summary refs log tree commit diff
path: root/drivers/md/md-bitmap.h
diff options
context:
space:
mode:
authorMike Snitzer <snitzer@redhat.com>2017-10-10 17:02:41 -0400
committerShaohua Li <shli@fb.com>2017-10-16 19:06:36 -0700
commit935fe0983e09f4f7331ebf5ea4ae2124f6e9f9e8 (patch)
treea3debe3ff3a5c4462b416f8992577d30c06a8a8a /drivers/md/md-bitmap.h
parent584ed9fa9532f8b9d5955628ff87ee3b2ab9f5a9 (diff)
downloadlinux-935fe0983e09f4f7331ebf5ea4ae2124f6e9f9e8.tar.gz
md: rename some drivers/md/ files to have an "md-" prefix
Motivated by the desire to illiminate the imprecise nature of
DM-specific patches being unnecessarily sent to both the MD maintainer
and mailing-list.  Which is born out of the fact that DM files also
reside in drivers/md/

Now all MD-specific files in drivers/md/ start with either "raid" or
"md-" and the MAINTAINERS file has been updated accordingly.

Shaohua: don't change module name

Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Diffstat (limited to 'drivers/md/md-bitmap.h')
-rw-r--r--drivers/md/md-bitmap.h277
1 files changed, 277 insertions, 0 deletions
diff --git a/drivers/md/md-bitmap.h b/drivers/md/md-bitmap.h
new file mode 100644
index 000000000000..d15721ac07a6
--- /dev/null
+++ b/drivers/md/md-bitmap.h
@@ -0,0 +1,277 @@
+/*
+ * bitmap.h: Copyright (C) Peter T. Breuer (ptb@ot.uc3m.es) 2003
+ *
+ * additions: Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
+ */
+#ifndef BITMAP_H
+#define BITMAP_H 1
+
+#define BITMAP_MAJOR_LO 3
+/* version 4 insists the bitmap is in little-endian order
+ * with version 3, it is host-endian which is non-portable
+ * Version 5 is currently set only for clustered devices
+ */
+#define BITMAP_MAJOR_HI 4
+#define BITMAP_MAJOR_CLUSTERED 5
+#define	BITMAP_MAJOR_HOSTENDIAN 3
+
+/*
+ * in-memory bitmap:
+ *
+ * Use 16 bit block counters to track pending writes to each "chunk".
+ * The 2 high order bits are special-purpose, the first is a flag indicating
+ * whether a resync is needed.  The second is a flag indicating whether a
+ * resync is active.
+ * This means that the counter is actually 14 bits:
+ *
+ * +--------+--------+------------------------------------------------+
+ * | resync | resync |               counter                          |
+ * | needed | active |                                                |
+ * |  (0-1) |  (0-1) |              (0-16383)                         |
+ * +--------+--------+------------------------------------------------+
+ *
+ * The "resync needed" bit is set when:
+ *    a '1' bit is read from storage at startup.
+ *    a write request fails on some drives
+ *    a resync is aborted on a chunk with 'resync active' set
+ * It is cleared (and resync-active set) when a resync starts across all drives
+ * of the chunk.
+ *
+ *
+ * The "resync active" bit is set when:
+ *    a resync is started on all drives, and resync_needed is set.
+ *       resync_needed will be cleared (as long as resync_active wasn't already set).
+ * It is cleared when a resync completes.
+ *
+ * The counter counts pending write requests, plus the on-disk bit.
+ * When the counter is '1' and the resync bits are clear, the on-disk
+ * bit can be cleared as well, thus setting the counter to 0.
+ * When we set a bit, or in the counter (to start a write), if the fields is
+ * 0, we first set the disk bit and set the counter to 1.
+ *
+ * If the counter is 0, the on-disk bit is clear and the stripe is clean
+ * Anything that dirties the stripe pushes the counter to 2 (at least)
+ * and sets the on-disk bit (lazily).
+ * If a periodic sweep find the counter at 2, it is decremented to 1.
+ * If the sweep find the counter at 1, the on-disk bit is cleared and the
+ * counter goes to zero.
