summary refs log tree commit diff
path: root/Documentation/blockdev
diff options
context:
space:
mode:
authorHannes Reinecke <hare@suse.de>2018-10-17 17:25:13 +0200
committerJens Axboe <axboe@kernel.dk>2018-10-17 09:42:30 -0600
commit6956b956934f10c19eca2a1d44f50a3bee860531 (patch)
tree6b0c3745d6f2cb44a19833fa28a6a7bfd4fafad1 /Documentation/blockdev
parent0585b75437d335c6580066c1ab9ea3092139df32 (diff)
downloadlinux-6956b956934f10c19eca2a1d44f50a3bee860531.tar.gz
drivers/block: Remove DAC960 driver
The DAC960 driver has been obsoleted by the myrb/myrs drivers,
so it can be dropped.

Signed-off-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Diffstat (limited to 'Documentation/blockdev')
-rw-r--r--Documentation/blockdev/README.DAC960756
1 files changed, 0 insertions, 756 deletions
diff --git a/Documentation/blockdev/README.DAC960 b/Documentation/blockdev/README.DAC960
deleted file mode 100644
index bd85fb9dc6e5..000000000000
--- a/Documentation/blockdev/README.DAC960
+++ /dev/null
@@ -1,756 +0,0 @@
-   Linux Driver for Mylex DAC960/AcceleRAID/eXtremeRAID PCI RAID Controllers
-
-			Version 2.2.11 for Linux 2.2.19
-			Version 2.4.11 for Linux 2.4.12
-
-			      PRODUCTION RELEASE
-
-				11 October 2001
-
-			       Leonard N. Zubkoff
-			       Dandelion Digital
-			       lnz@dandelion.com
-
-	 Copyright 1998-2001 by Leonard N. Zubkoff <lnz@dandelion.com>
-
-
-				 INTRODUCTION
-
-Mylex, Inc. designs and manufactures a variety of high performance PCI RAID
-controllers.  Mylex Corporation is located at 34551 Ardenwood Blvd., Fremont,
-California 94555, USA and can be reached at 510.796.6100 or on the World Wide
-Web at http://www.mylex.com.  Mylex Technical Support can be reached by
-electronic mail at mylexsup@us.ibm.com, by voice at 510.608.2400, or by FAX at
-510.745.7715.  Contact information for offices in Europe and Japan is available
-on their Web site.
-
-The latest information on Linux support for DAC960 PCI RAID Controllers, as
-well as the most recent release of this driver, will always be available from
-my Linux Home Page at URL "http://www.dandelion.com/Linux/".  The Linux DAC960
-driver supports all current Mylex PCI RAID controllers including the new
-eXtremeRAID 2000/3000 and AcceleRAID 352/170/160 models which have an entirely
-new firmware interface from the older eXtremeRAID 1100, AcceleRAID 150/200/250,
-and DAC960PJ/PG/PU/PD/PL.  See below for a complete controller list as well as
-minimum firmware version requirements.  For simplicity, in most places this
-documentation refers to DAC960 generically rather than explicitly listing all
-the supported models.
-
-Driver bug reports should be sent via electronic mail to "lnz@dandelion.com".
-Please include with the bug report the complete configuration messages reported
-by the driver at startup, along with any subsequent system messages relevant to
-the controller's operation, and a detailed description of your system's
-hardware configuration.  Driver bugs are actually quite rare; if you encounter
-problems with disks being marked offline, for example, please contact Mylex
-Technical Support as the problem is related to the hardware configuration
-rather than the Linux driver.
-
-Please consult the RAID controller documentation for detailed information
-regarding installation and configuration of the controllers.  This document
-primarily provides information specific to the Linux support.
-
-
-				DRIVER FEATURES
-
-The DAC960 RAID controllers are supported solely as high performance RAID
-controllers, not as interfaces to arbitrary SCSI devices.  The Linux DAC960
-driver operates at the block device level, the same level as the SCSI and IDE
-drivers.  Unlike other RAID controllers currently supported on Linux, the
-DAC960 driver is not dependent on the SCSI subsystem, and hence avoids all the
-complexity and unnecessary code that would be associated with an implementation
-as a SCSI driver.  The DAC960 driver is designed for as high a performance as
-possible with no compromises or extra code for compatibility with lower
-performance devices.  The DAC960 driver includes extensive error logging and
-online configuration management capabilities.  Except for initial configuration
-of the controller and adding new disk drives, most everything can be handled
-from Linux while the system is operational.
-
-The DAC960 driver is architected to support up to 8 controllers per system.
-Each DAC960 parallel SCSI controller can support up to 15 disk drives per
-channel, for a maximum of 60 drives on a four channel controller; the fibre
-channel eXtremeRAID 3000 controller supports up to 125 disk drives per loop for
-a total of 250 drives.  The drives installed on a controller are divided into
-one or more "Drive Groups", and then each Drive Group is subdivided further
-into 1 to 32 "Logical Drives".  Each Logical Drive has a specific RAID Level
-and caching policy associated with it, and it appears to Linux as a single
-block device.  Logical Drives are further subdivided into up to 7 partitions
-through the normal Linux and PC disk partitioning schemes.  Logical Drives are
-also known as "System Drives", and Drive Groups are also called "Packs".  Both
-terms are in use in the Mylex documentation; I have chosen to standardize on
-the more generic "Logical Drive" and "Drive Group".
