summary refs log tree commit diff
path: root/drivers/mtd/nand
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2019-03-04 18:59:37 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2019-03-04 18:59:37 -0800
commit811c16a2a2de6fcdeea188a770600210943f8947 (patch)
treef2c4ebfb33da387f8a52d83b76e9d36a406cae44 /drivers/mtd/nand
parenta83b04232cec52a8a93700ab7f17a09500c558b8 (diff)
parent9220d7befc9c28bf714701e6e26163644750d871 (diff)
downloadlinux-811c16a2a2de6fcdeea188a770600210943f8947.tar.gz
Merge tag 'mtd/for-5.1' of git://git.infradead.org/linux-mtd
Pull MTD updates from Boris Brezillon:
 "Core MTD changes:
   - Use struct_size() where appropriate
   - mtd_{read,write}() as wrappers around mtd_{read,write}_oob()
   - Fix misuse of PTR_ERR() in docg3
   - Coding style improvements in mtdcore.c

  SPI NOR changes:
    Core changes:
     - Add support of octal mode I/O transfer
     - Add a bunch of SPI NOR entries to the flash_info table

    SPI NOR controller driver changes:
     - cadence-quadspi:
        * Add support for Octal SPI controller
        * write upto 8-bytes data in STIG mode
     - mtk-quadspi:
        * rename config to a common one
        * add SNOR_HWCAPS_READ to spi_nor_hwcaps mask
     - Add Tudor as SPI-NOR co-maintainer

  NAND changes:
    NAND core changes:
     - Fourth batch of fixes/cleanup to the raw NAND core impacting
       various controller drivers (Sunxi, Marvell, MTK, TMIO, OMAP2).
     - Check the return code of nand_reset() and nand_readid_op().
     - Remove ->legacy.erase and single_erase().
     - Simplify the locking.
     - Several implicit fall through annotations.

    Raw NAND controllers drivers changes:
     - Fix various possible object reference leaks (MTK, JZ4780, Atmel)
     - ST:
        * Add support for STM32 FMC2 NAND flash controller
     - Meson:
        * Add support for Amlogic NAND flash controller
     - Denali:
        * Several cleanup patches
     - Sunxi:
        * Several cleanup patches
     - FSMC:
        * Disable NAND on remove()
        * Reset NAND timings on resume()

    SPI-NAND drivers changes:
     - Toshiba:
        * Add support for all Toshiba products.
     - Macronix:
        * Fix ECC status read.
     - Gigadevice:
        * Add support for GD5F1GQ4UExxG"

* tag 'mtd/for-5.1' of git://git.infradead.org/linux-mtd: (64 commits)
  mtd: spi-nor: Fix wrong abbreviation HWCPAS
  mtd: spi-nor: cadence-quadspi: fix spelling mistake: "Couldnt't" -> "Couldn't"
  mtd: spi-nor: Add support for en25qh64
  mtd: spi-nor: Add support for MX25V8035F
  mtd: spi-nor: Add support for EN25Q80A
  mtd: spi-nor: cadence-quadspi: Add support for Octal SPI controller
  dt-bindings: cadence-quadspi: Add new compatible for AM654 SoC
  mtd: spi-nor: split s25fl128s into s25fl128s0 and s25fl128s1
  mtd: spi-nor: cadence-quadspi: write upto 8-bytes data in STIG mode
  mtd: spi-nor: Add support for mx25u3235f
  mtd: rawnand: denali_dt: remove single anonymous clock support
  mtd: rawnand: mtk: fix possible object reference leak
  mtd: rawnand: jz4780: fix possible object reference leak
  mtd: rawnand: atmel: fix possible object reference leak
  mtd: rawnand: fsmc: Disable NAND on remove()
  mtd: rawnand: fsmc: Reset NAND timings on resume()
  mtd: spinand: Add support for GigaDevice GD5F1GQ4UExxG
  mtd: rawnand: denali: remove unused dma_addr field from denali_nand_info
  mtd: rawnand: denali: remove unused function argument 'raw'
  mtd: rawnand: denali: remove unneeded denali_reset_irq() call
  ...
Diffstat (limited to 'drivers/mtd/nand')
-rw-r--r--drivers/mtd/nand/raw/Kconfig17
-rw-r--r--drivers/mtd/nand/raw/Makefile2
-rw-r--r--drivers/mtd/nand/raw/atmel/pmecc.c21
-rw-r--r--drivers/mtd/nand/raw/denali.c42
-rw-r--r--drivers/mtd/nand/raw/denali.h1
-rw-r--r--drivers/mtd/nand/raw/denali_dt.c27
-rw-r--r--drivers/mtd/nand/raw/fsmc_nand.c16
-rw-r--r--drivers/mtd/nand/raw/jz4780_bch.c9
-rw-r--r--drivers/mtd/nand/raw/marvell_nand.c5
-rw-r--r--drivers/mtd/nand/raw/meson_nand.c1464
-rw-r--r--drivers/mtd/nand/raw/mtk_ecc.c8
-rw-r--r--drivers/mtd/nand/raw/mtk_nand.c3
-rw-r--r--drivers/mtd/nand/raw/nand_base.c159
-rw-r--r--drivers/mtd/nand/raw/nand_legacy.c3
-rw-r--r--drivers/mtd/nand/raw/omap2.c20
-rw-r--r--drivers/mtd/nand/raw/r852.c3
-rw-r--r--drivers/mtd/nand/raw/stm32_fmc2_nand.c2073
-rw-r--r--drivers/mtd/nand/raw/sunxi_nand.c732
-rw-r--r--drivers/mtd/nand/raw/tmio_nand.c21
-rw-r--r--drivers/mtd/nand/spi/gigadevice.c83
-rw-r--r--drivers/mtd/nand/spi/macronix.c8
-rw-r--r--drivers/mtd/nand/spi/toshiba.c79
22 files changed, 4243 insertions, 553 deletions
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index 1a55d3e3d4c5..e604625e2dfa 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -541,4 +541,21 @@ config MTD_NAND_TEGRA
 	  is supported. Extra OOB bytes when using HW ECC are currently
 	  not supported.
 
+config MTD_NAND_STM32_FMC2
+	tristate "Support for NAND controller on STM32MP SoCs"
+	depends on MACH_STM32MP157 || COMPILE_TEST
+	help
+	  Enables support for NAND Flash chips on SoCs containing the FMC2
+	  NAND controller. This controller is found on STM32MP SoCs.
+	  The controller supports a maximum 8k page size and supports
+	  a maximum 8-bit correction error per sector of 512 bytes.
+
+config MTD_NAND_MESON
+	tristate "Support for NAND controller on Amlogic's Meson SoCs"
+	depends on ARCH_MESON || COMPILE_TEST
+	select MFD_SYSCON
+	help
+	  Enables support for NAND controller on Amlogic's Meson SoCs.
+	  This controller is found on Meson SoCs.
+
 endif # MTD_NAND
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
index 57159b349054..5a5a72f0793e 100644
--- a/drivers/mtd/nand/raw/Makefile
+++ b/drivers/mtd/nand/raw/Makefile
@@ -56,6 +56,8 @@ obj-$(CONFIG_MTD_NAND_BRCMNAND)		+= brcmnand/
 obj-$(CONFIG_MTD_NAND_QCOM)		+= qcom_nandc.o
 obj-$(CONFIG_MTD_NAND_MTK)		+= mtk_ecc.o mtk_nand.o
 obj-$(CONFIG_MTD_NAND_TEGRA)		+= tegra_nand.o
+obj-$(CONFIG_MTD_NAND_STM32_FMC2)	+= stm32_fmc2_nand.o
+obj-$(CONFIG_MTD_NAND_MESON)		+= meson_nand.o
 
 nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
 nand-objs += nand_onfi.o
diff --git a/drivers/mtd/nand/raw/atmel/pmecc.c b/drivers/mtd/nand/raw/atmel/pmecc.c
index 555a74e15269..9d3997840889 100644
--- a/drivers/mtd/nand/raw/atmel/pmecc.c
+++ b/drivers/mtd/nand/raw/atmel/pmecc.c
@@ -876,23 +876,32 @@ static struct atmel_pmecc *atmel_pmecc_get_by_node(struct device *userdev,
 {
 	struct platform_device *pdev;
 	struct atmel_pmecc *pmecc, **ptr;
+	int ret;
 
 	pdev = of_find_device_by_node(np);
-	if (!pdev || !platform_get_drvdata(pdev))
+	if (!pdev)
 		return ERR_PTR(-EPROBE_DEFER);
+	pmecc = platform_get_drvdata(pdev);
+	if (!pmecc) {
+		ret = -EPROBE_DEFER;
+		goto err_put_device;
+	}
 
 	ptr = devres_alloc(devm_atmel_pmecc_put, sizeof(*ptr), GFP_KERNEL);
-	if (!ptr)
-		return ERR_PTR(-ENOMEM);
-
-	get_device(&pdev->dev);
-	pmecc = platform_get_drvdata(pdev);
+	if (!ptr) {
+		ret = -ENOMEM;
+		goto err_put_device;
+	}
 
 	*ptr = pmecc;
 
 	devres_add(userdev, ptr);
 
 	return pmecc;
+
+err_put_device:
+	put_device(&pdev->dev);
+	return ERR_PTR(ret);
 }
 
 static const int atmel_pmecc_strengths[] = { 2, 4, 8, 12, 24, 32 };
diff --git a/drivers/mtd/nand/raw/denali.c b/drivers/mtd/nand/raw/denali.c
index 6e8edc9375dd..24aeafc67cd4 100644
--- a/drivers/mtd/nand/raw/denali.c
+++ b/drivers/mtd/nand/raw/denali.c
@@ -37,9 +37,6 @@
 #define DENALI_MAP11_ADDR	((DENALI_MAP11) | 1)	/* address cycle */
 #define DENALI_MAP11_DATA	((DENALI_MAP11) | 2)	/* data cycle */
 
-/* MAP10 commands */
-#define DENALI_ERASE		0x01
-
 #define DENALI_BANK(denali)	((denali)->active_bank << 24)
 
 #define DENALI_INVALID_BANK	-1
@@ -476,7 +473,7 @@ static void denali_setup_dma32(struct denali_nand_info *denali,
 }
 
 static int denali_pio_read(struct denali_nand_info *denali, void *buf,
-			   size_t size, int page, int raw)
+			   size_t size, int page)
 {
 	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
 	uint32_t *buf32 = (uint32_t *)buf;
@@ -504,7 +501,7 @@ static int denali_pio_read(struct denali_nand_info *denali, void *buf,
 }
 
 static int denali_pio_write(struct denali_nand_info *denali,
-			    const void *buf, size_t size, int page, int raw)
+			    const void *buf, size_t size, int page)
 {
 	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
 	const uint32_t *buf32 = (uint32_t *)buf;
@@ -525,16 +522,16 @@ static int denali_pio_write(struct denali_nand_info *denali,
 }
 
 static int denali_pio_xfer(struct denali_nand_info *denali, void *buf,
-			   size_t size, int page, int raw, int write)
+			   size_t size, int page, int write)
 {
 	if (write)
-		return denali_pio_write(denali, buf, size, page, raw);
+		return denali_pio_write(denali, buf, size, page);
 	else
-		return denali_pio_read(denali, buf, size, page, raw);
+		return denali_pio_read(denali, buf, size, page);
 }
 
 static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
-			   size_t size, int page, int raw, int write)
+			   size_t size, int page, int write)
 {
 	dma_addr_t dma_addr;
 	uint32_t irq_mask, irq_status, ecc_err_mask;
@@ -544,7 +541,7 @@ static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
 	dma_addr = dma_map_single(denali->dev, buf, size, dir);
 	if (dma_mapping_error(denali->dev, dma_addr)) {
 		dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
-		return denali_pio_xfer(denali, buf, size, page, raw, write);
+		return denali_pio_xfer(denali, buf, size, page, write);
 	}
 
 	if (write) {
@@ -598,9 +595,9 @@ static int denali_data_xfer(struct denali_nand_info *denali, void *buf,
 		  denali->reg + TRANSFER_SPARE_REG);
 
 	if (denali->dma_avail)
-		return denali_dma_xfer(denali, buf, size, page, raw, write);
+		return denali_dma_xfer(denali, buf, size, page, write);
 	else
-		return denali_pio_xfer(denali, buf, size, page, raw, write);
+		return denali_pio_xfer(denali, buf, size, page, write);
 }
 
 static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip,
@@ -754,9 +751,6 @@ static int denali_read_oob(struct nand_chip *chip, int page)
 static int denali_write_oob(struct nand_chip *chip, int page)
 {
 	struct mtd_info *mtd = nand_to_mtd(chip);
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-
-	denali_reset_irq(denali);
 
 	denali_oob_xfer(mtd, chip, page, 1);
 
@@ -903,23 +897,6 @@ static int denali_waitfunc(struct nand_chip *chip)
 	return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL;
 }
 
-static int denali_erase(struct nand_chip *chip, int page)
-{
-	struct denali_nand_info *denali = mtd_to_denali(nand_to_mtd(chip));
-	uint32_t irq_status;
-
-	denali_reset_irq(denali);
-
-	denali->host_write(denali, DENALI_MAP10 | DENALI_BANK(denali) | page,
-			   DENALI_ERASE);
-
-	/* wait for erase to complete or failure to occur */
-	irq_status = denali_wait_for_irq(denali,
-					 INTR__ERASE_COMP | INTR__ERASE_FAIL);
-
-	return irq_status & INTR__ERASE_COMP ? 0 : -EIO;
-}
-
 static int denali_setup_data_interface(struct nand_chip *chip, int chipnr,
 				       const struct nand_data_interface *conf)
 {
@@ -1244,7 +1221,6 @@ static int denali_attach_chip(struct nand_chip *chip)
 	chip->ecc.write_page_raw = denali_write_page_raw;
 	chip->ecc.read_oob = denali_read_oob;
 	chip->ecc.write_oob = denali_write_oob;
-	chip->legacy.erase = denali_erase;
 
 	ret = denali_multidev_fixup(denali);
 	if (ret)
diff --git a/drivers/mtd/nand/raw/denali.h b/drivers/mtd/nand/raw/denali.h
index 25c00601b8b3..c8c2620fc736 100644
--- a/drivers/mtd/nand/raw/denali.h
+++ b/drivers/mtd/nand/raw/denali.h
@@ -304,7 +304,6 @@ struct denali_nand_info {
 	u32 irq_status;			/* interrupts that have happened */
 	int irq;
 	void *buf;			/* for syndrome layout conversion */
-	dma_addr_t dma_addr;
 	int dma_avail;			/* can support DMA? */
 	int devs_per_cs;		/* devices connected in parallel */
 	int oob_skip_bytes;		/* number of bytes reserved for BBM */
diff --git a/drivers/mtd/nand/raw/denali_dt.c b/drivers/mtd/nand/raw/denali_dt.c
index 7c6a8a426606..0b5ae2418815 100644
--- a/drivers/mtd/nand/raw/denali_dt.c
+++ b/drivers/mtd/nand/raw/denali_dt.c
@@ -109,25 +109,17 @@ static int denali_dt_probe(struct platform_device *pdev)
 	if (IS_ERR(denali->host))
 		return PTR_ERR(denali->host);
 
-	/*
-	 * A single anonymous clock is supported for the backward compatibility.
-	 * New platforms should support all the named clocks.
-	 */
 	dt->clk = devm_clk_get(dev, "nand");
 	if (IS_ERR(dt->clk))
-		dt->clk = devm_clk_get(dev, NULL);
-	if (IS_ERR(dt->clk)) {
-		dev_err(dev, "no clk available\n");
 		return PTR_ERR(dt->clk);
-	}
 
 	dt->clk_x = devm_clk_get(dev, "nand_x");
 	if (IS_ERR(dt->clk_x))
-		dt->clk_x = NULL;
+		return PTR_ERR(dt->clk_x);
 
 	dt->clk_ecc = devm_clk_get(dev, "ecc");
 	if (IS_ERR(dt->clk_ecc))
-		dt->clk_ecc = NULL;
+		return PTR_ERR(dt->clk_ecc);
 
 	ret = clk_prepare_enable(dt->clk);
 	if (ret)
@@ -141,19 +133,8 @@ static int denali_dt_probe(struct platform_device *pdev)
 	if (ret)
 		goto out_disable_clk_x;
 
-	if (dt->clk_x) {
-		denali->clk_rate = clk_get_rate(dt->clk);
-		denali->clk_x_rate = clk_get_rate(dt->clk_x);
-	} else {
-		/*
-		 * Hardcode the clock rates for the backward compatibility.
-		 * This works for both SOCFPGA and UniPhier.
-		 */
-		dev_notice(dev,
-			   "necessary clock is missing. default clock rates are used.\n");
-		denali->clk_rate = 50000000;
-		denali->clk_x_rate = 200000000;
-	}
+	denali->clk_rate = clk_get_rate(dt->clk);
+	denali->clk_x_rate = clk_get_rate(dt->clk_x);
 
 	ret = denali_init(denali);
 	if (ret)
diff --git a/drivers/mtd/nand/raw/fsmc_nand.c b/drivers/mtd/nand/raw/fsmc_nand.c
index c9149a37f8f0..6c7ca41354be 100644
--- a/drivers/mtd/nand/raw/fsmc_nand.c
+++ b/drivers/mtd/nand/raw/fsmc_nand.c
@@ -965,6 +965,19 @@ static const struct nand_controller_ops fsmc_nand_controller_ops = {
 	.setup_data_interface = fsmc_setup_data_interface,
 };
 
+/**
+ * fsmc_nand_disable() - Disables the NAND bank
+ * @host: The instance to disable
+ */
+static void fsmc_nand_disable(struct fsmc_nand_data *host)
+{
+	u32 val;
+
+	val = readl(host->regs_va + FSMC_PC);
+	val &= ~FSMC_ENABLE;
+	writel(val, host->regs_va + FSMC_PC);
+}
+
 /*
  * fsmc_nand_probe - Probe function
  * @pdev:       platform device structure
@@ -1120,6 +1133,7 @@ release_dma_read_chan:
 	if (host->mode == USE_DMA_ACCESS)
 		dma_release_channel(host->read_dma_chan);
 disable_clk:
+	fsmc_nand_disable(host);
 	clk_disable_unprepare(host->clk);
 
 	return ret;
@@ -1134,6 +1148,7 @@ static int fsmc_nand_remove(struct platform_device *pdev)
 
 	if (host) {
 		nand_release(&host->nand);
+		fsmc_nand_disable(host);
 
 		if (host->mode == USE_DMA_ACCESS) {
 			dma_release_channel(host->write_dma_chan);
@@ -1164,6 +1179,7 @@ static int fsmc_nand_resume(struct device *dev)
 		clk_prepare_enable(host->clk);
 		if (host->dev_timings)
 			fsmc_nand_setup(host, host->dev_timings);
+		nand_reset(&host->nand, 0);
 	}
 
 	return 0;
diff --git a/drivers/mtd/nand/raw/jz4780_bch.c b/drivers/mtd/nand/raw/jz4780_bch.c
index 7201827809e9..c5f74ed85862 100644
--- a/drivers/mtd/nand/raw/jz4780_bch.c
+++ b/drivers/mtd/nand/raw/jz4780_bch.c
@@ -281,12 +281,15 @@ static struct jz4780_bch *jz4780_bch_get(struct device_node *np)
 	struct jz4780_bch *bch;
 
 	pdev = of_find_device_by_node(np);
-	if (!pdev || !platform_get_drvdata(pdev))
+	if (!pdev)
 		return ERR_PTR(-EPROBE_DEFER);
 
-	get_device(&pdev->dev);
-
 	bch = platform_get_drvdata(pdev);
+	if (!bch) {
+		put_device(&pdev->dev);
+		return ERR_PTR(-EPROBE_DEFER);
+	}
+
 	clk_prepare_enable(bch->clk);
 
 	return bch;
diff --git a/drivers/mtd/nand/raw/marvell_nand.c b/drivers/mtd/nand/raw/marvell_nand.c
index 84283c6bb0ff..f38e5c1b87e4 100644
--- a/drivers/mtd/nand/raw/marvell_nand.c
+++ b/drivers/mtd/nand/raw/marvell_nand.c
@@ -2550,9 +2550,8 @@ static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
 	}
 