+ *
+ * Also, we'll hijack the "map" pointer itself and use it as two 16 bit block
+ * counters as a fallback when "page" memory cannot be allocated:
+ *
+ * Normal case (page memory allocated):
+ *
+ *     page pointer (32-bit)
+ *
+ *     [ ] ------+
+ *               |
+ *               +-------> [   ][   ]..[   ] (4096 byte page == 2048 counters)
+ *                          c1   c2    c2048
+ *
+ * Hijacked case (page memory allocation failed):
+ *
+ *     hijacked page pointer (32-bit)
+ *
+ *     [		  ][		  ] (no page memory allocated)
+ *      counter #1 (16-bit) counter #2 (16-bit)
+ *
+ */
+
+#ifdef __KERNEL__
+
+#define PAGE_BITS (PAGE_SIZE << 3)
+#define PAGE_BIT_SHIFT (PAGE_SHIFT + 3)
+
+typedef __u16 bitmap_counter_t;
+#define COUNTER_BITS 16
+#define COUNTER_BIT_SHIFT 4
+#define COUNTER_BYTE_SHIFT (COUNTER_BIT_SHIFT - 3)
+
+#define NEEDED_MASK ((bitmap_counter_t) (1 << (COUNTER_BITS - 1)))
+#define RESYNC_MASK ((bitmap_counter_t) (1 << (COUNTER_BITS - 2)))
+#define COUNTER_MAX ((bitmap_counter_t) RESYNC_MASK - 1)
+#define NEEDED(x) (((bitmap_counter_t) x) & NEEDED_MASK)
+#define RESYNC(x) (((bitmap_counter_t) x) & RESYNC_MASK)
+#define COUNTER(x) (((bitmap_counter_t) x) & COUNTER_MAX)
+
+/* how many counters per page? */
+#define PAGE_COUNTER_RATIO (PAGE_BITS / COUNTER_BITS)
+/* same, except a shift value for more efficient bitops */
+#define PAGE_COUNTER_SHIFT (PAGE_BIT_SHIFT - COUNTER_BIT_SHIFT)
+/* same, except a mask value for more efficient bitops */
+#define PAGE_COUNTER_MASK  (PAGE_COUNTER_RATIO - 1)
+
+#define BITMAP_BLOCK_SHIFT 9
+
+#endif
+
+/*
+ * bitmap structures:
+ */
+
+#define BITMAP_MAGIC 0x6d746962
+
+/* use these for bitmap->flags and bitmap->sb->state bit-fields */
+enum bitmap_state {
+	BITMAP_STALE	   = 1,  /* the bitmap file is out of date or had -EIO */
+	BITMAP_WRITE_ERROR = 2, /* A write error has occurred */
+	BITMAP_HOSTENDIAN  =15,
+};
+
+/* the superblock at the front of the bitmap file -- little endian */
+typedef struct bitmap_super_s {
+	__le32 magic;        /*  0  BITMAP_MAGIC */
+	__le32 version;      /*  4  the bitmap major for now, could change... */
+	__u8  uuid[16];      /*  8  128 bit uuid - must match md device uuid */
+	__le64 events;       /* 24  event counter for the bitmap (1)*/
+	__le64 events_cleared;/*32  event counter when last bit cleared (2) */
+	__le64 sync_size;    /* 40  the size of the md device's sync range(3) */
+	__le32 state;        /* 48  bitmap state information */
+	__le32 chunksize;    /* 52  the bitmap chunk size in bytes */
+	__le32 daemon_sleep; /* 56  seconds between disk flushes */
+	__le32 write_behind; /* 60  number of outstanding write-behind writes */
+	__le32 sectors_reserved; /* 64 number of 512-byte sectors that are
+				  * reserved for the bitmap. */
+	__le32 nodes;        /* 68 the maximum number of nodes in cluster. */
+	__u8 cluster_name[64]; /* 72 cluster name to which this md belongs */
+	__u8  pad[256 - 136]; /* set to zero */
+} bitmap_super_t;
+
+/* notes:
+ * (1) This event counter is updated before the eventcounter in the md superblock
+ *    When a bitmap is loaded, it is only accepted if this event counter is equal
+ *    to, or one greater than, the event counter in the superblock.
+ * (2) This event counter is updated when the other one is *if*and*only*if* the
+ *    array is not degraded.  As bits are not cleared when the array is degraded,
+ *    this represents the last time that any bits were cleared.
+ *    If a device is being added that has an event count with this value or
+ *    higher, it is accepted as conforming to the bitmap.
+ * (3)This is the number of sectors represented by the bitmap, and is the range that
+ *    resync happens across.  For raid1 and raid5/6 it is the size of individual
+ *    devices.  For raid10 it is the size of the array.
