0[CHIPSELECT_COUNT];
+	u32 dcsm1[CHIPSELECT_COUNT];
+
+	/*
+	 * Decoded parts of DRAM BASE and LIMIT Registers
+	 * F1x[78,70,68,60,58,50,48,40]
+	 */
+	u64 dram_base[DRAM_REG_COUNT];
+	u64 dram_limit[DRAM_REG_COUNT];
+	u8  dram_IntlvSel[DRAM_REG_COUNT];
+	u8  dram_IntlvEn[DRAM_REG_COUNT];
+	u8  dram_DstNode[DRAM_REG_COUNT];
+	u8  dram_rw_en[DRAM_REG_COUNT];
+
+	/*
+	 * The following fields are set at (load) run time, after CPU revision
+	 * has been determined, since the dct_base and dct_mask registers vary
+	 * based on revision
+	 */
+	u32 dcsb_base;		/* DCSB base bits */
+	u32 dcsm_mask;		/* DCSM mask bits */
+	u32 num_dcsm;		/* Number of DCSM registers */
+	u32 dcs_mask_notused;	/* DCSM notused mask bits */
+	u32 dcs_shift;		/* DCSB and DCSM shift value */
+
+	u64 top_mem;		/* top of memory below 4GB */
+	u64 top_mem2;		/* top of memory above 4GB */
+
+	u32 dram_ctl_select_low;	/* DRAM Controller Select Low Reg */
+	u32 dram_ctl_select_high;	/* DRAM Controller Select High Reg */
+	u32 online_spare;               /* On-Line spare Reg */
+
+	/* temp storage for when input is received from sysfs */
+	struct amd64_error_info_regs ctl_error_info;
+
+	/* place to store error injection parameters prior to issue */
+	struct error_injection injection;
+
+	/* Save old hw registers' values before we modified them */
+	u32 nbctl_mcgctl_saved;		/* When true, following 2 are valid */
+	u32 old_nbctl;
+	unsigned long old_mcgctl;	/* per core on this node */
+
+	/* MC Type Index value: socket F vs Family 10h */
+	u32 mc_type_index;
+
+	/* misc settings */
+	struct flags {
+		unsigned long cf8_extcfg:1;
+	} flags;
+};
+
+struct scrubrate {
+       u32 scrubval;           /* bit pattern for scrub rate */
+       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
+};
+
+extern struct scrubrate scrubrates[23];
+extern u32 revf_quad_ddr2_shift[16];
+extern const char *tt_msgs[4];
+extern const char *ll_msgs[4];
+extern const char *rrrr_msgs[16];
+extern const char *to_msgs[2];
+extern const char *pp_msgs[4];
+extern const char *ii_msgs[4];
+extern const char *ext_msgs[32];
+extern const char *htlink_msgs[8];
+
+#ifdef CONFIG_EDAC_DEBUG
+#define NUM_DBG_ATTRS 9
+#else
+#define NUM_DBG_ATTRS 0
+#endif
+
+#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
+#define NUM_INJ_ATTRS 5
+#else
+#define NUM_INJ_ATTRS 0
+#endif
+
+extern struct mcidev_sysfs_attribute amd64_dbg_attrs[NUM_DBG_ATTRS],
+				     amd64_inj_attrs[NUM_INJ_ATTRS];
+
+/*
+ * Each of the PCI Device IDs types have their own set of hardware accessor
+ * functions and per device encoding/decoding logic.
+ */
+struct low_ops {
+	int (*probe_valid_hardware)(struct amd64_pvt *pvt);
+	int (*early_channel_count)(struct amd64_pvt *pvt);
+
+	u64 (*get_error_address)(struct mem_ctl_info *mci,
+			struct amd64_error_info_regs *info);
+	void (*read_dram_base_limit)(struct amd64_pvt *pvt, int dram);
+	void (*read_dram_ctl_register)(struct amd64_pvt *pvt);
+	void (*map_sysaddr_to_csrow)(struct mem_ctl_info *mci,
+					struct amd64_error_info_regs *info,
+					u64 SystemAddr);
+	int (*dbam_map_to_pages)(struct amd64_pvt *pvt, int dram_map);
+};
+
+struct amd64_family_type {
+	const char *ctl_name;
+	u16 addr_f1_ctl;
+	u16 misc_f3_ctl;
+	struct low_ops ops;
+};
+
+static struct amd64_family_type amd64_family_types[];
+
+static inline const char *get_amd_family_name(int index)
+{
+	return amd64_family_types[index].ctl_name;
+}
+
+static inline struct low_ops *family_ops(int index)
+{
+	return &amd64_family_types[index].ops;
+}
+
+/*
+ * For future CPU versions, verify the following as new 'slow' rates appear and
+ * modify the necessary skip values for the supported CPU.