 	/* Alloc the nand chip structure */
-	marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) +
-				    (nsels *
-				     sizeof(struct marvell_nand_chip_sel)),
+	marvell_nand = devm_kzalloc(dev,
+				    struct_size(marvell_nand, sels, nsels),
 				    GFP_KERNEL);
 	if (!marvell_nand) {
 		dev_err(dev, "could not allocate chip structure\n");
diff --git a/drivers/mtd/nand/raw/meson_nand.c b/drivers/mtd/nand/raw/meson_nand.c
new file mode 100644
index 000000000000..3e8aa71407b5
--- /dev/null
+++ b/drivers/mtd/nand/raw/meson_nand.c
@@ -0,0 +1,1464 @@
+// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
+/*
+ * Amlogic Meson Nand Flash Controller Driver
+ *
+ * Copyright (c) 2018 Amlogic, inc.
+ * Author: Liang Yang <liang.yang@amlogic.com>
+ */
+
+#include <linux/platform_device.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/clk.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mfd/syscon.h>
+#include <linux/regmap.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/iopoll.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/sched/task_stack.h>
+
+#define NFC_REG_CMD		0x00
+#define NFC_CMD_IDLE		(0xc << 14)
+#define NFC_CMD_CLE		(0x5 << 14)
+#define NFC_CMD_ALE		(0x6 << 14)
+#define NFC_CMD_ADL		((0 << 16) | (3 << 20))
+#define NFC_CMD_ADH		((1 << 16) | (3 << 20))
+#define NFC_CMD_AIL		((2 << 16) | (3 << 20))
+#define NFC_CMD_AIH		((3 << 16) | (3 << 20))
+#define NFC_CMD_SEED		((8 << 16) | (3 << 20))
+#define NFC_CMD_M2N		((0 << 17) | (2 << 20))
+#define NFC_CMD_N2M		((1 << 17) | (2 << 20))
+#define NFC_CMD_RB		BIT(20)
+#define NFC_CMD_SCRAMBLER_ENABLE	BIT(19)
+#define NFC_CMD_SCRAMBLER_DISABLE	0
+#define NFC_CMD_SHORTMODE_DISABLE	0
+#define NFC_CMD_RB_INT		BIT(14)
+
+#define NFC_CMD_GET_SIZE(x)	(((x) >> 22) & GENMASK(4, 0))
+
+#define NFC_REG_CFG		0x04
+#define NFC_REG_DADR		0x08
+#define NFC_REG_IADR		0x0c
+#define NFC_REG_BUF		0x10
+#define NFC_REG_INFO		0x14
+#define NFC_REG_DC		0x18
+#define NFC_REG_ADR		0x1c
+#define NFC_REG_DL		0x20
+#define NFC_REG_DH		0x24
+#define NFC_REG_CADR		0x28
+#define NFC_REG_SADR		0x2c
+#define NFC_REG_PINS		0x30
+#define NFC_REG_VER		0x38
+
+#define NFC_RB_IRQ_EN		BIT(21)
+
+#define CMDRWGEN(cmd_dir, ran, bch, short_mode, page_size, pages)	\
+	(								\
+		(cmd_dir)			|			\
+		((ran) << 19)			|			\
+		((bch) << 14)			|			\
+		((short_mode) << 13)		|			\
+		(((page_size) & 0x7f) << 6)	|			\
+		((pages) & 0x3f)					\
+	)
+
+#define GENCMDDADDRL(adl, addr)		((adl) | ((addr) & 0xffff))
+#define GENCMDDADDRH(adh, addr)		((adh) | (((addr) >> 16) & 0xffff))
+#define GENCMDIADDRL(ail, addr)		((ail) | ((addr) & 0xffff))
+#define GENCMDIADDRH(aih, addr)		((aih) | (((addr) >> 16) & 0xffff))
+
+#define DMA_DIR(dir)		((dir) ? NFC_CMD_N2M : NFC_CMD_M2N)
+
+#define ECC_CHECK_RETURN_FF	(-1)
+
+#define NAND_CE0		(0xe << 10)
+#define NAND_CE1		(0xd << 10)
+
+#define DMA_BUSY_TIMEOUT	0x100000
+#define CMD_FIFO_EMPTY_TIMEOUT	1000
+
+#define MAX_CE_NUM		2
+
+/* eMMC clock register, misc control */
+#define CLK_SELECT_NAND		BIT(31)
+
+#define NFC_CLK_CYCLE		6
+
+/* nand flash controller delay 3 ns */
+#define NFC_DEFAULT_DELAY	3000
+
+#define ROW_ADDER(page, index)	(((page) >> (8 * (index))) & 0xff)
+#define MAX_CYCLE_ADDRS		5
+#define DIRREAD			1
+#define DIRWRITE		0
+
+#define ECC_PARITY_BCH8_512B	14
+#define ECC_COMPLETE            BIT(31)
+#define ECC_ERR_CNT(x)		(((x) >> 24) & GENMASK(5, 0))
+#define ECC_ZERO_CNT(x)		(((x) >> 16) & GENMASK(5, 0))
+#define ECC_UNCORRECTABLE	0x3f
+
+#define PER_INFO_BYTE		8
+
+struct meson_nfc_nand_chip {
+	struct list_head node;
+	struct nand_chip nand;
+	unsigned long clk_rate;
+	unsigned long level1_divider;
+	u32 bus_timing;
+	u32 twb;
+	u32 tadl;
+	u32 tbers_max;
+
+	u32 bch_mode;
+	u8 *data_buf;
+	__le64 *info_buf;
+	u32 nsels;
+	u8 sels[0];
+};
+
+struct meson_nand_ecc {
+	u32 bch;
+	u32 strength;
+};
+
+struct meson_nfc_data {
+	const struct nand_ecc_caps *ecc_caps;
+};
+
+struct meson_nfc_param {
+	u32 chip_select;
+	u32 rb_select;
+};
+
+struct nand_rw_cmd {
+	u32 cmd0;
+	u32 addrs[MAX_CYCLE_ADDRS];
+	u32 cmd1;
+};
+
+struct nand_timing {
+	u32 twb;
+	u32 tadl;
+	u32 tbers_max;
+};
+
+struct meson_nfc {
+	struct nand_controller controller;
+	struct clk *core_clk;
+	struct clk *device_clk;
+	struct clk *phase_tx;
+	struct clk *phase_rx;
+
+	unsigned long clk_rate;
+	u32 bus_timing;
+
+	struct device *dev;
+	void __iomem *reg_base;
+	struct regmap *reg_clk;
+	struct completion completion;
+	struct list_head chips;
+	const struct meson_nfc_data *data;
+	struct meson_nfc_param param;
+	struct nand_timing timing;
+	union {
+		int cmd[32];
+		struct nand_rw_cmd rw;
+	} cmdfifo;
+
+	dma_addr_t daddr;
+	dma_addr_t iaddr;
+
+	unsigned long assigned_cs;
+};
+
+enum {
+	NFC_ECC_BCH8_1K		= 2,
+	NFC_ECC_BCH24_1K,
+	NFC_ECC_BCH30_1K,
+	NFC_ECC_BCH40_1K,
+	NFC_ECC_BCH50_1K,
+	NFC_ECC_BCH60_1K,
+};
+
+#define MESON_ECC_DATA(b, s)	{ .bch = (b),	.strength = (s)}
+
+static struct meson_nand_ecc meson_ecc[] = {
+	MESON_ECC_DATA(NFC_ECC_BCH8_1K, 8),
+	MESON_ECC_DATA(NFC_ECC_BCH24_1K, 24),
+	MESON_ECC_DATA(NFC_ECC_BCH30_1K, 30),
+	MESON_ECC_DATA(NFC_ECC_BCH40_1K, 40),
+	MESON_ECC_DATA(NFC_ECC_BCH50_1K, 50),
+	MESON_ECC_DATA(NFC_ECC_BCH60_1K, 60),
+};
+
+static int meson_nand_calc_ecc_bytes(int step_size, int strength)
+{
+	int ecc_bytes;
+
+	if (step_size == 512 && strength == 8)
+		return ECC_PARITY_BCH8_512B;
+
+	ecc_bytes = DIV_ROUND_UP(strength * fls(step_size * 8), 8);
+	ecc_bytes = ALIGN(ecc_bytes, 2);
+
+	return ecc_bytes;
+}
+
+NAND_ECC_CAPS_SINGLE(meson_gxl_ecc_caps,
+		     meson_nand_calc_ecc_bytes, 1024, 8, 24, 30, 40, 50, 60);
+NAND_ECC_CAPS_SINGLE(meson_axg_ecc_caps,
+		     meson_nand_calc_ecc_bytes, 1024, 8);
+
+static struct meson_nfc_nand_chip *to_meson_nand(struct nand_chip *nand)
+{
+	return container_of(nand, struct meson_nfc_nand_chip, nand);
+}
+
+static void meson_nfc_select_chip(struct nand_chip *nand, int chip)
+{
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	struct meson_nfc *nfc = nand_get_controller_data(nand);
+	int ret, value;
+
+	if (chip < 0 || WARN_ON_ONCE(chip >= meson_chip->nsels))
+		return;
+
+	nfc->param.chip_select = meson_chip->sels[chip] ? NAND_CE1 : NAND_CE0;
+	nfc->param.rb_select = nfc->param.chip_select;
+	nfc->timing.twb = meson_chip->twb;
+	nfc->timing.tadl = meson_chip->tadl;
+	nfc->timing.tbers_max = meson_chip->tbers_max;
+
+	if (nfc->clk_rate != meson_chip->clk_rate) {
+		ret = clk_set_rate(nfc->device_clk, meson_chip->clk_rate);
+		if (ret) {
+			dev_err(nfc->dev, "failed to set clock rate\n");
+			return;
+		}
+		nfc->clk_rate = meson_chip->clk_rate;
+	}
+	if (nfc->bus_timing != meson_chip->bus_timing) {
+		value = (NFC_CLK_CYCLE - 1) | (meson_chip->bus_timing << 5);
+		writel(value, nfc->reg_base + NFC_REG_CFG);
+		writel((1 << 31), nfc->reg_base + NFC_REG_CMD);
+		nfc->bus_timing =  meson_chip->bus_timing;
+	}
+}
+
+static void meson_nfc_cmd_idle(struct meson_nfc *nfc, u32 time)
+{
+	writel(nfc->param.chip_select | NFC_CMD_IDLE | (time & 0x3ff),
+	       nfc->reg_base + NFC_REG_CMD);
+}
+
+static void meson_nfc_cmd_seed(struct meson_nfc *nfc, u32 seed)
+{
+	writel(NFC_CMD_SEED | (0xc2 + (seed & 0x7fff)),
+	       nfc->reg_base + NFC_REG_CMD);
+}
+
+static void meson_nfc_cmd_access(struct nand_chip *nand, int raw, bool dir,
+				 int scrambler)
+{
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct meson_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	u32 bch = meson_chip->bch_mode, cmd;
+	int len = mtd->writesize, pagesize, pages;
+
+	pagesize = nand->ecc.size;
+
+	if (raw) {
+		len = mtd->writesize + mtd->oobsize;
+		cmd = (len & GENMASK(5, 0)) | scrambler | DMA_DIR(dir);
+		writel(cmd, nfc->reg_base + NFC_REG_CMD);
+		return;
+	}
+
+	pages = len / nand->ecc.size;
+
+	cmd = CMDRWGEN(DMA_DIR(dir), scrambler, bch,
+		       NFC_CMD_SHORTMODE_DISABLE, pagesize, pages);
+
+	writel(cmd, nfc->reg_base + NFC_REG_CMD);
+}
+
+static void meson_nfc_drain_cmd(struct meson_nfc *nfc)
+{
+	/*
+	 * Insert two commands to make sure all valid commands are finished.
+	 *
+	 * The Nand flash controller is designed as two stages pipleline -
+	 *  a) fetch and b) excute.
+	 * There might be cases when the driver see command queue is empty,
+	 * but the Nand flash controller still has two commands buffered,
+	 * one is fetched into NFC request queue (ready to run), and another
+	 * is actively executing. So pushing 2 "IDLE" commands guarantees that
+	 * the pipeline is emptied.
+	 */
+	meson_nfc_cmd_idle(nfc, 0);
+	meson_nfc_cmd_idle(nfc, 0);
+}
+
+static int meson_nfc_wait_cmd_finish(struct meson_nfc *nfc,
+				     unsigned int timeout_ms)
+{
+	u32 cmd_size = 0;
+	int ret;
+
+	/* wait cmd fifo is empty */
+	ret = readl_relaxed_poll_timeout(nfc->reg_base + NFC_REG_CMD, cmd_size,
+					 !NFC_CMD_GET_SIZE(cmd_size),
+					 10, timeout_ms * 1000);
+	if (ret)
+		dev_err(nfc->dev, "wait for empty CMD FIFO time out\n");
+
+	return ret;
+}
+
+static int meson_nfc_wait_dma_finish(struct meson_nfc *nfc)
+{
+	meson_nfc_drain_cmd(nfc);
+
+	return meson_nfc_wait_cmd_finish(nfc, DMA_BUSY_TIMEOUT);
+}
+
+static u8 *meson_nfc_oob_ptr(struct nand_chip *nand, int i)
+{
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	int len;
+
+	len = nand->ecc.size * (i + 1) + (nand->ecc.bytes + 2) * i;
+
+	return meson_chip->data_buf + len;
+}
+
+static u8 *meson_nfc_data_ptr(struct nand_chip *nand, int i)
+{
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	int len, temp;
+
+	temp = nand->ecc.size + nand->ecc.bytes;
+	len = (temp + 2) * i;
+
+	return meson_chip->data_buf + len;
+}
+
+static void meson_nfc_get_data_oob(struct nand_chip *nand,
+				   u8 *buf, u8 *oobbuf)
+{
+	int i, oob_len = 0;
+	u8 *dsrc, *osrc;
+
+	oob_len = nand->ecc.bytes + 2;
+	for (i = 0; i < nand->ecc.steps; i++) {
+		if (buf) {
+			dsrc = meson_nfc_data_ptr(nand, i);
+			memcpy(buf, dsrc, nand->ecc.size);
+			buf += nand->ecc.size;
+		}
+		osrc = meson_nfc_oob_ptr(nand, i);
+		memcpy(oobbuf, osrc, oob_len);
+		oobbuf += oob_len;
+	}
+}
+
+static void meson_nfc_set_data_oob(struct nand_chip *nand,
+				   const u8 *buf, u8 *oobbuf)
+{
+	int i, oob_len = 0;
+	u8 *dsrc, *osrc;
+
+	oob_len = nand->ecc.bytes + 2;
+	for (i = 0; i < nand->ecc.steps; i++) {
+		if (buf) {
+			dsrc = meson_nfc_data_ptr(nand, i);
+			memcpy(dsrc, buf, nand->ecc.size);
+			buf += nand->ecc.size;
+		}
+		osrc = meson_nfc_oob_ptr(nand, i);
+		memcpy(osrc, oobbuf, oob_len);
+		oobbuf += oob_len;
+	}
+}
+
+static int meson_nfc_queue_rb(struct meson_nfc *nfc, int timeout_ms)
+{
+	u32 cmd, cfg;
+	int ret = 0;
+
+	meson_nfc_cmd_idle(nfc, nfc->timing.twb);
+	meson_nfc_drain_cmd(nfc);
+	meson_nfc_wait_cmd_finish(nfc, CMD_FIFO_EMPTY_TIMEOUT);
+
+	cfg = readl(nfc->reg_base + NFC_REG_CFG);
+	cfg |= NFC_RB_IRQ_EN;
+	writel(cfg, nfc->reg_base + NFC_REG_CFG);
+
+	init_completion(&nfc->completion);
+
+	/* use the max erase time as the maximum clock for waiting R/B */
+	cmd = NFC_CMD_RB | NFC_CMD_RB_INT
+		| nfc->param.chip_select | nfc->timing.tbers_max;
+	writel(cmd, nfc->reg_base + NFC_REG_CMD);
+
+	ret = wait_for_completion_timeout(&nfc->completion,
+					  msecs_to_jiffies(timeout_ms));
+	if (ret == 0)
+		ret = -1;
+
+	return ret;
+}
+
+static void meson_nfc_set_user_byte(struct nand_chip *nand, u8 *oob_buf)
+{
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	__le64 *info;
+	int i, count;
+
+	for (i = 0, count = 0; i < nand->ecc.steps; i++, count += 2) {
+		info = &meson_chip->info_buf[i];
+		*info |= oob_buf[count];
+		*info |= oob_buf[count + 1] << 8;
+	}
+}
+
+static void meson_nfc_get_user_byte(struct nand_chip *nand, u8 *oob_buf)
+{
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	__le64 *info;
+	int i, count;
+
+	for (i = 0, count = 0; i < nand->ecc.steps; i++, count += 2) {
+		info = &meson_chip->info_buf[i];
+		oob_buf[count] = *info;
+		oob_buf[count + 1] = *info >> 8;
+	}
+}
+
+static int meson_nfc_ecc_correct(struct nand_chip *nand, u32 *bitflips,
+				 u64 *correct_bitmap)
+{
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	__le64 *info;
+	int ret = 0, i;
+
+	for (i = 0; i < nand->ecc.steps; i++) {
+		info = &meson_chip->info_buf[i];
+		if (ECC_ERR_CNT(*info) != ECC_UNCORRECTABLE) {
+			mtd->ecc_stats.corrected += ECC_ERR_CNT(*info);
+			*bitflips = max_t(u32, *bitflips, ECC_ERR_CNT(*info));
+			*correct_bitmap |= 1 >> i;
+			continue;
+		}
+		if ((nand->options & NAND_NEED_SCRAMBLING) &&
+		    ECC_ZERO_CNT(*info) < nand->ecc.strength) {
+			mtd->ecc_stats.corrected += ECC_ZERO_CNT(*info);
+			*bitflips = max_t(u32, *bitflips,
+					  ECC_ZERO_CNT(*info));
+			ret = ECC_CHECK_RETURN_FF;
+		} else {
+			ret = -EBADMSG;
+		}
+	}
+	return ret;
+}
+
+static int meson_nfc_dma_buffer_setup(struct nand_chip *nand, u8 *databuf,
+				      int datalen, u8 *infobuf, int infolen,
+				      enum dma_data_direction dir)
+{
+	struct meson_nfc *nfc = nand_get_controller_data(nand);
+	u32 cmd;
+	int ret = 0;
+
+	nfc->daddr = dma_map_single(nfc->dev, (void *)databuf, datalen, dir);
+	ret = dma_mapping_error(nfc->dev, nfc->daddr);
+	if (ret) {
+		dev_err(nfc->dev, "DMA mapping error\n");
+		return ret;
+	}
+	cmd = GENCMDDADDRL(NFC_CMD_ADL, nfc->daddr);
+	writel(cmd, nfc->reg_base + NFC_REG_CMD);
+
+	cmd = GENCMDDADDRH(NFC_CMD_ADH, nfc->daddr);
+	writel(cmd, nfc->reg_base + NFC_REG_CMD);
+
+	if (infobuf) {
+		nfc->iaddr = dma_map_single(nfc->dev, infobuf, infolen, dir);
+		ret = dma_mapping_error(nfc->dev, nfc->iaddr);
+		if (ret) {
+			dev_err(nfc->dev, "DMA mapping error\n");
+			dma_unmap_single(nfc->dev,
+					 nfc->daddr, datalen, dir);
+			return ret;
+		}
+		cmd = GENCMDIADDRL(NFC_CMD_AIL, nfc->iaddr);
+		writel(cmd, nfc->reg_base + NFC_REG_CMD);
+
+		cmd = GENCMDIADDRH(NFC_CMD_AIH, nfc->iaddr);
+		writel(cmd, nfc->reg_base + NFC_REG_CMD);
+	}
+
+	return ret;
+}
+
+static void meson_nfc_dma_buffer_release(struct nand_chip *nand,
+					 int infolen, int datalen,
+					 enum dma_data_direction dir)
+{
+	struct meson_nfc *nfc = nand_get_controller_data(nand);
+
+	dma_unmap_single(nfc->dev, nfc->daddr, datalen, dir);
+	if (infolen)
+		dma_unmap_single(nfc->dev, nfc->iaddr, infolen, dir);
+}
+
+static int meson_nfc_read_buf(struct nand_chip *nand, u8 *buf, int len)
+{
+	struct meson_nfc *nfc = nand_get_controller_data(nand);
+	int ret = 0;
+	u32 cmd;
+	u8 *info;
+
+	info = kzalloc(PER_INFO_BYTE, GFP_KERNEL);
+	ret = meson_nfc_dma_buffer_setup(nand, buf, len, info,
+					 PER_INFO_BYTE, DMA_FROM_DEVICE);
+	if (ret)
+		return ret;
+
+	cmd = NFC_CMD_N2M | (len & GENMASK(5, 0));
+	writel(cmd, nfc->reg_base + NFC_REG_CMD);
+
+	meson_nfc_drain_cmd(nfc);
+	meson_nfc_wait_cmd_finish(nfc, 1000);
+	meson_nfc_dma_buffer_release(nand, len, PER_INFO_BYTE, DMA_FROM_DEVICE);
+	kfree(info);
+
+	return ret;
+}
+
+static int meson_nfc_write_buf(struct nand_chip *nand, u8 *buf, int len)
+{
+	struct meson_nfc *nfc = nand_get_controller_data(nand);
+	int ret = 0;
+	u32 cmd;
+
+	ret = meson_nfc_dma_buffer_setup(nand, buf, len, NULL,
+					 0, DMA_TO_DEVICE);
+	if (ret)
+		return ret;
+
+	cmd = NFC_CMD_M2N | (len & GENMASK(5, 0));
+	writel(cmd, nfc->reg_base + NFC_REG_CMD);
+
+	meson_nfc_drain_cmd(nfc);
+	meson_nfc_wait_cmd_finish(nfc, 1000);
+	meson_nfc_dma_buffer_release(nand, len, 0, DMA_TO_DEVICE);
+
+	return ret;
+}
+
+static int meson_nfc_rw_cmd_prepare_and_execute(struct nand_chip *nand,
+						int page, bool in)
+{
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct meson_nfc *nfc = nand_get_controller_data(nand);
+	const struct nand_sdr_timings *sdr =
+		nand_get_sdr_timings(&nand->data_interface);
+	u32 *addrs = nfc->cmdfifo.rw.addrs;
+	u32 cs = nfc->param.chip_select;
+	u32 cmd0, cmd_num, row_start;
+	int ret = 0, i;
+
+	cmd_num = sizeof(struct nand_rw_cmd) / sizeof(int);
+
+	cmd0 = in ? NAND_CMD_READ0 : NAND_CMD_SEQIN;
+	nfc->cmdfifo.rw.cmd0 = cs | NFC_CMD_CLE | cmd0;
+
+	addrs[0] = cs | NFC_CMD_ALE | 0;
+	if (mtd->writesize <= 512) {
+		cmd_num--;
+		row_start = 1;
+	} else {
+		addrs[1] = cs | NFC_CMD_ALE | 0;
+		row_start = 2;
+	}
+
+	addrs[row_start] = cs | NFC_CMD_ALE | ROW_ADDER(page, 0);
+	addrs[row_start + 1] = cs | NFC_CMD_ALE | ROW_ADDER(page, 1);
+
+	if (nand->options & NAND_ROW_ADDR_3)
+		addrs[row_start + 2] =
+			cs | NFC_CMD_ALE | ROW_ADDER(page, 2);
+	else
+		cmd_num--;
+
+	/* subtract cmd1 */
+	cmd_num--;
+
+	for (i = 0; i < cmd_num; i++)
+		writel_relaxed(nfc->cmdfifo.cmd[i],
+			       nfc->reg_base + NFC_REG_CMD);
+
+	if (in) {
+		nfc->cmdfifo.rw.cmd1 = cs | NFC_CMD_CLE | NAND_CMD_READSTART;
+		writel(nfc->cmdfifo.rw.cmd1, nfc->reg_base + NFC_REG_CMD);
+		meson_nfc_queue_rb(nfc, PSEC_TO_MSEC(sdr->tR_max));
+	} else {
+		meson_nfc_cmd_idle(nfc, nfc->timing.tadl);
+	}
+
+	return ret;
+}
+
+static int meson_nfc_write_page_sub(struct nand_chip *nand,
+				    int page, int raw)
+{
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	const struct nand_sdr_timings *sdr =
+		nand_get_sdr_timings(&nand->data_interface);
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	struct meson_nfc *nfc = nand_get_controller_data(nand);
+	int data_len, info_len;
+	u32 cmd;
+	int ret;
+
+	meson_nfc_select_chip(nand, nand->cur_cs);
+
+	data_len =  mtd->writesize + mtd->oobsize;
+	info_len = nand->ecc.steps * PER_INFO_BYTE;
+
+	ret = meson_nfc_rw_cmd_prepare_and_execute(nand, page, DIRWRITE);
+	if (ret)
+		return ret;
+
+	ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf,
+					 data_len, (u8 *)meson_chip->info_buf,
+					 info_len, DMA_TO_DEVICE);
+	if (ret)
+		return ret;
+
+	if (nand->options & NAND_NEED_SCRAMBLING) {
+		meson_nfc_cmd_seed(nfc, page);
+		meson_nfc_cmd_access(nand, raw, DIRWRITE,
+				     NFC_CMD_SCRAMBLER_ENABLE);
+	} else {
+		meson_nfc_cmd_access(nand, raw, DIRWRITE,
+				     NFC_CMD_SCRAMBLER_DISABLE);
+	}
+
+	cmd = nfc->param.chip_select | NFC_CMD_CLE | NAND_CMD_PAGEPROG;
+	writel(cmd, nfc->reg_base + NFC_REG_CMD);
+	meson_nfc_queue_rb(nfc, PSEC_TO_MSEC(sdr->tPROG_max));
+
+	meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_TO_DEVICE);
+
+	return ret;
+}
+
+static int meson_nfc_write_page_raw(struct nand_chip *nand, const u8 *buf,
+				    int oob_required, int page)
+{
+	u8 *oob_buf = nand->oob_poi;
+
+	meson_nfc_set_data_oob(nand, buf, oob_buf);
+
+	return meson_nfc_write_page_sub(nand, page, 1);
+}
+
+static int meson_nfc_write_page_hwecc(struct nand_chip *nand,
+				      const u8 *buf, int oob_required, int page)
+{
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	u8 *oob_buf = nand->oob_poi;
+
+	memcpy(meson_chip->data_buf, buf, mtd->writesize);
+	memset(meson_chip->info_buf, 0, nand->ecc.steps * PER_INFO_BYTE);
+	meson_nfc_set_user_byte(nand, oob_buf);
+
+	return meson_nfc_write_page_sub(nand, page, 0);
+}
+
+static void meson_nfc_check_ecc_pages_valid(struct meson_nfc *nfc,
+					    struct nand_chip *nand, int raw)
+{
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	__le64 *info;
+	u32 neccpages;
+	int ret;
+
+	neccpages = raw ? 1 : nand->ecc.steps;
+	info = &meson_chip->info_buf[neccpages - 1];
+	do {
+		usleep_range(10, 15);
+		/* info is updated by nfc dma engine*/
+		smp_rmb();
+		ret = *info & ECC_COMPLETE;
+	} while (!ret);
+}
+
+static int meson_nfc_read_page_sub(struct nand_chip *nand,
+				   int page, int raw)
+{
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct meson_nfc *nfc = nand_get_controller_data(nand);
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	int data_len, info_len;
+	int ret;
+
+	meson_nfc_select_chip(nand, nand->cur_cs);
+
+	data_len =  mtd->writesize + mtd->oobsize;
+	info_len = nand->ecc.steps * PER_INFO_BYTE;
+
+	ret = meson_nfc_rw_cmd_prepare_and_execute(nand, page, DIRREAD);
+	if (ret)
+		return ret;
+
+	ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf,
+					 data_len, (u8 *)meson_chip->info_buf,
+					 info_len, DMA_FROM_DEVICE);
+	if (ret)
+		return ret;
+
+	if (nand->options & NAND_NEED_SCRAMBLING) {
+		meson_nfc_cmd_seed(nfc, page);
+		meson_nfc_cmd_access(nand, raw, DIRREAD,
+				     NFC_CMD_SCRAMBLER_ENABLE);
+	} else {
+		meson_nfc_cmd_access(nand, raw, DIRREAD,
+				     NFC_CMD_SCRAMBLER_DISABLE);
+	}
+
+	ret = meson_nfc_wait_dma_finish(nfc);
+	meson_nfc_check_ecc_pages_valid(nfc, nand, raw);
+
+	meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_FROM_DEVICE);
+
+	return ret;
+}
+
+static int meson_nfc_read_page_raw(struct nand_chip *nand, u8 *buf,
+				   int oob_required, int page)
+{
+	u8 *oob_buf = nand->oob_poi;
+	int ret;
+
+	ret = meson_nfc_read_page_sub(nand, page, 1);
+	if (ret)
+		return ret;
+
+	meson_nfc_get_data_oob(nand, buf, oob_buf);
+
+	return 0;
+}
+
+static int meson_nfc_read_page_hwecc(struct nand_chip *nand, u8 *buf,
+				     int oob_required, int page)
+{
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
+	u64 correct_bitmap = 0;
+	u32 bitflips = 0;
+	u8 *oob_buf = nand->oob_poi;
+	int ret, i;
+
+	ret = meson_nfc_read_page_sub(nand, page, 0);
+	if (ret)
+		return ret;
+
+	meson_nfc_get_user_byte(nand, oob_buf);
+	ret = meson_nfc_ecc_correct(nand, &bitflips, &correct_bitmap);
+	if (ret == ECC_CHECK_RETURN_FF) {
+		if (buf)
+			memset(buf, 0xff, mtd->writesize);
+		memset(oob_buf, 0xff, mtd->oobsize);
+	} else if (ret < 0) {
+		if ((nand->options & NAND_NEED_SCRAMBLING) || !buf) {
+			mtd->ecc_stats.failed++;
+			return bitflips;
+		}
+		ret  = meson_nfc_read_page_raw(nand, buf, 0, page);
+		if (ret)
+			return ret;
+
+		for (i = 0; i < nand->ecc.steps ; i++) {
+			u8 *data = buf + i * ecc->size;
+			u8 *oob = nand->oob_poi + i * (ecc->bytes + 2);
+
+			if (correct_bitmap & (1 << i))
+				continue;
+			ret = nand_check_erased_ecc_chunk(data,	ecc->size,
+							  oob, ecc->bytes + 2,
+							  NULL, 0,
+							  ecc->strength);
+			if (ret < 0) {
+				mtd->ecc_stats.failed++;
+			} else {
+				mtd->ecc_stats.corrected += ret;
+				bitflips =  max_t(u32, bitflips, ret);
+			}
+		}
+	} else if (buf && buf != meson_chip->data_buf) {
+		memcpy(buf, meson_chip->data_buf, mtd->writesize);
+	}
+
+	return bitflips;
+}
+
+static int meson_nfc_read_oob_raw(struct nand_chip *nand, int page)
+{
+	return meson_nfc_read_page_raw(nand, NULL, 1, page);
+}
+
+static int meson_nfc_read_oob(struct nand_chip *nand, int page)
+{
+	return meson_nfc_read_page_hwecc(nand, NULL, 1, page);
+}
+
+static bool meson_nfc_is_buffer_dma_safe(const void *buffer)
+{
+	if (virt_addr_valid(buffer) && (!object_is_on_stack(buffer)))
+		return true;
+	return false;
+}
+
+static void *
+meson_nand_op_get_dma_safe_input_buf(const struct nand_op_instr *instr)
+{
+	if (WARN_ON(instr->type != NAND_OP_DATA_IN_INSTR))
+		return NULL;
+
+	if (meson_nfc_is_buffer_dma_safe(instr->ctx.data.buf.in))
+		return instr->ctx.data.buf.in;
+
+	return kzalloc(instr->ctx.data.len, GFP_KERNEL);
+}
+
+static void
+meson_nand_op_put_dma_safe_input_buf(const struct nand_op_instr *instr,
+				     void *buf)
+{
+	if (WARN_ON(instr->type != NAND_OP_DATA_IN_INSTR) ||
+	    WARN_ON(!buf))
+		return;
+
+	if (buf == instr->ctx.data.buf.in)
+		return;
+
+	memcpy(instr->ctx.data.buf.in, buf, instr->ctx.data.len);
+	kfree(buf);
+}
+
+static void *
+meson_nand_op_get_dma_safe_output_buf(const struct nand_op_instr *instr)
+{
+	if (WARN_ON(instr->type != NAND_OP_DATA_OUT_INSTR))
+		return NULL;
+
+	if (meson_nfc_is_buffer_dma_safe(instr->ctx.data.buf.out))
+		return (void *)instr->ctx.data.buf.out;
+
+	return kmemdup(instr->ctx.data.buf.out,
+		       instr->ctx.data.len, GFP_KERNEL);
+}
+
+static void
+meson_nand_op_put_dma_safe_output_buf(const struct nand_op_instr *instr,
+				      const void *buf)
+{
+	if (WARN_ON(instr->type != NAND_OP_DATA_OUT_INSTR) ||
+	    WARN_ON(!buf))
+		return;
+
+	if (buf != instr->ctx.data.buf.out)
+		kfree(buf);
+}
+
+static int meson_nfc_exec_op(struct nand_chip *nand,
+			     const struct nand_operation *op, bool check_only)
+{
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	struct meson_nfc *nfc = nand_get_controller_data(nand);
+	const struct nand_op_instr *instr = NULL;
+	void *buf;
+	u32 op_id, delay_idle, cmd;
+	int i;
+
+	meson_nfc_select_chip(nand, op->cs);
+	for (op_id = 0; op_id < op->ninstrs; op_id++) {
+		instr = &op->instrs[op_id];
+		delay_idle = DIV_ROUND_UP(PSEC_TO_NSEC(instr->delay_ns),
+					  meson_chip->level1_divider *
+					  NFC_CLK_CYCLE);
+		switch (instr->type) {
+		case NAND_OP_CMD_INSTR:
+			cmd = nfc->param.chip_select | NFC_CMD_CLE;
+			cmd |= instr->ctx.cmd.opcode & 0xff;
+			writel(cmd, nfc->reg_base + NFC_REG_CMD);
+			meson_nfc_cmd_idle(nfc, delay_idle);
+			break;
+
+		case NAND_OP_ADDR_INSTR:
+			for (i = 0; i < instr->ctx.addr.naddrs; i++) {
+				cmd = nfc->param.chip_select | NFC_CMD_ALE;
+				cmd |= instr->ctx.addr.addrs[i] & 0xff;
+				writel(cmd, nfc->reg_base + NFC_REG_CMD);
+			}
+			meson_nfc_cmd_idle(nfc, delay_idle);
+			break;
+
+		case NAND_OP_DATA_IN_INSTR:
+			buf = meson_nand_op_get_dma_safe_input_buf(instr);
+			if (!buf)
+				return -ENOMEM;
+			meson_nfc_read_buf(nand, buf, instr->ctx.data.len);
+			meson_nand_op_put_dma_safe_input_buf(instr, buf);
+			break;
+
+		case NAND_OP_DATA_OUT_INSTR:
+			buf = meson_nand_op_get_dma_safe_output_buf(instr);
+			if (!buf)
+				return -ENOMEM;
+			meson_nfc_write_buf(nand, buf, instr->ctx.data.len);
+			meson_nand_op_put_dma_safe_output_buf(instr, buf);
+			break;
+
+		case NAND_OP_WAITRDY_INSTR:
+			meson_nfc_queue_rb(nfc, instr->ctx.waitrdy.timeout_ms);
+			if (instr->delay_ns)
+				meson_nfc_cmd_idle(nfc, delay_idle);
+			break;
+		}
+	}
+	meson_nfc_wait_cmd_finish(nfc, 1000);
+	return 0;
+}
+
+static int meson_ooblayout_ecc(struct mtd_info *mtd, int section,
+			       struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+
+	if (section >= nand->ecc.steps)
+		return -ERANGE;
+
+	oobregion->offset =  2 + (section * (2 + nand->ecc.bytes));
+	oobregion->length = nand->ecc.bytes;
+
+	return 0;
+}
+
+static int meson_ooblayout_free(struct mtd_info *mtd, int section,
+				struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+
+	if (section >= nand->ecc.steps)
+		return -ERANGE;
+
+	oobregion->offset = section * (2 + nand->ecc.bytes);
+	oobregion->length = 2;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops meson_ooblayout_ops = {
+	.ecc = meson_ooblayout_ecc,
+	.free = meson_ooblayout_free,
+};
+
+static int meson_nfc_clk_init(struct meson_nfc *nfc)
+{
+	int ret;
+
+	/* request core clock */
+	nfc->core_clk = devm_clk_get(nfc->dev, "core");
+	if (IS_ERR(nfc->core_clk)) {
+		dev_err(nfc->dev, "failed to get core clock\n");
+		return PTR_ERR(nfc->core_clk);
+	}
+
+	nfc->device_clk = devm_clk_get(nfc->dev, "device");
+	if (IS_ERR(nfc->device_clk)) {
+		dev_err(nfc->dev, "failed to get device clock\n");
+		return PTR_ERR(nfc->device_clk);
+	}
+
+	nfc->phase_tx = devm_clk_get(nfc->dev, "tx");
+	if (IS_ERR(nfc->phase_tx)) {
+		dev_err(nfc->dev, "failed to get TX clk\n");
+		return PTR_ERR(nfc->phase_tx);
+	}
+
+	nfc->phase_rx = devm_clk_get(nfc->dev, "rx");
+	if (IS_ERR(nfc->phase_rx)) {
+		dev_err(nfc->dev, "failed to get RX clk\n");
+		return PTR_ERR(nfc->phase_rx);
+	}
+
+	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
+	regmap_update_bits(nfc->reg_clk,
+			   0, CLK_SELECT_NAND, CLK_SELECT_NAND);
+
+	ret = clk_prepare_enable(nfc->core_clk);
+	if (ret) {
+		dev_err(nfc->dev, "failed to enable core clock\n");
+		return ret;
+	}
+
+	ret = clk_prepare_enable(nfc->device_clk);
+	if (ret) {
+		dev_err(nfc->dev, "failed to enable device clock\n");
+		goto err_device_clk;
+	}
+
+	ret = clk_prepare_enable(nfc->phase_tx);
+	if (ret) {
+		dev_err(nfc->dev, "failed to enable TX clock\n");
+		goto err_phase_tx;
+	}
+
+	ret = clk_prepare_enable(nfc->phase_rx);
+	if (ret) {
+		dev_err(nfc->dev, "failed to enable RX clock\n");
+		goto err_phase_rx;
+	}
+
+	ret = clk_set_rate(nfc->device_clk, 24000000);
+	if (ret)
+		goto err_phase_rx;
+
+	return 0;
+err_phase_rx:
+	clk_disable_unprepare(nfc->phase_tx);
+err_phase_tx:
+	clk_disable_unprepare(nfc->device_clk);
+err_device_clk:
+	clk_disable_unprepare(nfc->core_clk);
+	return ret;
+}
+
+static void meson_nfc_disable_clk(struct meson_nfc *nfc)
+{
+	clk_disable_unprepare(nfc->phase_rx);
+	clk_disable_unprepare(nfc->phase_tx);
+	clk_disable_unprepare(nfc->device_clk);
+	clk_disable_unprepare(nfc->core_clk);
+}
+
+static void meson_nfc_free_buffer(struct nand_chip *nand)
+{
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+
+	kfree(meson_chip->info_buf);
+	kfree(meson_chip->data_buf);
+}
+
+static int meson_chip_buffer_init(struct nand_chip *nand)
+{
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	u32 page_bytes, info_bytes, nsectors;
+
+	nsectors = mtd->writesize / nand->ecc.size;
+
+	page_bytes =  mtd->writesize + mtd->oobsize;
+	info_bytes = nsectors * PER_INFO_BYTE;
+
+	meson_chip->data_buf = kmalloc(page_bytes, GFP_KERNEL);
+	if (!meson_chip->data_buf)
+		return -ENOMEM;
+
+	meson_chip->info_buf = kmalloc(info_bytes, GFP_KERNEL);
+	if (!meson_chip->info_buf) {
+		kfree(meson_chip->data_buf);
+		return -ENOMEM;
+	}
+
+	return 0;
+}
+
+static
+int meson_nfc_setup_data_interface(struct nand_chip *nand, int csline,
+				   const struct nand_data_interface *conf)
+{
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	const struct nand_sdr_timings *timings;
+	u32 div, bt_min, bt_max, tbers_clocks;
+
+	timings = nand_get_sdr_timings(conf);
+	if (IS_ERR(timings))
+		return -ENOTSUPP;
+
+	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
+
+	div = DIV_ROUND_UP((timings->tRC_min / 1000), NFC_CLK_CYCLE);
+	bt_min = (timings->tREA_max + NFC_DEFAULT_DELAY) / div;
+	bt_max = (NFC_DEFAULT_DELAY + timings->tRHOH_min +
+		  timings->tRC_min / 2) / div;
+
+	meson_chip->twb = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tWB_max),
+				       div * NFC_CLK_CYCLE);
+	meson_chip->tadl = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tADL_min),
+					div * NFC_CLK_CYCLE);
+	tbers_clocks = DIV_ROUND_UP_ULL(PSEC_TO_NSEC(timings->tBERS_max),
+					div * NFC_CLK_CYCLE);
+	meson_chip->tbers_max = ilog2(tbers_clocks);
+	if (!is_power_of_2(tbers_clocks))
+		meson_chip->tbers_max++;
+
+	bt_min = DIV_ROUND_UP(bt_min, 1000);
+	bt_max = DIV_ROUND_UP(bt_max, 1000);
+
+	if (bt_max < bt_min)
+		return -EINVAL;
+
+	meson_chip->level1_divider = div;
+	meson_chip->clk_rate = 1000000000 / meson_chip->level1_divider;
+	meson_chip->bus_timing = (bt_min + bt_max) / 2 + 1;
+
+	return 0;
+}
+
+static int meson_nand_bch_mode(struct nand_chip *nand)
+{
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	int i;
+
+	if (nand->ecc.strength > 60 || nand->ecc.strength < 8)
+		return -EINVAL;
+
+	for (i = 0; i < ARRAY_SIZE(meson_ecc); i++) {
+		if (meson_ecc[i].strength == nand->ecc.strength) {
+			meson_chip->bch_mode = meson_ecc[i].bch;
+			return 0;
+		}
+	}
+
+	return -EINVAL;
+}
+
+static void meson_nand_detach_chip(struct nand_chip *nand)
+{
+	meson_nfc_free_buffer(nand);
+}
+
+static int meson_nand_attach_chip(struct nand_chip *nand)
+{
+	struct meson_nfc *nfc = nand_get_controller_data(nand);
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	int nsectors = mtd->writesize / 1024;
+	int ret;
+
+	if (!mtd->name) {
+		mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
+					   "%s:nand%d",
+					   dev_name(nfc->dev),
+					   meson_chip->sels[0]);
+		if (!mtd->name)
+			return -ENOMEM;
+	}
+
+	if (nand->bbt_options & NAND_BBT_USE_FLASH)
+		nand->bbt_options |= NAND_BBT_NO_OOB;
+
+	nand->options |= NAND_NO_SUBPAGE_WRITE;
+
+	ret = nand_ecc_choose_conf(nand, nfc->data->ecc_caps,
+				   mtd->oobsize - 2 * nsectors);
+	if (ret) {
+		dev_err(nfc->dev, "failed to ECC init\n");
+		return -EINVAL;
+	}
+
+	ret = meson_nand_bch_mode(nand);
+	if (ret)
+		return -EINVAL;
+
+	nand->ecc.mode = NAND_ECC_HW;
+	nand->ecc.write_page_raw = meson_nfc_write_page_raw;
+	nand->ecc.write_page = meson_nfc_write_page_hwecc;
+	nand->ecc.write_oob_raw = nand_write_oob_std;
+	nand->ecc.write_oob = nand_write_oob_std;
+
+	nand->ecc.read_page_raw = meson_nfc_read_page_raw;
+	nand->ecc.read_page = meson_nfc_read_page_hwecc;
+	nand->ecc.read_oob_raw = meson_nfc_read_oob_raw;
+	nand->ecc.read_oob = meson_nfc_read_oob;
+
+	if (nand->options & NAND_BUSWIDTH_16) {
+		dev_err(nfc->dev, "16bits bus width not supported");
+		return -EINVAL;
+	}
+	ret = meson_chip_buffer_init(nand);
+	if (ret)
+		return -ENOMEM;
+
+	return ret;
+}
+
+static const struct nand_controller_ops meson_nand_controller_ops = {
+	.attach_chip = meson_nand_attach_chip,
+	.detach_chip = meson_nand_detach_chip,
+	.setup_data_interface = meson_nfc_setup_data_interface,
+	.exec_op = meson_nfc_exec_op,
+};
+
+static int
+meson_nfc_nand_chip_init(struct device *dev,
+			 struct meson_nfc *nfc, struct device_node *np)
+{
+	struct meson_nfc_nand_chip *meson_chip;
+	struct nand_chip *nand;
+	struct mtd_info *mtd;
+	int ret, i;
+	u32 tmp, nsels;
+
+	if (!of_get_property(np, "reg", &nsels))
+		return -EINVAL;
+
+	nsels /= sizeof(u32);
+	if (!nsels || nsels > MAX_CE_NUM) {
+		dev_err(dev, "invalid register property size\n");
+		return -EINVAL;
+	}
+
+	meson_chip = devm_kzalloc(dev,
+				  sizeof(*meson_chip) + (nsels * sizeof(u8)),
+				  GFP_KERNEL);
+	if (!meson_chip)
+		return -ENOMEM;
+
+	meson_chip->nsels = nsels;
+
+	for (i = 0; i < nsels; i++) {
+		ret = of_property_read_u32_index(np, "reg", i, &tmp);
+		if (ret) {
+			dev_err(dev, "could not retrieve register property: %d\n",
+				ret);
+			return ret;
+		}
+
+		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
+			dev_err(dev, "CS %d already assigned\n", tmp);
+			return -EINVAL;
+		}
+	}
+
+	nand = &meson_chip->nand;
+	nand->controller = &nfc->controller;
+	nand->controller->ops = &meson_nand_controller_ops;
+	nand_set_flash_node(nand, np);
+	nand_set_controller_data(nand, nfc);
+
+	nand->options |= NAND_USE_BOUNCE_BUFFER;
+	mtd = nand_to_mtd(nand);
+	mtd->owner = THIS_MODULE;
+	mtd->dev.parent = dev;
+
+	ret = nand_scan(nand, nsels);
+	if (ret)
+		return ret;
+
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret) {
+		dev_err(dev, "failed to register MTD device: %d\n", ret);
+		nand_cleanup(nand);
+		return ret;
+	}
+
+	list_add_tail(&meson_chip->node, &nfc->chips);
+
+	return 0;
+}
+
+static int meson_nfc_nand_chip_cleanup(struct meson_nfc *nfc)
+{
+	struct meson_nfc_nand_chip *meson_chip;
+	struct mtd_info *mtd;
+	int ret;
+
+	while (!list_empty(&nfc->chips)) {
+		meson_chip = list_first_entry(&nfc->chips,
+					      struct meson_nfc_nand_chip, node);
+		mtd = nand_to_mtd(&meson_chip->nand);
+		ret = mtd_device_unregister(mtd);
+		if (ret)
+			return ret;
+
+		meson_nfc_free_buffer(&meson_chip->nand);
+		nand_cleanup(&meson_chip->nand);
+		list_del(&meson_chip->node);
+	}
+
+	return 0;
+}
+
+static int meson_nfc_nand_chips_init(struct device *dev,
+				     struct meson_nfc *nfc)
+{
+	struct device_node *np = dev->of_node;
+	struct device_node *nand_np;
+	int ret;
+
+	for_each_child_of_node(np, nand_np) {
+		ret = meson_nfc_nand_chip_init(dev, nfc, nand_np);
+		if (ret) {
+			meson_nfc_nand_chip_cleanup(nfc);
+			return ret;
+		}
+	}
+
+	return 0;
+}
+
+static irqreturn_t meson_nfc_irq(int irq, void *id)
+{
+	struct meson_nfc *nfc = id;
+	u32 cfg;
+
+	cfg = readl(nfc->reg_base + NFC_REG_CFG);
+	if (!(cfg & NFC_RB_IRQ_EN))
+		return IRQ_NONE;
+
+	cfg &= ~(NFC_RB_IRQ_EN);
+	writel(cfg, nfc->reg_base + NFC_REG_CFG);
+
+	complete(&nfc->completion);
+	return IRQ_HANDLED;
+}
+
+static const struct meson_nfc_data meson_gxl_data = {
+	.ecc_caps = &meson_gxl_ecc_caps,
+};
+
+static const struct meson_nfc_data meson_axg_data = {
+	.ecc_caps = &meson_axg_ecc_caps,
+};
+
+static const struct of_device_id meson_nfc_id_table[] = {
+	{
+		.compatible = "amlogic,meson-gxl-nfc",
+		.data = &meson_gxl_data,
+	}, {
+		.compatible = "amlogic,meson-axg-nfc",
+		.data = &meson_axg_data,
+	},
+	{}
+};
+MODULE_DEVICE_TABLE(of, meson_nfc_id_table);
+
+static int meson_nfc_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct meson_nfc *nfc;
+	struct resource *res;
+	int ret, irq;
+
+	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
+	if (!nfc)
+		return -ENOMEM;
+
+	nfc->data = of_device_get_match_data(&pdev->dev);
+	if (!nfc->data)
+		return -ENODEV;
+
+	nand_controller_init(&nfc->controller);
+	INIT_LIST_HEAD(&nfc->chips);
+
+	nfc->dev = dev;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	nfc->reg_base = devm_ioremap_resource(dev, res);
+	if (IS_ERR(nfc->reg_base))
+		return PTR_ERR(nfc->reg_base);
+
+	nfc->reg_clk =
+		syscon_regmap_lookup_by_phandle(dev->of_node,
+						"amlogic,mmc-syscon");
+	if (IS_ERR(nfc->reg_clk)) {
+		dev_err(dev, "Failed to lookup clock base\n");
+		return PTR_ERR(nfc->reg_clk);
+	}
+
+	irq = platform_get_irq(pdev, 0);
+	if (irq < 0) {
+		dev_err(dev, "no NFC IRQ resource\n");
+		return -EINVAL;
+	}
+
+	ret = meson_nfc_clk_init(nfc);
+	if (ret) {
+		dev_err(dev, "failed to initialize NAND clock\n");
+		return ret;
+	}
+
+	writel(0, nfc->reg_base + NFC_REG_CFG);
+	ret = devm_request_irq(dev, irq, meson_nfc_irq, 0, dev_name(dev), nfc);
+	if (ret) {
+		dev_err(dev, "failed to request NFC IRQ\n");
+		ret = -EINVAL;
+		goto err_clk;
+	}
+
+	ret = dma_set_mask(dev, DMA_BIT_MASK(32));
+	if (ret) {
+		dev_err(dev, "failed to set DMA mask\n");
+		goto err_clk;
+	}
+
+	platform_set_drvdata(pdev, nfc);
+
+	ret = meson_nfc_nand_chips_init(dev, nfc);
+	if (ret) {
+		dev_err(dev, "failed to init NAND chips\n");
+		goto err_clk;
+	}
+
+	return 0;
+err_clk:
+	meson_nfc_disable_clk(nfc);
+	return ret;
+}
+
+static int meson_nfc_remove(struct platform_device *pdev)
+{
+	struct meson_nfc *nfc = platform_get_drvdata(pdev);
+	int ret;
+
+	ret = meson_nfc_nand_chip_cleanup(nfc);
+	if (ret)
+		return ret;
+
+	meson_nfc_disable_clk(nfc);
+
+	platform_set_drvdata(pdev, NULL);
+
+	return 0;
+}
+
+static struct platform_driver meson_nfc_driver = {
+	.probe  = meson_nfc_probe,
+	.remove = meson_nfc_remove,
+	.driver = {
+		.name  = "meson-nand",
+		.of_match_table = meson_nfc_id_table,
+	},
+};
+module_platform_driver(meson_nfc_driver);
+
+MODULE_LICENSE("Dual MIT/GPL");
+MODULE_AUTHOR("Liang Yang <liang.yang@amlogic.com>");
+MODULE_DESCRIPTION("Amlogic's Meson NAND Flash Controller driver");
diff --git a/drivers/mtd/nand/raw/mtk_ecc.c b/drivers/mtd/nand/raw/mtk_ecc.c
index 6432bd70c3b3..05b0c19d72d9 100644
--- a/drivers/mtd/nand/raw/mtk_ecc.c
+++ b/drivers/mtd/nand/raw/mtk_ecc.c
@@ -267,11 +267,15 @@ static struct mtk_ecc *mtk_ecc_get(struct device_node *np)
 	struct mtk_ecc *ecc;
 