+ */
+
+#ifdef __KERNEL__
+
+/* the in-memory bitmap is represented by bitmap_pages */
+struct bitmap_page {
+	/*
+	 * map points to the actual memory page
+	 */
+	char *map;
+	/*
+	 * in emergencies (when map cannot be alloced), hijack the map
+	 * pointer and use it as two counters itself
+	 */
+	unsigned int hijacked:1;
+	/*
+	 * If any counter in this page is '1' or '2' - and so could be
+	 * cleared then that page is marked as 'pending'
+	 */
+	unsigned int pending:1;
+	/*
+	 * count of dirty bits on the page
+	 */
+	unsigned int  count:30;
+};
+
+/* the main bitmap structure - one per mddev */
+struct bitmap {
+
+	struct bitmap_counts {
+		spinlock_t lock;
+		struct bitmap_page *bp;
+		unsigned long pages;		/* total number of pages
+						 * in the bitmap */
+		unsigned long missing_pages;	/* number of pages
+						 * not yet allocated */
+		unsigned long chunkshift;	/* chunksize = 2^chunkshift
+						 * (for bitops) */
+		unsigned long chunks;		/* Total number of data
+						 * chunks for the array */
+	} counts;
+
+	struct mddev *mddev; /* the md device that the bitmap is for */
+
+	__u64	events_cleared;
+	int need_sync;
+
+	struct bitmap_storage {
+		struct file *file;		/* backing disk file */
+		struct page *sb_page;		/* cached copy of the bitmap
+						 * file superblock */
+		struct page **filemap;		/* list of cache pages for
+						 * the file */
+		unsigned long *filemap_attr;	/* attributes associated
+						 * w/ filemap pages */
+		unsigned long file_pages;	/* number of pages in the file*/
+		unsigned long bytes;		/* total bytes in the bitmap */
+	} storage;
+
+	unsigned long flags;
+
+	int allclean;
+
+	atomic_t behind_writes;
+	unsigned long behind_writes_used; /* highest actual value at runtime */
+
+	/*
+	 * the bitmap daemon - periodically wakes up and sweeps the bitmap
+	 * file, cleaning up bits and flushing out pages to disk as necessary
+	 */
+	unsigned long daemon_lastrun; /* jiffies of last run */
+	unsigned long last_end_sync; /* when we lasted called end_sync to
+				      * update bitmap with resync progress */
+
+	atomic_t pending_writes; /* pending writes to the bitmap file */
+	wait_queue_head_t write_wait;
+	wait_queue_head_t overflow_wait;
+	wait_queue_head_t behind_wait;
+
+	struct kernfs_node *sysfs_can_clear;
+	int cluster_slot;		/* Slot offset for clustered env */
+};
+
+/* the bitmap API */
+
+/* these are used only by md/bitmap */
+struct bitmap *bitmap_create(struct mddev *mddev, int slot);
+int bitmap_load(struct mddev *mddev);
+void bitmap_flush(struct mddev *mddev);
+void bitmap_destroy(struct mddev *mddev);
+
+void bitmap_print_sb(struct bitmap *bitmap);
+void bitmap_update_sb(struct bitmap *bitmap);
+void bitmap_status(struct seq_file *seq, struct bitmap *bitmap);
+
+int  bitmap_setallbits(struct bitmap *bitmap);
+void bitmap_write_all(struct bitmap *bitmap);
+
+void bitmap_dirty_bits(struct bitmap *bitmap, unsigned long s, unsigned long e);
+
+/* these are exported */
+int bitmap_startwrite(struct bitmap *bitmap, sector_t offset,
+			unsigned long sectors, int behind);
+void bitmap_endwrite(struct bitmap *bitmap, sector_t offset,
+			unsigned long sectors, int success, int behind);
+int bitmap_start_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks, int degraded);
+void bitmap_end_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks, int aborted);
+void bitmap_close_sync(struct bitmap *bitmap);
+void bitmap_cond_end_sync(struct bitmap *bitmap, sector_t sector, bool force);
+void bitmap_sync_with_cluster(struct mddev *mddev,
+			      sector_t old_lo, sector_t old_hi,
+			      sector_t new_lo, sector_t new_hi);
+
+void bitmap_unplug(struct bitmap *bitmap);
+void bitmap_daemon_work(struct mddev *mddev);
+
+int bitmap_resize(struct bitmap *bitmap, sector_t blocks,
+		  int chunksize, int init);
+struct bitmap *get_bitmap_from_slot(struct mddev *mddev, int slot);
+int bitmap_copy_from_slot(struct mddev *mddev, int slot,
+				sector_t *lo, sector_t *hi, bool clear_bits);
+void bitmap_free(struct bitmap *bitmap);
+void bitmap_wait_behind_writes(struct mddev *mddev);
+#endif
+
+#endif