+ */
+#define K8_MIN_SCRUB_RATE_BITS	0x0
+#define F10_MIN_SCRUB_RATE_BITS	0x5
+#define F11_MIN_SCRUB_RATE_BITS	0x6
+
+int amd64_process_error_info(struct mem_ctl_info *mci,
+			     struct amd64_error_info_regs *info,
+			     int handle_errors);
+int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
+			     u64 *hole_offset, u64 *hole_size);
diff --git a/drivers/edac/amd64_edac_dbg.c b/drivers/edac/amd64_edac_dbg.c
new file mode 100644
index 000000000000..0a41b248a4ad
--- /dev/null
+++ b/drivers/edac/amd64_edac_dbg.c
@@ -0,0 +1,255 @@
+#include "amd64_edac.h"
+
+/*
+ * accept a hex value and store it into the virtual error register file, field:
+ * nbeal and nbeah. Assume virtual error values have already been set for: NBSL,
+ * NBSH and NBCFG. Then proceed to map the error values to a MC, CSROW and
+ * CHANNEL
+ */
+static ssize_t amd64_nbea_store(struct mem_ctl_info *mci, const char *data,
+				size_t count)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	unsigned long long value;
+	int ret = 0;
+
+	ret = strict_strtoull(data, 16, &value);
+	if (ret != -EINVAL) {
+		debugf0("received NBEA= 0x%llx\n", value);
+
+		/* place the value into the virtual error packet */
+		pvt->ctl_error_info.nbeal = (u32) value;
+		value >>= 32;
+		pvt->ctl_error_info.nbeah = (u32) value;
+
+		/* Process the Mapping request */
+		/* TODO: Add race prevention */
+		amd64_process_error_info(mci, &pvt->ctl_error_info, 1);
+
+		return count;
+	}
+	return ret;
+}
+
+/* display back what the last NBEA (MCA NB Address (MC4_ADDR)) was written */
+static ssize_t amd64_nbea_show(struct mem_ctl_info *mci, char *data)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	u64 value;
+
+	value = pvt->ctl_error_info.nbeah;
+	value <<= 32;
+	value |= pvt->ctl_error_info.nbeal;
+
+	return sprintf(data, "%llx\n", value);
+}
+
+/* store the NBSL (MCA NB Status Low (MC4_STATUS)) value user desires */
+static ssize_t amd64_nbsl_store(struct mem_ctl_info *mci, const char *data,
+				size_t count)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	unsigned long value;
+	int ret = 0;
+
+	ret = strict_strtoul(data, 16, &value);
+	if (ret != -EINVAL) {
+		debugf0("received NBSL= 0x%lx\n", value);
+
+		pvt->ctl_error_info.nbsl = (u32) value;
+
+		return count;
+	}
+	return ret;
+}
+
+/* display back what the last NBSL value written */
+static ssize_t amd64_nbsl_show(struct mem_ctl_info *mci, char *data)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	u32 value;
+
+	value = pvt->ctl_error_info.nbsl;
+
+	return sprintf(data, "%x\n", value);
+}
+
+/* store the NBSH (MCA NB Status High) value user desires */
+static ssize_t amd64_nbsh_store(struct mem_ctl_info *mci, const char *data,
+				size_t count)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	unsigned long value;
+	int ret = 0;
+
+	ret = strict_strtoul(data, 16, &value);
+	if (ret != -EINVAL) {
+		debugf0("received NBSH= 0x%lx\n", value);
+
+		pvt->ctl_error_info.nbsh = (u32) value;
+
+		return count;
+	}
+	return ret;
+}
+
+/* display back what the last NBSH value written */
+static ssize_t amd64_nbsh_show(struct mem_ctl_info *mci, char *data)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	u32 value;
+
+	value = pvt->ctl_error_info.nbsh;
+
+	return sprintf(data, "%x\n", value);
+}
+
+/* accept and store the NBCFG (MCA NB Configuration) value user desires */