-
-DAC960 RAID disk devices are named in the style of the obsolete Device File
-System (DEVFS).  The device corresponding to Logical Drive D on Controller C
-is referred to as /dev/rd/cCdD, and the partitions are called /dev/rd/cCdDp1
-through /dev/rd/cCdDp7.  For example, partition 3 of Logical Drive 5 on
-Controller 2 is referred to as /dev/rd/c2d5p3.  Note that unlike with SCSI
-disks the device names will not change in the event of a disk drive failure.
-The DAC960 driver is assigned major numbers 48 - 55 with one major number per
-controller.  The 8 bits of minor number are divided into 5 bits for the Logical
-Drive and 3 bits for the partition.
-
-
-	  SUPPORTED DAC960/AcceleRAID/eXtremeRAID PCI RAID CONTROLLERS
-
-The following list comprises the supported DAC960, AcceleRAID, and eXtremeRAID
-PCI RAID Controllers as of the date of this document.  It is recommended that
-anyone purchasing a Mylex PCI RAID Controller not in the following table
-contact the author beforehand to verify that it is or will be supported.
-
-eXtremeRAID 3000
-	    1 Wide Ultra-2/LVD SCSI channel
-	    2 External Fibre FC-AL channels
-	    233MHz StrongARM SA 110 Processor
-	    64 Bit 33MHz PCI (backward compatible with 32 Bit PCI slots)
-	    32MB/64MB ECC SDRAM Memory
-
-eXtremeRAID 2000
-	    4 Wide Ultra-160 LVD SCSI channels
-	    233MHz StrongARM SA 110 Processor
-	    64 Bit 33MHz PCI (backward compatible with 32 Bit PCI slots)
-	    32MB/64MB ECC SDRAM Memory
-
-AcceleRAID 352
-	    2 Wide Ultra-160 LVD SCSI channels
-	    100MHz Intel i960RN RISC Processor
-	    64 Bit 33MHz PCI (backward compatible with 32 Bit PCI slots)
-	    32MB/64MB ECC SDRAM Memory
-
-AcceleRAID 170
-	    1 Wide Ultra-160 LVD SCSI channel
-	    100MHz Intel i960RM RISC Processor
-	    16MB/32MB/64MB ECC SDRAM Memory
-
-AcceleRAID 160 (AcceleRAID 170LP)
-	    1 Wide Ultra-160 LVD SCSI channel
-	    100MHz Intel i960RS RISC Processor
-	    Built in 16M ECC SDRAM Memory
-	    PCI Low Profile Form Factor - fit for 2U height
-
-eXtremeRAID 1100 (DAC1164P)
-	    3 Wide Ultra-2/LVD SCSI channels
-	    233MHz StrongARM SA 110 Processor
-	    64 Bit 33MHz PCI (backward compatible with 32 Bit PCI slots)
-	    16MB/32MB/64MB Parity SDRAM Memory with Battery Backup
-
-AcceleRAID 250 (DAC960PTL1)
-	    Uses onboard Symbios SCSI chips on certain motherboards
-	    Also includes one onboard Wide Ultra-2/LVD SCSI Channel
-	    66MHz Intel i960RD RISC Processor
-	    4MB/8MB/16MB/32MB/64MB/128MB ECC EDO Memory
-
-AcceleRAID 200 (DAC960PTL0)
-	    Uses onboard Symbios SCSI chips on certain motherboards
-	    Includes no onboard SCSI Channels
-	    66MHz Intel i960RD RISC Processor
-	    4MB/8MB/16MB/32MB/64MB/128MB ECC EDO Memory
-
-AcceleRAID 150 (DAC960PRL)
-	    Uses onboard Symbios SCSI chips on certain motherboards
-	    Also includes one onboard Wide Ultra-2/LVD SCSI Channel
-	    33MHz Intel i960RP RISC Processor
-	    4MB Parity EDO Memory
-
-DAC960PJ    1/2/3 Wide Ultra SCSI-3 Channels
-	    66MHz Intel i960RD RISC Processor
-	    4MB/8MB/16MB/32MB/64MB/128MB ECC EDO Memory
-
-DAC960PG    1/2/3 Wide Ultra SCSI-3 Channels
-	    33MHz Intel i960RP RISC Processor
-	    4MB/8MB ECC EDO Memory
-
-DAC960PU    1/2/3 Wide Ultra SCSI-3 Channels
-	    Intel i960CF RISC Processor
-	    4MB/8MB EDRAM or 2MB/4MB/8MB/16MB/32MB DRAM Memory
-
-DAC960PD    1/2/3 Wide Fast SCSI-2 Channels
-	    Intel i960CF RISC Processor
-	    4MB/8MB EDRAM or 2MB/4MB/8MB/16MB/32MB DRAM Memory
-
-DAC960PL    1/2/3 Wide Fast SCSI-2 Channels
-	    Intel i960 RISC Processor
-	    2MB/4MB/8MB/16MB/32MB DRAM Memory
-
-DAC960P	    1/2/3 Wide Fast SCSI-2 Channels
-	    Intel i960 RISC Processor
-	    2MB/4MB/8MB/16MB/32MB DRAM Memory
-
-For the eXtremeRAID 2000/3000 and AcceleRAID 352/170/160, firmware version
-6.00-01 or above is required.