 	pdev = of_find_device_by_node(np);
-	if (!pdev || !platform_get_drvdata(pdev))
+	if (!pdev)
 		return ERR_PTR(-EPROBE_DEFER);
 
-	get_device(&pdev->dev);
 	ecc = platform_get_drvdata(pdev);
+	if (!ecc) {
+		put_device(&pdev->dev);
+		return ERR_PTR(-EPROBE_DEFER);
+	}
+
 	clk_prepare_enable(ecc->clk);
 	mtk_ecc_hw_init(ecc);
 
diff --git a/drivers/mtd/nand/raw/mtk_nand.c b/drivers/mtd/nand/raw/mtk_nand.c
index b6b4602f5132..2c0e09187773 100644
--- a/drivers/mtd/nand/raw/mtk_nand.c
+++ b/drivers/mtd/nand/raw/mtk_nand.c
@@ -1451,8 +1451,7 @@ static int mtk_nfc_probe(struct platform_device *pdev)
 	if (!nfc)
 		return -ENOMEM;
 
-	spin_lock_init(&nfc->controller.lock);
-	init_waitqueue_head(&nfc->controller.wq);
+	nand_controller_init(&nfc->controller);
 	INIT_LIST_HEAD(&nfc->chips);
 	nfc->controller.ops = &mtk_nfc_controller_ops;
 
diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c
index 839494ac457c..ddd396e93e32 100644
--- a/drivers/mtd/nand/raw/nand_base.c
+++ b/drivers/mtd/nand/raw/nand_base.c
@@ -278,11 +278,8 @@ EXPORT_SYMBOL_GPL(nand_deselect_target);
 static void nand_release_device(struct nand_chip *chip)
 {
 	/* Release the controller and the chip */
-	spin_lock(&chip->controller->lock);
-	chip->controller->active = NULL;
-	chip->state = FL_READY;
-	wake_up(&chip->controller->wq);
-	spin_unlock(&chip->controller->lock);
+	mutex_unlock(&chip->controller->lock);
+	mutex_unlock(&chip->lock);
 }
 
 /**
@@ -331,57 +328,23 @@ static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
 }
 
 /**
- * panic_nand_get_device - [GENERIC] Get chip for selected access
- * @chip: the nand chip descriptor
- * @new_state: the state which is requested
- *
- * Used when in panic, no locks are taken.
- */
-static void panic_nand_get_device(struct nand_chip *chip, int new_state)
-{
-	/* Hardware controller shared among independent devices */
-	chip->controller->active = chip;
-	chip->state = new_state;
-}
-
-/**
  * nand_get_device - [GENERIC] Get chip for selected access
  * @chip: NAND chip structure
- * @new_state: the state which is requested
  *
- * Get the device and lock it for exclusive access
+ * Lock the device and its controller for exclusive access
+ *
+ * Return: -EBUSY if the chip has been suspended, 0 otherwise
  */
-static int
-nand_get_device(struct nand_chip *chip, int new_state)
+static int nand_get_device(struct nand_chip *chip)
 {
-	spinlock_t *lock = &chip->controller->lock;
-	wait_queue_head_t *wq = &chip->controller->wq;
-	DECLARE_WAITQUEUE(wait, current);
-retry:
-	spin_lock(lock);
-
-	/* Hardware controller shared among independent devices */
-	if (!chip->controller->active)
-		chip->controller->active = chip;
-
-	if (chip->controller->active == chip && chip->state == FL_READY) {
-		chip->state = new_state;
-		spin_unlock(lock);
-		return 0;
-	}
-	if (new_state == FL_PM_SUSPENDED) {
-		if (chip->controller->active->state == FL_PM_SUSPENDED) {
-			chip->state = FL_PM_SUSPENDED;
-			spin_unlock(lock);
-			return 0;
-		}
+	mutex_lock(&chip->lock);
+	if (chip->suspended) {
+		mutex_unlock(&chip->lock);
+		return -EBUSY;
 	}
-	set_current_state(TASK_UNINTERRUPTIBLE);
-	add_wait_queue(wq, &wait);
-	spin_unlock(lock);
-	schedule();
-	remove_wait_queue(wq, &wait);
-	goto retry;
+	mutex_lock(&chip->controller->lock);
+
+	return 0;
 }
 
 /**
@@ -458,7 +421,7 @@ static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
 			     struct mtd_oob_ops *ops)
 {
 	struct mtd_info *mtd = nand_to_mtd(chip);
-	int chipnr, page, status, len;
+	int chipnr, page, status, len, ret;
 
 	pr_debug("%s: to = 0x%08x, len = %i\n",
 			 __func__, (unsigned int)to, (int)ops->ooblen);
@@ -480,7 +443,9 @@ static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
 	 * it in the doc2000 driver in August 1999.  dwmw2.
 	 */
-	nand_reset(chip, chipnr);
+	ret = nand_reset(chip, chipnr);
+	if (ret)
+		return ret;
 
 	nand_select_target(chip, chipnr);
 
@@ -603,7 +568,10 @@ static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
 		nand_erase_nand(chip, &einfo, 0);
 
 		/* Write bad block marker to OOB */
-		nand_get_device(chip, FL_WRITING);
+		ret = nand_get_device(chip);
+		if (ret)
+			return ret;
+
 		ret = nand_markbad_bbm(chip, ofs);
 		nand_release_device(chip);
 	}
@@ -3581,7 +3549,9 @@ static int nand_read_oob(struct mtd_info *mtd, loff_t from,
 	    ops->mode != MTD_OPS_RAW)
 		return -ENOTSUPP;
 
-	nand_get_device(chip, FL_READING);
+	ret = nand_get_device(chip);
+	if (ret)
+		return ret;
 
 	if (!ops->datbuf)
 		ret = nand_do_read_oob(chip, from, ops);
@@ -4100,9 +4070,6 @@ static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
 	struct mtd_oob_ops ops;
 	int ret;
 
-	/* Grab the device */
-	panic_nand_get_device(chip, FL_WRITING);
-
 	nand_select_target(chip, chipnr);
 
 	/* Wait for the device to get ready */
@@ -4133,7 +4100,9 @@ static int nand_write_oob(struct mtd_info *mtd, loff_t to,
 
 	ops->retlen = 0;
 
-	nand_get_device(chip, FL_WRITING);
+	ret = nand_get_device(chip);
+	if (ret)
+		return ret;
 
 	switch (ops->mode) {
 	case MTD_OPS_PLACE_OOB:
@@ -4156,23 +4125,6 @@ out:
 }
 
 /**
- * single_erase - [GENERIC] NAND standard block erase command function
- * @chip: NAND chip object
- * @page: the page address of the block which will be erased
- *
- * Standard erase command for NAND chips. Returns NAND status.
- */
-static int single_erase(struct nand_chip *chip, int page)
-{
-	unsigned int eraseblock;
-
-	/* Send commands to erase a block */
-	eraseblock = page >> (chip->phys_erase_shift - chip->page_shift);
-
-	return nand_erase_op(chip, eraseblock);
-}
-
-/**
  * nand_erase - [MTD Interface] erase block(s)
  * @mtd: MTD device structure
  * @instr: erase instruction
@@ -4195,7 +4147,7 @@ static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
 int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
 		    int allowbbt)
 {
-	int page, status, pages_per_block, ret, chipnr;
+	int page, pages_per_block, ret, chipnr;
 	loff_t len;
 
 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
@@ -4206,7 +4158,9 @@ int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
 		return -EINVAL;
 
 	/* Grab the lock and see if the device is available */
-	nand_get_device(chip, FL_ERASING);
+	ret = nand_get_device(chip);
+	if (ret)
+		return ret;
 
 	/* Shift to get first page */
 	page = (int)(instr->addr >> chip->page_shift);
@@ -4247,17 +4201,11 @@ int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
 		    (page + pages_per_block))
 			chip->pagebuf = -1;
 
-		if (chip->legacy.erase)
-			status = chip->legacy.erase(chip,
-						    page & chip->pagemask);
-		else
-			status = single_erase(chip, page & chip->pagemask);
-
-		/* See if block erase succeeded */
-		if (status) {
+		ret = nand_erase_op(chip, (page & chip->pagemask) >>
+				    (chip->phys_erase_shift - chip->page_shift));
+		if (ret) {
 			pr_debug("%s: failed erase, page 0x%08x\n",
 					__func__, page);
-			ret = -EIO;
 			instr->fail_addr =
 				((loff_t)page << chip->page_shift);
 			goto erase_exit;
@@ -4299,7 +4247,7 @@ static void nand_sync(struct mtd_info *mtd)
 	pr_debug("%s: called\n", __func__);
 
 	/* Grab the lock and see if the device is available */
-	nand_get_device(chip, FL_SYNCING);
+	WARN_ON(nand_get_device(chip));
 	/* Release it and go back */
 	nand_release_device(chip);
 }
@@ -4316,7 +4264,10 @@ static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
 	int ret;
 
 	/* Select the NAND device */
-	nand_get_device(chip, FL_READING);
+	ret = nand_get_device(chip);
+	if (ret)
+		return ret;
+
 	nand_select_target(chip, chipnr);
 
 	ret = nand_block_checkbad(chip, offs, 0);
@@ -4389,7 +4340,13 @@ static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
  */
 static int nand_suspend(struct mtd_info *mtd)
 {
-	return nand_get_device(mtd_to_nand(mtd), FL_PM_SUSPENDED);
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	mutex_lock(&chip->lock);
+	chip->suspended = 1;
+	mutex_unlock(&chip->lock);
+
+	return 0;
 }
 
 /**
@@ -4400,11 +4357,13 @@ static void nand_resume(struct mtd_info *mtd)
 {
 	struct nand_chip *chip = mtd_to_nand(mtd);
 
-	if (chip->state == FL_PM_SUSPENDED)
-		nand_release_device(chip);
+	mutex_lock(&chip->lock);
+	if (chip->suspended)
+		chip->suspended = 0;
 	else
 		pr_err("%s called for a chip which is not in suspended state\n",
 			__func__);
+	mutex_unlock(&chip->lock);
 }
 
 /**
@@ -4414,7 +4373,7 @@ static void nand_resume(struct mtd_info *mtd)
  */
 static void nand_shutdown(struct mtd_info *mtd)
 {
-	nand_get_device(mtd_to_nand(mtd), FL_PM_SUSPENDED);
+	nand_suspend(mtd);
 }
 
 /* Set default functions */
@@ -5019,6 +4978,8 @@ static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
 	/* Assume all dies are deselected when we enter nand_scan_ident(). */
 	chip->cur_cs = -1;
 
+	mutex_init(&chip->lock);
+
 	/* Enforce the right timings for reset/detection */
 	onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
 
@@ -5061,11 +5022,15 @@ static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
 		u8 id[2];
 
 		/* See comment in nand_get_flash_type for reset */
-		nand_reset(chip, i);
+		ret = nand_reset(chip, i);
+		if (ret)
+			break;
 
 		nand_select_target(chip, i);
 		/* Send the command for reading device ID */
-		nand_readid_op(chip, 0, id, sizeof(id));
+		ret = nand_readid_op(chip, 0, id, sizeof(id));
+		if (ret)
+			break;
 		/* Read manufacturer and device IDs */
 		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
 			nand_deselect_target(chip);
@@ -5556,6 +5521,7 @@ static int nand_scan_tail(struct nand_chip *chip)
 		}
 		if (!ecc->read_page)
 			ecc->read_page = nand_read_page_hwecc_oob_first;
+		/* fall through */
 
 	case NAND_ECC_HW:
 		/* Use standard hwecc read page function? */
@@ -5575,6 +5541,7 @@ static int nand_scan_tail(struct nand_chip *chip)
 			ecc->read_subpage = nand_read_subpage;
 		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
 			ecc->write_subpage = nand_write_subpage_hwecc;
+		/* fall through */
 
 	case NAND_ECC_HW_SYNDROME:
 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
@@ -5612,6 +5579,7 @@ static int nand_scan_tail(struct nand_chip *chip)
 			ecc->size, mtd->writesize);
 		ecc->mode = NAND_ECC_SOFT;
 		ecc->algo = NAND_ECC_HAMMING;
+		/* fall through */
 
 	case NAND_ECC_SOFT:
 		ret = nand_set_ecc_soft_ops(chip);
@@ -5718,9 +5686,6 @@ static int nand_scan_tail(struct nand_chip *chip)
 	}
 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
 
-	/* Initialize state */
-	chip->state = FL_READY;
-
 	/* Invalidate the pagebuffer reference */
 	chip->pagebuf = -1;
 
diff --git a/drivers/mtd/nand/raw/nand_legacy.c b/drivers/mtd/nand/raw/nand_legacy.c
index 43575943f13b..f2526ec616a6 100644
--- a/drivers/mtd/nand/raw/nand_legacy.c
+++ b/drivers/mtd/nand/raw/nand_legacy.c
@@ -331,6 +331,7 @@ static void nand_command(struct nand_chip *chip, unsigned int command,
 		 */
 		if (column == -1 && page_addr == -1)
 			return;
+		/* fall through */
 
 	default:
 		/*
@@ -483,7 +484,7 @@ static void nand_command_lp(struct nand_chip *chip, unsigned int command,
 		chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
 				      NAND_NCE | NAND_CTRL_CHANGE);
 
-		/* This applies to read commands */
+		/* fall through - This applies to read commands */
 	default:
 		/*
 		 * If we don't have access to the busy pin, we apply the given
diff --git a/drivers/mtd/nand/raw/omap2.c b/drivers/mtd/nand/raw/omap2.c
index 68e8b9f7f372..8f280a2962c8 100644
--- a/drivers/mtd/nand/raw/omap2.c
+++ b/drivers/mtd/nand/raw/omap2.c
@@ -994,12 +994,9 @@ static int omap_wait(struct nand_chip *this)
 {
 	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(this));
 	unsigned long timeo = jiffies;
-	int status, state = this->state;
+	int status;
 
-	if (state == FL_ERASING)
-		timeo += msecs_to_jiffies(400);
-	else
-		timeo += msecs_to_jiffies(20);
+	timeo += msecs_to_jiffies(400);
 
 	writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
 	while (time_before(jiffies, timeo)) {
@@ -2173,11 +2170,8 @@ static const struct nand_controller_ops omap_nand_controller_ops = {
 };
 
 /* Shared among all NAND instances to synchronize access to the ECC Engine */
-static struct nand_controller omap_gpmc_controller = {
-	.lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
-	.wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
-	.ops = &omap_nand_controller_ops,
-};
+static struct nand_controller omap_gpmc_controller;
+static bool omap_gpmc_controller_initialized;
 
 static int omap_nand_probe(struct platform_device *pdev)
 {
@@ -2227,6 +2221,12 @@ static int omap_nand_probe(struct platform_device *pdev)
 
 	info->phys_base = res->start;
 