+static ssize_t amd64_nbcfg_store(struct mem_ctl_info *mci,
+					const char *data, size_t count)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	unsigned long value;
+	int ret = 0;
+
+	ret = strict_strtoul(data, 16, &value);
+	if (ret != -EINVAL) {
+		debugf0("received NBCFG= 0x%lx\n", value);
+
+		pvt->ctl_error_info.nbcfg = (u32) value;
+
+		return count;
+	}
+	return ret;
+}
+
+/* various show routines for the controls of a MCI */
+static ssize_t amd64_nbcfg_show(struct mem_ctl_info *mci, char *data)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+
+	return sprintf(data, "%x\n", pvt->ctl_error_info.nbcfg);
+}
+
+
+static ssize_t amd64_dhar_show(struct mem_ctl_info *mci, char *data)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+
+	return sprintf(data, "%x\n", pvt->dhar);
+}
+
+
+static ssize_t amd64_dbam_show(struct mem_ctl_info *mci, char *data)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+
+	return sprintf(data, "%x\n", pvt->dbam0);
+}
+
+
+static ssize_t amd64_topmem_show(struct mem_ctl_info *mci, char *data)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+
+	return sprintf(data, "%llx\n", pvt->top_mem);
+}
+
+
+static ssize_t amd64_topmem2_show(struct mem_ctl_info *mci, char *data)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+
+	return sprintf(data, "%llx\n", pvt->top_mem2);
+}
+
+static ssize_t amd64_hole_show(struct mem_ctl_info *mci, char *data)
+{
+	u64 hole_base = 0;
+	u64 hole_offset = 0;
+	u64 hole_size = 0;
+
+	amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size);
+
+	return sprintf(data, "%llx %llx %llx\n", hole_base, hole_offset,
+						 hole_size);
+}
+
+/*
+ * update NUM_DBG_ATTRS in case you add new members
+ */
+struct mcidev_sysfs_attribute amd64_dbg_attrs[] = {
+
+	{
+		.attr = {
+			.name = "nbea_ctl",
+			.mode = (S_IRUGO | S_IWUSR)
+		},
+		.show = amd64_nbea_show,
+		.store = amd64_nbea_store,
+	},
+	{
+		.attr = {
+			.name = "nbsl_ctl",
+			.mode = (S_IRUGO | S_IWUSR)
+		},
+		.show = amd64_nbsl_show,
+		.store = amd64_nbsl_store,
+	},
+	{
+		.attr = {
+			.name = "nbsh_ctl",
+			.mode = (S_IRUGO | S_IWUSR)
+		},
+		.show = amd64_nbsh_show,
+		.store = amd64_nbsh_store,
+	},
+	{
+		.attr = {
+			.name = "nbcfg_ctl",
+			.mode = (S_IRUGO | S_IWUSR)
+		},
+		.show = amd64_nbcfg_show,
+		.store = amd64_nbcfg_store,
+	},
+	{
+		.attr = {
+			.name = "dhar",
+			.mode = (S_IRUGO)
+		},
+		.show = amd64_dhar_show,
+		.store = NULL,
+	},
+	{
+		.attr = {
+			.name = "dbam",
+			.mode = (S_IRUGO)
+		},
+		.show = amd64_dbam_show,
+		.store = NULL,
+	},
+	{
+		.attr = {
+			.name = "topmem",
+			.mode = (S_IRUGO)
+		},
+		.show = amd64_topmem_show,
+		.store = NULL,
+	},
+	{
+		.attr = {
+			.name = "topmem2",
+			.mode = (S_IRUGO)
+		},
+		.show = amd64_topmem2_show,
+		.store = NULL,
+	},
+	{
+		.attr = {
+			.name = "dram_hole",
+			.mode = (S_IRUGO)
+		},
+		.show = amd64_hole_show,
+		.store = NULL,
+	},
+};
diff --git a/drivers/edac/amd64_edac_err_types.c b/drivers/edac/amd64_edac_err_types.c
new file mode 100644
index 000000000000..f212ff12a9d8
--- /dev/null
+++ b/drivers/edac/amd64_edac_err_types.c
@@ -0,0 +1,161 @@
+#include "amd64_edac.h"
+
+/*
+ * See F2x80 for K8 and F2x[1,0]80 for Fam10 and later. The table below is only
+ * for DDR2 DRAM mapping.