-
-For the eXtremeRAID 1100, firmware version 5.06-0-52 or above is required.
-
-For the AcceleRAID 250, 200, and 150, firmware version 4.06-0-57 or above is
-required.
-
-For the DAC960PJ and DAC960PG, firmware version 4.06-0-00 or above is required.
-
-For the DAC960PU, DAC960PD, DAC960PL, and DAC960P, either firmware version
-3.51-0-04 or above is required (for dual Flash ROM controllers), or firmware
-version 2.73-0-00 or above is required (for single Flash ROM controllers)
-
-Please note that not all SCSI disk drives are suitable for use with DAC960
-controllers, and only particular firmware versions of any given model may
-actually function correctly.  Similarly, not all motherboards have a BIOS that
-properly initializes the AcceleRAID 250, AcceleRAID 200, AcceleRAID 150,
-DAC960PJ, and DAC960PG because the Intel i960RD/RP is a multi-function device.
-If in doubt, contact Mylex RAID Technical Support (mylexsup@us.ibm.com) to
-verify compatibility.  Mylex makes available a hard disk compatibility list at
-http://www.mylex.com/support/hdcomp/hd-lists.html.
-
-
-			      DRIVER INSTALLATION
-
-This distribution was prepared for Linux kernel version 2.2.19 or 2.4.12.
-
-To install the DAC960 RAID driver, you may use the following commands,
-replacing "/usr/src" with wherever you keep your Linux kernel source tree:
-
-  cd /usr/src
-  tar -xvzf DAC960-2.2.11.tar.gz (or DAC960-2.4.11.tar.gz)
-  mv README.DAC960 linux/Documentation
-  mv DAC960.[ch] linux/drivers/block
-  patch -p0 < DAC960.patch (if DAC960.patch is included)
-  cd linux
-  make config
-  make bzImage (or zImage)
-
-Then install "arch/x86/boot/bzImage" or "arch/x86/boot/zImage" as your
-standard kernel, run lilo if appropriate, and reboot.
-
-To create the necessary devices in /dev, the "make_rd" script included in
-"DAC960-Utilities.tar.gz" from http://www.dandelion.com/Linux/ may be used.
-LILO 21 and FDISK v2.9 include DAC960 support; also included in this archive
-are patches to LILO 20 and FDISK v2.8 that add DAC960 support, along with
-statically linked executables of LILO and FDISK.  This modified version of LILO
-will allow booting from a DAC960 controller and/or mounting the root file
-system from a DAC960.
-
-Red Hat Linux 6.0 and SuSE Linux 6.1 include support for Mylex PCI RAID
-controllers.  Installing directly onto a DAC960 may be problematic from other
-Linux distributions until their installation utilities are updated.
-
-
-			      INSTALLATION NOTES
-
-Before installing Linux or adding DAC960 logical drives to an existing Linux
-system, the controller must first be configured to provide one or more logical
-drives using the BIOS Configuration Utility or DACCF.  Please note that since
-there are only at most 6 usable partitions on each logical drive, systems
-requiring more partitions should subdivide a drive group into multiple logical
-drives, each of which can have up to 6 usable partitions.  Also, note that with
-large disk arrays it is advisable to enable the 8GB BIOS Geometry (255/63)
-rather than accepting the default 2GB BIOS Geometry (128/32); failing to so do
-will cause the logical drive geometry to have more than 65535 cylinders which
-will make it impossible for FDISK to be used properly.  The 8GB BIOS Geometry
-can be enabled by configuring the DAC960 BIOS, which is accessible via Alt-M
-during the BIOS initialization sequence.
-
-For maximum performance and the most efficient E2FSCK performance, it is
-recommended that EXT2 file systems be built with a 4KB block size and 16 block
-stride to match the DAC960 controller's 64KB default stripe size.  The command
-"mke2fs -b 4096 -R stride=16 <device>" is appropriate.  Unless there will be a
-large number of small files on the file systems, it is also beneficial to add
-the "-i 16384" option to increase the bytes per inode parameter thereby
-reducing the file system metadata.  Finally, on systems that will only be run
-with Linux 2.2 or later kernels it is beneficial to enable sparse superblocks
-with the "-s 1" option.
-
-
-		      DAC960 ANNOUNCEMENTS MAILING LIST
-
-The DAC960 Announcements Mailing List provides a forum for informing Linux
-users of new driver releases and other announcements regarding Linux support
-for DAC960 PCI RAID Controllers.  To join the mailing list, send a message to
-"dac960-announce-request@dandelion.com" with the line "subscribe" in the
-message body.