+	if (!omap_gpmc_controller_initialized) {
+		omap_gpmc_controller.ops = &omap_nand_controller_ops;
+		nand_controller_init(&omap_gpmc_controller);
+		omap_gpmc_controller_initialized = true;
+	}
+
 	nand_chip->controller = &omap_gpmc_controller;
 
 	nand_chip->legacy.IO_ADDR_W = nand_chip->legacy.IO_ADDR_R;
diff --git a/drivers/mtd/nand/raw/r852.c b/drivers/mtd/nand/raw/r852.c
index c01422d953dd..86456216fb93 100644
--- a/drivers/mtd/nand/raw/r852.c
+++ b/drivers/mtd/nand/raw/r852.c
@@ -369,8 +369,7 @@ static int r852_wait(struct nand_chip *chip)
 	unsigned long timeout;
 	u8 status;
 
-	timeout = jiffies + (chip->state == FL_ERASING ?
-		msecs_to_jiffies(400) : msecs_to_jiffies(20));
+	timeout = jiffies + msecs_to_jiffies(400);
 
 	while (time_before(jiffies, timeout))
 		if (chip->legacy.dev_ready(chip))
diff --git a/drivers/mtd/nand/raw/stm32_fmc2_nand.c b/drivers/mtd/nand/raw/stm32_fmc2_nand.c
new file mode 100644
index 000000000000..999ca6a66036
--- /dev/null
+++ b/drivers/mtd/nand/raw/stm32_fmc2_nand.c
@@ -0,0 +1,2073 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) STMicroelectronics 2018
+ * Author: Christophe Kerello <christophe.kerello@st.com>
+ */
+
+#include <linux/clk.h>
+#include <linux/dmaengine.h>
+#include <linux/dma-mapping.h>
+#include <linux/errno.h>
+#include <linux/interrupt.h>
+#include <linux/iopoll.h>
+#include <linux/module.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/pinctrl/consumer.h>
+#include <linux/platform_device.h>
+#include <linux/reset.h>
+
+/* Bad block marker length */
+#define FMC2_BBM_LEN			2
+
+/* ECC step size */
+#define FMC2_ECC_STEP_SIZE		512
+
+/* BCHDSRx registers length */
+#define FMC2_BCHDSRS_LEN		20
+
+/* HECCR length */
+#define FMC2_HECCR_LEN			4
+
+/* Max requests done for a 8k nand page size */
+#define FMC2_MAX_SG			16
+
+/* Max chip enable */
+#define FMC2_MAX_CE			2
+
+/* Max ECC buffer length */
+#define FMC2_MAX_ECC_BUF_LEN		(FMC2_BCHDSRS_LEN * FMC2_MAX_SG)
+
+/* Timings */
+#define FMC2_THIZ			1
+#define FMC2_TIO			8000
+#define FMC2_TSYNC			3000
+#define FMC2_PCR_TIMING_MASK		0xf
+#define FMC2_PMEM_PATT_TIMING_MASK	0xff
+
+/* FMC2 Controller Registers */
+#define FMC2_BCR1			0x0
+#define FMC2_PCR			0x80
+#define FMC2_SR				0x84
+#define FMC2_PMEM			0x88
+#define FMC2_PATT			0x8c
+#define FMC2_HECCR			0x94
+#define FMC2_CSQCR			0x200
+#define FMC2_CSQCFGR1			0x204
+#define FMC2_CSQCFGR2			0x208
+#define FMC2_CSQCFGR3			0x20c
+#define FMC2_CSQAR1			0x210
+#define FMC2_CSQAR2			0x214
+#define FMC2_CSQIER			0x220
+#define FMC2_CSQISR			0x224
+#define FMC2_CSQICR			0x228
+#define FMC2_CSQEMSR			0x230
+#define FMC2_BCHIER			0x250
+#define FMC2_BCHISR			0x254
+#define FMC2_BCHICR			0x258
+#define FMC2_BCHPBR1			0x260
+#define FMC2_BCHPBR2			0x264
+#define FMC2_BCHPBR3			0x268
+#define FMC2_BCHPBR4			0x26c
+#define FMC2_BCHDSR0			0x27c
+#define FMC2_BCHDSR1			0x280
+#define FMC2_BCHDSR2			0x284
+#define FMC2_BCHDSR3			0x288
+#define FMC2_BCHDSR4			0x28c
+
+/* Register: FMC2_BCR1 */
+#define FMC2_BCR1_FMC2EN		BIT(31)
+
+/* Register: FMC2_PCR */
+#define FMC2_PCR_PWAITEN		BIT(1)
+#define FMC2_PCR_PBKEN			BIT(2)
+#define FMC2_PCR_PWID_MASK		GENMASK(5, 4)
+#define FMC2_PCR_PWID(x)		(((x) & 0x3) << 4)
+#define FMC2_PCR_PWID_BUSWIDTH_8	0
+#define FMC2_PCR_PWID_BUSWIDTH_16	1
+#define FMC2_PCR_ECCEN			BIT(6)
+#define FMC2_PCR_ECCALG			BIT(8)
+#define FMC2_PCR_TCLR_MASK		GENMASK(12, 9)
+#define FMC2_PCR_TCLR(x)		(((x) & 0xf) << 9)
+#define FMC2_PCR_TCLR_DEFAULT		0xf
+#define FMC2_PCR_TAR_MASK		GENMASK(16, 13)
+#define FMC2_PCR_TAR(x)			(((x) & 0xf) << 13)
+#define FMC2_PCR_TAR_DEFAULT		0xf
+#define FMC2_PCR_ECCSS_MASK		GENMASK(19, 17)
+#define FMC2_PCR_ECCSS(x)		(((x) & 0x7) << 17)
+#define FMC2_PCR_ECCSS_512		1
+#define FMC2_PCR_ECCSS_2048		3
+#define FMC2_PCR_BCHECC			BIT(24)
+#define FMC2_PCR_WEN			BIT(25)
+
+/* Register: FMC2_SR */
+#define FMC2_SR_NWRF			BIT(6)
+
+/* Register: FMC2_PMEM */
+#define FMC2_PMEM_MEMSET(x)		(((x) & 0xff) << 0)
+#define FMC2_PMEM_MEMWAIT(x)		(((x) & 0xff) << 8)
+#define FMC2_PMEM_MEMHOLD(x)		(((x) & 0xff) << 16)
+#define FMC2_PMEM_MEMHIZ(x)		(((x) & 0xff) << 24)
+#define FMC2_PMEM_DEFAULT		0x0a0a0a0a
+
+/* Register: FMC2_PATT */
+#define FMC2_PATT_ATTSET(x)		(((x) & 0xff) << 0)
+#define FMC2_PATT_ATTWAIT(x)		(((x) & 0xff) << 8)
+#define FMC2_PATT_ATTHOLD(x)		(((x) & 0xff) << 16)
+#define FMC2_PATT_ATTHIZ(x)		(((x) & 0xff) << 24)
+#define FMC2_PATT_DEFAULT		0x0a0a0a0a
+
+/* Register: FMC2_CSQCR */
+#define FMC2_CSQCR_CSQSTART		BIT(0)
+
+/* Register: FMC2_CSQCFGR1 */
+#define FMC2_CSQCFGR1_CMD2EN		BIT(1)
+#define FMC2_CSQCFGR1_DMADEN		BIT(2)
+#define FMC2_CSQCFGR1_ACYNBR(x)		(((x) & 0x7) << 4)
+#define FMC2_CSQCFGR1_CMD1(x)		(((x) & 0xff) << 8)
+#define FMC2_CSQCFGR1_CMD2(x)		(((x) & 0xff) << 16)
+#define FMC2_CSQCFGR1_CMD1T		BIT(24)
+#define FMC2_CSQCFGR1_CMD2T		BIT(25)
+
+/* Register: FMC2_CSQCFGR2 */
+#define FMC2_CSQCFGR2_SQSDTEN		BIT(0)
+#define FMC2_CSQCFGR2_RCMD2EN		BIT(1)
+#define FMC2_CSQCFGR2_DMASEN		BIT(2)
+#define FMC2_CSQCFGR2_RCMD1(x)		(((x) & 0xff) << 8)
+#define FMC2_CSQCFGR2_RCMD2(x)		(((x) & 0xff) << 16)
+#define FMC2_CSQCFGR2_RCMD1T		BIT(24)
+#define FMC2_CSQCFGR2_RCMD2T		BIT(25)
+
+/* Register: FMC2_CSQCFGR3 */
+#define FMC2_CSQCFGR3_SNBR(x)		(((x) & 0x1f) << 8)
+#define FMC2_CSQCFGR3_AC1T		BIT(16)
+#define FMC2_CSQCFGR3_AC2T		BIT(17)
+#define FMC2_CSQCFGR3_AC3T		BIT(18)
+#define FMC2_CSQCFGR3_AC4T		BIT(19)
+#define FMC2_CSQCFGR3_AC5T		BIT(20)
+#define FMC2_CSQCFGR3_SDT		BIT(21)
+#define FMC2_CSQCFGR3_RAC1T		BIT(22)
+#define FMC2_CSQCFGR3_RAC2T		BIT(23)
+
+/* Register: FMC2_CSQCAR1 */
+#define FMC2_CSQCAR1_ADDC1(x)		(((x) & 0xff) << 0)
+#define FMC2_CSQCAR1_ADDC2(x)		(((x) & 0xff) << 8)
+#define FMC2_CSQCAR1_ADDC3(x)		(((x) & 0xff) << 16)
+#define FMC2_CSQCAR1_ADDC4(x)		(((x) & 0xff) << 24)
+
+/* Register: FMC2_CSQCAR2 */
+#define FMC2_CSQCAR2_ADDC5(x)		(((x) & 0xff) << 0)
+#define FMC2_CSQCAR2_NANDCEN(x)		(((x) & 0x3) << 10)
+#define FMC2_CSQCAR2_SAO(x)		(((x) & 0xffff) << 16)
+
+/* Register: FMC2_CSQIER */
+#define FMC2_CSQIER_TCIE		BIT(0)
+
+/* Register: FMC2_CSQICR */
+#define FMC2_CSQICR_CLEAR_IRQ		GENMASK(4, 0)
+
+/* Register: FMC2_CSQEMSR */
+#define FMC2_CSQEMSR_SEM		GENMASK(15, 0)
+
+/* Register: FMC2_BCHIER */
+#define FMC2_BCHIER_DERIE		BIT(1)
+#define FMC2_BCHIER_EPBRIE		BIT(4)
+
+/* Register: FMC2_BCHICR */
+#define FMC2_BCHICR_CLEAR_IRQ		GENMASK(4, 0)
+
+/* Register: FMC2_BCHDSR0 */
+#define FMC2_BCHDSR0_DUE		BIT(0)
+#define FMC2_BCHDSR0_DEF		BIT(1)
+#define FMC2_BCHDSR0_DEN_MASK		GENMASK(7, 4)
+#define FMC2_BCHDSR0_DEN_SHIFT		4
+
+/* Register: FMC2_BCHDSR1 */
+#define FMC2_BCHDSR1_EBP1_MASK		GENMASK(12, 0)
+#define FMC2_BCHDSR1_EBP2_MASK		GENMASK(28, 16)
+#define FMC2_BCHDSR1_EBP2_SHIFT		16
+
+/* Register: FMC2_BCHDSR2 */
+#define FMC2_BCHDSR2_EBP3_MASK		GENMASK(12, 0)
+#define FMC2_BCHDSR2_EBP4_MASK		GENMASK(28, 16)
+#define FMC2_BCHDSR2_EBP4_SHIFT		16
+
+/* Register: FMC2_BCHDSR3 */
+#define FMC2_BCHDSR3_EBP5_MASK		GENMASK(12, 0)
+#define FMC2_BCHDSR3_EBP6_MASK		GENMASK(28, 16)
+#define FMC2_BCHDSR3_EBP6_SHIFT		16
+
+/* Register: FMC2_BCHDSR4 */
+#define FMC2_BCHDSR4_EBP7_MASK		GENMASK(12, 0)
+#define FMC2_BCHDSR4_EBP8_MASK		GENMASK(28, 16)
+#define FMC2_BCHDSR4_EBP8_SHIFT		16
+
+enum stm32_fmc2_ecc {
+	FMC2_ECC_HAM = 1,
+	FMC2_ECC_BCH4 = 4,
+	FMC2_ECC_BCH8 = 8
+};
+
+enum stm32_fmc2_irq_state {
+	FMC2_IRQ_UNKNOWN = 0,
+	FMC2_IRQ_BCH,
+	FMC2_IRQ_SEQ
+};
+
+struct stm32_fmc2_timings {
+	u8 tclr;
+	u8 tar;
+	u8 thiz;
+	u8 twait;
+	u8 thold_mem;
+	u8 tset_mem;
+	u8 thold_att;
+	u8 tset_att;
+};
+
+struct stm32_fmc2_nand {
+	struct nand_chip chip;
+	struct stm32_fmc2_timings timings;
+	int ncs;
+	int cs_used[FMC2_MAX_CE];
+};
+
+static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
+{
+	return container_of(chip, struct stm32_fmc2_nand, chip);
+}
+
+struct stm32_fmc2_nfc {
+	struct nand_controller base;
+	struct stm32_fmc2_nand nand;
+	struct device *dev;
+	void __iomem *io_base;
+	void __iomem *data_base[FMC2_MAX_CE];
+	void __iomem *cmd_base[FMC2_MAX_CE];
+	void __iomem *addr_base[FMC2_MAX_CE];
+	phys_addr_t io_phys_addr;
+	phys_addr_t data_phys_addr[FMC2_MAX_CE];
+	struct clk *clk;
+	u8 irq_state;
+
+	struct dma_chan *dma_tx_ch;
+	struct dma_chan *dma_rx_ch;
+	struct dma_chan *dma_ecc_ch;
+	struct sg_table dma_data_sg;
+	struct sg_table dma_ecc_sg;
+	u8 *ecc_buf;
+	int dma_ecc_len;
+
+	struct completion complete;
+	struct completion dma_data_complete;
+	struct completion dma_ecc_complete;
+
+	u8 cs_assigned;
+	int cs_sel;
+};
+
+static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base)
+{
+	return container_of(base, struct stm32_fmc2_nfc, base);
+}
+
+/* Timings configuration */
+static void stm32_fmc2_timings_init(struct nand_chip *chip)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
+	struct stm32_fmc2_timings *timings = &nand->timings;
+	u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
+	u32 pmem, patt;
+
+	/* Set tclr/tar timings */
+	pcr &= ~FMC2_PCR_TCLR_MASK;
+	pcr |= FMC2_PCR_TCLR(timings->tclr);
+	pcr &= ~FMC2_PCR_TAR_MASK;
+	pcr |= FMC2_PCR_TAR(timings->tar);
+
+	/* Set tset/twait/thold/thiz timings in common bank */
+	pmem = FMC2_PMEM_MEMSET(timings->tset_mem);
+	pmem |= FMC2_PMEM_MEMWAIT(timings->twait);
+	pmem |= FMC2_PMEM_MEMHOLD(timings->thold_mem);
+	pmem |= FMC2_PMEM_MEMHIZ(timings->thiz);
+
+	/* Set tset/twait/thold/thiz timings in attribut bank */
+	patt = FMC2_PATT_ATTSET(timings->tset_att);
+	patt |= FMC2_PATT_ATTWAIT(timings->twait);
+	patt |= FMC2_PATT_ATTHOLD(timings->thold_att);
+	patt |= FMC2_PATT_ATTHIZ(timings->thiz);
+
+	writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
+	writel_relaxed(pmem, fmc2->io_base + FMC2_PMEM);
+	writel_relaxed(patt, fmc2->io_base + FMC2_PATT);
+}
+
+/* Controller configuration */
+static void stm32_fmc2_setup(struct nand_chip *chip)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
+
+	/* Configure ECC algorithm (default configuration is Hamming) */
+	pcr &= ~FMC2_PCR_ECCALG;
+	pcr &= ~FMC2_PCR_BCHECC;
+	if (chip->ecc.strength == FMC2_ECC_BCH8) {
+		pcr |= FMC2_PCR_ECCALG;
+		pcr |= FMC2_PCR_BCHECC;
+	} else if (chip->ecc.strength == FMC2_ECC_BCH4) {
+		pcr |= FMC2_PCR_ECCALG;
+	}
+
+	/* Set buswidth */
+	pcr &= ~FMC2_PCR_PWID_MASK;
+	if (chip->options & NAND_BUSWIDTH_16)
+		pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16);
+
+	/* Set ECC sector size */
+	pcr &= ~FMC2_PCR_ECCSS_MASK;
+	pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_512);
+
+	writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
+}
+
+/* Select target */
+static int stm32_fmc2_select_chip(struct nand_chip *chip, int chipnr)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
+	struct dma_slave_config dma_cfg;
+	int ret;
+
+	if (nand->cs_used[chipnr] == fmc2->cs_sel)
+		return 0;
+
+	fmc2->cs_sel = nand->cs_used[chipnr];
+
+	/* FMC2 setup routine */
+	stm32_fmc2_setup(chip);
+
+	/* Apply timings */
+	stm32_fmc2_timings_init(chip);
+
+	if (fmc2->dma_tx_ch && fmc2->dma_rx_ch) {
+		memset(&dma_cfg, 0, sizeof(dma_cfg));
+		dma_cfg.src_addr = fmc2->data_phys_addr[fmc2->cs_sel];
+		dma_cfg.dst_addr = fmc2->data_phys_addr[fmc2->cs_sel];
+		dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+		dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+		dma_cfg.src_maxburst = 32;
+		dma_cfg.dst_maxburst = 32;
+
+		ret = dmaengine_slave_config(fmc2->dma_tx_ch, &dma_cfg);
+		if (ret) {
+			dev_err(fmc2->dev, "tx DMA engine slave config failed\n");
+			return ret;
+		}
+
+		ret = dmaengine_slave_config(fmc2->dma_rx_ch, &dma_cfg);
+		if (ret) {
+			dev_err(fmc2->dev, "rx DMA engine slave config failed\n");
+			return ret;
+		}
+	}
+
+	if (fmc2->dma_ecc_ch) {
+		/*
+		 * Hamming: we read HECCR register
+		 * BCH4/BCH8: we read BCHDSRSx registers
+		 */
+		memset(&dma_cfg, 0, sizeof(dma_cfg));
+		dma_cfg.src_addr = fmc2->io_phys_addr;
+		dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ?
+				    FMC2_HECCR : FMC2_BCHDSR0;
+		dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+
+		ret = dmaengine_slave_config(fmc2->dma_ecc_ch, &dma_cfg);
+		if (ret) {
+			dev_err(fmc2->dev, "ECC DMA engine slave config failed\n");
+			return ret;
+		}
+
+		/* Calculate ECC length needed for one sector */
+		fmc2->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ?
+				    FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN;
+	}
+
+	return 0;
+}
+
+/* Set bus width to 16-bit or 8-bit */
+static void stm32_fmc2_set_buswidth_16(struct stm32_fmc2_nfc *fmc2, bool set)
+{
+	u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
+
+	pcr &= ~FMC2_PCR_PWID_MASK;
+	if (set)
+		pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16);
+	writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
+}
+
+/* Enable/disable ECC */
+static void stm32_fmc2_set_ecc(struct stm32_fmc2_nfc *fmc2, bool enable)
+{
+	u32 pcr = readl(fmc2->io_base + FMC2_PCR);
+
+	pcr &= ~FMC2_PCR_ECCEN;
+	if (enable)
+		pcr |= FMC2_PCR_ECCEN;
+	writel(pcr, fmc2->io_base + FMC2_PCR);
+}
+
+/* Enable irq sources in case of the sequencer is used */
+static inline void stm32_fmc2_enable_seq_irq(struct stm32_fmc2_nfc *fmc2)
+{
+	u32 csqier = readl_relaxed(fmc2->io_base + FMC2_CSQIER);
+
+	csqier |= FMC2_CSQIER_TCIE;
+
+	fmc2->irq_state = FMC2_IRQ_SEQ;
+
+	writel_relaxed(csqier, fmc2->io_base + FMC2_CSQIER);
+}
+
+/* Disable irq sources in case of the sequencer is used */
+static inline void stm32_fmc2_disable_seq_irq(struct stm32_fmc2_nfc *fmc2)
+{
+	u32 csqier = readl_relaxed(fmc2->io_base + FMC2_CSQIER);
+
+	csqier &= ~FMC2_CSQIER_TCIE;
+
+	writel_relaxed(csqier, fmc2->io_base + FMC2_CSQIER);
+
+	fmc2->irq_state = FMC2_IRQ_UNKNOWN;
+}
+
+/* Clear irq sources in case of the sequencer is used */
+static inline void stm32_fmc2_clear_seq_irq(struct stm32_fmc2_nfc *fmc2)
+{
+	writel_relaxed(FMC2_CSQICR_CLEAR_IRQ, fmc2->io_base + FMC2_CSQICR);
+}
+
+/* Enable irq sources in case of bch is used */
+static inline void stm32_fmc2_enable_bch_irq(struct stm32_fmc2_nfc *fmc2,
+					     int mode)
+{
+	u32 bchier = readl_relaxed(fmc2->io_base + FMC2_BCHIER);
+
+	if (mode == NAND_ECC_WRITE)
+		bchier |= FMC2_BCHIER_EPBRIE;
+	else
+		bchier |= FMC2_BCHIER_DERIE;
+
+	fmc2->irq_state = FMC2_IRQ_BCH;
+
+	writel_relaxed(bchier, fmc2->io_base + FMC2_BCHIER);
+}
+
+/* Disable irq sources in case of bch is used */
+static inline void stm32_fmc2_disable_bch_irq(struct stm32_fmc2_nfc *fmc2)
+{
+	u32 bchier = readl_relaxed(fmc2->io_base + FMC2_BCHIER);
+
+	bchier &= ~FMC2_BCHIER_DERIE;
+	bchier &= ~FMC2_BCHIER_EPBRIE;
+
+	writel_relaxed(bchier, fmc2->io_base + FMC2_BCHIER);
+
+	fmc2->irq_state = FMC2_IRQ_UNKNOWN;
+}
+
+/* Clear irq sources in case of bch is used */
+static inline void stm32_fmc2_clear_bch_irq(struct stm32_fmc2_nfc *fmc2)
+{
+	writel_relaxed(FMC2_BCHICR_CLEAR_IRQ, fmc2->io_base + FMC2_BCHICR);
+}
+
+/*
+ * Enable ECC logic and reset syndrome/parity bits previously calculated
+ * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
+ */
+static void stm32_fmc2_hwctl(struct nand_chip *chip, int mode)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+
+	stm32_fmc2_set_ecc(fmc2, false);
+
+	if (chip->ecc.strength != FMC2_ECC_HAM) {
+		u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
+
+		if (mode == NAND_ECC_WRITE)
+			pcr |= FMC2_PCR_WEN;
+		else
+			pcr &= ~FMC2_PCR_WEN;
+		writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
+
+		reinit_completion(&fmc2->complete);
+		stm32_fmc2_clear_bch_irq(fmc2);
+		stm32_fmc2_enable_bch_irq(fmc2, mode);
+	}
+
+	stm32_fmc2_set_ecc(fmc2, true);
+}
+
+/*
+ * ECC Hamming calculation
+ * ECC is 3 bytes for 512 bytes of data (supports error correction up to
+ * max of 1-bit)
+ */
+static inline void stm32_fmc2_ham_set_ecc(const u32 ecc_sta, u8 *ecc)
+{
+	ecc[0] = ecc_sta;
+	ecc[1] = ecc_sta >> 8;
+	ecc[2] = ecc_sta >> 16;
+}
+
+static int stm32_fmc2_ham_calculate(struct nand_chip *chip, const u8 *data,
+				    u8 *ecc)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	u32 sr, heccr;
+	int ret;
+
+	ret = readl_relaxed_poll_timeout(fmc2->io_base + FMC2_SR,
+					 sr, sr & FMC2_SR_NWRF, 10, 1000);
+	if (ret) {
+		dev_err(fmc2->dev, "ham timeout\n");
+		return ret;
+	}
+
+	heccr = readl_relaxed(fmc2->io_base + FMC2_HECCR);
+
+	stm32_fmc2_ham_set_ecc(heccr, ecc);
+
+	/* Disable ECC */
+	stm32_fmc2_set_ecc(fmc2, false);
+
+	return 0;
+}
+
+static int stm32_fmc2_ham_correct(struct nand_chip *chip, u8 *dat,
+				  u8 *read_ecc, u8 *calc_ecc)
+{
+	u8 bit_position = 0, b0, b1, b2;
+	u32 byte_addr = 0, b;
+	u32 i, shifting = 1;
+
+	/* Indicate which bit and byte is faulty (if any) */
+	b0 = read_ecc[0] ^ calc_ecc[0];
+	b1 = read_ecc[1] ^ calc_ecc[1];
+	b2 = read_ecc[2] ^ calc_ecc[2];
+	b = b0 | (b1 << 8) | (b2 << 16);
+
+	/* No errors */
+	if (likely(!b))
+		return 0;
+
+	/* Calculate bit position */
+	for (i = 0; i < 3; i++) {
+		switch (b % 4) {
+		case 2:
+			bit_position += shifting;
+		case 1:
+			break;
+		default:
+			return -EBADMSG;
+		}
+		shifting <<= 1;
+		b >>= 2;
+	}
+
+	/* Calculate byte position */
+	shifting = 1;
+	for (i = 0; i < 9; i++) {
+		switch (b % 4) {
+		case 2:
+			byte_addr += shifting;
+		case 1:
+			break;
+		default:
+			return -EBADMSG;
+		}
+		shifting <<= 1;
+		b >>= 2;
+	}
+
+	/* Flip the bit */
+	dat[byte_addr] ^= (1 << bit_position);
+
+	return 1;
+}
+
+/*
+ * ECC BCH calculation and correction
+ * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
+ * max of 4-bit/8-bit)
+ */
+static int stm32_fmc2_bch_calculate(struct nand_chip *chip, const u8 *data,
+				    u8 *ecc)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	u32 bchpbr;
+
+	/* Wait until the BCH code is ready */
+	if (!wait_for_completion_timeout(&fmc2->complete,
+					 msecs_to_jiffies(1000))) {
+		dev_err(fmc2->dev, "bch timeout\n");
+		stm32_fmc2_disable_bch_irq(fmc2);
+		return -ETIMEDOUT;
+	}
+
+	/* Read parity bits */
+	bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR1);
+	ecc[0] = bchpbr;
+	ecc[1] = bchpbr >> 8;
+	ecc[2] = bchpbr >> 16;
+	ecc[3] = bchpbr >> 24;
+
+	bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR2);
+	ecc[4] = bchpbr;
+	ecc[5] = bchpbr >> 8;
+	ecc[6] = bchpbr >> 16;
+
+	if (chip->ecc.strength == FMC2_ECC_BCH8) {
+		ecc[7] = bchpbr >> 24;
+
+		bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR3);
+		ecc[8] = bchpbr;
+		ecc[9] = bchpbr >> 8;
+		ecc[10] = bchpbr >> 16;
+		ecc[11] = bchpbr >> 24;
+
+		bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR4);
+		ecc[12] = bchpbr;
+	}
+
+	/* Disable ECC */
+	stm32_fmc2_set_ecc(fmc2, false);
+
+	return 0;
+}
+
+/* BCH algorithm correction */
+static int stm32_fmc2_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta)
+{
+	u32 bchdsr0 = ecc_sta[0];
+	u32 bchdsr1 = ecc_sta[1];
+	u32 bchdsr2 = ecc_sta[2];
+	u32 bchdsr3 = ecc_sta[3];
+	u32 bchdsr4 = ecc_sta[4];
+	u16 pos[8];
+	int i, den;
+	unsigned int nb_errs = 0;
+
+	/* No errors found */
+	if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
+		return 0;
+
+	/* Too many errors detected */
+	if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
+		return -EBADMSG;
+
+	pos[0] = bchdsr1 & FMC2_BCHDSR1_EBP1_MASK;
+	pos[1] = (bchdsr1 & FMC2_BCHDSR1_EBP2_MASK) >> FMC2_BCHDSR1_EBP2_SHIFT;
+	pos[2] = bchdsr2 & FMC2_BCHDSR2_EBP3_MASK;
+	pos[3] = (bchdsr2 & FMC2_BCHDSR2_EBP4_MASK) >> FMC2_BCHDSR2_EBP4_SHIFT;
+	pos[4] = bchdsr3 & FMC2_BCHDSR3_EBP5_MASK;
+	pos[5] = (bchdsr3 & FMC2_BCHDSR3_EBP6_MASK) >> FMC2_BCHDSR3_EBP6_SHIFT;
+	pos[6] = bchdsr4 & FMC2_BCHDSR4_EBP7_MASK;
+	pos[7] = (bchdsr4 & FMC2_BCHDSR4_EBP8_MASK) >> FMC2_BCHDSR4_EBP8_SHIFT;
+
+	den = (bchdsr0 & FMC2_BCHDSR0_DEN_MASK) >> FMC2_BCHDSR0_DEN_SHIFT;
+	for (i = 0; i < den; i++) {
+		if (pos[i] < eccsize * 8) {
+			change_bit(pos[i], (unsigned long *)dat);
+			nb_errs++;
+		}
+	}
+
+	return nb_errs;
+}
+
+static int stm32_fmc2_bch_correct(struct nand_chip *chip, u8 *dat,
+				  u8 *read_ecc, u8 *calc_ecc)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	u32 ecc_sta[5];
+
+	/* Wait until the decoding error is ready */
+	if (!wait_for_completion_timeout(&fmc2->complete,
+					 msecs_to_jiffies(1000))) {
+		dev_err(fmc2->dev, "bch timeout\n");
+		stm32_fmc2_disable_bch_irq(fmc2);
+		return -ETIMEDOUT;
+	}
+
+	ecc_sta[0] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR0);
+	ecc_sta[1] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR1);
+	ecc_sta[2] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR2);
+	ecc_sta[3] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR3);
+	ecc_sta[4] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR4);
+
+	/* Disable ECC */
+	stm32_fmc2_set_ecc(fmc2, false);
+
+	return stm32_fmc2_bch_decode(chip->ecc.size, dat, ecc_sta);
+}
+
+static int stm32_fmc2_read_page(struct nand_chip *chip, u8 *buf,
+				int oob_required, int page)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret, i, s, stat, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	int eccstrength = chip->ecc.strength;
+	u8 *p = buf;
+	u8 *ecc_calc = chip->ecc.calc_buf;
+	u8 *ecc_code = chip->ecc.code_buf;
+	unsigned int max_bitflips = 0;
+
+	ret = nand_read_page_op(chip, page, 0, NULL, 0);
+	if (ret)
+		return ret;
+
+	for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
+	     s++, i += eccbytes, p += eccsize) {
+		chip->ecc.hwctl(chip, NAND_ECC_READ);
+
+		/* Read the nand page sector (512 bytes) */
+		ret = nand_change_read_column_op(chip, s * eccsize, p,
+						 eccsize, false);
+		if (ret)
+			return ret;
+
+		/* Read the corresponding ECC bytes */
+		ret = nand_change_read_column_op(chip, i, ecc_code,
+						 eccbytes, false);
+		if (ret)
+			return ret;
+
+		/* Correct the data */
+		stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc);
+		if (stat == -EBADMSG)
+			/* Check for empty pages with bitflips */
+			stat = nand_check_erased_ecc_chunk(p, eccsize,
+							   ecc_code, eccbytes,
+							   NULL, 0,
+							   eccstrength);
+
+		if (stat < 0) {
+			mtd->ecc_stats.failed++;
+		} else {
+			mtd->ecc_stats.corrected += stat;
+			max_bitflips = max_t(unsigned int, max_bitflips, stat);
+		}
+	}
+
+	/* Read oob */
+	if (oob_required) {
+		ret = nand_change_read_column_op(chip, mtd->writesize,
+						 chip->oob_poi, mtd->oobsize,
+						 false);
+		if (ret)
+			return ret;
+	}
+
+	return max_bitflips;
+}
+
+/* Sequencer read/write configuration */
+static void stm32_fmc2_rw_page_init(struct nand_chip *chip, int page,
+				    int raw, bool write_data)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	u32 csqcfgr1, csqcfgr2, csqcfgr3;
+	u32 csqar1, csqar2;
+	u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN;
+	u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
+
+	if (write_data)
+		pcr |= FMC2_PCR_WEN;
+	else
+		pcr &= ~FMC2_PCR_WEN;
+	writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
+
+	/*
+	 * - Set Program Page/Page Read command
+	 * - Enable DMA request data
+	 * - Set timings
+	 */
+	csqcfgr1 = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T;
+	if (write_data)
+		csqcfgr1 |= FMC2_CSQCFGR1_CMD1(NAND_CMD_SEQIN);
+	else
+		csqcfgr1 |= FMC2_CSQCFGR1_CMD1(NAND_CMD_READ0) |
+			    FMC2_CSQCFGR1_CMD2EN |
+			    FMC2_CSQCFGR1_CMD2(NAND_CMD_READSTART) |
+			    FMC2_CSQCFGR1_CMD2T;
+
+	/*
+	 * - Set Random Data Input/Random Data Read command
+	 * - Enable the sequencer to access the Spare data area
+	 * - Enable  DMA request status decoding for read
+	 * - Set timings
+	 */
+	if (write_data)
+		csqcfgr2 = FMC2_CSQCFGR2_RCMD1(NAND_CMD_RNDIN);
+	else
+		csqcfgr2 = FMC2_CSQCFGR2_RCMD1(NAND_CMD_RNDOUT) |
+			   FMC2_CSQCFGR2_RCMD2EN |
+			   FMC2_CSQCFGR2_RCMD2(NAND_CMD_RNDOUTSTART) |
+			   FMC2_CSQCFGR2_RCMD1T |
+			   FMC2_CSQCFGR2_RCMD2T;
+	if (!raw) {
+		csqcfgr2 |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN;
+		csqcfgr2 |= FMC2_CSQCFGR2_SQSDTEN;
+	}
+
+	/*
+	 * - Set the number of sectors to be written
+	 * - Set timings
+	 */
+	csqcfgr3 = FMC2_CSQCFGR3_SNBR(chip->ecc.steps - 1);
+	if (write_data) {
+		csqcfgr3 |= FMC2_CSQCFGR3_RAC2T;
+		if (chip->options & NAND_ROW_ADDR_3)
+			csqcfgr3 |= FMC2_CSQCFGR3_AC5T;
+		else
+			csqcfgr3 |= FMC2_CSQCFGR3_AC4T;
+	}
+
+	/*
+	 * Set the fourth first address cycles
+	 * Byte 1 and byte 2 => column, we start at 0x0
+	 * Byte 3 and byte 4 => page
+	 */
+	csqar1 = FMC2_CSQCAR1_ADDC3(page);
+	csqar1 |= FMC2_CSQCAR1_ADDC4(page >> 8);
+
+	/*
+	 * - Set chip enable number
+	 * - Set ECC byte offset in the spare area
+	 * - Calculate the number of address cycles to be issued
+	 * - Set byte 5 of address cycle if needed
+	 */
+	csqar2 = FMC2_CSQCAR2_NANDCEN(fmc2->cs_sel);
+	if (chip->options & NAND_BUSWIDTH_16)
+		csqar2 |= FMC2_CSQCAR2_SAO(ecc_offset >> 1);
+	else
+		csqar2 |= FMC2_CSQCAR2_SAO(ecc_offset);
+	if (chip->options & NAND_ROW_ADDR_3) {
+		csqcfgr1 |= FMC2_CSQCFGR1_ACYNBR(5);
+		csqar2 |= FMC2_CSQCAR2_ADDC5(page >> 16);
+	} else {
+		csqcfgr1 |= FMC2_CSQCFGR1_ACYNBR(4);
+	}
+
+	writel_relaxed(csqcfgr1, fmc2->io_base + FMC2_CSQCFGR1);
+	writel_relaxed(csqcfgr2, fmc2->io_base + FMC2_CSQCFGR2);
+	writel_relaxed(csqcfgr3, fmc2->io_base + FMC2_CSQCFGR3);
+	writel_relaxed(csqar1, fmc2->io_base + FMC2_CSQAR1);
+	writel_relaxed(csqar2, fmc2->io_base + FMC2_CSQAR2);
+}
+
+static void stm32_fmc2_dma_callback(void *arg)
+{
+	complete((struct completion *)arg);
+}
+
+/* Read/write data from/to a page */
+static int stm32_fmc2_xfer(struct nand_chip *chip, const u8 *buf,
+			   int raw, bool write_data)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	struct dma_async_tx_descriptor *desc_data, *desc_ecc;
+	struct scatterlist *sg;
+	struct dma_chan *dma_ch = fmc2->dma_rx_ch;
+	enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE;
+	enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM;
+	u32 csqcr = readl_relaxed(fmc2->io_base + FMC2_CSQCR);
+	int eccsteps = chip->ecc.steps;
+	int eccsize = chip->ecc.size;
+	const u8 *p = buf;
+	int s, ret;
+
+	/* Configure DMA data */
+	if (write_data) {
+		dma_data_dir = DMA_TO_DEVICE;
+		dma_transfer_dir = DMA_MEM_TO_DEV;
+		dma_ch = fmc2->dma_tx_ch;
+	}
+
+	for_each_sg(fmc2->dma_data_sg.sgl, sg, eccsteps, s) {
+		sg_set_buf(sg, p, eccsize);
+		p += eccsize;
+	}
+
+	ret = dma_map_sg(fmc2->dev, fmc2->dma_data_sg.sgl,
+			 eccsteps, dma_data_dir);
+	if (ret < 0)
+		return ret;
+
+	desc_data = dmaengine_prep_slave_sg(dma_ch, fmc2->dma_data_sg.sgl,
+					    eccsteps, dma_transfer_dir,
+					    DMA_PREP_INTERRUPT);
+	if (!desc_data) {
+		ret = -ENOMEM;
+		goto err_unmap_data;
+	}
+
+	reinit_completion(&fmc2->dma_data_complete);
+	reinit_completion(&fmc2->complete);
+	desc_data->callback = stm32_fmc2_dma_callback;
+	desc_data->callback_param = &fmc2->dma_data_complete;
+	ret = dma_submit_error(dmaengine_submit(desc_data));
+	if (ret)
+		goto err_unmap_data;
+
+	dma_async_issue_pending(dma_ch);
+
+	if (!write_data && !raw) {
+		/* Configure DMA ECC status */
+		p = fmc2->ecc_buf;
+		for_each_sg(fmc2->dma_ecc_sg.sgl, sg, eccsteps, s) {
+			sg_set_buf(sg, p, fmc2->dma_ecc_len);
+			p += fmc2->dma_ecc_len;
+		}
+
+		ret = dma_map_sg(fmc2->dev, fmc2->dma_ecc_sg.sgl,
+				 eccsteps, dma_data_dir);
+		if (ret < 0)
+			goto err_unmap_data;
+
+		desc_ecc = dmaengine_prep_slave_sg(fmc2->dma_ecc_ch,
+						   fmc2->dma_ecc_sg.sgl,
+						   eccsteps, dma_transfer_dir,
+						   DMA_PREP_INTERRUPT);
+		if (!desc_ecc) {
+			ret = -ENOMEM;
+			goto err_unmap_ecc;
+		}
+
+		reinit_completion(&fmc2->dma_ecc_complete);
+		desc_ecc->callback = stm32_fmc2_dma_callback;
+		desc_ecc->callback_param = &fmc2->dma_ecc_complete;
+		ret = dma_submit_error(dmaengine_submit(desc_ecc));
+		if (ret)
+			goto err_unmap_ecc;
+
+		dma_async_issue_pending(fmc2->dma_ecc_ch);
+	}
+
+	stm32_fmc2_clear_seq_irq(fmc2);
+	stm32_fmc2_enable_seq_irq(fmc2);
+
+	/* Start the transfer */
+	csqcr |= FMC2_CSQCR_CSQSTART;
+	writel_relaxed(csqcr, fmc2->io_base + FMC2_CSQCR);
+
+	/* Wait end of sequencer transfer */
+	if (!wait_for_completion_timeout(&fmc2->complete,
+					 msecs_to_jiffies(1000))) {
+		dev_err(fmc2->dev, "seq timeout\n");
+		stm32_fmc2_disable_seq_irq(fmc2);
+		dmaengine_terminate_all(dma_ch);
+		if (!write_data && !raw)
+			dmaengine_terminate_all(fmc2->dma_ecc_ch);
+		ret = -ETIMEDOUT;
+		goto err_unmap_ecc;
+	}
+
+	/* Wait DMA data transfer completion */
+	if (!wait_for_completion_timeout(&fmc2->dma_data_complete,
+					 msecs_to_jiffies(100))) {
+		dev_err(fmc2->dev, "data DMA timeout\n");
+		dmaengine_terminate_all(dma_ch);
+		ret = -ETIMEDOUT;
+	}
+
+	/* Wait DMA ECC transfer completion */
+	if (!write_data && !raw) {
+		if (!wait_for_completion_timeout(&fmc2->dma_ecc_complete,
+						 msecs_to_jiffies(100))) {
+			dev_err(fmc2->dev, "ECC DMA timeout\n");
+			dmaengine_terminate_all(fmc2->dma_ecc_ch);
+			ret = -ETIMEDOUT;
+		}
+	}
+
+err_unmap_ecc:
+	if (!write_data && !raw)
+		dma_unmap_sg(fmc2->dev, fmc2->dma_ecc_sg.sgl,