+ */
+u32 revf_quad_ddr2_shift[] = {
+	0,	/* 0000b NULL DIMM (128mb) */
+	28,	/* 0001b 256mb */
+	29,	/* 0010b 512mb */
+	29,	/* 0011b 512mb */
+	29,	/* 0100b 512mb */
+	30,	/* 0101b 1gb */
+	30,	/* 0110b 1gb */
+	31,	/* 0111b 2gb */
+	31,	/* 1000b 2gb */
+	32,	/* 1001b 4gb */
+	32,	/* 1010b 4gb */
+	33,	/* 1011b 8gb */
+	0,	/* 1100b future */
+	0,	/* 1101b future */
+	0,	/* 1110b future */
+	0	/* 1111b future */
+};
+
+/*
+ * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
+ * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
+ * or higher value'.
+ *
+ *FIXME: Produce a better mapping/linearisation.
+ */
+
+struct scrubrate scrubrates[] = {
+	{ 0x01, 1600000000UL},
+	{ 0x02, 800000000UL},
+	{ 0x03, 400000000UL},
+	{ 0x04, 200000000UL},
+	{ 0x05, 100000000UL},
+	{ 0x06, 50000000UL},
+	{ 0x07, 25000000UL},
+	{ 0x08, 12284069UL},
+	{ 0x09, 6274509UL},
+	{ 0x0A, 3121951UL},
+	{ 0x0B, 1560975UL},
+	{ 0x0C, 781440UL},
+	{ 0x0D, 390720UL},
+	{ 0x0E, 195300UL},
+	{ 0x0F, 97650UL},
+	{ 0x10, 48854UL},
+	{ 0x11, 24427UL},
+	{ 0x12, 12213UL},
+	{ 0x13, 6101UL},
+	{ 0x14, 3051UL},
+	{ 0x15, 1523UL},
+	{ 0x16, 761UL},
+	{ 0x00, 0UL},        /* scrubbing off */
+};
+
+/*
+ * string representation for the different MCA reported error types, see F3x48
+ * or MSR0000_0411.
+ */
+const char *tt_msgs[] = {        /* transaction type */
+	"instruction",
+	"data",
+	"generic",
+	"reserved"
+};
+
+const char *ll_msgs[] = {	/* cache level */
+	"L0",
+	"L1",
+	"L2",
+	"L3/generic"
+};
+
+const char *rrrr_msgs[] = {
+	"generic",
+	"generic read",
+	"generic write",
+	"data read",
+	"data write",
+	"inst fetch",
+	"prefetch",
+	"evict",
+	"snoop",
+	"reserved RRRR= 9",
+	"reserved RRRR= 10",
+	"reserved RRRR= 11",
+	"reserved RRRR= 12",
+	"reserved RRRR= 13",
+	"reserved RRRR= 14",
+	"reserved RRRR= 15"
+};
+
+const char *pp_msgs[] = {	/* participating processor */
+	"local node originated (SRC)",
+	"local node responded to request (RES)",
+	"local node observed as 3rd party (OBS)",
+	"generic"
+};
+
+const char *to_msgs[] = {
+	"no timeout",
+	"timed out"
+};
+
+const char *ii_msgs[] = {	/* memory or i/o */
+	"mem access",
+	"reserved",
+	"i/o access",
+	"generic"
+};
+
+/* Map the 5 bits of Extended Error code to the string table. */
+const char *ext_msgs[] = {	/* extended error */
+	"K8 ECC error/F10 reserved",	/* 0_0000b */
+	"CRC error",			/* 0_0001b */
+	"sync error",			/* 0_0010b */
+	"mst abort",			/* 0_0011b */
+	"tgt abort",			/* 0_0100b */
+	"GART error",			/* 0_0101b */
+	"RMW error",			/* 0_0110b */
+	"Wdog timer error",		/* 0_0111b */
+	"F10-ECC/K8-Chipkill error",	/* 0_1000b */
+	"DEV Error",			/* 0_1001b */
+	"Link Data error",		/* 0_1010b */
+	"Link or L3 Protocol error",	/* 0_1011b */
+	"NB Array error",		/* 0_1100b */
+	"DRAM Parity error",		/* 0_1101b */