-
-
-		CONTROLLER CONFIGURATION AND STATUS MONITORING
-
-The DAC960 RAID controllers running firmware 4.06 or above include a Background
-Initialization facility so that system downtime is minimized both for initial
-installation and subsequent configuration of additional storage.  The BIOS
-Configuration Utility (accessible via Alt-R during the BIOS initialization
-sequence) is used to quickly configure the controller, and then the logical
-drives that have been created are available for immediate use even while they
-are still being initialized by the controller.  The primary need for online
-configuration and status monitoring is then to avoid system downtime when disk
-drives fail and must be replaced.  Mylex's online monitoring and configuration
-utilities are being ported to Linux and will become available at some point in
-the future.  Note that with a SAF-TE (SCSI Accessed Fault-Tolerant Enclosure)
-enclosure, the controller is able to rebuild failed drives automatically as
-soon as a drive replacement is made available.
-
-The primary interfaces for controller configuration and status monitoring are
-special files created in the /proc/rd/... hierarchy along with the normal
-system console logging mechanism.  Whenever the system is operating, the DAC960
-driver queries each controller for status information every 10 seconds, and
-checks for additional conditions every 60 seconds.  The initial status of each
-controller is always available for controller N in /proc/rd/cN/initial_status,
-and the current status as of the last status monitoring query is available in
-/proc/rd/cN/current_status.  In addition, status changes are also logged by the
-driver to the system console and will appear in the log files maintained by
-syslog.  The progress of asynchronous rebuild or consistency check operations
-is also available in /proc/rd/cN/current_status, and progress messages are
-logged to the system console at most every 60 seconds.
-
-Starting with the 2.2.3/2.0.3 versions of the driver, the status information
-available in /proc/rd/cN/initial_status and /proc/rd/cN/current_status has been
-augmented to include the vendor, model, revision, and serial number (if
-available) for each physical device found connected to the controller:
-
-***** DAC960 RAID Driver Version 2.2.3 of 19 August 1999 *****
-Copyright 1998-1999 by Leonard N. Zubkoff <lnz@dandelion.com>
-Configuring Mylex DAC960PRL PCI RAID Controller
-  Firmware Version: 4.07-0-07, Channels: 1, Memory Size: 16MB
-  PCI Bus: 1, Device: 4, Function: 1, I/O Address: Unassigned
-  PCI Address: 0xFE300000 mapped at 0xA0800000, IRQ Channel: 21
-  Controller Queue Depth: 128, Maximum Blocks per Command: 128
-  Driver Queue Depth: 127, Maximum Scatter/Gather Segments: 33
-  Stripe Size: 64KB, Segment Size: 8KB, BIOS Geometry: 255/63
-  SAF-TE Enclosure Management Enabled
-  Physical Devices:
-    0:0  Vendor: IBM       Model: DRVS09D           Revision: 0270
-         Serial Number:       68016775HA
-         Disk Status: Online, 17928192 blocks
-    0:1  Vendor: IBM       Model: DRVS09D           Revision: 0270
-         Serial Number:       68004E53HA
-         Disk Status: Online, 17928192 blocks
-    0:2  Vendor: IBM       Model: DRVS09D           Revision: 0270
-         Serial Number:       13013935HA
-         Disk Status: Online, 17928192 blocks
-    0:3  Vendor: IBM       Model: DRVS09D           Revision: 0270
-         Serial Number:       13016897HA
-         Disk Status: Online, 17928192 blocks
-    0:4  Vendor: IBM       Model: DRVS09D           Revision: 0270
-         Serial Number:       68019905HA
-         Disk Status: Online, 17928192 blocks
-    0:5  Vendor: IBM       Model: DRVS09D           Revision: 0270
-         Serial Number:       68012753HA
-         Disk Status: Online, 17928192 blocks
-    0:6  Vendor: ESG-SHV   Model: SCA HSBP M6       Revision: 0.61
-  Logical Drives:
-    /dev/rd/c0d0: RAID-5, Online, 89640960 blocks, Write Thru
-  No Rebuild or Consistency Check in Progress
-
-To simplify the monitoring process for custom software, the special file
-/proc/rd/status returns "OK" when all DAC960 controllers in the system are
-operating normally and no failures have occurred, or "ALERT" if any logical
-drives are offline or critical or any non-standby physical drives are dead.
-
-Configuration commands for controller N are available via the special file
-/proc/rd/cN/user_command.  A human readable command can be written to this
-special file to initiate a configuration operation, and the results of the
-operation can then be read back from the special file in addition to being
-logged to the system console.  The shell command sequence
-
-  echo "<configuration-command>" > /proc/rd/c0/user_command
-  cat /proc/rd/c0/user_command
-
-is typically used to execute configuration commands.  The configuration
-commands are:
-
-  flush-cache
-
-    The "flush-cache" command flushes the controller's cache.  The system
-    automatically flushes the cache at shutdown or if the driver module is
-    unloaded, so this command is only needed to be certain a write back cache
-    is flushed to disk before the system is powered off by a command to a UPS.
-    Note that the flush-cache command also stops an asynchronous rebuild or
-    consistency check, so it should not be used except when the system is being
-    halted.
-
-  kill <channel>:<target-id>
-
-    The "kill" command marks the physical drive <channel>:<target-id> as DEAD.