+			     eccsteps, dma_data_dir);
+
+err_unmap_data:
+	dma_unmap_sg(fmc2->dev, fmc2->dma_data_sg.sgl, eccsteps, dma_data_dir);
+
+	return ret;
+}
+
+static int stm32_fmc2_sequencer_write(struct nand_chip *chip,
+				      const u8 *buf, int oob_required,
+				      int page, int raw)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret;
+
+	/* Configure the sequencer */
+	stm32_fmc2_rw_page_init(chip, page, raw, true);
+
+	/* Write the page */
+	ret = stm32_fmc2_xfer(chip, buf, raw, true);
+	if (ret)
+		return ret;
+
+	/* Write oob */
+	if (oob_required) {
+		ret = nand_change_write_column_op(chip, mtd->writesize,
+						  chip->oob_poi, mtd->oobsize,
+						  false);
+		if (ret)
+			return ret;
+	}
+
+	return nand_prog_page_end_op(chip);
+}
+
+static int stm32_fmc2_sequencer_write_page(struct nand_chip *chip,
+					   const u8 *buf,
+					   int oob_required,
+					   int page)
+{
+	int ret;
+
+	/* Select the target */
+	ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
+	if (ret)
+		return ret;
+
+	return stm32_fmc2_sequencer_write(chip, buf, oob_required, page, false);
+}
+
+static int stm32_fmc2_sequencer_write_page_raw(struct nand_chip *chip,
+					       const u8 *buf,
+					       int oob_required,
+					       int page)
+{
+	int ret;
+
+	/* Select the target */
+	ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
+	if (ret)
+		return ret;
+
+	return stm32_fmc2_sequencer_write(chip, buf, oob_required, page, true);
+}
+
+/* Get a status indicating which sectors have errors */
+static inline u16 stm32_fmc2_get_mapping_status(struct stm32_fmc2_nfc *fmc2)
+{
+	u32 csqemsr = readl_relaxed(fmc2->io_base + FMC2_CSQEMSR);
+
+	return csqemsr & FMC2_CSQEMSR_SEM;
+}
+
+static int stm32_fmc2_sequencer_correct(struct nand_chip *chip, u8 *dat,
+					u8 *read_ecc, u8 *calc_ecc)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	int eccstrength = chip->ecc.strength;
+	int i, s, eccsize = chip->ecc.size;
+	u32 *ecc_sta = (u32 *)fmc2->ecc_buf;
+	u16 sta_map = stm32_fmc2_get_mapping_status(fmc2);
+	unsigned int max_bitflips = 0;
+
+	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) {
+		int stat = 0;
+
+		if (eccstrength == FMC2_ECC_HAM) {
+			/* Ecc_sta = FMC2_HECCR */
+			if (sta_map & BIT(s)) {
+				stm32_fmc2_ham_set_ecc(*ecc_sta, &calc_ecc[i]);
+				stat = stm32_fmc2_ham_correct(chip, dat,
+							      &read_ecc[i],
+							      &calc_ecc[i]);
+			}
+			ecc_sta++;
+		} else {
+			/*
+			 * Ecc_sta[0] = FMC2_BCHDSR0
+			 * Ecc_sta[1] = FMC2_BCHDSR1
+			 * Ecc_sta[2] = FMC2_BCHDSR2
+			 * Ecc_sta[3] = FMC2_BCHDSR3
+			 * Ecc_sta[4] = FMC2_BCHDSR4
+			 */
+			if (sta_map & BIT(s))
+				stat = stm32_fmc2_bch_decode(eccsize, dat,
+							     ecc_sta);
+			ecc_sta += 5;
+		}
+
+		if (stat == -EBADMSG)
+			/* Check for empty pages with bitflips */
+			stat = nand_check_erased_ecc_chunk(dat, eccsize,
+							   &read_ecc[i],
+							   eccbytes,
+							   NULL, 0,
+							   eccstrength);
+
+		if (stat < 0) {
+			mtd->ecc_stats.failed++;
+		} else {
+			mtd->ecc_stats.corrected += stat;
+			max_bitflips = max_t(unsigned int, max_bitflips, stat);
+		}
+	}
+
+	return max_bitflips;
+}
+
+static int stm32_fmc2_sequencer_read_page(struct nand_chip *chip, u8 *buf,
+					  int oob_required, int page)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	u8 *ecc_calc = chip->ecc.calc_buf;
+	u8 *ecc_code = chip->ecc.code_buf;
+	u16 sta_map;
+	int ret;
+
+	/* Select the target */
+	ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
+	if (ret)
+		return ret;
+
+	/* Configure the sequencer */
+	stm32_fmc2_rw_page_init(chip, page, 0, false);
+
+	/* Read the page */
+	ret = stm32_fmc2_xfer(chip, buf, 0, false);
+	if (ret)
+		return ret;
+
+	sta_map = stm32_fmc2_get_mapping_status(fmc2);
+
+	/* Check if errors happen */
+	if (likely(!sta_map)) {
+		if (oob_required)
+			return nand_change_read_column_op(chip, mtd->writesize,
+							  chip->oob_poi,
+							  mtd->oobsize, false);
+
+		return 0;
+	}
+
+	/* Read oob */
+	ret = nand_change_read_column_op(chip, mtd->writesize,
+					 chip->oob_poi, mtd->oobsize, false);
+	if (ret)
+		return ret;
+
+	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
+					 chip->ecc.total);
+	if (ret)
+		return ret;
+
+	/* Correct data */
+	return chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
+}
+
+static int stm32_fmc2_sequencer_read_page_raw(struct nand_chip *chip, u8 *buf,
+					      int oob_required, int page)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret;
+
+	/* Select the target */
+	ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
+	if (ret)
+		return ret;
+
+	/* Configure the sequencer */
+	stm32_fmc2_rw_page_init(chip, page, 1, false);
+
+	/* Read the page */
+	ret = stm32_fmc2_xfer(chip, buf, 1, false);
+	if (ret)
+		return ret;
+
+	/* Read oob */
+	if (oob_required)
+		return nand_change_read_column_op(chip, mtd->writesize,
+						  chip->oob_poi, mtd->oobsize,
+						  false);
+
+	return 0;
+}
+
+static irqreturn_t stm32_fmc2_irq(int irq, void *dev_id)
+{
+	struct stm32_fmc2_nfc *fmc2 = (struct stm32_fmc2_nfc *)dev_id;
+
+	if (fmc2->irq_state == FMC2_IRQ_SEQ)
+		/* Sequencer is used */
+		stm32_fmc2_disable_seq_irq(fmc2);
+	else if (fmc2->irq_state == FMC2_IRQ_BCH)
+		/* BCH is used */
+		stm32_fmc2_disable_bch_irq(fmc2);
+
+	complete(&fmc2->complete);
+
+	return IRQ_HANDLED;
+}
+
+static void stm32_fmc2_read_data(struct nand_chip *chip, void *buf,
+				 unsigned int len, bool force_8bit)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	void __iomem *io_addr_r = fmc2->data_base[fmc2->cs_sel];
+
+	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
+		/* Reconfigure bus width to 8-bit */
+		stm32_fmc2_set_buswidth_16(fmc2, false);
+
+	if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
+		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
+			*(u8 *)buf = readb_relaxed(io_addr_r);
+			buf += sizeof(u8);
+			len -= sizeof(u8);
+		}
+
+		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
+		    len >= sizeof(u16)) {
+			*(u16 *)buf = readw_relaxed(io_addr_r);
+			buf += sizeof(u16);
+			len -= sizeof(u16);
+		}
+	}
+
+	/* Buf is aligned */
+	while (len >= sizeof(u32)) {
+		*(u32 *)buf = readl_relaxed(io_addr_r);
+		buf += sizeof(u32);
+		len -= sizeof(u32);
+	}
+
+	/* Read remaining bytes */
+	if (len >= sizeof(u16)) {
+		*(u16 *)buf = readw_relaxed(io_addr_r);
+		buf += sizeof(u16);
+		len -= sizeof(u16);
+	}
+
+	if (len)
+		*(u8 *)buf = readb_relaxed(io_addr_r);
+
+	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
+		/* Reconfigure bus width to 16-bit */
+		stm32_fmc2_set_buswidth_16(fmc2, true);
+}
+
+static void stm32_fmc2_write_data(struct nand_chip *chip, const void *buf,
+				  unsigned int len, bool force_8bit)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	void __iomem *io_addr_w = fmc2->data_base[fmc2->cs_sel];
+
+	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
+		/* Reconfigure bus width to 8-bit */
+		stm32_fmc2_set_buswidth_16(fmc2, false);
+
+	if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
+		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
+			writeb_relaxed(*(u8 *)buf, io_addr_w);
+			buf += sizeof(u8);
+			len -= sizeof(u8);
+		}
+
+		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
+		    len >= sizeof(u16)) {
+			writew_relaxed(*(u16 *)buf, io_addr_w);
+			buf += sizeof(u16);
+			len -= sizeof(u16);
+		}
+	}
+
+	/* Buf is aligned */
+	while (len >= sizeof(u32)) {
+		writel_relaxed(*(u32 *)buf, io_addr_w);
+		buf += sizeof(u32);
+		len -= sizeof(u32);
+	}
+
+	/* Write remaining bytes */
+	if (len >= sizeof(u16)) {
+		writew_relaxed(*(u16 *)buf, io_addr_w);
+		buf += sizeof(u16);
+		len -= sizeof(u16);
+	}
+
+	if (len)
+		writeb_relaxed(*(u8 *)buf, io_addr_w);
+
+	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
+		/* Reconfigure bus width to 16-bit */
+		stm32_fmc2_set_buswidth_16(fmc2, true);
+}
+
+static int stm32_fmc2_exec_op(struct nand_chip *chip,
+			      const struct nand_operation *op,
+			      bool check_only)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	const struct nand_op_instr *instr = NULL;
+	unsigned int op_id, i;
+	int ret;
+
+	ret = stm32_fmc2_select_chip(chip, op->cs);
+	if (ret)
+		return ret;
+
+	if (check_only)
+		return ret;
+
+	for (op_id = 0; op_id < op->ninstrs; op_id++) {
+		instr = &op->instrs[op_id];
+
+		switch (instr->type) {
+		case NAND_OP_CMD_INSTR:
+			writeb_relaxed(instr->ctx.cmd.opcode,
+				       fmc2->cmd_base[fmc2->cs_sel]);
+			break;
+
+		case NAND_OP_ADDR_INSTR:
+			for (i = 0; i < instr->ctx.addr.naddrs; i++)
+				writeb_relaxed(instr->ctx.addr.addrs[i],
+					       fmc2->addr_base[fmc2->cs_sel]);
+			break;
+
+		case NAND_OP_DATA_IN_INSTR:
+			stm32_fmc2_read_data(chip, instr->ctx.data.buf.in,
+					     instr->ctx.data.len,
+					     instr->ctx.data.force_8bit);
+			break;
+
+		case NAND_OP_DATA_OUT_INSTR:
+			stm32_fmc2_write_data(chip, instr->ctx.data.buf.out,
+					      instr->ctx.data.len,
+					      instr->ctx.data.force_8bit);
+			break;
+
+		case NAND_OP_WAITRDY_INSTR:
+			ret = nand_soft_waitrdy(chip,
+						instr->ctx.waitrdy.timeout_ms);
+			break;
+		}
+	}
+
+	return ret;
+}
+
+/* Controller initialization */
+static void stm32_fmc2_init(struct stm32_fmc2_nfc *fmc2)
+{
+	u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
+	u32 bcr1 = readl_relaxed(fmc2->io_base + FMC2_BCR1);
+
+	/* Set CS used to undefined */
+	fmc2->cs_sel = -1;
+
+	/* Enable wait feature and nand flash memory bank */
+	pcr |= FMC2_PCR_PWAITEN;
+	pcr |= FMC2_PCR_PBKEN;
+
+	/* Set buswidth to 8 bits mode for identification */
+	pcr &= ~FMC2_PCR_PWID_MASK;
+
+	/* ECC logic is disabled */
+	pcr &= ~FMC2_PCR_ECCEN;
+
+	/* Default mode */
+	pcr &= ~FMC2_PCR_ECCALG;
+	pcr &= ~FMC2_PCR_BCHECC;
+	pcr &= ~FMC2_PCR_WEN;
+
+	/* Set default ECC sector size */
+	pcr &= ~FMC2_PCR_ECCSS_MASK;
+	pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_2048);
+
+	/* Set default tclr/tar timings */
+	pcr &= ~FMC2_PCR_TCLR_MASK;
+	pcr |= FMC2_PCR_TCLR(FMC2_PCR_TCLR_DEFAULT);
+	pcr &= ~FMC2_PCR_TAR_MASK;
+	pcr |= FMC2_PCR_TAR(FMC2_PCR_TAR_DEFAULT);
+
+	/* Enable FMC2 controller */
+	bcr1 |= FMC2_BCR1_FMC2EN;
+
+	writel_relaxed(bcr1, fmc2->io_base + FMC2_BCR1);
+	writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
+	writel_relaxed(FMC2_PMEM_DEFAULT, fmc2->io_base + FMC2_PMEM);
+	writel_relaxed(FMC2_PATT_DEFAULT, fmc2->io_base + FMC2_PATT);
+}
+
+/* Controller timings */
+static void stm32_fmc2_calc_timings(struct nand_chip *chip,
+				    const struct nand_sdr_timings *sdrt)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
+	struct stm32_fmc2_timings *tims = &nand->timings;
+	unsigned long hclk = clk_get_rate(fmc2->clk);
+	unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000);
+	int tar, tclr, thiz, twait, tset_mem, tset_att, thold_mem, thold_att;
+
+	tar = hclkp;
+	if (tar < sdrt->tAR_min)
+		tar = sdrt->tAR_min;
+	tims->tar = DIV_ROUND_UP(tar, hclkp) - 1;
+	if (tims->tar > FMC2_PCR_TIMING_MASK)
+		tims->tar = FMC2_PCR_TIMING_MASK;
+
+	tclr = hclkp;
+	if (tclr < sdrt->tCLR_min)
+		tclr = sdrt->tCLR_min;
+	tims->tclr = DIV_ROUND_UP(tclr, hclkp) - 1;
+	if (tims->tclr > FMC2_PCR_TIMING_MASK)
+		tims->tclr = FMC2_PCR_TIMING_MASK;
+
+	tims->thiz = FMC2_THIZ;
+	thiz = (tims->thiz + 1) * hclkp;
+
+	/*
+	 * tWAIT > tRP
+	 * tWAIT > tWP
+	 * tWAIT > tREA + tIO
+	 */
+	twait = hclkp;
+	if (twait < sdrt->tRP_min)
+		twait = sdrt->tRP_min;
+	if (twait < sdrt->tWP_min)
+		twait = sdrt->tWP_min;
+	if (twait < sdrt->tREA_max + FMC2_TIO)
+		twait = sdrt->tREA_max + FMC2_TIO;
+	tims->twait = DIV_ROUND_UP(twait, hclkp);
+	if (tims->twait == 0)
+		tims->twait = 1;
+	else if (tims->twait > FMC2_PMEM_PATT_TIMING_MASK)
+		tims->twait = FMC2_PMEM_PATT_TIMING_MASK;
+
+	/*
+	 * tSETUP_MEM > tCS - tWAIT
+	 * tSETUP_MEM > tALS - tWAIT
+	 * tSETUP_MEM > tDS - (tWAIT - tHIZ)
+	 */
+	tset_mem = hclkp;
+	if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
+		tset_mem = sdrt->tCS_min - twait;
+	if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
+		tset_mem = sdrt->tALS_min - twait;
+	if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
+	    (tset_mem < sdrt->tDS_min - (twait - thiz)))
+		tset_mem = sdrt->tDS_min - (twait - thiz);
+	tims->tset_mem = DIV_ROUND_UP(tset_mem, hclkp);
+	if (tims->tset_mem == 0)
+		tims->tset_mem = 1;
+	else if (tims->tset_mem > FMC2_PMEM_PATT_TIMING_MASK)
+		tims->tset_mem = FMC2_PMEM_PATT_TIMING_MASK;
+
+	/*
+	 * tHOLD_MEM > tCH
+	 * tHOLD_MEM > tREH - tSETUP_MEM
+	 * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
+	 */
+	thold_mem = hclkp;
+	if (thold_mem < sdrt->tCH_min)
+		thold_mem = sdrt->tCH_min;
+	if (sdrt->tREH_min > tset_mem &&
+	    (thold_mem < sdrt->tREH_min - tset_mem))
+		thold_mem = sdrt->tREH_min - tset_mem;
+	if ((sdrt->tRC_min > tset_mem + twait) &&
+	    (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
+		thold_mem = sdrt->tRC_min - (tset_mem + twait);
+	if ((sdrt->tWC_min > tset_mem + twait) &&
+	    (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
+		thold_mem = sdrt->tWC_min - (tset_mem + twait);
+	tims->thold_mem = DIV_ROUND_UP(thold_mem, hclkp);
+	if (tims->thold_mem == 0)
+		tims->thold_mem = 1;
+	else if (tims->thold_mem > FMC2_PMEM_PATT_TIMING_MASK)
+		tims->thold_mem = FMC2_PMEM_PATT_TIMING_MASK;
+
+	/*
+	 * tSETUP_ATT > tCS - tWAIT
+	 * tSETUP_ATT > tCLS - tWAIT
+	 * tSETUP_ATT > tALS - tWAIT
+	 * tSETUP_ATT > tRHW - tHOLD_MEM
+	 * tSETUP_ATT > tDS - (tWAIT - tHIZ)
+	 */
+	tset_att = hclkp;
+	if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
+		tset_att = sdrt->tCS_min - twait;
+	if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
+		tset_att = sdrt->tCLS_min - twait;
+	if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
+		tset_att = sdrt->tALS_min - twait;
+	if (sdrt->tRHW_min > thold_mem &&
+	    (tset_att < sdrt->tRHW_min - thold_mem))
+		tset_att = sdrt->tRHW_min - thold_mem;
+	if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
+	    (tset_att < sdrt->tDS_min - (twait - thiz)))
+		tset_att = sdrt->tDS_min - (twait - thiz);
+	tims->tset_att = DIV_ROUND_UP(tset_att, hclkp);
+	if (tims->tset_att == 0)
+		tims->tset_att = 1;
+	else if (tims->tset_att > FMC2_PMEM_PATT_TIMING_MASK)
+		tims->tset_att = FMC2_PMEM_PATT_TIMING_MASK;
+
+	/*
+	 * tHOLD_ATT > tALH
+	 * tHOLD_ATT > tCH
+	 * tHOLD_ATT > tCLH
+	 * tHOLD_ATT > tCOH
+	 * tHOLD_ATT > tDH
+	 * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
+	 * tHOLD_ATT > tADL - tSETUP_MEM
+	 * tHOLD_ATT > tWH - tSETUP_MEM
+	 * tHOLD_ATT > tWHR - tSETUP_MEM
+	 * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
+	 * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
+	 */
+	thold_att = hclkp;
+	if (thold_att < sdrt->tALH_min)
+		thold_att = sdrt->tALH_min;
+	if (thold_att < sdrt->tCH_min)
+		thold_att = sdrt->tCH_min;
+	if (thold_att < sdrt->tCLH_min)
+		thold_att = sdrt->tCLH_min;
+	if (thold_att < sdrt->tCOH_min)
+		thold_att = sdrt->tCOH_min;
+	if (thold_att < sdrt->tDH_min)
+		thold_att = sdrt->tDH_min;
+	if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
+	    (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
+		thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
+	if (sdrt->tADL_min > tset_mem &&
+	    (thold_att < sdrt->tADL_min - tset_mem))
+		thold_att = sdrt->tADL_min - tset_mem;
+	if (sdrt->tWH_min > tset_mem &&
+	    (thold_att < sdrt->tWH_min - tset_mem))
+		thold_att = sdrt->tWH_min - tset_mem;
+	if (sdrt->tWHR_min > tset_mem &&
+	    (thold_att < sdrt->tWHR_min - tset_mem))
+		thold_att = sdrt->tWHR_min - tset_mem;
+	if ((sdrt->tRC_min > tset_att + twait) &&
+	    (thold_att < sdrt->tRC_min - (tset_att + twait)))
+		thold_att = sdrt->tRC_min - (tset_att + twait);
+	if ((sdrt->tWC_min > tset_att + twait) &&
+	    (thold_att < sdrt->tWC_min - (tset_att + twait)))
+		thold_att = sdrt->tWC_min - (tset_att + twait);
+	tims->thold_att = DIV_ROUND_UP(thold_att, hclkp);
+	if (tims->thold_att == 0)
+		tims->thold_att = 1;
+	else if (tims->thold_att > FMC2_PMEM_PATT_TIMING_MASK)
+		tims->thold_att = FMC2_PMEM_PATT_TIMING_MASK;
+}
+
+static int stm32_fmc2_setup_interface(struct nand_chip *chip, int chipnr,
+				      const struct nand_data_interface *conf)
+{
+	const struct nand_sdr_timings *sdrt;
+
+	sdrt = nand_get_sdr_timings(conf);
+	if (IS_ERR(sdrt))
+		return PTR_ERR(sdrt);
+
+	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
+
+	stm32_fmc2_calc_timings(chip, sdrt);
+
+	/* Apply timings */
+	stm32_fmc2_timings_init(chip);
+
+	return 0;
+}
+
+/* DMA configuration */
+static int stm32_fmc2_dma_setup(struct stm32_fmc2_nfc *fmc2)
+{
+	int ret;
+
+	fmc2->dma_tx_ch = dma_request_slave_channel(fmc2->dev, "tx");
+	fmc2->dma_rx_ch = dma_request_slave_channel(fmc2->dev, "rx");
+	fmc2->dma_ecc_ch = dma_request_slave_channel(fmc2->dev, "ecc");
+
+	if (!fmc2->dma_tx_ch || !fmc2->dma_rx_ch || !fmc2->dma_ecc_ch) {
+		dev_warn(fmc2->dev, "DMAs not defined in the device tree, polling mode is used\n");
+		return 0;
+	}
+
+	ret = sg_alloc_table(&fmc2->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL);
+	if (ret)
+		return ret;
+
+	/* Allocate a buffer to store ECC status registers */
+	fmc2->ecc_buf = devm_kzalloc(fmc2->dev, FMC2_MAX_ECC_BUF_LEN,
+				     GFP_KERNEL);
+	if (!fmc2->ecc_buf)
+		return -ENOMEM;
+
+	ret = sg_alloc_table(&fmc2->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL);
+	if (ret)
+		return ret;
+
+	init_completion(&fmc2->dma_data_complete);
+	init_completion(&fmc2->dma_ecc_complete);
+
+	return 0;
+}
+
+/* NAND callbacks setup */
+static void stm32_fmc2_nand_callbacks_setup(struct nand_chip *chip)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+
+	/*
+	 * Specific callbacks to read/write a page depending on
+	 * the mode (polling/sequencer) and the algo used (Hamming, BCH).
+	 */
+	if (fmc2->dma_tx_ch && fmc2->dma_rx_ch && fmc2->dma_ecc_ch) {
+		/* DMA => use sequencer mode callbacks */
+		chip->ecc.correct = stm32_fmc2_sequencer_correct;
+		chip->ecc.write_page = stm32_fmc2_sequencer_write_page;
+		chip->ecc.read_page = stm32_fmc2_sequencer_read_page;
+		chip->ecc.write_page_raw = stm32_fmc2_sequencer_write_page_raw;
+		chip->ecc.read_page_raw = stm32_fmc2_sequencer_read_page_raw;
+	} else {
+		/* No DMA => use polling mode callbacks */
+		chip->ecc.hwctl = stm32_fmc2_hwctl;
+		if (chip->ecc.strength == FMC2_ECC_HAM) {
+			/* Hamming is used */
+			chip->ecc.calculate = stm32_fmc2_ham_calculate;
+			chip->ecc.correct = stm32_fmc2_ham_correct;
+			chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
+		} else {
+			/* BCH is used */
+			chip->ecc.calculate = stm32_fmc2_bch_calculate;
+			chip->ecc.correct = stm32_fmc2_bch_correct;
+			chip->ecc.read_page = stm32_fmc2_read_page;
+		}
+	}
+
+	/* Specific configurations depending on the algo used */
+	if (chip->ecc.strength == FMC2_ECC_HAM)
+		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
+	else if (chip->ecc.strength == FMC2_ECC_BCH8)
+		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
+	else
+		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
+}
+
+/* FMC2 layout */
+static int stm32_fmc2_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
+					 struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->length = ecc->total;
+	oobregion->offset = FMC2_BBM_LEN;
+
+	return 0;
+}
+
+static int stm32_fmc2_nand_ooblayout_free(struct mtd_info *mtd, int section,
+					  struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN;
+	oobregion->offset = ecc->total + FMC2_BBM_LEN;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops stm32_fmc2_nand_ooblayout_ops = {
+	.ecc = stm32_fmc2_nand_ooblayout_ecc,
+	.free = stm32_fmc2_nand_ooblayout_free,
+};
+
+/* FMC2 caps */
+static int stm32_fmc2_calc_ecc_bytes(int step_size, int strength)
+{
+	/* Hamming */
+	if (strength == FMC2_ECC_HAM)
+		return 4;
+
+	/* BCH8 */
+	if (strength == FMC2_ECC_BCH8)
+		return 14;
+
+	/* BCH4 */
+	return 8;
+}
+
+NAND_ECC_CAPS_SINGLE(stm32_fmc2_ecc_caps, stm32_fmc2_calc_ecc_bytes,
+		     FMC2_ECC_STEP_SIZE,
+		     FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
+
+/* FMC2 controller ops */
+static int stm32_fmc2_attach_chip(struct nand_chip *chip)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret;
+
+	/*
+	 * Only NAND_ECC_HW mode is actually supported
+	 * Hamming => ecc.strength = 1
+	 * BCH4 => ecc.strength = 4
+	 * BCH8 => ecc.strength = 8
+	 * ECC sector size = 512
+	 */
+	if (chip->ecc.mode != NAND_ECC_HW) {
+		dev_err(fmc2->dev, "nand_ecc_mode is not well defined in the DT\n");
+		return -EINVAL;
+	}
+
+	ret = nand_ecc_choose_conf(chip, &stm32_fmc2_ecc_caps,
+				   mtd->oobsize - FMC2_BBM_LEN);
+	if (ret) {
+		dev_err(fmc2->dev, "no valid ECC settings set\n");
+		return ret;
+	}
+
+	if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) {
+		dev_err(fmc2->dev, "nand page size is not supported\n");
+		return -EINVAL;
+	}
+
+	if (chip->bbt_options & NAND_BBT_USE_FLASH)
+		chip->bbt_options |= NAND_BBT_NO_OOB;
+
+	/* NAND callbacks setup */
+	stm32_fmc2_nand_callbacks_setup(chip);
+
+	/* Define ECC layout */
+	mtd_set_ooblayout(mtd, &stm32_fmc2_nand_ooblayout_ops);
+
+	/* Configure bus width to 16-bit */
+	if (chip->options & NAND_BUSWIDTH_16)
+		stm32_fmc2_set_buswidth_16(fmc2, true);
+
+	return 0;
+}
+
+static const struct nand_controller_ops stm32_fmc2_nand_controller_ops = {
+	.attach_chip = stm32_fmc2_attach_chip,
+	.exec_op = stm32_fmc2_exec_op,
+	.setup_data_interface = stm32_fmc2_setup_interface,
+};
+
+/* FMC2 probe */
+static int stm32_fmc2_parse_child(struct stm32_fmc2_nfc *fmc2,
+				  struct device_node *dn)
+{
+	struct stm32_fmc2_nand *nand = &fmc2->nand;
+	u32 cs;
+	int ret, i;
+
+	if (!of_get_property(dn, "reg", &nand->ncs))
+		return -EINVAL;
+
+	nand->ncs /= sizeof(u32);
+	if (!nand->ncs) {
+		dev_err(fmc2->dev, "invalid reg property size\n");
+		return -EINVAL;
+	}
+
+	for (i = 0; i < nand->ncs; i++) {
+		ret = of_property_read_u32_index(dn, "reg", i, &cs);
+		if (ret) {
+			dev_err(fmc2->dev, "could not retrieve reg property: %d\n",
+				ret);
+			return ret;
+		}
+
+		if (cs > FMC2_MAX_CE) {
+			dev_err(fmc2->dev, "invalid reg value: %d\n", cs);
+			return -EINVAL;
+		}
+
+		if (fmc2->cs_assigned & BIT(cs)) {
+			dev_err(fmc2->dev, "cs already assigned: %d\n", cs);
+			return -EINVAL;
+		}
+
+		fmc2->cs_assigned |= BIT(cs);
+		nand->cs_used[i] = cs;
+	}
+
+	nand_set_flash_node(&nand->chip, dn);
+
+	return 0;
+}
+
+static int stm32_fmc2_parse_dt(struct stm32_fmc2_nfc *fmc2)
+{
+	struct device_node *dn = fmc2->dev->of_node;
+	struct device_node *child;
+	int nchips = of_get_child_count(dn);
+	int ret = 0;
+
+	if (!nchips) {
+		dev_err(fmc2->dev, "NAND chip not defined\n");
+		return -EINVAL;
+	}
+
+	if (nchips > 1) {
+		dev_err(fmc2->dev, "too many NAND chips defined\n");
+		return -EINVAL;
+	}
+
+	for_each_child_of_node(dn, child) {
+		ret = stm32_fmc2_parse_child(fmc2, child);
+		if (ret < 0) {
+			of_node_put(child);
+			return ret;
+		}
+	}
+
+	return ret;
+}
+
+static int stm32_fmc2_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct reset_control *rstc;
+	struct stm32_fmc2_nfc *fmc2;
+	struct stm32_fmc2_nand *nand;
+	struct resource *res;
+	struct mtd_info *mtd;
+	struct nand_chip *chip;
+	int chip_cs, mem_region, ret, irq;
+
+	fmc2 = devm_kzalloc(dev, sizeof(*fmc2), GFP_KERNEL);
+	if (!fmc2)
+		return -ENOMEM;
+
+	fmc2->dev = dev;
+	nand_controller_init(&fmc2->base);
+	fmc2->base.ops = &stm32_fmc2_nand_controller_ops;
+
+	ret = stm32_fmc2_parse_dt(fmc2);
+	if (ret)
+		return ret;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	fmc2->io_base = devm_ioremap_resource(dev, res);
+	if (IS_ERR(fmc2->io_base))
+		return PTR_ERR(fmc2->io_base);
+
+	fmc2->io_phys_addr = res->start;
+
+	for (chip_cs = 0, mem_region = 1; chip_cs < FMC2_MAX_CE;
+	     chip_cs++, mem_region += 3) {
+		if (!(fmc2->cs_assigned & BIT(chip_cs)))
+			continue;
+
+		res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region);
+		fmc2->data_base[chip_cs] = devm_ioremap_resource(dev, res);
+		if (IS_ERR(fmc2->data_base[chip_cs]))
+			return PTR_ERR(fmc2->data_base[chip_cs]);
+
+		fmc2->data_phys_addr[chip_cs] = res->start;
+
+		res = platform_get_resource(pdev, IORESOURCE_MEM,
+					    mem_region + 1);
+		fmc2->cmd_base[chip_cs] = devm_ioremap_resource(dev, res);
+		if (IS_ERR(fmc2->cmd_base[chip_cs]))
+			return PTR_ERR(fmc2->cmd_base[chip_cs]);
+
+		res = platform_get_resource(pdev, IORESOURCE_MEM,
+					    mem_region + 2);
+		fmc2->addr_base[chip_cs] = devm_ioremap_resource(dev, res);
+		if (IS_ERR(fmc2->addr_base[chip_cs]))
+			return PTR_ERR(fmc2->addr_base[chip_cs]);
+	}
+
+	irq = platform_get_irq(pdev, 0);
+	ret = devm_request_irq(dev, irq, stm32_fmc2_irq, 0,
+			       dev_name(dev), fmc2);
+	if (ret) {
+		dev_err(dev, "failed to request irq\n");
+		return ret;
+	}
+
+	init_completion(&fmc2->complete);
+
+	fmc2->clk = devm_clk_get(dev, NULL);
+	if (IS_ERR(fmc2->clk))
+		return PTR_ERR(fmc2->clk);
+
+	ret = clk_prepare_enable(fmc2->clk);
+	if (ret) {
+		dev_err(dev, "can not enable the clock\n");
+		return ret;
+	}
+
+	rstc = devm_reset_control_get(dev, NULL);
+	if (!IS_ERR(rstc)) {
+		reset_control_assert(rstc);
+		reset_control_deassert(rstc);
+	}
+
+	/* DMA setup */
+	ret = stm32_fmc2_dma_setup(fmc2);
+	if (ret)
+		return ret;
+
+	/* FMC2 init routine */
+	stm32_fmc2_init(fmc2);
+
+	nand = &fmc2->nand;
+	chip = &nand->chip;
+	mtd = nand_to_mtd(chip);
+	mtd->dev.parent = dev;
+
+	chip->controller = &fmc2->base;
+	chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
+			 NAND_USE_BOUNCE_BUFFER;
+
+	/* Default ECC settings */
+	chip->ecc.mode = NAND_ECC_HW;
+	chip->ecc.size = FMC2_ECC_STEP_SIZE;
+	chip->ecc.strength = FMC2_ECC_BCH8;
+
+	/* Scan to find existence of the device */
+	ret = nand_scan(chip, nand->ncs);
+	if (ret)
+		goto err_scan;
+
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret)
+		goto err_device_register;
+
+	platform_set_drvdata(pdev, fmc2);
+
+	return 0;
+
+err_device_register:
+	nand_cleanup(chip);
+
+err_scan:
+	if (fmc2->dma_ecc_ch)
+		dma_release_channel(fmc2->dma_ecc_ch);
+	if (fmc2->dma_tx_ch)
+		dma_release_channel(fmc2->dma_tx_ch);
+	if (fmc2->dma_rx_ch)
+		dma_release_channel(fmc2->dma_rx_ch);
+
+	sg_free_table(&fmc2->dma_data_sg);
+	sg_free_table(&fmc2->dma_ecc_sg);
+
+	clk_disable_unprepare(fmc2->clk);
+
+	return ret;
+}
+
+static int stm32_fmc2_remove(struct platform_device *pdev)
+{
+	struct stm32_fmc2_nfc *fmc2 = platform_get_drvdata(pdev);
+	struct stm32_fmc2_nand *nand = &fmc2->nand;
+
+	nand_release(&nand->chip);
+
+	if (fmc2->dma_ecc_ch)
+		dma_release_channel(fmc2->dma_ecc_ch);
+	if (fmc2->dma_tx_ch)
+		dma_release_channel(fmc2->dma_tx_ch);
+	if (fmc2->dma_rx_ch)
+		dma_release_channel(fmc2->dma_rx_ch);
+
+	sg_free_table(&fmc2->dma_data_sg);
+	sg_free_table(&fmc2->dma_ecc_sg);
+
+	clk_disable_unprepare(fmc2->clk);
+
+	return 0;
+}
+
+static int __maybe_unused stm32_fmc2_suspend(struct device *dev)
+{
+	struct stm32_fmc2_nfc *fmc2 = dev_get_drvdata(dev);
+
+	clk_disable_unprepare(fmc2->clk);
+
+	pinctrl_pm_select_sleep_state(dev);
+
+	return 0;
+}
+
+static int __maybe_unused stm32_fmc2_resume(struct device *dev)
+{
+	struct stm32_fmc2_nfc *fmc2 = dev_get_drvdata(dev);
+	struct stm32_fmc2_nand *nand = &fmc2->nand;
+	int chip_cs, ret;
+
+	pinctrl_pm_select_default_state(dev);
+
+	ret = clk_prepare_enable(fmc2->clk);
+	if (ret) {
+		dev_err(dev, "can not enable the clock\n");
+		return ret;
+	}
+
+	stm32_fmc2_init(fmc2);
+
+	for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) {
+		if (!(fmc2->cs_assigned & BIT(chip_cs)))
+			continue;
+
+		nand_reset(&nand->chip, chip_cs);
+	}
+
+	return 0;
+}
+
+static SIMPLE_DEV_PM_OPS(stm32_fmc2_pm_ops, stm32_fmc2_suspend,
+			 stm32_fmc2_resume);
+
+static const struct of_device_id stm32_fmc2_match[] = {
+	{.compatible = "st,stm32mp15-fmc2"},
+	{}
+};
+MODULE_DEVICE_TABLE(of, stm32_fmc2_match);
+
+static struct platform_driver stm32_fmc2_driver = {
+	.probe	= stm32_fmc2_probe,
+	.remove	= stm32_fmc2_remove,
+	.driver	= {
+		.name = "stm32_fmc2_nand",
+		.of_match_table = stm32_fmc2_match,
+		.pm = &stm32_fmc2_pm_ops,
+	},
+};
+module_platform_driver(stm32_fmc2_driver);
+
+MODULE_ALIAS("platform:stm32_fmc2_nand");
+MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>");
+MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 nand driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/raw/sunxi_nand.c b/drivers/mtd/nand/raw/sunxi_nand.c
index e828ee50a201..4282bc477761 100644
--- a/drivers/mtd/nand/raw/sunxi_nand.c
+++ b/drivers/mtd/nand/raw/sunxi_nand.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0+
 /*
  * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
  *
@@ -10,16 +11,6 @@
  *
  *	Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
  *	Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
  */
 