+	"Link Retry/GART Table Walk/DEV Table Walk error", /* 0_1110b */
+	"Res 0x0ff error",		/* 0_1111b */
+	"Res 0x100 error",		/* 1_0000b */
+	"Res 0x101 error",		/* 1_0001b */
+	"Res 0x102 error",		/* 1_0010b */
+	"Res 0x103 error",		/* 1_0011b */
+	"Res 0x104 error",		/* 1_0100b */
+	"Res 0x105 error",		/* 1_0101b */
+	"Res 0x106 error",		/* 1_0110b */
+	"Res 0x107 error",		/* 1_0111b */
+	"Res 0x108 error",		/* 1_1000b */
+	"Res 0x109 error",		/* 1_1001b */
+	"Res 0x10A error",		/* 1_1010b */
+	"Res 0x10B error",		/* 1_1011b */
+	"L3 Cache Data error",		/* 1_1100b */
+	"L3 CacheTag error",		/* 1_1101b */
+	"L3 Cache LRU error",		/* 1_1110b */
+	"Res 0x1FF error"		/* 1_1111b */
+};
+
+const char *htlink_msgs[] = {
+	"none",
+	"1",
+	"2",
+	"1 2",
+	"3",
+	"1 3",
+	"2 3",
+	"1 2 3"
+};
diff --git a/drivers/edac/amd64_edac_inj.c b/drivers/edac/amd64_edac_inj.c
new file mode 100644
index 000000000000..d3675b76b3a7
--- /dev/null
+++ b/drivers/edac/amd64_edac_inj.c
@@ -0,0 +1,185 @@
+#include "amd64_edac.h"
+
+/*
+ * store error injection section value which refers to one of 4 16-byte sections
+ * within a 64-byte cacheline
+ *
+ * range: 0..3
+ */
+static ssize_t amd64_inject_section_store(struct mem_ctl_info *mci,
+					  const char *data, size_t count)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	unsigned long value;
+	int ret = 0;
+
+	ret = strict_strtoul(data, 10, &value);
+	if (ret != -EINVAL) {
+		pvt->injection.section = (u32) value;
+		return count;
+	}
+	return ret;
+}
+
+/*
+ * store error injection word value which refers to one of 9 16-bit word of the
+ * 16-byte (128-bit + ECC bits) section
+ *
+ * range: 0..8
+ */
+static ssize_t amd64_inject_word_store(struct mem_ctl_info *mci,
+					const char *data, size_t count)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	unsigned long value;
+	int ret = 0;
+
+	ret = strict_strtoul(data, 10, &value);
+	if (ret != -EINVAL) {
+
+		value = (value <= 8) ? value : 0;
+		pvt->injection.word = (u32) value;
+
+		return count;
+	}
+	return ret;
+}
+
+/*
+ * store 16 bit error injection vector which enables injecting errors to the
+ * corresponding bit within the error injection word above. When used during a
+ * DRAM ECC read, it holds the contents of the of the DRAM ECC bits.
+ */
+static ssize_t amd64_inject_ecc_vector_store(struct mem_ctl_info *mci,
+					     const char *data, size_t count)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	unsigned long value;
+	int ret = 0;
+
+	ret = strict_strtoul(data, 16, &value);
+	if (ret != -EINVAL) {
+
+		pvt->injection.bit_map = (u32) value & 0xFFFF;
+
+		return count;
+	}
+	return ret;
+}
+
+/*
+ * Do a DRAM ECC read. Assemble staged values in the pvt area, format into
+ * fields needed by the injection registers and read the NB Array Data Port.