-    This command is provided primarily for testing, and should not be used
-    during normal system operation.
-
-  make-online <channel>:<target-id>
-
-    The "make-online" command changes the physical drive <channel>:<target-id>
-    from status DEAD to status ONLINE.  In cases where multiple physical drives
-    have been killed simultaneously, this command may be used to bring all but
-    one of them back online, after which a rebuild to the final drive is
-    necessary.
-
-    Warning: make-online should only be used on a dead physical drive that is
-    an active part of a drive group, never on a standby drive.  The command
-    should never be used on a dead drive that is part of a critical logical
-    drive; rebuild should be used if only a single drive is dead.
-
-  make-standby <channel>:<target-id>
-
-    The "make-standby" command changes physical drive <channel>:<target-id>
-    from status DEAD to status STANDBY.  It should only be used in cases where
-    a dead drive was replaced after an automatic rebuild was performed onto a
-    standby drive.  It cannot be used to add a standby drive to the controller
-    configuration if one was not created initially; the BIOS Configuration
-    Utility must be used for that currently.
-
-  rebuild <channel>:<target-id>
-
-    The "rebuild" command initiates an asynchronous rebuild onto physical drive
-    <channel>:<target-id>.  It should only be used when a dead drive has been
-    replaced.
-
-  check-consistency <logical-drive-number>
-
-    The "check-consistency" command initiates an asynchronous consistency check
-    of <logical-drive-number> with automatic restoration.  It can be used
-    whenever it is desired to verify the consistency of the redundancy
-    information.
-
-  cancel-rebuild
-  cancel-consistency-check
-
-    The "cancel-rebuild" and "cancel-consistency-check" commands cancel any
-    rebuild or consistency check operations previously initiated.
-
-
-	       EXAMPLE I - DRIVE FAILURE WITHOUT A STANDBY DRIVE
-
-The following annotated logs demonstrate the controller configuration and and
-online status monitoring capabilities of the Linux DAC960 Driver.  The test
-configuration comprises 6 1GB Quantum Atlas I disk drives on two channels of a
-DAC960PJ controller.  The physical drives are configured into a single drive
-group without a standby drive, and the drive group has been configured into two
-logical drives, one RAID-5 and one RAID-6.  Note that these logs are from an
-earlier version of the driver and the messages have changed somewhat with newer
-releases, but the functionality remains similar.  First, here is the current
-status of the RAID configuration:
-
-gwynedd:/u/lnz# cat /proc/rd/c0/current_status
-***** DAC960 RAID Driver Version 2.0.0 of 23 March 1999 *****
-Copyright 1998-1999 by Leonard N. Zubkoff <lnz@dandelion.com>
-Configuring Mylex DAC960PJ PCI RAID Controller
-  Firmware Version: 4.06-0-08, Channels: 3, Memory Size: 8MB
-  PCI Bus: 0, Device: 19, Function: 1, I/O Address: Unassigned
-  PCI Address: 0xFD4FC000 mapped at 0x8807000, IRQ Channel: 9
-  Controller Queue Depth: 128, Maximum Blocks per Command: 128
-  Driver Queue Depth: 127, Maximum Scatter/Gather Segments: 33
-  Stripe Size: 64KB, Segment Size: 8KB, BIOS Geometry: 255/63
-  Physical Devices:
-    0:1 - Disk: Online, 2201600 blocks
-    0:2 - Disk: Online, 2201600 blocks
-    0:3 - Disk: Online, 2201600 blocks
-    1:1 - Disk: Online, 2201600 blocks
-    1:2 - Disk: Online, 2201600 blocks
-    1:3 - Disk: Online, 2201600 blocks
-  Logical Drives:
-    /dev/rd/c0d0: RAID-5, Online, 5498880 blocks, Write Thru
-    /dev/rd/c0d1: RAID-6, Online, 3305472 blocks, Write Thru
-  No Rebuild or Consistency Check in Progress
-
-gwynedd:/u/lnz# cat /proc/rd/status
-OK
-
-The above messages indicate that everything is healthy, and /proc/rd/status
-returns "OK" indicating that there are no problems with any DAC960 controller
-in the system.  For demonstration purposes, while I/O is active Physical Drive
-1:1 is now disconnected, simulating a drive failure.  The failure is noted by
-the driver within 10 seconds of the controller's having detected it, and the
-driver logs the following console status messages indicating that Logical
-Drives 0 and 1 are now CRITICAL as a result of Physical Drive 1:1 being DEAD:
-
-DAC960#0: Physical Drive 1:2 Error Log: Sense Key = 6, ASC = 29, ASCQ = 02
-DAC960#0: Physical Drive 1:3 Error Log: Sense Key = 6, ASC = 29, ASCQ = 02
-DAC960#0: Physical Drive 1:1 killed because of timeout on SCSI command
-DAC960#0: Physical Drive 1:1 is now DEAD
-DAC960#0: Logical Drive 0 (/dev/rd/c0d0) is now CRITICAL
-DAC960#0: Logical Drive 1 (/dev/rd/c0d1) is now CRITICAL
-
-The Sense Keys logged here are just Check Condition / Unit Attention conditions
-arising from a SCSI bus reset that is forced by the controller during its error
-recovery procedures.  Concurrently with the above, the driver status available
-from /proc/rd also reflects the drive failure.  The status message in
-/proc/rd/status has changed from "OK" to "ALERT":
-
-gwynedd:/u/lnz# cat /proc/rd/status
-ALERT
-
-and /proc/rd/c0/current_status has been updated:
-
-gwynedd:/u/lnz# cat /proc/rd/c0/current_status
-  ...