 #include <linux/dma-mapping.h>
@@ -163,38 +154,36 @@
 
 #define NFC_MAX_CS		7
 
-/*
- * Chip Select structure: stores information related to NAND Chip Select
+/**
+ * struct sunxi_nand_chip_sel - stores information related to NAND Chip Select
  *
- * @cs:		the NAND CS id used to communicate with a NAND Chip
- * @rb:		the Ready/Busy pin ID. -1 means no R/B pin connected to the
- *		NFC
+ * @cs: the NAND CS id used to communicate with a NAND Chip
+ * @rb: the Ready/Busy pin ID. -1 means no R/B pin connected to the NFC
  */
 struct sunxi_nand_chip_sel {
 	u8 cs;
 	s8 rb;
 };
 
-/*
- * sunxi HW ECC infos: stores information related to HW ECC support
+/**
+ * struct sunxi_nand_hw_ecc - stores information related to HW ECC support
  *
- * @mode:	the sunxi ECC mode field deduced from ECC requirements
+ * @mode: the sunxi ECC mode field deduced from ECC requirements
  */
 struct sunxi_nand_hw_ecc {
 	int mode;
 };
 
-/*
- * NAND chip structure: stores NAND chip device related information
+/**
+ * struct sunxi_nand_chip - stores NAND chip device related information
  *
- * @node:		used to store NAND chips into a list
- * @nand:		base NAND chip structure
- * @mtd:		base MTD structure
- * @clk_rate:		clk_rate required for this NAND chip
- * @timing_cfg		TIMING_CFG register value for this NAND chip
- * @selected:		current active CS
- * @nsels:		number of CS lines required by the NAND chip
- * @sels:		array of CS lines descriptions
+ * @node: used to store NAND chips into a list
+ * @nand: base NAND chip structure
+ * @clk_rate: clk_rate required for this NAND chip
+ * @timing_cfg: TIMING_CFG register value for this NAND chip
+ * @timing_ctl: TIMING_CTL register value for this NAND chip
+ * @nsels: number of CS lines required by the NAND chip
+ * @sels: array of CS lines descriptions
  */
 struct sunxi_nand_chip {
 	struct list_head node;
@@ -202,11 +191,6 @@ struct sunxi_nand_chip {
 	unsigned long clk_rate;
 	u32 timing_cfg;
 	u32 timing_ctl;
-	int selected;
-	int addr_cycles;
-	u32 addr[2];
-	int cmd_cycles;
-	u8 cmd[2];
 	int nsels;
 	struct sunxi_nand_chip_sel sels[0];
 };
@@ -216,20 +200,21 @@ static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
 	return container_of(nand, struct sunxi_nand_chip, nand);
 }
 
-/*
- * NAND Controller structure: stores sunxi NAND controller information
+/**
+ * struct sunxi_nfc - stores sunxi NAND controller information
  *
- * @controller:		base controller structure
- * @dev:		parent device (used to print error messages)
- * @regs:		NAND controller registers
- * @ahb_clk:		NAND Controller AHB clock
- * @mod_clk:		NAND Controller mod clock
- * @assigned_cs:	bitmask describing already assigned CS lines
- * @clk_rate:		NAND controller current clock rate
- * @chips:		a list containing all the NAND chips attached to
- *			this NAND controller
- * @complete:		a completion object used to wait for NAND
- *			controller events
+ * @controller: base controller structure
+ * @dev: parent device (used to print error messages)
+ * @regs: NAND controller registers
+ * @ahb_clk: NAND controller AHB clock
+ * @mod_clk: NAND controller mod clock
+ * @reset: NAND controller reset line
+ * @assigned_cs: bitmask describing already assigned CS lines
+ * @clk_rate: NAND controller current clock rate
+ * @chips: a list containing all the NAND chips attached to this NAND
+ *	   controller
+ * @complete: a completion object used to wait for NAND controller events
+ * @dmac: the DMA channel attached to the NAND controller
  */
 struct sunxi_nfc {
 	struct nand_controller controller;
@@ -339,13 +324,11 @@ static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
 	return ret;
 }
 
-static int sunxi_nfc_dma_op_prepare(struct mtd_info *mtd, const void *buf,
+static int sunxi_nfc_dma_op_prepare(struct sunxi_nfc *nfc, const void *buf,
 				    int chunksize, int nchunks,
 				    enum dma_data_direction ddir,
 				    struct scatterlist *sg)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 	struct dma_async_tx_descriptor *dmad;
 	enum dma_transfer_direction tdir;
 	dma_cookie_t dmat;
@@ -388,38 +371,16 @@ err_unmap_buf:
 	return ret;
 }
 
-static void sunxi_nfc_dma_op_cleanup(struct mtd_info *mtd,
+static void sunxi_nfc_dma_op_cleanup(struct sunxi_nfc *nfc,
 				     enum dma_data_direction ddir,
 				     struct scatterlist *sg)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
-
 	dma_unmap_sg(nfc->dev, sg, 1, ddir);
 	writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD,
 	       nfc->regs + NFC_REG_CTL);
 }
 
-static int sunxi_nfc_dev_ready(struct nand_chip *nand)
-{
-	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
-	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
-	u32 mask;
-
-	if (sunxi_nand->selected < 0)
-		return 0;
-
-	if (sunxi_nand->sels[sunxi_nand->selected].rb < 0) {
-		dev_err(nfc->dev, "cannot check R/B NAND status!\n");
-		return 0;
-	}
-
-	mask = NFC_RB_STATE(sunxi_nand->sels[sunxi_nand->selected].rb);
-
-	return !!(readl(nfc->regs + NFC_REG_ST) & mask);
-}
-
-static void sunxi_nfc_select_chip(struct nand_chip *nand, int chip)
+static void sunxi_nfc_select_chip(struct nand_chip *nand, unsigned int cs)
 {
 	struct mtd_info *mtd = nand_to_mtd(nand);
 	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
@@ -427,40 +388,27 @@ static void sunxi_nfc_select_chip(struct nand_chip *nand, int chip)
 	struct sunxi_nand_chip_sel *sel;
 	u32 ctl;
 
-	if (chip > 0 && chip >= sunxi_nand->nsels)
-		return;
-
-	if (chip == sunxi_nand->selected)
+	if (cs > 0 && cs >= sunxi_nand->nsels)
 		return;
 
 	ctl = readl(nfc->regs + NFC_REG_CTL) &
 	      ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN);
 
-	if (chip >= 0) {
-		sel = &sunxi_nand->sels[chip];
+	sel = &sunxi_nand->sels[cs];
+	ctl |= NFC_CE_SEL(sel->cs) | NFC_EN | NFC_PAGE_SHIFT(nand->page_shift);
+	if (sel->rb >= 0)
+		ctl |= NFC_RB_SEL(sel->rb);
 
-		ctl |= NFC_CE_SEL(sel->cs) | NFC_EN |
-		       NFC_PAGE_SHIFT(nand->page_shift);
-		if (sel->rb < 0) {
-			nand->legacy.dev_ready = NULL;
-		} else {
-			nand->legacy.dev_ready = sunxi_nfc_dev_ready;
-			ctl |= NFC_RB_SEL(sel->rb);
-		}
-
-		writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);
+	writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);
 
-		if (nfc->clk_rate != sunxi_nand->clk_rate) {
-			clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate);
-			nfc->clk_rate = sunxi_nand->clk_rate;
-		}
+	if (nfc->clk_rate != sunxi_nand->clk_rate) {
+		clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate);
+		nfc->clk_rate = sunxi_nand->clk_rate;
 	}
 
 	writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL);
 	writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG);
 	writel(ctl, nfc->regs + NFC_REG_CTL);
-
-	sunxi_nand->selected = chip;
 }
 
 static void sunxi_nfc_read_buf(struct nand_chip *nand, uint8_t *buf, int len)
@@ -537,71 +485,6 @@ static void sunxi_nfc_write_buf(struct nand_chip *nand, const uint8_t *buf,
 	}
 }
 
-static uint8_t sunxi_nfc_read_byte(struct nand_chip *nand)
-{
-	uint8_t ret = 0;
-
-	sunxi_nfc_read_buf(nand, &ret, 1);
-
-	return ret;
-}
-
-static void sunxi_nfc_cmd_ctrl(struct nand_chip *nand, int dat,
-			       unsigned int ctrl)
-{
-	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
-	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
-	int ret;
-
-	if (dat == NAND_CMD_NONE && (ctrl & NAND_NCE) &&
-	    !(ctrl & (NAND_CLE | NAND_ALE))) {
-		u32 cmd = 0;
-
-		if (!sunxi_nand->addr_cycles && !sunxi_nand->cmd_cycles)
-			return;
-
-		if (sunxi_nand->cmd_cycles--)
-			cmd |= NFC_SEND_CMD1 | sunxi_nand->cmd[0];
-
-		if (sunxi_nand->cmd_cycles--) {
-			cmd |= NFC_SEND_CMD2;
-			writel(sunxi_nand->cmd[1],
-			       nfc->regs + NFC_REG_RCMD_SET);
-		}
-
-		sunxi_nand->cmd_cycles = 0;
-
-		if (sunxi_nand->addr_cycles) {
-			cmd |= NFC_SEND_ADR |
-			       NFC_ADR_NUM(sunxi_nand->addr_cycles);
-			writel(sunxi_nand->addr[0],
-			       nfc->regs + NFC_REG_ADDR_LOW);
-		}
-
-		if (sunxi_nand->addr_cycles > 4)
-			writel(sunxi_nand->addr[1],
-			       nfc->regs + NFC_REG_ADDR_HIGH);
-
-		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
-		if (ret)
-			return;
-
-		writel(cmd, nfc->regs + NFC_REG_CMD);
-		sunxi_nand->addr[0] = 0;
-		sunxi_nand->addr[1] = 0;
-		sunxi_nand->addr_cycles = 0;
-		sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0);
-	}
-
-	if (ctrl & NAND_CLE) {
-		sunxi_nand->cmd[sunxi_nand->cmd_cycles++] = dat;
-	} else if (ctrl & NAND_ALE) {
-		sunxi_nand->addr[sunxi_nand->addr_cycles / 4] |=
-				dat << ((sunxi_nand->addr_cycles % 4) * 8);
-		sunxi_nand->addr_cycles++;
-	}
-}
-
 /* These seed values have been extracted from Allwinner's BSP */
 static const u16 sunxi_nfc_randomizer_page_seeds[] = {
 	0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
@@ -684,8 +567,10 @@ static u16 sunxi_nfc_randomizer_step(u16 state, int count)
 	return state;
 }
 