+ */
+static ssize_t amd64_inject_read_store(struct mem_ctl_info *mci,
+					const char *data, size_t count)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	unsigned long value;
+	u32 section, word_bits;
+	int ret = 0;
+
+	ret = strict_strtoul(data, 10, &value);
+	if (ret != -EINVAL) {
+
+		/* Form value to choose 16-byte section of cacheline */
+		section = F10_NB_ARRAY_DRAM_ECC |
+				SET_NB_ARRAY_ADDRESS(pvt->injection.section);
+		pci_write_config_dword(pvt->misc_f3_ctl,
+					F10_NB_ARRAY_ADDR, section);
+
+		word_bits = SET_NB_DRAM_INJECTION_READ(pvt->injection.word,
+						pvt->injection.bit_map);
+
+		/* Issue 'word' and 'bit' along with the READ request */
+		pci_write_config_dword(pvt->misc_f3_ctl,
+					F10_NB_ARRAY_DATA, word_bits);
+
+		debugf0("section=0x%x word_bits=0x%x\n", section, word_bits);
+
+		return count;
+	}
+	return ret;
+}
+
+/*
+ * Do a DRAM ECC write. Assemble staged values in the pvt area and format into
+ * fields needed by the injection registers.
+ */
+static ssize_t amd64_inject_write_store(struct mem_ctl_info *mci,
+					const char *data, size_t count)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	unsigned long value;
+	u32 section, word_bits;
+	int ret = 0;
+
+	ret = strict_strtoul(data, 10, &value);
+	if (ret != -EINVAL) {
+
+		/* Form value to choose 16-byte section of cacheline */
+		section = F10_NB_ARRAY_DRAM_ECC |
+				SET_NB_ARRAY_ADDRESS(pvt->injection.section);
+		pci_write_config_dword(pvt->misc_f3_ctl,
+					F10_NB_ARRAY_ADDR, section);
+
+		word_bits = SET_NB_DRAM_INJECTION_WRITE(pvt->injection.word,
+						pvt->injection.bit_map);
+
+		/* Issue 'word' and 'bit' along with the READ request */
+		pci_write_config_dword(pvt->misc_f3_ctl,
+					F10_NB_ARRAY_DATA, word_bits);
+
+		debugf0("section=0x%x word_bits=0x%x\n", section, word_bits);
+
+		return count;
+	}
+	return ret;
+}
+
+/*
+ * update NUM_INJ_ATTRS in case you add new members
+ */
+struct mcidev_sysfs_attribute amd64_inj_attrs[] = {
+
+	{
+		.attr = {
+			.name = "inject_section",
+			.mode = (S_IRUGO | S_IWUSR)
+		},
+		.show = NULL,
+		.store = amd64_inject_section_store,
+	},
+	{
+		.attr = {
+			.name = "inject_word",
+			.mode = (S_IRUGO | S_IWUSR)
+		},
+		.show = NULL,
+		.store = amd64_inject_word_store,
+	},
+	{
+		.attr = {
+			.name = "inject_ecc_vector",
+			.mode = (S_IRUGO | S_IWUSR)
+		},
+		.show = NULL,
+		.store = amd64_inject_ecc_vector_store,
+	},
+	{
+		.attr = {
+			.name = "inject_write",
+			.mode = (S_IRUGO | S_IWUSR)
+		},
+		.show = NULL,
+		.store = amd64_inject_write_store,
+	},
+	{
+		.attr = {
+			.name = "inject_read",
+			.mode = (S_IRUGO | S_IWUSR)
+		},
+		.show = NULL,
+		.store = amd64_inject_read_store,
+	},
+};
diff --git a/drivers/edac/edac_core.h b/drivers/edac/edac_core.h
index 6ad95c8d6363..48d3b1409834 100644
--- a/drivers/edac/edac_core.h
+++ b/drivers/edac/edac_core.h
@@ -76,10 +76,11 @@
 extern int edac_debug_level;
 
 #ifndef CONFIG_EDAC_DEBUG_VERBOSE
-#define edac_debug_printk(level, fmt, arg...)                            \
-	do {                                                             \
-		if (level <= edac_debug_level)                           \
-			edac_printk(KERN_DEBUG, EDAC_DEBUG, fmt, ##arg); \
+#define edac_debug_printk(level, fmt, arg...)                           \
+	do {                                                            \
+		if (level <= edac_debug_level)                          \
+			edac_printk(KERN_DEBUG, EDAC_DEBUG,		\
+				    "%s: " fmt, __func__, ##arg);	\
 	} while (0)
 #else  /* CONFIG_EDAC_DEBUG_VERBOSE */
 #define edac_debug_printk(level, fmt, arg...)                            \