-  Physical Devices:
-    0:1 - Disk: Online, 2201600 blocks
-    0:2 - Disk: Online, 2201600 blocks
-    0:3 - Disk: Online, 2201600 blocks
-    1:1 - Disk: Dead, 2201600 blocks
-    1:2 - Disk: Online, 2201600 blocks
-    1:3 - Disk: Online, 2201600 blocks
-  Logical Drives:
-    /dev/rd/c0d0: RAID-5, Critical, 5498880 blocks, Write Thru
-    /dev/rd/c0d1: RAID-6, Critical, 3305472 blocks, Write Thru
-  No Rebuild or Consistency Check in Progress
-
-Since there are no standby drives configured, the system can continue to access
-the logical drives in a performance degraded mode until the failed drive is
-replaced and a rebuild operation completed to restore the redundancy of the
-logical drives.  Once Physical Drive 1:1 is replaced with a properly
-functioning drive, or if the physical drive was killed without having failed
-(e.g., due to electrical problems on the SCSI bus), the user can instruct the
-controller to initiate a rebuild operation onto the newly replaced drive:
-
-gwynedd:/u/lnz# echo "rebuild 1:1" > /proc/rd/c0/user_command
-gwynedd:/u/lnz# cat /proc/rd/c0/user_command
-Rebuild of Physical Drive 1:1 Initiated
-
-The echo command instructs the controller to initiate an asynchronous rebuild
-operation onto Physical Drive 1:1, and the status message that results from the
-operation is then available for reading from /proc/rd/c0/user_command, as well
-as being logged to the console by the driver.
-
-Within 10 seconds of this command the driver logs the initiation of the
-asynchronous rebuild operation:
-
-DAC960#0: Rebuild of Physical Drive 1:1 Initiated
-DAC960#0: Physical Drive 1:1 Error Log: Sense Key = 6, ASC = 29, ASCQ = 01
-DAC960#0: Physical Drive 1:1 is now WRITE-ONLY
-DAC960#0: Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 1% completed
-
-and /proc/rd/c0/current_status is updated:
-
-gwynedd:/u/lnz# cat /proc/rd/c0/current_status
-  ...
-  Physical Devices:
-    0:1 - Disk: Online, 2201600 blocks
-    0:2 - Disk: Online, 2201600 blocks
-    0:3 - Disk: Online, 2201600 blocks
-    1:1 - Disk: Write-Only, 2201600 blocks
-    1:2 - Disk: Online, 2201600 blocks
-    1:3 - Disk: Online, 2201600 blocks
-  Logical Drives:
-    /dev/rd/c0d0: RAID-5, Critical, 5498880 blocks, Write Thru
-    /dev/rd/c0d1: RAID-6, Critical, 3305472 blocks, Write Thru
-  Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 6% completed
-
-As the rebuild progresses, the current status in /proc/rd/c0/current_status is
-updated every 10 seconds:
-
-gwynedd:/u/lnz# cat /proc/rd/c0/current_status
-  ...
-  Physical Devices:
-    0:1 - Disk: Online, 2201600 blocks
-    0:2 - Disk: Online, 2201600 blocks
-    0:3 - Disk: Online, 2201600 blocks
-    1:1 - Disk: Write-Only, 2201600 blocks
-    1:2 - Disk: Online, 2201600 blocks
-    1:3 - Disk: Online, 2201600 blocks
-  Logical Drives:
-    /dev/rd/c0d0: RAID-5, Critical, 5498880 blocks, Write Thru
-    /dev/rd/c0d1: RAID-6, Critical, 3305472 blocks, Write Thru
-  Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 15% completed
-
-and every minute a progress message is logged to the console by the driver:
-
-DAC960#0: Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 32% completed
-DAC960#0: Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 63% completed
-DAC960#0: Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 94% completed
-DAC960#0: Rebuild in Progress: Logical Drive 1 (/dev/rd/c0d1) 94% completed
-
-Finally, the rebuild completes successfully.  The driver logs the status of the 
-logical and physical drives and the rebuild completion:
-
-DAC960#0: Rebuild Completed Successfully
-DAC960#0: Physical Drive 1:1 is now ONLINE
-DAC960#0: Logical Drive 0 (/dev/rd/c0d0) is now ONLINE
-DAC960#0: Logical Drive 1 (/dev/rd/c0d1) is now ONLINE
-
-/proc/rd/c0/current_status is updated:
-
-gwynedd:/u/lnz# cat /proc/rd/c0/current_status
-  ...