-static u16 sunxi_nfc_randomizer_state(struct mtd_info *mtd, int page, bool ecc)
+static u16 sunxi_nfc_randomizer_state(struct nand_chip *nand, int page,
+				      bool ecc)
 {
+	struct mtd_info *mtd = nand_to_mtd(nand);
 	const u16 *seeds = sunxi_nfc_randomizer_page_seeds;
 	int mod = mtd_div_by_ws(mtd->erasesize, mtd);
 
@@ -702,10 +587,9 @@ static u16 sunxi_nfc_randomizer_state(struct mtd_info *mtd, int page, bool ecc)
 	return seeds[page % mod];
 }
 
-static void sunxi_nfc_randomizer_config(struct mtd_info *mtd,
-					int page, bool ecc)
+static void sunxi_nfc_randomizer_config(struct nand_chip *nand, int page,
+					bool ecc)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 	u32 ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
 	u16 state;
@@ -714,14 +598,13 @@ static void sunxi_nfc_randomizer_config(struct mtd_info *mtd,
 		return;
 
 	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
-	state = sunxi_nfc_randomizer_state(mtd, page, ecc);
+	state = sunxi_nfc_randomizer_state(nand, page, ecc);
 	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_SEED_MSK;
 	writel(ecc_ctl | NFC_RANDOM_SEED(state), nfc->regs + NFC_REG_ECC_CTL);
 }
 
-static void sunxi_nfc_randomizer_enable(struct mtd_info *mtd)
+static void sunxi_nfc_randomizer_enable(struct nand_chip *nand)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 
 	if (!(nand->options & NAND_NEED_SCRAMBLING))
@@ -731,9 +614,8 @@ static void sunxi_nfc_randomizer_enable(struct mtd_info *mtd)
 	       nfc->regs + NFC_REG_ECC_CTL);
 }
 
-static void sunxi_nfc_randomizer_disable(struct mtd_info *mtd)
+static void sunxi_nfc_randomizer_disable(struct nand_chip *nand)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 
 	if (!(nand->options & NAND_NEED_SCRAMBLING))
@@ -743,36 +625,35 @@ static void sunxi_nfc_randomizer_disable(struct mtd_info *mtd)
 	       nfc->regs + NFC_REG_ECC_CTL);
 }
 
-static void sunxi_nfc_randomize_bbm(struct mtd_info *mtd, int page, u8 *bbm)
+static void sunxi_nfc_randomize_bbm(struct nand_chip *nand, int page, u8 *bbm)
 {
-	u16 state = sunxi_nfc_randomizer_state(mtd, page, true);
+	u16 state = sunxi_nfc_randomizer_state(nand, page, true);
 
 	bbm[0] ^= state;
 	bbm[1] ^= sunxi_nfc_randomizer_step(state, 8);
 }
 
-static void sunxi_nfc_randomizer_write_buf(struct mtd_info *mtd,
+static void sunxi_nfc_randomizer_write_buf(struct nand_chip *nand,
 					   const uint8_t *buf, int len,
 					   bool ecc, int page)
 {
-	sunxi_nfc_randomizer_config(mtd, page, ecc);
-	sunxi_nfc_randomizer_enable(mtd);
-	sunxi_nfc_write_buf(mtd_to_nand(mtd), buf, len);
-	sunxi_nfc_randomizer_disable(mtd);
+	sunxi_nfc_randomizer_config(nand, page, ecc);
+	sunxi_nfc_randomizer_enable(nand);
+	sunxi_nfc_write_buf(nand, buf, len);
+	sunxi_nfc_randomizer_disable(nand);
 }
 
-static void sunxi_nfc_randomizer_read_buf(struct mtd_info *mtd, uint8_t *buf,
+static void sunxi_nfc_randomizer_read_buf(struct nand_chip *nand, uint8_t *buf,
 					  int len, bool ecc, int page)
 {
-	sunxi_nfc_randomizer_config(mtd, page, ecc);
-	sunxi_nfc_randomizer_enable(mtd);
-	sunxi_nfc_read_buf(mtd_to_nand(mtd), buf, len);
-	sunxi_nfc_randomizer_disable(mtd);
+	sunxi_nfc_randomizer_config(nand, page, ecc);
+	sunxi_nfc_randomizer_enable(nand);
+	sunxi_nfc_read_buf(nand, buf, len);
+	sunxi_nfc_randomizer_disable(nand);
 }
 
-static void sunxi_nfc_hw_ecc_enable(struct mtd_info *mtd)
+static void sunxi_nfc_hw_ecc_enable(struct nand_chip *nand)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 	struct sunxi_nand_hw_ecc *data = nand->ecc.priv;
 	u32 ecc_ctl;
@@ -789,9 +670,8 @@ static void sunxi_nfc_hw_ecc_enable(struct mtd_info *mtd)
 	writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL);
 }
 
-static void sunxi_nfc_hw_ecc_disable(struct mtd_info *mtd)
+static void sunxi_nfc_hw_ecc_disable(struct nand_chip *nand)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 
 	writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
@@ -811,10 +691,9 @@ static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf)
 	return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24);
 }
 
-static void sunxi_nfc_hw_ecc_get_prot_oob_bytes(struct mtd_info *mtd, u8 *oob,
+static void sunxi_nfc_hw_ecc_get_prot_oob_bytes(struct nand_chip *nand, u8 *oob,
 						int step, bool bbm, int page)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 
 	sunxi_nfc_user_data_to_buf(readl(nfc->regs + NFC_REG_USER_DATA(step)),
@@ -822,21 +701,20 @@ static void sunxi_nfc_hw_ecc_get_prot_oob_bytes(struct mtd_info *mtd, u8 *oob,
 
 	/* De-randomize the Bad Block Marker. */
 	if (bbm && (nand->options & NAND_NEED_SCRAMBLING))
-		sunxi_nfc_randomize_bbm(mtd, page, oob);
+		sunxi_nfc_randomize_bbm(nand, page, oob);
 }
 
-static void sunxi_nfc_hw_ecc_set_prot_oob_bytes(struct mtd_info *mtd,
+static void sunxi_nfc_hw_ecc_set_prot_oob_bytes(struct nand_chip *nand,
 						const u8 *oob, int step,
 						bool bbm, int page)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 	u8 user_data[4];
 
 	/* Randomize the Bad Block Marker. */
 	if (bbm && (nand->options & NAND_NEED_SCRAMBLING)) {
 		memcpy(user_data, oob, sizeof(user_data));
-		sunxi_nfc_randomize_bbm(mtd, page, user_data);
+		sunxi_nfc_randomize_bbm(nand, page, user_data);
 		oob = user_data;
 	}
 
@@ -844,9 +722,11 @@ static void sunxi_nfc_hw_ecc_set_prot_oob_bytes(struct mtd_info *mtd,
 	       nfc->regs + NFC_REG_USER_DATA(step));
 }
 
-static void sunxi_nfc_hw_ecc_update_stats(struct mtd_info *mtd,
+static void sunxi_nfc_hw_ecc_update_stats(struct nand_chip *nand,
 					  unsigned int *max_bitflips, int ret)
 {
+	struct mtd_info *mtd = nand_to_mtd(nand);
+
 	if (ret < 0) {
 		mtd->ecc_stats.failed++;
 	} else {
@@ -855,10 +735,9 @@ static void sunxi_nfc_hw_ecc_update_stats(struct mtd_info *mtd,
 	}
 }
 
-static int sunxi_nfc_hw_ecc_correct(struct mtd_info *mtd, u8 *data, u8 *oob,
+static int sunxi_nfc_hw_ecc_correct(struct nand_chip *nand, u8 *data, u8 *oob,
 				    int step, u32 status, bool *erased)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	u32 tmp;
@@ -892,14 +771,13 @@ static int sunxi_nfc_hw_ecc_correct(struct mtd_info *mtd, u8 *data, u8 *oob,
 	return NFC_ECC_ERR_CNT(step, tmp);
 }
 
-static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd,
+static int sunxi_nfc_hw_ecc_read_chunk(struct nand_chip *nand,
 				       u8 *data, int data_off,
 				       u8 *oob, int oob_off,
 				       int *cur_off,
 				       unsigned int *max_bitflips,
 				       bool bbm, bool oob_required, int page)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	int raw_mode = 0;
@@ -909,7 +787,7 @@ static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd,
 	if (*cur_off != data_off)
 		nand_change_read_column_op(nand, data_off, NULL, 0, false);
 
-	sunxi_nfc_randomizer_read_buf(mtd, NULL, ecc->size, false, page);
+	sunxi_nfc_randomizer_read_buf(nand, NULL, ecc->size, false, page);
 
 	if (data_off + ecc->size != oob_off)
 		nand_change_read_column_op(nand, oob_off, NULL, 0, false);
@@ -918,18 +796,18 @@ static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd,
 	if (ret)
 		return ret;
 
-	sunxi_nfc_randomizer_enable(mtd);
+	sunxi_nfc_randomizer_enable(nand);
 	writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP,
 	       nfc->regs + NFC_REG_CMD);
 
 	ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0);
-	sunxi_nfc_randomizer_disable(mtd);
+	sunxi_nfc_randomizer_disable(nand);
 	if (ret)
 		return ret;
 
 	*cur_off = oob_off + ecc->bytes + 4;
 
-	ret = sunxi_nfc_hw_ecc_correct(mtd, data, oob_required ? oob : NULL, 0,
+	ret = sunxi_nfc_hw_ecc_correct(nand, data, oob_required ? oob : NULL, 0,
 				       readl(nfc->regs + NFC_REG_ECC_ST),
 				       &erased);
 	if (erased)
@@ -961,24 +839,24 @@ static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd,
 		if (oob_required) {
 			nand_change_read_column_op(nand, oob_off, NULL, 0,
 						   false);
-			sunxi_nfc_randomizer_read_buf(mtd, oob, ecc->bytes + 4,
+			sunxi_nfc_randomizer_read_buf(nand, oob, ecc->bytes + 4,
 						      true, page);
 
-			sunxi_nfc_hw_ecc_get_prot_oob_bytes(mtd, oob, 0,
+			sunxi_nfc_hw_ecc_get_prot_oob_bytes(nand, oob, 0,
 							    bbm, page);
 		}
 	}
 
-	sunxi_nfc_hw_ecc_update_stats(mtd, max_bitflips, ret);
+	sunxi_nfc_hw_ecc_update_stats(nand, max_bitflips, ret);
 
 	return raw_mode;
 }
 
-static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd,
+static void sunxi_nfc_hw_ecc_read_extra_oob(struct nand_chip *nand,
 					    u8 *oob, int *cur_off,
 					    bool randomize, int page)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(nand);
 	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	int offset = ((ecc->bytes + 4) * ecc->steps);
 	int len = mtd->oobsize - offset;
@@ -993,20 +871,20 @@ static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd,
 	if (!randomize)
 		sunxi_nfc_read_buf(nand, oob + offset, len);
 	else
-		sunxi_nfc_randomizer_read_buf(mtd, oob + offset, len,
+		sunxi_nfc_randomizer_read_buf(nand, oob + offset, len,
 					      false, page);
 
 	if (cur_off)
 		*cur_off = mtd->oobsize + mtd->writesize;
 }
 
-static int sunxi_nfc_hw_ecc_read_chunks_dma(struct mtd_info *mtd, uint8_t *buf,
+static int sunxi_nfc_hw_ecc_read_chunks_dma(struct nand_chip *nand, uint8_t *buf,
 					    int oob_required, int page,
 					    int nchunks)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	bool randomized = nand->options & NAND_NEED_SCRAMBLING;
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+	struct mtd_info *mtd = nand_to_mtd(nand);
 	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	unsigned int max_bitflips = 0;
 	int ret, i, raw_mode = 0;
@@ -1017,14 +895,14 @@ static int sunxi_nfc_hw_ecc_read_chunks_dma(struct mtd_info *mtd, uint8_t *buf,
 	if (ret)
 		return ret;
 
-	ret = sunxi_nfc_dma_op_prepare(mtd, buf, ecc->size, nchunks,
+	ret = sunxi_nfc_dma_op_prepare(nfc, buf, ecc->size, nchunks,
 				       DMA_FROM_DEVICE, &sg);
 	if (ret)
 		return ret;
 
-	sunxi_nfc_hw_ecc_enable(mtd);
-	sunxi_nfc_randomizer_config(mtd, page, false);
-	sunxi_nfc_randomizer_enable(mtd);
+	sunxi_nfc_hw_ecc_enable(nand);
+	sunxi_nfc_randomizer_config(nand, page, false);
+	sunxi_nfc_randomizer_enable(nand);
 
 	writel((NAND_CMD_RNDOUTSTART << 16) | (NAND_CMD_RNDOUT << 8) |
 	       NAND_CMD_READSTART, nfc->regs + NFC_REG_RCMD_SET);
@@ -1038,10 +916,10 @@ static int sunxi_nfc_hw_ecc_read_chunks_dma(struct mtd_info *mtd, uint8_t *buf,
 	if (ret)
 		dmaengine_terminate_all(nfc->dmac);
 
-	sunxi_nfc_randomizer_disable(mtd);
-	sunxi_nfc_hw_ecc_disable(mtd);
+	sunxi_nfc_randomizer_disable(nand);
+	sunxi_nfc_hw_ecc_disable(nand);
 
-	sunxi_nfc_dma_op_cleanup(mtd, DMA_FROM_DEVICE, &sg);
+	sunxi_nfc_dma_op_cleanup(nfc, DMA_FROM_DEVICE, &sg);
 
 	if (ret)
 		return ret;
@@ -1055,7 +933,7 @@ static int sunxi_nfc_hw_ecc_read_chunks_dma(struct mtd_info *mtd, uint8_t *buf,
 		u8 *oob = nand->oob_poi + oob_off;
 		bool erased;
 
-		ret = sunxi_nfc_hw_ecc_correct(mtd, randomized ? data : NULL,
+		ret = sunxi_nfc_hw_ecc_correct(nand, randomized ? data : NULL,
 					       oob_required ? oob : NULL,
 					       i, status, &erased);
 
@@ -1069,14 +947,14 @@ static int sunxi_nfc_hw_ecc_read_chunks_dma(struct mtd_info *mtd, uint8_t *buf,
 						   mtd->writesize + oob_off,
 						   oob, ecc->bytes + 4, false);
 
-			sunxi_nfc_hw_ecc_get_prot_oob_bytes(mtd, oob, i,
+			sunxi_nfc_hw_ecc_get_prot_oob_bytes(nand, oob, i,
 							    !i, page);
 		}
 
 		if (erased)
 			raw_mode = 1;
 
-		sunxi_nfc_hw_ecc_update_stats(mtd, &max_bitflips, ret);
+		sunxi_nfc_hw_ecc_update_stats(nand, &max_bitflips, ret);
 	}
 
 	if (status & NFC_ECC_ERR_MSK) {
@@ -1111,25 +989,24 @@ static int sunxi_nfc_hw_ecc_read_chunks_dma(struct mtd_info *mtd, uint8_t *buf,
 			if (ret >= 0)
 				raw_mode = 1;
 
-			sunxi_nfc_hw_ecc_update_stats(mtd, &max_bitflips, ret);
+			sunxi_nfc_hw_ecc_update_stats(nand, &max_bitflips, ret);
 		}
 	}
 
 	if (oob_required)
-		sunxi_nfc_hw_ecc_read_extra_oob(mtd, nand->oob_poi,
+		sunxi_nfc_hw_ecc_read_extra_oob(nand, nand->oob_poi,
 						NULL, !raw_mode,
 						page);
 
 	return max_bitflips;
 }
 
-static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd,
+static int sunxi_nfc_hw_ecc_write_chunk(struct nand_chip *nand,
 					const u8 *data, int data_off,
 					const u8 *oob, int oob_off,
 					int *cur_off, bool bbm,
 					int page)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	int ret;
@@ -1137,7 +1014,7 @@ static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd,
 	if (data_off != *cur_off)
 		nand_change_write_column_op(nand, data_off, NULL, 0, false);
 
-	sunxi_nfc_randomizer_write_buf(mtd, data, ecc->size, false, page);
+	sunxi_nfc_randomizer_write_buf(nand, data, ecc->size, false, page);
 
 	if (data_off + ecc->size != oob_off)
 		nand_change_write_column_op(nand, oob_off, NULL, 0, false);
@@ -1146,15 +1023,15 @@ static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd,
 	if (ret)
 		return ret;
 
-	sunxi_nfc_randomizer_enable(mtd);
-	sunxi_nfc_hw_ecc_set_prot_oob_bytes(mtd, oob, 0, bbm, page);
+	sunxi_nfc_randomizer_enable(nand);
+	sunxi_nfc_hw_ecc_set_prot_oob_bytes(nand, oob, 0, bbm, page);
 
 	writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
 	       NFC_ACCESS_DIR | NFC_ECC_OP,
 	       nfc->regs + NFC_REG_CMD);
 
 	ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0);
-	sunxi_nfc_randomizer_disable(mtd);
+	sunxi_nfc_randomizer_disable(nand);
 	if (ret)
 		return ret;
 
@@ -1163,11 +1040,11 @@ static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd,
 	return 0;
 }
 
-static void sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info *mtd,
+static void sunxi_nfc_hw_ecc_write_extra_oob(struct nand_chip *nand,
 					     u8 *oob, int *cur_off,
 					     int page)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(nand);
 	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	int offset = ((ecc->bytes + 4) * ecc->steps);
 	int len = mtd->oobsize - offset;
@@ -1179,32 +1056,34 @@ static void sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info *mtd,
 		nand_change_write_column_op(nand, offset + mtd->writesize,
 					    NULL, 0, false);
 
-	sunxi_nfc_randomizer_write_buf(mtd, oob + offset, len, false, page);
+	sunxi_nfc_randomizer_write_buf(nand, oob + offset, len, false, page);
 
 	if (cur_off)
 		*cur_off = mtd->oobsize + mtd->writesize;
 }
 
-static int sunxi_nfc_hw_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
+static int sunxi_nfc_hw_ecc_read_page(struct nand_chip *nand, uint8_t *buf,
 				      int oob_required, int page)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
-	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	unsigned int max_bitflips = 0;
 	int ret, i, cur_off = 0;
 	bool raw_mode = false;
 
-	nand_read_page_op(chip, page, 0, NULL, 0);
+	sunxi_nfc_select_chip(nand, nand->cur_cs);
+
+	nand_read_page_op(nand, page, 0, NULL, 0);
 
-	sunxi_nfc_hw_ecc_enable(mtd);
+	sunxi_nfc_hw_ecc_enable(nand);
 
 	for (i = 0; i < ecc->steps; i++) {
 		int data_off = i * ecc->size;
 		int oob_off = i * (ecc->bytes + 4);
 		u8 *data = buf + data_off;
-		u8 *oob = chip->oob_poi + oob_off;
+		u8 *oob = nand->oob_poi + oob_off;
 
-		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
+		ret = sunxi_nfc_hw_ecc_read_chunk(nand, data, data_off, oob,
 						  oob_off + mtd->writesize,
 						  &cur_off, &max_bitflips,
 						  !i, oob_required, page);
@@ -1215,52 +1094,55 @@ static int sunxi_nfc_hw_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
 	}
 
 	if (oob_required)
-		sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off,
+		sunxi_nfc_hw_ecc_read_extra_oob(nand, nand->oob_poi, &cur_off,
 						!raw_mode, page);
 
-	sunxi_nfc_hw_ecc_disable(mtd);
+	sunxi_nfc_hw_ecc_disable(nand);
 
 	return max_bitflips;
 }
 
-static int sunxi_nfc_hw_ecc_read_page_dma(struct nand_chip *chip, u8 *buf,
+static int sunxi_nfc_hw_ecc_read_page_dma(struct nand_chip *nand, u8 *buf,
 					  int oob_required, int page)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
 	int ret;
 
-	nand_read_page_op(chip, page, 0, NULL, 0);
+	sunxi_nfc_select_chip(nand, nand->cur_cs);
+
+	nand_read_page_op(nand, page, 0, NULL, 0);
 
-	ret = sunxi_nfc_hw_ecc_read_chunks_dma(mtd, buf, oob_required, page,
-					       chip->ecc.steps);
+	ret = sunxi_nfc_hw_ecc_read_chunks_dma(nand, buf, oob_required, page,
+					       nand->ecc.steps);
 	if (ret >= 0)
 		return ret;
 
 	/* Fallback to PIO mode */
-	return sunxi_nfc_hw_ecc_read_page(chip, buf, oob_required, page);
+	return sunxi_nfc_hw_ecc_read_page(nand, buf, oob_required, page);
 }
 
-static int sunxi_nfc_hw_ecc_read_subpage(struct nand_chip *chip,
+static int sunxi_nfc_hw_ecc_read_subpage(struct nand_chip *nand,
 					 u32 data_offs, u32 readlen,
 					 u8 *bufpoi, int page)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
-	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	int ret, i, cur_off = 0;
 	unsigned int max_bitflips = 0;
 
-	nand_read_page_op(chip, page, 0, NULL, 0);
+	sunxi_nfc_select_chip(nand, nand->cur_cs);
+
+	nand_read_page_op(nand, page, 0, NULL, 0);
 
-	sunxi_nfc_hw_ecc_enable(mtd);
+	sunxi_nfc_hw_ecc_enable(nand);
 
 	for (i = data_offs / ecc->size;
 	     i < DIV_ROUND_UP(data_offs + readlen, ecc->size); i++) {
 		int data_off = i * ecc->size;
 		int oob_off = i * (ecc->bytes + 4);
 		u8 *data = bufpoi + data_off;
-		u8 *oob = chip->oob_poi + oob_off;
+		u8 *oob = nand->oob_poi + oob_off;
 
-		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off,
+		ret = sunxi_nfc_hw_ecc_read_chunk(nand, data, data_off,
 						  oob,
 						  oob_off + mtd->writesize,
 						  &cur_off, &max_bitflips, !i,
@@ -1269,113 +1151,118 @@ static int sunxi_nfc_hw_ecc_read_subpage(struct nand_chip *chip,
 			return ret;
 	}
 
-	sunxi_nfc_hw_ecc_disable(mtd);
+	sunxi_nfc_hw_ecc_disable(nand);
 
 	return max_bitflips;
 }
 
-static int sunxi_nfc_hw_ecc_read_subpage_dma(struct nand_chip *chip,
+static int sunxi_nfc_hw_ecc_read_subpage_dma(struct nand_chip *nand,
 					     u32 data_offs, u32 readlen,
 					     u8 *buf, int page)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
-	int nchunks = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
+	int nchunks = DIV_ROUND_UP(data_offs + readlen, nand->ecc.size);
 	int ret;
 
-	nand_read_page_op(chip, page, 0, NULL, 0);
+	sunxi_nfc_select_chip(nand, nand->cur_cs);
+
+	nand_read_page_op(nand, page, 0, NULL, 0);
 
-	ret = sunxi_nfc_hw_ecc_read_chunks_dma(mtd, buf, false, page, nchunks);
+	ret = sunxi_nfc_hw_ecc_read_chunks_dma(nand, buf, false, page, nchunks);
 	if (ret >= 0)
 		return ret;
 
 	/* Fallback to PIO mode */
-	return sunxi_nfc_hw_ecc_read_subpage(chip, data_offs, readlen,
+	return sunxi_nfc_hw_ecc_read_subpage(nand, data_offs, readlen,
 					     buf, page);
 }
 
-static int sunxi_nfc_hw_ecc_write_page(struct nand_chip *chip,
+static int sunxi_nfc_hw_ecc_write_page(struct nand_chip *nand,
 				       const uint8_t *buf, int oob_required,
 				       int page)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
-	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	int ret, i, cur_off = 0;
 
-	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+	sunxi_nfc_select_chip(nand, nand->cur_cs);
+
+	nand_prog_page_begin_op(nand, page, 0, NULL, 0);
 
-	sunxi_nfc_hw_ecc_enable(mtd);
+	sunxi_nfc_hw_ecc_enable(nand);
 
 	for (i = 0; i < ecc->steps; i++) {
 		int data_off = i * ecc->size;
 		int oob_off = i * (ecc->bytes + 4);
 		const u8 *data = buf + data_off;
-		const u8 *oob = chip->oob_poi + oob_off;
+		const u8 *oob = nand->oob_poi + oob_off;
 
-		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
+		ret = sunxi_nfc_hw_ecc_write_chunk(nand, data, data_off, oob,
 						   oob_off + mtd->writesize,
 						   &cur_off, !i, page);
 		if (ret)
 			return ret;
 	}
 
-	if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
-		sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
+	if (oob_required || (nand->options & NAND_NEED_SCRAMBLING))
+		sunxi_nfc_hw_ecc_write_extra_oob(nand, nand->oob_poi,
 						 &cur_off, page);
 
-	sunxi_nfc_hw_ecc_disable(mtd);
+	sunxi_nfc_hw_ecc_disable(nand);
 
-	return nand_prog_page_end_op(chip);
+	return nand_prog_page_end_op(nand);
 }
 
-static int sunxi_nfc_hw_ecc_write_subpage(struct nand_chip *chip,
+static int sunxi_nfc_hw_ecc_write_subpage(struct nand_chip *nand,
 					  u32 data_offs, u32 data_len,
 					  const u8 *buf, int oob_required,
 					  int page)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
-	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	int ret, i, cur_off = 0;
 
-	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+	sunxi_nfc_select_chip(nand, nand->cur_cs);
 
-	sunxi_nfc_hw_ecc_enable(mtd);
+	nand_prog_page_begin_op(nand, page, 0, NULL, 0);
+
+	sunxi_nfc_hw_ecc_enable(nand);
 
 	for (i = data_offs / ecc->size;
 	     i < DIV_ROUND_UP(data_offs + data_len, ecc->size); i++) {
 		int data_off = i * ecc->size;
 		int oob_off = i * (ecc->bytes + 4);
 		const u8 *data = buf + data_off;
-		const u8 *oob = chip->oob_poi + oob_off;
+		const u8 *oob = nand->oob_poi + oob_off;
 
-		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
+		ret = sunxi_nfc_hw_ecc_write_chunk(nand, data, data_off, oob,
 						   oob_off + mtd->writesize,
 						   &cur_off, !i, page);
 		if (ret)
 			return ret;
 	}
 
-	sunxi_nfc_hw_ecc_disable(mtd);
+	sunxi_nfc_hw_ecc_disable(nand);
 
-	return nand_prog_page_end_op(chip);
+	return nand_prog_page_end_op(nand);
 }
 
-static int sunxi_nfc_hw_ecc_write_page_dma(struct nand_chip *chip,
+static int sunxi_nfc_hw_ecc_write_page_dma(struct nand_chip *nand,
 					   const u8 *buf,
 					   int oob_required,
 					   int page)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	struct scatterlist sg;
 	int ret, i;
 
+	sunxi_nfc_select_chip(nand, nand->cur_cs);
+
 	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
 	if (ret)
 		return ret;
 
-	ret = sunxi_nfc_dma_op_prepare(mtd, buf, ecc->size, ecc->steps,
+	ret = sunxi_nfc_dma_op_prepare(nfc, buf, ecc->size, ecc->steps,
 				       DMA_TO_DEVICE, &sg);
 	if (ret)
 		goto pio_fallback;
@@ -1383,14 +1270,14 @@ static int sunxi_nfc_hw_ecc_write_page_dma(struct nand_chip *chip,
 	for (i = 0; i < ecc->steps; i++) {
 		const u8 *oob = nand->oob_poi + (i * (ecc->bytes + 4));
 
-		sunxi_nfc_hw_ecc_set_prot_oob_bytes(mtd, oob, i, !i, page);
+		sunxi_nfc_hw_ecc_set_prot_oob_bytes(nand, oob, i, !i, page);
 	}
 
-	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+	nand_prog_page_begin_op(nand, page, 0, NULL, 0);
 
-	sunxi_nfc_hw_ecc_enable(mtd);
-	sunxi_nfc_randomizer_config(mtd, page, false);
-	sunxi_nfc_randomizer_enable(mtd);
+	sunxi_nfc_hw_ecc_enable(nand);
+	sunxi_nfc_randomizer_config(nand, page, false);
+	sunxi_nfc_randomizer_enable(nand);
 
 	writel((NAND_CMD_RNDIN << 8) | NAND_CMD_PAGEPROG,
 	       nfc->regs + NFC_REG_WCMD_SET);
@@ -1405,46 +1292,46 @@ static int sunxi_nfc_hw_ecc_write_page_dma(struct nand_chip *chip,
 	if (ret)
 		dmaengine_terminate_all(nfc->dmac);
 