-  Physical Devices:
-    0:1 - Disk: Online, 2201600 blocks
-    0:2 - Disk: Online, 2201600 blocks
-    0:3 - Disk: Online, 2201600 blocks
-    1:1 - Disk: Online, 2201600 blocks
-    1:2 - Disk: Online, 2201600 blocks
-    1:3 - Disk: Online, 2201600 blocks
-  Logical Drives:
-    /dev/rd/c0d0: RAID-5, Online, 5498880 blocks, Write Thru
-    /dev/rd/c0d1: RAID-6, Online, 3305472 blocks, Write Thru
-  Rebuild Completed Successfully
-
-and /proc/rd/status indicates that everything is healthy once again:
-
-gwynedd:/u/lnz# cat /proc/rd/status
-OK
-
-
-		EXAMPLE II - DRIVE FAILURE WITH A STANDBY DRIVE
-
-The following annotated logs demonstrate the controller configuration and and
-online status monitoring capabilities of the Linux DAC960 Driver.  The test
-configuration comprises 6 1GB Quantum Atlas I disk drives on two channels of a
-DAC960PJ controller.  The physical drives are configured into a single drive
-group with a standby drive, and the drive group has been configured into two
-logical drives, one RAID-5 and one RAID-6.  Note that these logs are from an
-earlier version of the driver and the messages have changed somewhat with newer
-releases, but the functionality remains similar.  First, here is the current
-status of the RAID configuration:
-
-gwynedd:/u/lnz# cat /proc/rd/c0/current_status
-***** DAC960 RAID Driver Version 2.0.0 of 23 March 1999 *****
-Copyright 1998-1999 by Leonard N. Zubkoff <lnz@dandelion.com>
-Configuring Mylex DAC960PJ PCI RAID Controller
-  Firmware Version: 4.06-0-08, Channels: 3, Memory Size: 8MB
-  PCI Bus: 0, Device: 19, Function: 1, I/O Address: Unassigned
-  PCI Address: 0xFD4FC000 mapped at 0x8807000, IRQ Channel: 9
-  Controller Queue Depth: 128, Maximum Blocks per Command: 128
-  Driver Queue Depth: 127, Maximum Scatter/Gather Segments: 33
-  Stripe Size: 64KB, Segment Size: 8KB, BIOS Geometry: 255/63
-  Physical Devices:
-    0:1 - Disk: Online, 2201600 blocks
-    0:2 - Disk: Online, 2201600 blocks
-    0:3 - Disk: Online, 2201600 blocks
-    1:1 - Disk: Online, 2201600 blocks
-    1:2 - Disk: Online, 2201600 blocks
-    1:3 - Disk: Standby, 2201600 blocks
-  Logical Drives:
-    /dev/rd/c0d0: RAID-5, Online, 4399104 blocks, Write Thru
-    /dev/rd/c0d1: RAID-6, Online, 2754560 blocks, Write Thru
-  No Rebuild or Consistency Check in Progress
-
-gwynedd:/u/lnz# cat /proc/rd/status
-OK
-
-The above messages indicate that everything is healthy, and /proc/rd/status
-returns "OK" indicating that there are no problems with any DAC960 controller
-in the system.  For demonstration purposes, while I/O is active Physical Drive
-1:2 is now disconnected, simulating a drive failure.  The failure is noted by
-the driver within 10 seconds of the controller's having detected it, and the
-driver logs the following console status messages:
-
-DAC960#0: Physical Drive 1:1 Error Log: Sense Key = 6, ASC = 29, ASCQ = 02
-DAC960#0: Physical Drive 1:3 Error Log: Sense Key = 6, ASC = 29, ASCQ = 02
-DAC960#0: Physical Drive 1:2 killed because of timeout on SCSI command
-DAC960#0: Physical Drive 1:2 is now DEAD
-DAC960#0: Physical Drive 1:2 killed because it was removed
-DAC960#0: Logical Drive 0 (/dev/rd/c0d0) is now CRITICAL
-DAC960#0: Logical Drive 1 (/dev/rd/c0d1) is now CRITICAL
-
-Since a standby drive is configured, the controller automatically begins
-rebuilding onto the standby drive:
-
-DAC960#0: Physical Drive 1:3 is now WRITE-ONLY
-DAC960#0: Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 4% completed
-
-Concurrently with the above, the driver status available from /proc/rd also
-reflects the drive failure and automatic rebuild.  The status message in
-/proc/rd/status has changed from "OK" to "ALERT":
-
-gwynedd:/u/lnz# cat /proc/rd/status
-ALERT
-
-and /proc/rd/c0/current_status has been updated:
-
-gwynedd:/u/lnz# cat /proc/rd/c0/current_status
-  ...
-  Physical Devices:
-    0:1 - Disk: Online, 2201600 blocks
-    0:2 - Disk: Online, 2201600 blocks
-    0:3 - Disk: Online, 2201600 blocks
-    1:1 - Disk: Online, 2201600 blocks
-    1:2 - Disk: Dead, 2201600 blocks
-    1:3 - Disk: Write-Only, 2201600 blocks
-  Logical Drives:
-    /dev/rd/c0d0: RAID-5, Critical, 4399104 blocks, Write Thru
-    /dev/rd/c0d1: RAID-6, Critical, 2754560 blocks, Write Thru
-  Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 4% completed
-
-As the rebuild progresses, the current status in /proc/rd/c0/current_status is
-updated every 10 seconds:
-
-gwynedd:/u/lnz# cat /proc/rd/c0/current_status
-  ...
-  Physical Devices:
-    0:1 - Disk: Online, 2201600 blocks
-    0:2 - Disk: Online, 2201600 blocks
-    0:3 - Disk: Online, 2201600 blocks
-    1:1 - Disk: Online, 2201600 blocks
-    1:2 - Disk: Dead, 2201600 blocks
-    1:3 - Disk: Write-Only, 2201600 blocks
-  Logical Drives:
-    /dev/rd/c0d0: RAID-5, Critical, 4399104 blocks, Write Thru
-    /dev/rd/c0d1: RAID-6, Critical, 2754560 blocks, Write Thru
-  Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 40% completed
-
-and every minute a progress message is logged on the console by the driver:
-
-DAC960#0: Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 40% completed
-DAC960#0: Rebuild in Progress: Logical Drive 0 (/dev/rd/c0d0) 76% completed
-DAC960#0: Rebuild in Progress: Logical Drive 1 (/dev/rd/c0d1) 66% completed
-DAC960#0: Rebuild in Progress: Logical Drive 1 (/dev/rd/c0d1) 84% completed
-
-Finally, the rebuild completes successfully.  The driver logs the status of the 
-logical and physical drives and the rebuild completion:
-
-DAC960#0: Rebuild Completed Successfully
-DAC960#0: Physical Drive 1:3 is now ONLINE
-DAC960#0: Logical Drive 0 (/dev/rd/c0d0) is now ONLINE
-DAC960#0: Logical Drive 1 (/dev/rd/c0d1) is now ONLINE
-
-/proc/rd/c0/current_status is updated:
-
-***** DAC960 RAID Driver Version 2.0.0 of 23 March 1999 *****
-Copyright 1998-1999 by Leonard N. Zubkoff <lnz@dandelion.com>
-Configuring Mylex DAC960PJ PCI RAID Controller
-  Firmware Version: 4.06-0-08, Channels: 3, Memory Size: 8MB
-  PCI Bus: 0, Device: 19, Function: 1, I/O Address: Unassigned
-  PCI Address: 0xFD4FC000 mapped at 0x8807000, IRQ Channel: 9
-  Controller Queue Depth: 128, Maximum Blocks per Command: 128
-  Driver Queue Depth: 127, Maximum Scatter/Gather Segments: 33
-  Stripe Size: 64KB, Segment Size: 8KB, BIOS Geometry: 255/63
-  Physical Devices:
-    0:1 - Disk: Online, 2201600 blocks
-    0:2 - Disk: Online, 2201600 blocks
-    0:3 - Disk: Online, 2201600 blocks
-    1:1 - Disk: Online, 2201600 blocks
-    1:2 - Disk: Dead, 2201600 blocks
-    1:3 - Disk: Online, 2201600 blocks
-  Logical Drives:
-    /dev/rd/c0d0: RAID-5, Online, 4399104 blocks, Write Thru
-    /dev/rd/c0d1: RAID-6, Online, 2754560 blocks, Write Thru
-  Rebuild Completed Successfully
-
-and /proc/rd/status indicates that everything is healthy once again:
-
-gwynedd:/u/lnz# cat /proc/rd/status
-OK
-
-Note that the absence of a viable standby drive does not create an "ALERT"
-status.  Once dead Physical Drive 1:2 has been replaced, the controller must be
-told that this has occurred and that the newly replaced drive should become the
-new standby drive:
-
-gwynedd:/u/lnz# echo "make-standby 1:2" > /proc/rd/c0/user_command
-gwynedd:/u/lnz# cat /proc/rd/c0/user_command
-Make Standby of Physical Drive 1:2 Succeeded
-
-The echo command instructs the controller to make Physical Drive 1:2 into a
-standby drive, and the status message that results from the operation is then
-available for reading from /proc/rd/c0/user_command, as well as being logged to
-the console by the driver.  Within 60 seconds of this command the driver logs:
-
-DAC960#0: Physical Drive 1:2 Error Log: Sense Key = 6, ASC = 29, ASCQ = 01
-DAC960#0: Physical Drive 1:2 is now STANDBY
-DAC960#0: Make Standby of Physical Drive 1:2 Succeeded
-
-and /proc/rd/c0/current_status is updated:
-
-gwynedd:/u/lnz# cat /proc/rd/c0/current_status
-  ...
-  Physical Devices:
-    0:1 - Disk: Online, 2201600 blocks
-    0:2 - Disk: Online, 2201600 blocks
-    0:3 - Disk: Online, 2201600 blocks
-    1:1 - Disk: Online, 2201600 blocks
-    1:2 - Disk: Standby, 2201600 blocks
-    1:3 - Disk: Online, 2201600 blocks
-  Logical Drives:
-    /dev/rd/c0d0: RAID-5, Online, 4399104 blocks, Write Thru
-    /dev/rd/c0d1: RAID-6, Online, 2754560 blocks, Write Thru
-  Rebuild Completed Successfully