-	sunxi_nfc_randomizer_disable(mtd);
-	sunxi_nfc_hw_ecc_disable(mtd);
+	sunxi_nfc_randomizer_disable(nand);
+	sunxi_nfc_hw_ecc_disable(nand);
 
-	sunxi_nfc_dma_op_cleanup(mtd, DMA_TO_DEVICE, &sg);
+	sunxi_nfc_dma_op_cleanup(nfc, DMA_TO_DEVICE, &sg);
 
 	if (ret)
 		return ret;
 
-	if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
+	if (oob_required || (nand->options & NAND_NEED_SCRAMBLING))
 		/* TODO: use DMA to transfer extra OOB bytes ? */
-		sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
+		sunxi_nfc_hw_ecc_write_extra_oob(nand, nand->oob_poi,
 						 NULL, page);
 
-	return nand_prog_page_end_op(chip);
+	return nand_prog_page_end_op(nand);
 
 pio_fallback:
-	return sunxi_nfc_hw_ecc_write_page(chip, buf, oob_required, page);
+	return sunxi_nfc_hw_ecc_write_page(nand, buf, oob_required, page);
 }
 
-static int sunxi_nfc_hw_ecc_read_oob(struct nand_chip *chip, int page)
+static int sunxi_nfc_hw_ecc_read_oob(struct nand_chip *nand, int page)
 {
-	chip->pagebuf = -1;
+	nand->pagebuf = -1;
 
-	return chip->ecc.read_page(chip, chip->data_buf, 1, page);
+	return nand->ecc.read_page(nand, nand->data_buf, 1, page);
 }
 
-static int sunxi_nfc_hw_ecc_write_oob(struct nand_chip *chip, int page)
+static int sunxi_nfc_hw_ecc_write_oob(struct nand_chip *nand, int page)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct mtd_info *mtd = nand_to_mtd(nand);
 	int ret;
 
-	chip->pagebuf = -1;
+	nand->pagebuf = -1;
 
-	memset(chip->data_buf, 0xff, mtd->writesize);
-	ret = chip->ecc.write_page(chip, chip->data_buf, 1, page);
+	memset(nand->data_buf, 0xff, mtd->writesize);
+	ret = nand->ecc.write_page(nand, nand->data_buf, 1, page);
 	if (ret)
 		return ret;
 
 	/* Send command to program the OOB data */
-	return nand_prog_page_end_op(chip);
+	return nand_prog_page_end_op(nand);
 }
 
 static const s32 tWB_lut[] = {6, 12, 16, 20};
@@ -1471,8 +1358,8 @@ static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration,
 static int sunxi_nfc_setup_data_interface(struct nand_chip *nand, int csline,
 					const struct nand_data_interface *conf)
 {
-	struct sunxi_nand_chip *chip = to_sunxi_nand(nand);
-	struct sunxi_nfc *nfc = to_sunxi_nfc(chip->nand.controller);
+	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
 	const struct nand_sdr_timings *timings;
 	u32 min_clk_period = 0;
 	s32 tWB, tADL, tWHR, tRHW, tCAD;
@@ -1555,6 +1442,20 @@ static int sunxi_nfc_setup_data_interface(struct nand_chip *nand, int csline,
 	if (timings->tRHW_min > (min_clk_period * 20))
 		min_clk_period = DIV_ROUND_UP(timings->tRHW_min, 20);
 
+	/*
+	 * In non-EDO, tREA should be less than tRP to guarantee that the
+	 * controller does not sample the IO lines too early. Unfortunately,
+	 * the sunxi NAND controller does not allow us to have different
+	 * values for tRP and tREH (tRP = tREH = tRW / 2).
+	 *
+	 * We have 2 options to overcome this limitation:
+	 *
+	 * 1/ Extend tRC to fulfil the tREA <= tRC / 2 constraint
+	 * 2/ Use EDO mode (only works if timings->tRLOH > 0)
+	 */
+	if (timings->tREA_max > min_clk_period && !timings->tRLOH_min)
+		min_clk_period = timings->tREA_max;
+
 	tWB  = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max,
 					min_clk_period);
 	if (tWB < 0) {
@@ -1591,7 +1492,7 @@ static int sunxi_nfc_setup_data_interface(struct nand_chip *nand, int csline,
 	tCAD = 0x7;
 
 	/* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */
-	chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD);
+	sunxi_nand->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD);
 
 	/* Convert min_clk_period from picoseconds to nanoseconds */
 	min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);
@@ -1602,21 +1503,24 @@ static int sunxi_nfc_setup_data_interface(struct nand_chip *nand, int csline,
 	 * This new formula was verified with a scope and validated by
 	 * Allwinner engineers.
 	 */
-	chip->clk_rate = NSEC_PER_SEC / min_clk_period;
-	real_clk_rate = clk_round_rate(nfc->mod_clk, chip->clk_rate);
+	sunxi_nand->clk_rate = NSEC_PER_SEC / min_clk_period;
+	real_clk_rate = clk_round_rate(nfc->mod_clk, sunxi_nand->clk_rate);
 	if (real_clk_rate <= 0) {
-		dev_err(nfc->dev, "Unable to round clk %lu\n", chip->clk_rate);
+		dev_err(nfc->dev, "Unable to round clk %lu\n",
+			sunxi_nand->clk_rate);
 		return -EINVAL;
 	}
 
+	sunxi_nand->timing_ctl = 0;
+
 	/*
 	 * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data
 	 * output cycle timings shall be used if the host drives tRC less than
-	 * 30 ns.
+	 * 30 ns. We should also use EDO mode if tREA is bigger than tRP.
 	 */
 	min_clk_period = NSEC_PER_SEC / real_clk_rate;
-	chip->timing_ctl = ((min_clk_period * 2) < 30) ?
-			   NFC_TIMING_CTL_EDO : 0;
+	if (min_clk_period * 2 < 30 || min_clk_period * 1000 < timings->tREA_max)
+		sunxi_nand->timing_ctl = NFC_TIMING_CTL_EDO;
 
 	return 0;
 }
@@ -1677,14 +1581,13 @@ static void sunxi_nand_hw_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
 	kfree(ecc->priv);
 }
 
-static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
+static int sunxi_nand_hw_ecc_ctrl_init(struct nand_chip *nand,
 				       struct nand_ecc_ctrl *ecc,
 				       struct device_node *np)
 {
 	static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
-	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+	struct mtd_info *mtd = nand_to_mtd(nand);
 	struct sunxi_nand_hw_ecc *data;
 	int nsectors;
 	int ret;
@@ -1808,7 +1711,6 @@ static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
 
 static int sunxi_nand_attach_chip(struct nand_chip *nand)
 {
-	struct mtd_info *mtd = nand_to_mtd(nand);
 	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	struct device_node *np = nand_get_flash_node(nand);
 	int ret;
@@ -1831,7 +1733,7 @@ static int sunxi_nand_attach_chip(struct nand_chip *nand)
 
 	switch (ecc->mode) {
 	case NAND_ECC_HW:
-		ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np);
+		ret = sunxi_nand_hw_ecc_ctrl_init(nand, ecc, np);
 		if (ret)
 			return ret;
 		break;
@@ -1845,15 +1747,165 @@ static int sunxi_nand_attach_chip(struct nand_chip *nand)
 	return 0;
 }
 
+static int sunxi_nfc_exec_subop(struct nand_chip *nand,
+				const struct nand_subop *subop)
+{
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+	u32 cmd = 0, extcmd = 0, cnt = 0, addrs[2] = { };
+	unsigned int i, j, remaining, start;
+	void *inbuf = NULL;
+	int ret;
+
+	for (i = 0; i < subop->ninstrs; i++) {
+		const struct nand_op_instr *instr = &subop->instrs[i];
+
+		switch (instr->type) {
+		case NAND_OP_CMD_INSTR:
+			if (cmd & NFC_SEND_CMD1) {
+				if (WARN_ON(cmd & NFC_SEND_CMD2))
+					return -EINVAL;
+
+				cmd |= NFC_SEND_CMD2;
+				extcmd |= instr->ctx.cmd.opcode;
+			} else {
+				cmd |= NFC_SEND_CMD1 |
+				       NFC_CMD(instr->ctx.cmd.opcode);
+			}
+			break;
+
+		case NAND_OP_ADDR_INSTR:
+			remaining = nand_subop_get_num_addr_cyc(subop, i);
+			start = nand_subop_get_addr_start_off(subop, i);
+			for (j = 0; j < 8 && j + start < remaining; j++) {
+				u32 addr = instr->ctx.addr.addrs[j + start];
+
+				addrs[j / 4] |= addr << (j % 4) * 8;
+			}
+
+			if (j)
+				cmd |= NFC_SEND_ADR | NFC_ADR_NUM(j);
+
+			break;
+
+		case NAND_OP_DATA_IN_INSTR:
+		case NAND_OP_DATA_OUT_INSTR:
+			start = nand_subop_get_data_start_off(subop, i);
+			remaining = nand_subop_get_data_len(subop, i);
+			cnt = min_t(u32, remaining, NFC_SRAM_SIZE);
+			cmd |= NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
+
+			if (instr->type == NAND_OP_DATA_OUT_INSTR) {
+				cmd |= NFC_ACCESS_DIR;
+				memcpy_toio(nfc->regs + NFC_RAM0_BASE,
+					    instr->ctx.data.buf.out + start,
+					    cnt);
+			} else {
+				inbuf = instr->ctx.data.buf.in + start;
+			}
+
+			break;
+
+		case NAND_OP_WAITRDY_INSTR:
+			cmd |= NFC_WAIT_FLAG;
+			break;
+		}
+	}
+
+	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
+	if (ret)
+		return ret;
+
+	if (cmd & NFC_SEND_ADR) {
+		writel(addrs[0], nfc->regs + NFC_REG_ADDR_LOW);
+		writel(addrs[1], nfc->regs + NFC_REG_ADDR_HIGH);
+	}
+
+	if (cmd & NFC_SEND_CMD2)
+		writel(extcmd,
+		       nfc->regs +
+		       (cmd & NFC_ACCESS_DIR ?
+			NFC_REG_WCMD_SET : NFC_REG_RCMD_SET));
+
+	if (cmd & NFC_DATA_TRANS)
+		writel(cnt, nfc->regs + NFC_REG_CNT);
+
+	writel(cmd, nfc->regs + NFC_REG_CMD);
+
+	ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG,
+				    !(cmd & NFC_WAIT_FLAG) && cnt < 64,
+				    0);
+	if (ret)
+		return ret;
+
+	if (inbuf)
+		memcpy_fromio(inbuf, nfc->regs + NFC_RAM0_BASE, cnt);
+
+	return 0;
+}
+
+static int sunxi_nfc_soft_waitrdy(struct nand_chip *nand,
+				  const struct nand_subop *subop)
+{
+	return nand_soft_waitrdy(nand,
+				 subop->instrs[0].ctx.waitrdy.timeout_ms);
+}
+
+static const struct nand_op_parser sunxi_nfc_op_parser = NAND_OP_PARSER(
+	NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop,
+			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
+			       NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
+			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
+			       NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+			       NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 1024)),
+	NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop,
+			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
+			       NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
+			       NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, 1024),
+			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
+			       NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+);
+
+static const struct nand_op_parser sunxi_nfc_norb_op_parser = NAND_OP_PARSER(
+	NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop,
+			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
+			       NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
+			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
+			       NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 1024)),
+	NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop,
+			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
+			       NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
+			       NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, 1024),
+			       NAND_OP_PARSER_PAT_CMD_ELEM(true)),
+	NAND_OP_PARSER_PATTERN(sunxi_nfc_soft_waitrdy,
+			       NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+);
+
+static int sunxi_nfc_exec_op(struct nand_chip *nand,
+			     const struct nand_operation *op, bool check_only)
+{
+	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
+	const struct nand_op_parser *parser;
+
+	sunxi_nfc_select_chip(nand, op->cs);
+
+	if (sunxi_nand->sels[op->cs].rb >= 0)
+		parser = &sunxi_nfc_op_parser;
+	else
+		parser = &sunxi_nfc_norb_op_parser;
+
+	return nand_op_parser_exec_op(nand, parser, op, check_only);
+}
+
 static const struct nand_controller_ops sunxi_nand_controller_ops = {
 	.attach_chip = sunxi_nand_attach_chip,
 	.setup_data_interface = sunxi_nfc_setup_data_interface,
+	.exec_op = sunxi_nfc_exec_op,
 };
 
 static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
 				struct device_node *np)
 {
-	struct sunxi_nand_chip *chip;
+	struct sunxi_nand_chip *sunxi_nand;
 	struct mtd_info *mtd;
 	struct nand_chip *nand;
 	int nsels;
@@ -1870,17 +1922,14 @@ static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
 		return -EINVAL;
 	}
 
-	chip = devm_kzalloc(dev,
-			    sizeof(*chip) +
-			    (nsels * sizeof(struct sunxi_nand_chip_sel)),
-			    GFP_KERNEL);
-	if (!chip) {
+	sunxi_nand = devm_kzalloc(dev, struct_size(sunxi_nand, sels, nsels),
+				  GFP_KERNEL);
+	if (!sunxi_nand) {
 		dev_err(dev, "could not allocate chip\n");
 		return -ENOMEM;
 	}
 
-	chip->nsels = nsels;
-	chip->selected = -1;
+	sunxi_nand->nsels = nsels;
 
 	for (i = 0; i < nsels; i++) {
 		ret = of_property_read_u32_index(np, "reg", i, &tmp);
@@ -1902,18 +1951,17 @@ static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
 			return -EINVAL;
 		}
 
-		chip->sels[i].cs = tmp;
+		sunxi_nand->sels[i].cs = tmp;
 
 		if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) &&
 		    tmp < 2)
-			chip->sels[i].rb = tmp;
+			sunxi_nand->sels[i].rb = tmp;
 		else
-			chip->sels[i].rb = -1;
+			sunxi_nand->sels[i].rb = -1;
 	}
 
-	nand = &chip->nand;
+	nand = &sunxi_nand->nand;
 	/* Default tR value specified in the ONFI spec (chapter 4.15.1) */
-	nand->legacy.chip_delay = 200;
 	nand->controller = &nfc->controller;
 	nand->controller->ops = &sunxi_nand_controller_ops;
 
@@ -1923,11 +1971,6 @@ static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
 	 */
 	nand->ecc.mode = NAND_ECC_HW;
 	nand_set_flash_node(nand, np);
-	nand->legacy.select_chip = sunxi_nfc_select_chip;
-	nand->legacy.cmd_ctrl = sunxi_nfc_cmd_ctrl;
-	nand->legacy.read_buf = sunxi_nfc_read_buf;
-	nand->legacy.write_buf = sunxi_nfc_write_buf;
-	nand->legacy.read_byte = sunxi_nfc_read_byte;
 
 	mtd = nand_to_mtd(nand);
 	mtd->dev.parent = dev;
@@ -1943,7 +1986,7 @@ static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
 		return ret;
 	}
 
-	list_add_tail(&chip->node, &nfc->chips);
+	list_add_tail(&sunxi_nand->node, &nfc->chips);
 
 	return 0;
 }
@@ -1973,14 +2016,15 @@ static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc)
 
 static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
 {
-	struct sunxi_nand_chip *chip;
+	struct sunxi_nand_chip *sunxi_nand;
 
 	while (!list_empty(&nfc->chips)) {
-		chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
-					node);
-		nand_release(&chip->nand);
-		sunxi_nand_ecc_cleanup(&chip->nand.ecc);
-		list_del(&chip->node);
+		sunxi_nand = list_first_entry(&nfc->chips,
+					      struct sunxi_nand_chip,
+					      node);
+		nand_release(&sunxi_nand->nand);
+		sunxi_nand_ecc_cleanup(&sunxi_nand->nand.ecc);
+		list_del(&sunxi_nand->node);
 	}
 }
 
@@ -2124,7 +2168,7 @@ static struct platform_driver sunxi_nfc_driver = {
 };
 module_platform_driver(sunxi_nfc_driver);
 
-MODULE_LICENSE("GPL v2");
+MODULE_LICENSE("GPL");
 MODULE_AUTHOR("Boris BREZILLON");
 MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
 MODULE_ALIAS("platform:sunxi_nand");
diff --git a/drivers/mtd/nand/raw/tmio_nand.c b/drivers/mtd/nand/raw/tmio_nand.c
index f3b59e649b7d..db030f1701ee 100644
--- a/drivers/mtd/nand/raw/tmio_nand.c
+++ b/drivers/mtd/nand/raw/tmio_nand.c
@@ -104,6 +104,7 @@
 
 struct tmio_nand {
 	struct nand_chip chip;
+	struct completion comp;
 
 	struct platform_device *dev;
 
@@ -168,15 +169,11 @@ static int tmio_nand_dev_ready(struct nand_chip *chip)
 static irqreturn_t tmio_irq(int irq, void *__tmio)
 {
 	struct tmio_nand *tmio = __tmio;
-	struct nand_chip *nand_chip = &tmio->chip;
 
 	/* disable RDYREQ interrupt */
 	tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
+	complete(&tmio->comp);
 
-	if (unlikely(!waitqueue_active(&nand_chip->controller->wq)))
-		dev_warn(&tmio->dev->dev, "spurious interrupt\n");
-
-	wake_up(&nand_chip->controller->wq);
 	return IRQ_HANDLED;
 }
 
@@ -193,18 +190,18 @@ static int tmio_nand_wait(struct nand_chip *nand_chip)
 	u8 status;
 
 	/* enable RDYREQ interrupt */
+
 	tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR);
+	reinit_completion(&tmio->comp);
 	tmio_iowrite8(0x81, tmio->fcr + FCR_IMR);
 
-	timeout = wait_event_timeout(nand_chip->controller->wq,
-		tmio_nand_dev_ready(nand_chip),
-		msecs_to_jiffies(nand_chip->state == FL_ERASING ? 400 : 20));
+	timeout = 400;
+	timeout = wait_for_completion_timeout(&tmio->comp,
+					      msecs_to_jiffies(timeout));
 
 	if (unlikely(!tmio_nand_dev_ready(nand_chip))) {
 		tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
-		dev_warn(&tmio->dev->dev, "still busy with %s after %d ms\n",
-			nand_chip->state == FL_ERASING ? "erase" : "program",
-			nand_chip->state == FL_ERASING ? 400 : 20);
+		dev_warn(&tmio->dev->dev, "still busy after 400 ms\n");
 
 	} else if (unlikely(!timeout)) {
 		tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
@@ -378,6 +375,8 @@ static int tmio_probe(struct platform_device *dev)
 	if (!tmio)
 		return -ENOMEM;
 
+	init_completion(&tmio->comp);
+
 	tmio->dev = dev;
 
 	platform_set_drvdata(dev, tmio);
diff --git a/drivers/mtd/nand/spi/gigadevice.c b/drivers/mtd/nand/spi/gigadevice.c
index e4141c20947a..0b49d8264bef 100644
--- a/drivers/mtd/nand/spi/gigadevice.c
+++ b/drivers/mtd/nand/spi/gigadevice.c
@@ -12,6 +12,8 @@
 #define GD5FXGQ4XA_STATUS_ECC_1_7_BITFLIPS	(1 << 4)
 #define GD5FXGQ4XA_STATUS_ECC_8_BITFLIPS	(3 << 4)
 
+#define GD5FXGQ4UEXXG_REG_STATUS2		0xf0
+
 static SPINAND_OP_VARIANTS(read_cache_variants,
 		SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 2, NULL, 0),
 		SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0),
@@ -81,11 +83,83 @@ static int gd5fxgq4xa_ecc_get_status(struct spinand_device *spinand,
 	return -EINVAL;
 }
 
+static int gd5fxgq4uexxg_ooblayout_ecc(struct mtd_info *mtd, int section,
+				       struct mtd_oob_region *region)
+{
+	if (section)
+		return -ERANGE;
+
+	region->offset = 64;
+	region->length = 64;
+
+	return 0;
+}
+
+static int gd5fxgq4uexxg_ooblayout_free(struct mtd_info *mtd, int section,
+					struct mtd_oob_region *region)
+{
+	if (section)
+		return -ERANGE;
+
+	/* Reserve 1 bytes for the BBM. */
+	region->offset = 1;
+	region->length = 63;
+
+	return 0;
+}
+
+static int gd5fxgq4uexxg_ecc_get_status(struct spinand_device *spinand,
+					u8 status)
+{
+	u8 status2;
+	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(GD5FXGQ4UEXXG_REG_STATUS2,
+						      &status2);
+	int ret;
+
+	switch (status & STATUS_ECC_MASK) {
+	case STATUS_ECC_NO_BITFLIPS:
+		return 0;
+
+	case GD5FXGQ4XA_STATUS_ECC_1_7_BITFLIPS:
+		/*
+		 * Read status2 register to determine a more fine grained
+		 * bit error status
+		 */
+		ret = spi_mem_exec_op(spinand->spimem, &op);
+		if (ret)
+			return ret;
+
+		/*
+		 * 4 ... 7 bits are flipped (1..4 can't be detected, so
+		 * report the maximum of 4 in this case
+		 */
+		/* bits sorted this way (3...0): ECCS1,ECCS0,ECCSE1,ECCSE0 */
+		return ((status & STATUS_ECC_MASK) >> 2) |
+			((status2 & STATUS_ECC_MASK) >> 4);
+
+	case GD5FXGQ4XA_STATUS_ECC_8_BITFLIPS:
+		return 8;
+
+	case STATUS_ECC_UNCOR_ERROR:
+		return -EBADMSG;
+
+	default:
+		break;
+	}
+
+	return -EINVAL;
+}
+
 static const struct mtd_ooblayout_ops gd5fxgq4xa_ooblayout = {
 	.ecc = gd5fxgq4xa_ooblayout_ecc,
 	.free = gd5fxgq4xa_ooblayout_free,
 };
 
+static const struct mtd_ooblayout_ops gd5fxgq4uexxg_ooblayout = {
+	.ecc = gd5fxgq4uexxg_ooblayout_ecc,
+	.free = gd5fxgq4uexxg_ooblayout_free,
+};
+
 static const struct spinand_info gigadevice_spinand_table[] = {
 	SPINAND_INFO("GD5F1GQ4xA", 0xF1,
 		     NAND_MEMORG(1, 2048, 64, 64, 1024, 1, 1, 1),
@@ -114,6 +188,15 @@ static const struct spinand_info gigadevice_spinand_table[] = {
 		     0,
 		     SPINAND_ECCINFO(&gd5fxgq4xa_ooblayout,
 				     gd5fxgq4xa_ecc_get_status)),
+	SPINAND_INFO("GD5F1GQ4UExxG", 0xd1,
+		     NAND_MEMORG(1, 2048, 128, 64, 1024, 1, 1, 1),
+		     NAND_ECCREQ(8, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     0,
+		     SPINAND_ECCINFO(&gd5fxgq4uexxg_ooblayout,
+				     gd5fxgq4uexxg_ecc_get_status)),
 };
 
 static int gigadevice_spinand_detect(struct spinand_device *spinand)
diff --git a/drivers/mtd/nand/spi/macronix.c b/drivers/mtd/nand/spi/macronix.c
index 98f6b9c4b684..d16b57081c95 100644
--- a/drivers/mtd/nand/spi/macronix.c
+++ b/drivers/mtd/nand/spi/macronix.c
@@ -10,6 +10,7 @@
 #include <linux/mtd/spinand.h>
 
 #define SPINAND_MFR_MACRONIX		0xC2
+#define MACRONIX_ECCSR_MASK		0x0F
 
 static SPINAND_OP_VARIANTS(read_cache_variants,
 		SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0),
@@ -55,7 +56,12 @@ static int mx35lf1ge4ab_get_eccsr(struct spinand_device *spinand, u8 *eccsr)
 					  SPI_MEM_OP_DUMMY(1, 1),
 					  SPI_MEM_OP_DATA_IN(1, eccsr, 1));
 
-	return spi_mem_exec_op(spinand->spimem, &op);
+	int ret = spi_mem_exec_op(spinand->spimem, &op);
+	if (ret)
+		return ret;
+
+	*eccsr &= MACRONIX_ECCSR_MASK;
+	return 0;
 }
 
 static int mx35lf1ge4ab_ecc_get_status(struct spinand_device *spinand,
diff --git a/drivers/mtd/nand/spi/toshiba.c b/drivers/mtd/nand/spi/toshiba.c
index 081265557e70..db8021da45b5 100644
--- a/drivers/mtd/nand/spi/toshiba.c
+++ b/drivers/mtd/nand/spi/toshiba.c
@@ -25,19 +25,19 @@ static SPINAND_OP_VARIANTS(write_cache_variants,
 static SPINAND_OP_VARIANTS(update_cache_variants,
 		SPINAND_PROG_LOAD(false, 0, NULL, 0));
 
-static int tc58cvg2s0h_ooblayout_ecc(struct mtd_info *mtd, int section,
+static int tc58cxgxsx_ooblayout_ecc(struct mtd_info *mtd, int section,
 				     struct mtd_oob_region *region)
 {
-	if (section > 7)
+	if (section > 0)
 		return -ERANGE;
 
-	region->offset = 128 + 16 * section;
-	region->length = 16;
+	region->offset = mtd->oobsize / 2;
+	region->length = mtd->oobsize / 2;
 
 	return 0;
 }
 
-static int tc58cvg2s0h_ooblayout_free(struct mtd_info *mtd, int section,
+static int tc58cxgxsx_ooblayout_free(struct mtd_info *mtd, int section,
 				      struct mtd_oob_region *region)
 {
 	if (section > 0)
@@ -45,17 +45,17 @@ static int tc58cvg2s0h_ooblayout_free(struct mtd_info *mtd, int section,
 
 	/* 2 bytes reserved for BBM */
 	region->offset = 2;
-	region->length = 126;
+	region->length = (mtd->oobsize / 2) - 2;
 
 	return 0;
 }
 
-static const struct mtd_ooblayout_ops tc58cvg2s0h_ooblayout = {
-	.ecc = tc58cvg2s0h_ooblayout_ecc,
-	.free = tc58cvg2s0h_ooblayout_free,
+static const struct mtd_ooblayout_ops tc58cxgxsx_ooblayout = {
+	.ecc = tc58cxgxsx_ooblayout_ecc,
+	.free = tc58cxgxsx_ooblayout_free,
 };
 
-static int tc58cvg2s0h_ecc_get_status(struct spinand_device *spinand,
+static int tc58cxgxsx_ecc_get_status(struct spinand_device *spinand,
 				      u8 status)
 {
 	struct nand_device *nand = spinand_to_nand(spinand);
@@ -94,15 +94,66 @@ static int tc58cvg2s0h_ecc_get_status(struct spinand_device *spinand,
 }
 
 static const struct spinand_info toshiba_spinand_table[] = {
-	SPINAND_INFO("TC58CVG2S0H", 0xCD,
+	/* 3.3V 1Gb */
+	SPINAND_INFO("TC58CVG0S3", 0xC2,
+		     NAND_MEMORG(1, 2048, 128, 64, 1024, 1, 1, 1),
+		     NAND_ECCREQ(8, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     0,
+		     SPINAND_ECCINFO(&tc58cxgxsx_ooblayout,
+				     tc58cxgxsx_ecc_get_status)),
+	/* 3.3V 2Gb */
+	SPINAND_INFO("TC58CVG1S3", 0xCB,
+		     NAND_MEMORG(1, 2048, 128, 64, 2048, 1, 1, 1),
+		     NAND_ECCREQ(8, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     0,
+		     SPINAND_ECCINFO(&tc58cxgxsx_ooblayout,
+				     tc58cxgxsx_ecc_get_status)),
+	/* 3.3V 4Gb */
+	SPINAND_INFO("TC58CVG2S0", 0xCD,
+		     NAND_MEMORG(1, 4096, 256, 64, 2048, 1, 1, 1),
+		     NAND_ECCREQ(8, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     0,
+		     SPINAND_ECCINFO(&tc58cxgxsx_ooblayout,
+				     tc58cxgxsx_ecc_get_status)),
+	/* 1.8V 1Gb */
+	SPINAND_INFO("TC58CYG0S3", 0xB2,
+		     NAND_MEMORG(1, 2048, 128, 64, 1024, 1, 1, 1),
+		     NAND_ECCREQ(8, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     0,
+		     SPINAND_ECCINFO(&tc58cxgxsx_ooblayout,
+				     tc58cxgxsx_ecc_get_status)),
+	/* 1.8V 2Gb */
+	SPINAND_INFO("TC58CYG1S3", 0xBB,
+		     NAND_MEMORG(1, 2048, 128, 64, 2048, 1, 1, 1),
+		     NAND_ECCREQ(8, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     0,
+		     SPINAND_ECCINFO(&tc58cxgxsx_ooblayout,
+				     tc58cxgxsx_ecc_get_status)),
+	/* 1.8V 4Gb */
+	SPINAND_INFO("TC58CYG2S0", 0xBD,
 		     NAND_MEMORG(1, 4096, 256, 64, 2048, 1, 1, 1),
 		     NAND_ECCREQ(8, 512),
 		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
 					      &write_cache_variants,
 					      &update_cache_variants),
-		     SPINAND_HAS_QE_BIT,
-		     SPINAND_ECCINFO(&tc58cvg2s0h_ooblayout,
-				     tc58cvg2s0h_ecc_get_status)),
+		     0,
+		     SPINAND_ECCINFO(&tc58cxgxsx_ooblayout,
+				     tc58cxgxsx_ecc_get_status)),
 };
 
 static int toshiba_spinand_detect(struct spinand_device *spinand)